
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARD EFFICIENT MULTI-AGENT EXPLORATION
WITH TRAJECTORY ENTROPY MAXIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent works have increasingly focused on learning decentralized policies for
agents as a solution to the scalability challenges in Multi-Agent Reinforcement
Learning (MARL), where agents typically share the parameters of a policy network
to make action decisions. However, this parameter sharing can impede efficient
exploration, as it may lead to similar behaviors among agents. Different from
previous mutual information-based methods that promote multi-agent diversity,
we introduce a novel multi-agent exploration method called Trajectory Entropy
Exploration (TEE). Our method employs a particle-based entropy estimator to
maximize the entropy of different agents’ trajectories in a contrastive trajectory
representation space, encouraging visitations of diverse trajectories and efficient
exploration. This entropy estimator avoids challenging density modeling and scales
effectively in high-dimensional multi-agent settings. We integrate our method with
MARL algorithms by deploying an intrinsic reward for each agent to encourage
entropy maximization. To validate the effectiveness of our method, we test our
method in challenging multi-agent tasks from several MARL benchmarks. The
results demonstrate that our method consistently outperforms existing state-of-the-
art methods.

1 INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) has gained considerable attention in recent years for
its potential to solve multi-agent tasks, such as multiplayer video games (Vinyals et al., 2019) and
traffic light control (Wu et al., 2020). MARL facilitates effective cooperation by training multiple
agents together to maximize overall team performance. However, developing efficient cooperative
policies for challenging multi-agent tasks remains difficult due to the constraints of partial observation
and the need for scalability. A widely adopted solution to these challenges is the Centralized Training
with Decentralized Execution (CTDE) framework (Lowe et al., 2017), in which each agent takes
actions based on local observations while being trained with access to global information to ensure
robust and stable performance.

In the CTDE framework, each agent learns its own decentralized policy. Training numerous policy
networks can be inefficient. To address this, the parameter sharing technique is typically employed,
allowing all agents to use the same policy network parameters to make action decisions. This
approach significantly reduces the number of required parameters, thereby lowering computational
complexity and speeding up the training process. Additionally, parameter sharing facilitates the
experience sharing among agents during centralized training, which not only helps in learning a
robust and stable policy but also increases overall learning efficiency (Wang et al., 2020b).

Taking advantage of these benefits, many MARL algorithms have integrated the parameter sharing
technique, including value-based methods (Iqbal et al., 2021; Yang et al., 2021; Wang et al., 2020a;
Sunehag et al., 2018; Rashid et al., 2018) and policy gradients (Ma et al., 2021; Wang et al., 2020d;
Ndousse et al., 2021; Zhang et al., 2021; Yu et al., 2022; Kuba et al., 2021). However, when agents
share the same policy network parameters, they often learn homogeneous behaviors, as they tend
to exhibit similar behaviors when faced with similar observations (Hu et al., 2022). This limits the
emergence of multi-agent diversity and hinders efficient exploration. Complex multi-agent tasks
typically require extensive exploration and varied policies among agents. For example, in a football
game, where agents must work together to score, uniform policies might lead to competition for the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ball, resulting in ineffective play. To succeed, agents need to learn diverse strategies and assume
different roles to effectively pass the ball and score.

To solve the problem, previous works (Jiang and Lu, 2021; Li et al., 2021; Charakorn et al., 2023;
Jo et al., 2024) typically promote multi-agent diversity based on identity-aware trajectories in a
fully-supervised manner. They maximize the mutual information between trajectories and agent
identities to differentiate the trajectories of different agents based on their identities. However, despite
their success, these methods are prone to overfitting and falling into local optima, as agents tend to
revisit familiar trajectories rich in identity information, hindering efficient exploration. Consequently,
the agents’ trajectories may become overly focused on aligning with their identities.

In this paper, we introduce a novel exploration method called Trajectory Entropy Exploration (TEE)
designed to enhance multi-agent diversity while ensuring efficient exploration. Unlike previous
methods, our method does not rely on mutual information or trajectory discriminators. The intuition
is that agents must thoroughly explore the environment to visit states where they might obtain rewards.
To achieve this, our method focuses on maximizing the entropy of different agents’ trajectories.
Since directly maximizing entropy in the high-dimensional trajectory space is intractable due to the
unknown trajectory density model, we employ a nonparametric particle-based entropy estimator
(Singh et al., 2003; Beirlant et al., 1997). This estimator is asymptotically unbiased for entropy by
calculating the mean Euclidean distance between a particle and its neighbors. In multi-agent settings,
to make these distances meaningful, we build a trajectory representation space through encoding
the trajectory space into a low-dimensional representation using contrastive learning (Chen et al.,
2020). Contrastive learning is a commonly used method to learn useful representations, encoding
similarities and dissimilarities among sample instances (Chen et al., 2020).

The contributions of this work are summarized as follows: First, we efficiently distinguish trajectory
representations of different agents using contrastive learning. Since agents adopting parameter sharing
may induce similar trajectory samples, it is intractable to directly use the vanilla contrastive learning.
We further introduce an identity representation for each agent to distinguish trajectory representations
of different agents. The identity representations serve as medium variables to contrast different
trajectory samples. Unlike fixed agent identities used in previous works, identity representations are
vectors, consisting of learnable parameters, to linearly classify trajectory representations for minimal
contrastive learning loss. Second, to encourage multi-agent diversity, we maximize the trajectory
entropy using a nonparametric particle-based entropy estimator in the learned trajectory representation
space. We adapt the entropy estimator to multi-agent settings by calculating the average distance
between a particle and its k nearest neighbors, achieving more stable and robust empirical results.
Third, we integrate our method into MARL algorithms by deploying an intrinsic reward, based on the
entropy estimator, encouraging agents to maximize entropy. Fourth, we demonstrate the effectiveness
of our method through experiments on various challenging multi-agent tasks, where TEE significantly
outperforms existing state-of-the-art MARL algorithms.

2 BACKGROUNDS

We model fully cooperative multi-agent tasks as a Decentralized Partially Observable
Markov Decision Process (Dec-POMDP) (Oliehoek and Amato, 2015), defined by the tuple
〈A,S, U, P,R,O,Ω, γ〉. Here, A = {1, . . . , |A|} represents a set of |A| agents, s ∈ S denotes
the environment state, and U is the set of possible actions. At every time step, agent a receives an
observation oa ∈ Ω based on the observation function O(s, a) and choose an action ua ∈ U . The
actions of all agents combine to form a joint action u. The environment then transitions to a new
state s′ according to the transition function P (s′ | s,u). At the same time, agents receive a shared
reward r = R(s,u) from the environment. The reward discount factor is represented by γ ∈ [0, 1).
Each agent’s trajectory, composed of its observation-action history, is denoted as τa ∈ T . Each
agent learns a decentralized policy πa (ua | τa), which together form a joint policy π. The goal is to
maximize the joint action-value function Qπ(s,u) = Es0:∞,u0:∞ [

∑∞
t=0 γ

trt | s0 = s,u0 = u,π].

3 TRAJECTORY ENTROPY EXPLORATION

One of the common approaches to encourage multi-agent diversity is to maximize the mutual
information between trajectories and agent identities (Jiang and Lu, 2021; Li et al., 2021). However,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

a

to

Encoder

Autoregressive

model

Contrastive

learning loss

a

entropyr

()1,
a a

t tu o-

Agent a

Mixing

Network

QMIX

1 2 | |, ,..., A

t t tc c c

(),a a

a t tQ o u

()(), ,entropy a a a

a t a t tQ c Q o u

entropy

aQ

totQ

Trajectory representation

learning

k nearest neighbors

Particle-based

entropy

estimator

...

Identity

representation

Figure 1: Diagram of our proposed TEE. Our method trains the encoder and the autoregressive
model by minimizing the contrastive loss to learn an abstract trajectory representation space from
trajectories of different agents. We deploy an intrinsic reward function based on a particle-based
entropy estimator in the MARL algorithm such that we can train the policies of agents towards
maximizing the trajectory entropy, encouraging multi-agent diversity.

these works share a limitation that the agents are likely to prefer known trajectories, containing more
identity information, than novel trajectories, resulting in inefficient exploration. Consider a variational
reward r (τ, i) = log qθ (i | τ)− log p (i) that maximizes the mutual information objective. qθ(i | τ)
is a variational distribution, parameterized by θ, which approximates the true posterior probability
of the agent identity i conditioned on the trajectory τ . p(i) is assumed to be a uniform distribution,
so − log p (i) = log |A| is a constant, where |A| is the number of agents. When agents visit known
trajectories that have been successfully discriminated by qθ(i | τ), i.e., qθ (i | τ)→ 1, the variational
reward is rknown = log 1 + log |A| = log |A|. However, when agents visit new trajectories, the
variational reward is rnew = limqθ(i|τ)→0 log qθ (i | τ) + log |A| = −∞. We note that when agents
visit known trajectories, they can achieve more rewards. We provide a more detailed theoretical
analysis of this limitation in Appendix B. To resolve this limitation, in this paper, our aim is to
encourage multi-agent diversity by maximizing the entropy of trajectories of different agents in an
abstract representation space, unlike the previous mutual information maximization method. First,
we map the trajectory space to a latent contrastive representation space with a contrastive learning
method. Then, we propose a novel nonparametric method to maximize the trajectory entropy by
introducing per-agent intrinsic rewards.

3.1 LEARNING CONTRASTIVE TRAJECTORY REPRESENTATIONS

We first construct a trajectory representation space to enable the proper functioning of the nonpara-
metric particle-based entropy estimator. To achieve this goal, we resort to contrastive learning, which
has shown great promise in learning meaningful representations in RL, as demonstrated in recent
works (Laskin et al., 2020; Stooke et al., 2021). However, the vanilla contrastive learning may
not be immediately applicable in our multi-agent setting, as the policy network parameter sharing
may lead to similar trajectories. By contrasting these similar trajectory samples against each other,
the vanilla contrastive learning may fail to distinguish trajectory representations of different agents
based on distance between them, which is necessary for entropy maximization to work. To solve
this issue, we introduce a learnable identity representation for each agent and instead contrast the
trajectory samples with the identity representations to pull the trajectory samples with the same
identity representations together while pushing apart those with different identity representations in
the trajectory representation space.

Concretely, we encode trajectories into the trajectory representations cat by encoding observations
into latent embeddings zat = gθe(o

a
t) with a non-linear encoder gθe . These embeddings are then

summarized with an autoregressive model gθg , i.e., cat = gθg (za≤t), which alleviates the non-stationary
issue caused by partial observations. We further denote the trajectory encoder as gθ = {gθe , gθg}.

Let the set C =
{
ca

′

t

}|A|
a′=1

represents the trajectory representations of all agents at time step t, and

let da ∈ RH denote the identity representation for agent a. To train the trajectory encoder gθ in order

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

to learn distinguishable trajectory representations, we minimize a contrastive learning loss, or an
InfoNCE loss (Oord et al., 2018),

LN = − E
(da,C)∼D

[
log

f (cat , d
a)∑

ca
′
t ∈C

f
(
ca

′
t , d

a
)] (1)

where f (ct, d) = exp
(
ct
T d
)
∈ R. We use the dot product similarity ctT d to measure the distance

between the identity representation and the trajectory representation. The goal of the contrastive
learning loss is to guarantee that the identity representation da remains close with its corresponding
trajectory representations cat while being far away from the trajectory representations of other agents
in C \ {cat }. As a result, the identity representations of all agents are uniformly distributed on the
trajectory representation hypersphere with their corresponding trajectory representations scattered
around them, leading to distinguishability among trajectory representations. Note that the identity
representations introduced in our method linearly classify the trajectory representations of different
agents for the minimal contrastive learning loss.

3.2 NONPARAMETRIC ENTROPY MAXIMIZATION

Prior work (Hazan et al., 2019) typically uses density estimation to maximize entropy. However,
in high-dimensional multi-agent settings, it is intractable and non-trivial to estimate the density. In
practice, a nonparametric particle-based entropy estimator (Singh et al., 2003; Beirlant et al., 1997),
which has been extensively studied in statistics (Jiao et al., 2018), is employed in our method to
achieve entropy maximization of trajectory representations across different agents. This estimator
quantifies the sparsity of data distribution by measuring the distance between a data point and its k-th
nearest neighbor.

We next describe the details of the particle-based entropy estimator within our method. In multi-agent
settings, each trajectory representation learned by gθ is considered as a particle. Specifically, for a
collection of trajectory representations {cat }

|A|
a=1 induced by all agents, the particle-based entropy

estimator is formulated as:

H(ct) = − 1

|A|

|A|∑
a=1

log
k

|A|vka
+ b(k) ∝

|A|∑
a=1

log vka , (2)

where b(k) acts as a bias correction based on the hyperparameter k, and vka represents the volume of
a hypersphere with a radius equal to

∥∥cat − (cat)(k)
∥∥,

vka =

∥∥cat − (cat)(k)
∥∥|A| · π|A|/2

Γ (|A|/2 + 1)
(3)

where (cat)(k) denotes the k-th nearest neighbor of cat in the set {cat }
|A|
a=1, ‖·‖ refers to the Euclidean

distance, and Γ is the gamma function. Essentially, vka indicates the sparsity around each agent’s
trajectory representation. The entropy estimator H(ct) thus measures the average of the sparsity
surrounding the trajectory representations of all agents.

Based on the definition of vka, the particle-based entropy estimator in Equation 2 can be rewritten as

H(ct) ∝
|A|∑
a=1

log
∥∥∥cat − (cat)(k)

∥∥∥|A| (4)

where the entropy H(ct) is proportional to the sum of the logarithms of the distances between
each trajectory representation and its k-th nearest neighbor. However, in multi-agent settings, we
empirically found that the entropy estimator in Equation 4 based on the k-th nearest neighbor
typically result in learning unstable policies. To address this, we introduce a novel entropy estimator
for multi-agent settings, which averages the distances over all k nearest neighbors for each trajectory
representation:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

H(ct) :=

|A|∑
a=1

log

d+
1

k

∑
(cat)

(j)∈Nk(cat)

∥∥∥cat − (cat)(j)
∥∥∥|A|

 , (5)

In this formula, Nk (cat) denotes the set of k nearest neighbors surrounding a trajectory representation
cat . We also incorporate a constant d, set to 1 in all experiments, to enhance numerical stability.

To promote diversity among multiple agents by maximizing the entropy H(ct), we can use the
entropy as an intrinsic reward raentropy, where the representation of oat+1 is considered as a particle
contributing to the entropy. Specifically, given a transition (oat , u

a
t , o

a
t+1) for agent a, we define the

intrinsic reward function for agent a as follows:

raentropy = log

d+
1

k

∑
gθ(oat+1)

(j)∈Nk(gθ(oat+1))

∥∥∥gθ(oat+1)− gθ(oat+1)(j)
∥∥∥|A|

 . (6)

Intuitively, this intrinsic reward encourages agents to explore diverse trajectories with larger distances
in the trajectory representation space. For the PyTorch-style pseudocode of TEE, please refer to
Appendix E. The source code of our method can be found in the supplemental material.

Differences to mutual information-based methods It is important to note that our objective differs
significantly from previous methods (Jiang and Lu, 2021; Li et al., 2021; Charakorn et al., 2023;
Jo et al., 2024), which leverage the maximization of mutual information between trajectories τ and
agent identities i by introducing an intrinsic reward:

rMI (τ, i) = log qθ (i | τ)− log p (i) (7)

where qθ (i | τ) represents a variational distribution trained to maximize the likelihood of (i, τ)-tuples
stored in the replay buffer. p (i) is a fixed uniform distribution. The mutual information-based intrinsic
reward rMI motivates agents to visit trajectories that carry more identity-specific information. In
contrast, our trajectory entropy-based intrinsic reward raentropy in Equation 6, incentivizes agents to
explore a variety of trajectories with greater distances in the trajectory representation space, thereby
resulting in entropy maximization.

3.3 LEARNING ALGORITHM

In this section, we present how to integrate our algorithm with existing MARL methods. As our
method introduces a trajectory entropy-based intrinsic reward for each agent, the agent needs to
learn its own decentralized policy independently towards maximizing the intrinsic rewards. We first
show how to integrate our method with QMIX (Rashid et al., 2018), a value-decomposition-based
MARL method. QMIX co-trains the policies of all agents by optimizing an approximation, Qtot,
for the joint action-value function Qπ . QMIX uses a mixing network to monotonically combine the
utility functions of all agents (from which the agents’ policies are derived) to calculate Qtot. Since
the policies of all agents are co-trained by QMIX to maximize the shared team rewards, we cannot
simply add the individual intrinsic rewards to the shared team rewards to maximize the individual
intrinsic rewards for each agent. To solve this limitation, we additionally learn a shared intrinsic
utility network, Qentropya , for each agent. The intrinsic utility network Qentropya uses the agent’s
utility Qa(oat , u

a
t) as well as the current trajectory representation cat as inputs. To train the intrinsic

utility network Qentropya , we minimize the TD loss using the intrinsic rewards:

LentropyTD = E(oat ,u
a
t ,o

a
t+1)∼D

[(
Qentropya (cat , Qa(oat , u

a
t))− y

)2]
,

where y = raentropy + γQ̄entropya

(
cat+1, Q̄a

(
oat+1, u

a
t+1

))
.

(8)

where Q̄entropya and Q̄a are target networks used to stabilize training. For each training iteration, we
randomly sample a mini-batch of trajectory data from the replay buffer D. As the intrinsic utility
network takes the agent’s utility Qa(oat , u

a
t) as an input, the loss function LentropyTD provides an

auxiliary gradient to help train the agent’s utility network, leading to trajectory entropy maximization.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Agent

Dot

(a) Illustration of Pac-
Men

(b) Learning curves

Agent 1
Agent 2
Agent 3

Agent 4

(c) Visitation heatmap
of QMIX

ÊÊ Agent 1
Agent 2
Agent 3

Agent 4

(d) Visitation heatmap
of TEE

(e) Normalized average
intrinsic rewards

Figure 2: Performance comparison between our proposed TEE and baselines in Pac-Men.

Since the agent utility in QMIX has no inherent meaning or constraints, our method can be safely
integrated with QMIX. Thus, the overall loss function for learning optimal agent policies is:

Ltotal = LQMIX
TD + βLentropyTD , (9)

where LQMIX
TD is the TD loss function in QMIX that is used to learn the optimal Qtot and to update

the parameters of the agent utility networks with the goal of maximizing team returns. The coefficient
β adjusts the weight of LentropyTD in comparison to LQMIX

TD .

During training, we alternately train the trajectory encoder and policies of agents. We first sample
trajectories from the replay buffer to train the encoder to learn distinguishable trajectory represen-
tations by minimizing the contrastive learning loss. Then we calculate the particle-based trajectory
entropy estimator based on the learned trajectory representations for policy learning. The policies
of agents are trained end-to-end in a centralized manner by minimizing Ltotal, allowing each agent
to learn a policy that maximizes both the team returns and the trajectory entropy across different
agents. Therefore, our method fosters diversity among agents, effectively solving the limitation of
parameter-sharing for efficient exploration. Additionally, our method can be integrated with policy
gradient methods. For details on implementing our method with policy gradient methods, please refer
to Appendix D.

4 EXPERIMENTS

In this section, we examine the performance of our proposed TEE method using challenging multi-
agent tasks from Pac-Men, SMAC, and SMACv2 benchmarks, demonstrating its superior effective-
ness. We compare TEE against state-of-the-art methods, including value-decomposition methods
like QMIX (Rashid et al., 2018) and QTRAN (Son et al., 2019), as well as mutual information-based
exploration strategies such as MAVEN (Mahajan et al., 2019), EOI (Jiang and Lu, 2021), SCDS
(a variant of CDS (Li et al., 2021) with shared policy network parameters), PMIC (Li et al., 2022),
LIPO (Charakorn et al., 2023), and FoX (Jo et al., 2024). Without loss of generality, we present both
the mean and standard deviation of performance for our method and the baseline methods, tested
with five random seeds. To ensure fairness, consistent hyperparameters and policy network structures
are applied across different methods for each multi-agent task, with detailed experimental settings
provided in Appendix H.

4.1 PAC-MEN

To highlight the effectiveness of our method in fostering multi-agent diversity, we adopt a grid world
environment called Pac-Men, depicted in Figure 2a, to evaluate our method against baseline methods.
In this environment, four agents start in the central room of a maze, each with limited visibility. Dots
are randomly placed in the edge rooms, and the agents must navigate along various paths to collect
them. To increase the difficulty, each path to the edge rooms has a different length. Importantly, only
the downward path falls within the agents’ observable area, making efficient exploration essential.

As depicted in Figure 2b, our method demonstrates significant superiority over QMIX and substan-
tially outperforms the other baselines. QMIX fails to learn optimal policies in Pac-Men. For the agents

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) 3s5z (easy) (b) 2c_vs_64zg (hard) (c)7sz (hard)

(d) 6h_vs_8z (super hard) (e) corridor (super hard) (f)3s5z_vs_3s6z (super hard)

Figure 3: Performance comparison between our proposed TEE and baselines in the SMAC scenarios.

to maximize team returns, they need to disperse to the four edge rooms to collect dots. However, the
visitation heatmap for QMIX, shown in Figure 2c, reveals that some agents adopt similar behaviors,
converging in the same bottom room. This overlap leads to competition for the same dots, resulting
in inefficient cooperation. In contrast, our method, as illustrated in Figure 2d, enables the agents
to efficiently learn diverse policies, allowing them to respectively move to different edge rooms.
This outcome indicates that entropy maximization effectively encourages the development of diverse
strategies. Baseline methods like EOI and SCDS, which aim to maximize the mutual information
between trajectories and agent identities, perform similarly but fall short of achieving satisfactory
results. We believe this is due to their inadequate exploration, as agents may fail to discover the
upward room with the longest path. Figure 2e further compares the intrinsic rewards generated by
mutual information-based methods and our entropy maximization method. The results indicate that
mutual information-based rewards offer limited incentives, while our entropy maximization-based
rewards consistently motivate the agents to explore and learn optimal cooperative policies.

4.2 SMAC

After assessing our method in a basic grid world environment, we move on to a more challenging
multi-agent benchmark, namely StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019).
To demonstrate the effectiveness of our method, we examine our method across six SMAC scenarios
with increasing difficulty levels: 3s5z (easy), 2c_vs_64zg (hard), 7sz (hard), 6h_vs_8z (super hard),
corridor (super hard), and 3s5z_vs_3s6z (super hard). It is important to note that performance
comparisons are not valid across different SMAC versions. For our experiments, we use SMAC
version SC2.4.10.

The comparisons of performance between our method and the baseline methods in the SMAC scenar-
ios are presented in Figure 3. In the super hard scenarios (6h_vs_8z, corridor, and 3s5z_vs_3s6z),
where the enemies are significantly stronger than the agents, our method considerably outperforms the
baselines. This suggests that TEE is more effective at exploring cooperative policies by maximizing
trajectory entropy. Challenging scenarios impose a high demand on policy diversity to distribute
enemies’ attacks. Our method successfully learns diverse policies. To demonstrate this, we provide
visualization examples of the diverse policies learned by our method in Appendix M. While QMIX
performs well in the 3s5z and 2c_vs_64zg scenarios, it struggles to learn effective policies in the
more challenging scenarios that demand complex cooperation strategies, whereas our method excels.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) terran_5_vs_5 (b) protoss_5_vs_5 (c)zerg_5_vs_5

Figure 4: Performance comparison between TEE and baselines in the SMACv2 scenarios.

(a) MAVEN (b) EOI (c)SCDS (d) LIPO (e) FoX (f) TEE

Figure 5: Visitation heatmaps of different algorithms in the terran_5_vs_5 scenario.

MAVEN proves less effective at exploring cooperative policies, highlighting that the trajectory entropy
maximization objective leads to more efficient exploration compared to the strategy of encouraging
diverse joint behaviors by MAVEN. While EOI and SCDS deliver promising results in the 3s5z and
2c_vs_64zg scenarios, they fall short in more challenging scenarios. We believe this is due to the
strong mutual dependence between trajectories and agent identities, which hinders the exploration of
complex cooperative strategies. Similarly, the formation diversity based on mutual information in
FoX also encounters this issue.

Homogeneous behaviors Our method also shows superior performance in the easy 3s5z scenario,
where agents sometimes need to act similarly to master the ’focus fire’ trick. This indicates that
our method efficiently trades off exploration and exploitation, and does not hinder the learning of
homogeneous behaviors that are beneficial for maximizing environmental rewards. For additional
evaluations of our method in scenarios that require homogeneous behaviors, please refer to Appendix
J.

Stochasticity and Exploration Despite the challenging settings in the SMAC scenarios, a notable
limitation is the insufficient stochasticity in combat scenarios due to the fixed initial positions of units
and team compositions. This limits the ability to fully test the exploration capabilities of MARL
algorithms. To overcome this, we adopt the more demanding SMACv2 benchmark (Ellis et al., 2022),
which introduces stochastic elements by randomizing start positions and team compositions in each
episode.

We examine our method in three SMACv2 scenarios including terran_5_vs_5, protoss_5_vs_5, and
zerg_5_vs_5. The experimental results, shown in Figure 4, indicate that our method significantly
outperforms the baselines across all scenarios. Notably, QMIX struggles to learn optimal cooperative
policies and lacks the necessary exploration to adapt to the stochasticity present in the SMACv2
scenarios. However, when combined with our method, QMIX shows marked improvement in
performance, learning more exploratory and diverse policies. Similarly, mutual information-based
baselines like MAVEN, EOI, and SCDS tend to get stuck in local optima. We believe this occurs
because the mutual dependence between agent identities and trajectories in these methods restricts
agents to known trajectories rather than encouraging the discovery of new ones. In contrast, our
method consistently explores new trajectories and seeks out exploratory policies. Additionally, we
provide agent’s visitation heatmaps in Figure 5. The results clearly show that agents trained with the
baselines confine their movements to only partial areas, whereas our method motivates the agents
to explore all possible states that offer environmental rewards, ensuring thorough exploration of the
entire environment.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 6: (a) Performance comparisons of our method against different variants in the scenarios of
SMAC. (b) Different kinds of intrinsic rewards in the corridor scenario.

4.3 ABLATION STUDY

We perform several ablation studies to examine the contribution of each component in our method.
To evaluate the contribution of the autoregressive model used for learning trajectory representations,
we create a variant that omits the autoregressive model, relying solely on the observation encoder. To
evaluate the importance of contrastive representation learning, we develop a variant where trajectories
are encoded by an encoder with fixed randomly initialized parameters. To test the effectiveness of
the identity representations introduced in our method, we design two variants: the first employs the
vanilla contrastive learning that directly contrasts trajectory samples against each other rather than
using identity representations as medium variables to contrast different trajectory samples; the second
replaces the learnable identity representations with fixed agent identities, such as one-hot vectors, in
the contrastive learning loss. Additionally, we introduce a variant that learns trajectory representations
through predicting the agent identities from trajectories in a supervised manner. Finally, to test the
trajectory entropy, we develop two variants that respectively utilize randomly selected neighbors and
the k-th nearest neighbor in the trajectory entropy.

We test these variants in three SMAC scenarios: 3s5z (easy), 2c_vs_64zg (hard), and corridor (super
hard). The performance results are presented in Figure 6a. Employing the k-th nearest neighbor in
the trajectory entropy damages performance and introduces significant variance. We also observe a
noticeable decline in performance when using randomly selected neighbors. However, both variants
still receive higher win rates than QMIX, demonstrating the robustness of our representation learning
method. As shown in Figure 6b, employing k nearest neighbors in the trajectory entropy provides
more efficient intrinsic rewards compared to the other two methods, promoting thorough exploration.

Employing a fixed encoder for trajectory encoding results in suboptimal performance, demonstrat-
ing the importance of contrastive representation learning. This performance degradation occurs
because the representations encoded by a fixed encoder provide inefficient intrinsic rewards for
agent exploration. Compared to contrastive representation learning, the representations learned via
predicting agent identities from trajectories lead to a significant performance decline. This decline
occurs because representations guided by fixed agent identities result in strong mutual dependence,
hindering efficient exploration. Using fixed agent identities in contrastive learning loss also leads
to poor performance. Simply using the vanilla contrastive learning without identity representations
results in significant performance drop. These variants demonstrate the importance of our contrastive
learning loss using identity representations to learn distinguishable trajectory representations. We
further provide the trajectory representations learned by different variants in Figure 7. We note
that these variants do not necessarily learn distinguishable trajectory representations for the entropy
maximization to work.

Furthermore, removing the autoregressive model results in performance comparable to our method
in the 3s5z and 2c_vs_64zg scenarios, but it causes a significant performance decline in the super
hard corridor scenario. This suggests that utilizing the autoregressive model for learning trajectory
representations enhances robustness, particularly in more challenging multi-agent tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d) (e) (f)

Figure 7: T-SNE plots for different agents’ trajectory representations learned by different variants
of TEE ((a) QMIX (b) TEE w/ fixed encoder (c) TEE w/ identity prediction (d) TEE w/ fixed agent
identity (e) TEE w/ vanilla contrastive learning (f) TEE), in the corridor scenario of SMAC.

5 RELATED WORKS

In MARL settings, fostering diversity aims to encourage agents to visit diverse trajectories, resulting
to varied policies among agents. SVO (McKee et al., 2020) uses social value orientation to address
multi-agent social dilemmas by introducing intrinsic rewards that incentivize diverse policy learning.
RODE (Wang et al., 2020c) enhances diversity by assigning agents to specific roles with distinct
actions, though it may struggle in scenarios with continuous or large action spaces. MAVEN
(Mahajan et al., 2019) adopts a value-based approach, conditioning agents’ joint behaviors on a
shared latent variable, controlled by a hierarchical policy, through maximizing mutual information.
EOI (Jiang and Lu, 2021) trains a probabilistic classifier to predict the agent identities’ probability
distribution based on their observations, using the correct predictions as intrinsic rewards for policy
training. CDS (Li et al., 2021) encourages diversity by optimizing mutual information through lower
bounds based on the Boltzmann softmax distribution and variational inference. PMIC (Li et al.,
2022) aims to foster the learning of superior policies by maximizing mutual information related to
effective cooperative behaviors while minimizing it for less effective ones. LIPO (Charakorn et al.,
2023) uses policy compatibility to develop diverse policies and further introduces variations in each
agent’s policy by maximizing mutual information. FoX (Jo et al., 2024) promotes formation-based
exploration, fostering agents’ understanding of their formations by encouraging them to explore
diverse formations. Despite their achievements, these methods often overemphasize the dependence
between agent identity and trajectories or formations, leading agents to repeatedly visit similar
observations, which can limit their exploration of new possibilities. We refer the reader to extensive
related works about entropy maximization in Appendix.

6 LIMITATIONS AND FUTURE WORKS

In this work, we simply use the distances between trajectory representations of different agents to
measure the policy differences among agents. It could be an interesting direction to develop a more
efficient policy difference measurement that could be used in the trajectory entropy estimator to
significantly improve the performance of our method.

7 CONCLUSION

We propose a novel multi-agent exploration method to solve the limitation of homogeneous behaviors
of agents caused by parameter sharing. Our method introduces an intrinsic reward based on a
particle-based entropy estimator to maximize trajectory entropy in a contrastive representation space,
which promotes efficient exploration. We test our method in a variety of challenging multi-agent
tasks. The experimental results demonstrate the outperformance of our method compared to existing
state-of-the-art methods.

REFERENCES

J. Beirlant, E. J. Dudewicz, L. Györfi, E. C. Van der Meulen, et al. Nonparametric entropy estimation:
An overview. International Journal of Mathematical and Statistical Sciences, 6(1):17–39, 1997.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

R. Charakorn, P. Manoonpong, and N. Dilokthanakul. Generating diverse cooperative agents by learn-
ing incompatible policies. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=UkU05GOH7_6.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of
visual representations. In International conference on machine learning, pages 1597–1607. PMLR,
2020.

B. Ellis, S. Moalla, M. Samvelyan, M. Sun, A. Mahajan, J. N. Foerster, and S. Whiteson. Smacv2:
An improved benchmark for cooperative multi-agent reinforcement learning. arXiv preprint
arXiv:2212.07489, 2022.

E. Hazan, S. Kakade, K. Singh, and A. Van Soest. Provably efficient maximum entropy exploration.
In International Conference on Machine Learning, pages 2681–2691. PMLR, 2019.

S. Hu, C. Xie, X. Liang, and X. Chang. Policy diagnosis via measuring role diversity in cooperative
multi-agent rl. In International Conference on Machine Learning, pages 9041–9071. PMLR, 2022.

S. Iqbal, C. A. S. De Witt, B. Peng, W. Böhmer, S. Whiteson, and F. Sha. Randomized entity-wise
factorization for multi-agent reinforcement learning. In International Conference on Machine
Learning, pages 4596–4606. PMLR, 2021.

J. Jiang and Z. Lu. The emergence of individuality. In International Conference on Machine Learning,
pages 4992–5001. PMLR, 2021.

J. Jiao, W. Gao, and Y. Han. The nearest neighbor information estimator is adaptively near minimax
rate-optimal. Advances in neural information processing systems, 31, 2018.

Y. Jo, S. Lee, J. Yeom, and S. Han. Fox: Formation-aware exploration in multi-agent reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages
12985–12994, 2024.

J. G. Kuba, R. Chen, M. Wen, Y. Wen, F. Sun, J. Wang, and Y. Yang. Trust region policy optimisation
in multi-agent reinforcement learning. arXiv preprint arXiv:2109.11251, 2021.

M. Laskin, A. Srinivas, and P. Abbeel. Curl: Contrastive unsupervised representations for rein-
forcement learning. In International Conference on Machine Learning, pages 5639–5650. PMLR,
2020.

C. Li, T. Wang, C. Wu, Q. Zhao, J. Yang, and C. Zhang. Celebrating diversity in shared multi-agent
reinforcement learning. Advances in Neural Information Processing Systems, 34:3991–4002, 2021.

P. Li, H. Tang, T. Yang, X. Hao, T. Sang, Y. Zheng, J. Hao, M. E. Taylor, W. Tao, Z. Wang, et al. Pmic:
improving multi-agent reinforcement learning with progressive mutual information collaboration.
arXiv preprint arXiv:2203.08553, 2022.

H. Liu and P. Abbeel. Behavior from the void: Unsupervised active pre-training. Advances in Neural
Information Processing Systems, 34:18459–18473, 2021.

R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch. Multi-agent actor-critic for
mixed cooperative-competitive environments. Advances in neural information processing systems,
30, 2017.

X. Ma, Y. Yang, C. Li, Y. Lu, Q. Zhao, and J. Yang. Modeling the interaction between agents
in cooperative multi-agent reinforcement learning. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems, pages 853–861, 2021.

A. Mahajan, T. Rashid, M. Samvelyan, and S. Whiteson. Maven: Multi-agent variational exploration.
Advances in Neural Information Processing Systems, 32, 2019.

K. R. McKee, I. Gemp, B. McWilliams, E. A. Duéñez-Guzmán, E. Hughes, and J. Z. Leibo. So-
cial diversity and social preferences in mixed-motive reinforcement learning. arXiv preprint
arXiv:2002.02325, 2020.

11

https://openreview.net/forum?id=UkU05GOH7_6

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

K. K. Ndousse, D. Eck, S. Levine, and N. Jaques. Emergent social learning via multi-agent rein-
forcement learning. In International conference on machine learning, pages 7991–8004. PMLR,
2021.

F. A. Oliehoek and C. Amato. A concise introduction to decentralized pomdps, 2015.

A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

T. Rashid, C. De Witt, G. Farquhar, J. Foerster, S. Whiteson, and M. Samvelyan. Qmix: Monotonic
value function factorisation for deep multi-agent reinforcement learning. In 35th International
Conference on Machine Learning, ICML 2018, pages 6846–6859, 2018.

M. Samvelyan, T. Rashid, C. S. De Witt, G. Farquhar, N. Nardelli, T. G. Rudner, C.-M. Hung,
P. H. Torr, J. Foerster, and S. Whiteson. The starcraft multi-agent challenge. arXiv preprint
arXiv:1902.04043, 2019.

Y. Seo, L. Chen, J. Shin, H. Lee, P. Abbeel, and K. Lee. State entropy maximization with random
encoders for efficient exploration. In International Conference on Machine Learning, pages
9443–9454. PMLR, 2021.

H. Singh, N. Misra, V. Hnizdo, A. Fedorowicz, and E. Demchuk. Nearest neighbor estimates of
entropy. American journal of mathematical and management sciences, 23(3-4):301–321, 2003.

K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi. Qtran: Learning to factorize with
transformation for cooperative multi-agent reinforcement learning. In International conference on
machine learning, pages 5887–5896. PMLR, 2019.

A. Stooke, K. Lee, P. Abbeel, and M. Laskin. Decoupling representation learning from reinforcement
learning. In International Conference on Machine Learning, pages 9870–9879. PMLR, 2021.

P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot, N. Son-
nerat, J. Z. Leibo, K. Tuyls, et al. Value-decomposition networks for cooperative multi-agent
learning based on team reward. In Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, pages 2085–2087, 2018.

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell,
T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature, 575(7782):350–354, 2019.

J. Wang, Z. Ren, T. Liu, Y. Yu, and C. Zhang. Qplex: Duplex dueling multi-agent q-learning. arXiv
preprint arXiv:2008.01062, 2020a.

T. Wang, H. Dong, V. Lesser, and C. Zhang. Roma: Multi-agent reinforcement learning with emergent
roles. arXiv preprint arXiv:2003.08039, 2020b.

T. Wang, T. Gupta, A. Mahajan, B. Peng, S. Whiteson, and C. Zhang. Rode: Learning roles to
decompose multi-agent tasks. arXiv preprint arXiv:2010.01523, 2020c.

Y. Wang, B. Han, T. Wang, H. Dong, and C. Zhang. Dop: Off-policy multi-agent decomposed policy
gradients. In International conference on learning representations, 2020d.

T. Wu, P. Zhou, K. Liu, Y. Yuan, X. Wang, H. Huang, and D. O. Wu. Multi-agent deep reinforcement
learning for urban traffic light control in vehicular networks. IEEE Transactions on Vehicular
Technology, 69(8):8243–8256, 2020.

Y. Yang, X. Ma, C. Li, Z. Zheng, Q. Zhang, G. Huang, J. Yang, and Q. Zhao. Believe what you see:
Implicit constraint approach for offline multi-agent reinforcement learning. Advances in Neural
Information Processing Systems, 34:10299–10312, 2021.

D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Reinforcement learning with prototypical rep-
resentations. In International Conference on Machine Learning, pages 11920–11931. PMLR,
2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu. The surprising effectiveness of
ppo in cooperative multi-agent games. Advances in Neural Information Processing Systems, 35:
24611–24624, 2022.

T. Zhang, Y. Li, C. Wang, G. Xie, and Z. Lu. Fop: Factorizing optimal joint policy of maximum-
entropy multi-agent reinforcement learning. In International Conference on Machine Learning,
pages 12491–12500. PMLR, 2021.

A RELATED WORKS ABOUT ENTROPY MAXIMIZATION

Entropy Maximization: Entropy maximization has been adopted in various RL works to effectively
promote state exploration. RE3 Seo et al. (2021) aims to improve sample efficiency by facilitating
exploration. It achieves this by transforming high-dimensional observations into a compact, low-
dimensional representation space using a fixed encoder, then employing an entropy estimator to
assess state entropy within the representation space. Unlike RE3, we use contrastive learning to
create a contrastive representation space, which includes more relevant information. APT Liu
and Abbeel (2021) introduces a pre-training method that maximizes state entropy for sufficient
exploration in unknown areas in the task-agnostic environment, utilizing an entropy-based intrinsic
reward to train the agent’s policy in a reward-free setting. ProtoRL Yarats et al. (2021) learns
representations via prototypes that summarize the agent’s exploration experience, which not only
generalize across tasks but also accelerate exploration efficiently. Drawing inspiration from these
approaches, our method in multi-agent settings promotes the diversity among agents by maximizing
trajectory entropy in a contrastive representation space, thereby fostering both efficient exploration
and effective collaboration.

B LIMITATION OF MUTUAL INFORMATION-BASED MULTI-AGENT
EXPLORATION

In this section, we analyze the limitations of existing mutual information-based exploration methods
from a theoretical perspective, particularly focusing on how agents tend to revisit familiar trajectories
rather than exploring new ones. We present the reward functions associated with exploring both
familiar and new trajectories. The theoretical results indicate that agents receive higher rewards when
revisiting known trajectories compared to when they explore new ones.

The mutual information between the trajectory τ and agent identity i is defined as:

I(i; τ) = Ei,τ [log p(i | τ)]− Ei[log p(i)]

≥ Ei,τ [log qθ(i | τ)]− Ei[log p(i)]
(10)

where the unknown posterior distribution p(i | τ) is approximated by a variational distribution
qθ(i | τ). We parameterize qθ(i | τ) with θ and update θ to maximize the likelihood of (i, τ)-tuples
stored in the replay buffer. Prior works maximize mutual information by using the variational lower
bound as an intrinsic reward:

r (τ, i′) = log qθ (i′ | τ)− log p (i′)

= log qθ (i′ | τ) + log |A|
(11)

where p(i) is assumed to be a uniform distribution, so− log p (i′) = log |A|, where |A| is the number
of agents. We assume access to a perfect distribution qθ(i | τ), ensuring that

∑|A|
a=1 qθ (ia | τ) = 1.

Intrinsic reward for familiar trajectories The intrinsic reward function encourages agents to visit
familiar trajectories τ where qθ (i′ | τ)→ 1. As a result:

rknown = log 1 + log |A| = log |A|. (12)

Intrinsic reward for new trajectories When agents visit new trajectories, where qθ (i′ | τ) is
unknown, we assign a null probability to unseen trajectories by adding a ’background’ class to the
model. The penalty agents receive when visiting these unseen trajectories is:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

rnew = lim
qθ(i′|τ)→0

log qθ (i′ | τ) + log |A| = −∞ (13)

This analysis shows that as the distribution qθ (i′ | τ) converges, agents are incentivized to revisit
known trajectories, where they can achieve much higher rewards compared to exploring new, unfa-
miliar trajectories.

C THE TD LOSS OF QMIX

QMIX trains the policies of agents jointly by optimizing Qtot using the TD loss, defined as:

LQMIX
TD =

b∑
i=1

[(
r + γmax

ut+1

Q̄tot (st+1,ut+1)−Qtot(st,ut)
)2
]

(14)

where Q̄tot represents the target network, b is the batch size of transition samples, and D is the replay
buffer storing trajectory samples. r denotes the global reward shared by all agents. Notably, since
the policies of all agents are trained jointly by minimizing the TD loss, it is not possible to directly
incorporate each agent’s intrinsic reward raentropy into the global reward r to independently train
each agent’s policy. This limitation necessitates the addition of an intrinsic utility network, Qentropya ,
which is specifically designed to optimize the intrinsic reward raentropy.

D THE IMPLEMENTATION OF TEE WITH POLICY GRADIENT METHODS

In our paper, we integrated our method with the value-based method QMIX. Here, we demonstrate
how to integrate our proposed TEE with policy gradient methods. Specifically, we integrate TEE with
MAPPO, a state-of-the-art policy-based MARL algorithm measured by SMAC. MAPPO involves
training an actor network and a critic network shared among all agents. Because each agent trains its
own critic, we can thus adopt a shaped reward, renv +αraentropy (where renv is the environmental re-
ward and raentropy is the intrinsic reward generated by our method), when computing the reward-to-go
R̂ to train each agent’s critic network. The other components of MAPPO remain unchanged. We con-
duct experiments on Pac-Men, SMAC, and SMACv2 to evaluate the performance of TEE+MAPPO.
The results, presented in Table 1, show that TEE+MAPPO outperforms the baselines significantly.

E PYTORCH-STYLE PSEUDOCODE FOR TEE

The pytorch-style pseudocode for TEE is provided in Algorithm 1.

F ENVIRONMENTAL DETAILS AND ADDITIONAL EXPERIMENTAL RESULTS

In Pac-Men, we initialize four agents positioned in the central room of a maze. Each agent can only
observe a 4×4 grid around them. There are some randomly initialized dots distributed in each edge
room. The goal of the agent is to collect as many dots as possible in each edge room. We set different
lengths for the paths to investigate the exploration of different MARL algorithms. Specifically, for
the downward, left, right, and upward paths, the path lengths are 3, 6, 6, and 10, respectively. Only
one path is within the agent’s observation scope. The dots in each room will refresh when all of them
are eaten by agents. The environmental reward received by the agent equals the total number of dots
eaten in each time step.

SMAC benchmark is a set of cooperative tasks built on StarCraft II, aimed at evaluating the ef-
fectiveness of various Multi-Agent Reinforcement Learning (MARL) algorithms. The agent-level
control in SMAC is achieved through the Machine Learning APIs provided by both StarCraft II and
DeepMind’s PySC2. Each task features a combat scenario with two armies: one controlled by allied
RL agents and the other by a non-learning game AI. The game is over when all units of any army
die or a predefined time limit is reached. The objective for the allied agents is to learn a policy that
maximizes the game’s win rate. To achieve this, agents must learn a sequence of actions to collaborate

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 1: PyTorch-style pseudocode for TEE
batch: collected trajectories
|A|: number of agents
H: dimension of the identity representation
identity_representations = nn.Parameter(th.randn(|A|, H))
def TEE(batch):

ctr_out = []
for t in range(batch.seq_length):

z_embedding = encoder(batch["obs"][:, t])
c_embedding, hidden_states =
autoregressive_model(z_embedding, hidden_states)
ctr_out.append(c_embedding)

ctr_out = th.stack(ctr_out, dim=1) # Concat trajectory
representations over time
trajectory_representation_loss =
contrastive_loss(identity_representations, c_embedding)
optimizer.zero_grad()
trajectory_representation_loss.backward()
optimizer.step()
for t in range(batch.seq_length-1):

z_embedding = encoder(batch["obs"][:, t+1])
c_embedding, hidden_states =
autoregressive_model(z_embedding, hidden_states)
intrinsic_reward = entropy_estimator(c_embedding)
intrinsic_rewards.append(intrinsic_reward)

intrinsic_rewards = torch.stack(intrinsic_rewards, dim=1) #
Concat intrinsic rewards over time
return intrinsic_rewards

with allies in defeating enemy forces. An illustrative example of such collaboration is the mastery of
kiting skills, where agents form formations based on their armor types, compelling enemy units to
pursue while maintaining a safe distance to minimize damage. The SC2.4.10 version of StarCraft II
is used, and it’s important to note that performance comparisons between different versions are not
applicable. We conduct experiments on six scenarios including 3s5z, 2c_vs_64zg, 7sz, 6h_vs_8z,
corridor, and 3s5z_vs_3s6z with various difficulty levels.

SMAC has notable drawbacks due to the lack of stochasticity, and to address this issue, SMACv2
proposes some changes: introducing random team compositions, and random start positions. These
adjustments aim to increase stochasticity to efficiently test the exploration of MARL algorithms. We
conduct experiments on three scenarios of SMACv2 including terran_5_vs_5, protoss_5_vs_5, and
zerg_5_vs_5. SMACv2 employs three unit types for each race. Units are algorithmically generated
in teams, with each unit type having a fixed probability, consistent at both test and train times. The
unit types of allied agents in these scenarios are identical to those of enemies. At the beginning of
each episode, the allied agents are randomly spawned in the map with reflect or surround style.

We show the average returns of all algorithms in Pac-Men, SMAC, and SMACv2 with standard
deviation over five random seeds in Table 1. The results demonstrate the significant outperformance
of our method compared to baselines.

G ENVIRONMENTAL DETAILS AND EXPERIMENTAL RESULTS

In Pac-Men, four agents are initialized in the central room of a maze. Each agent has a limited
observation range, confined to a 4×4 grid around them. Dots are randomly distributed in the edge
rooms of the maze, and the agents’ goal is to collect as many dots as possible from these rooms. To
examine the exploration capabilities of different MARL algorithms, we set varying path lengths: 3, 6,
6, and 10 steps for the downward, left, right, and upward paths, respectively. Only the downward
path falls within the agents’ observation range. The dots in each room respawn after all have been

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

collected by the agents. The environmental reward each agent receives corresponds to the number of
dots collected in each time step.

The SMAC benchmark consists of a set of cooperative tasks built on StarCraft II, designed to evaluate
the effectiveness of various MARL algorithms. In SMAC, agent-level control is facilitated through
the Machine Learning APIs provided by both StarCraft II and DeepMind’s PySC2. Each task
presents a combat scenario involving two armies: one controlled by allied RL agents and the other
by a non-learning game AI. The game ends when all units of one army are eliminated or when a
predefined time limit is reached. The allied agents aim to learn policies that maximize the win rate by
collaborating effectively to defeat enemy forces. An example of such collaboration is mastering kiting
skills, where agents form formations based on their armor types, forcing enemy units to pursue them
while maintaining a safe distance to minimize damage. The experiments utilize version SC2.4.10
of StarCraft II, and it’s important to note that performance comparisons across different versions
are not applicable. We conduct experiments on six scenarios with varying difficulty levels: 3s5z,
2c_vs_64zg, 7sz, 6h_vs_8z, corridor, 3s5z_vs_3s6z, MMM2, 10m_vs_11m, and 27m_vs_30m.

SMAC has some limitations due to its lack of stochasticity. To address this, SMACv2 introduces
modifications such as random team compositions and random start positions. These changes aim to
enhance stochasticity, making it a more effective benchmark for evaluating the exploration capabil-
ities of MARL algorithms. We conduct experiments on three SMACv2 scenarios: terran_5_vs_5,
protoss_5_vs_5, and zerg_5_vs_5. SMACv2 sets three unit types for each race, with teams being
algorithmically generated based on a fixed probability for each unit type, consistent during both
testing and training phases. The allied agents’ unit types are identical to those of the enemies. At
the start of each episode, the allied agents are randomly spawned on the map in either a reflective or
surround formation.

We also test our method in two scenarios of Google Research Football (GRF). GRF provides a
challenging, physics-based environment that simulates a football game where agents need to learn
strategic planning, coordination, and precise timing to succeed. The left side players (except the
goalkeeper) as agents are trained to learn cooperative policies. The right side palyers are controlled by
the game engine. The agents operate within a discrete action space of 19 options, including moving
in eight directions, sliding, shooting, and passing. Agent observations include the positions and
movement directions of the controlled agent, other agents, and the ball.

We present the average returns of all algorithms in Pac-Men, SMAC, and SMACv2, along with the
standard deviation over five random seeds, in Table 1. The results demonstrate that our method
significantly outperforms baseline methods.

Table 1: Average returns of all algorithms in Pac-Men, SMAC, SMACv2, and GRF. ± denotes the
standard deviation over five random seeds.

Method Pac-Men
SMAC SMACv2 GRF

3s5z 2c_vs_64zg 7sz 6h_vs_8z corridor 3s5z_vs_3s6z MMM2 10m_vs_11m 27m_vs_30m terran_5_vs_5 protoss_5_vs_5 zerg_5_vs_5 academy_3_vs_1_with_keeper academy_4_vs_2_with_keeper academy_counter_attack_hard

QMIX 0.21±0.04 0.72±0.13 0.85±0.08 0.17±0.02 0.23±0.03 0.57±0.07 0.36±0.12 0.27±0.06 0.57±0.04 0.43±0.07 0.68±0.03 0.53±0.05 0.41±0.04 0.23±0.05 0.13±0.09 0.17±0.03

MAPPO 0.49±0.03 0.81±0.05 0.83±0.04 0.52±0.06 0.53±0.03 0.62±0.05 0.57±0.08 0.46±0.03 0.39±0.05 0.43±0.05 0.52±0.04 0.47±0.03 0.37±0.03 0.31±0.09 0.18±0.09 0.23±0.07

MAVEN 0.32±0.06 0.51±0.21 0.72±0.06 0.00±0.00 0.42±0.04 0.36±0.08 0.18±0.15 0.43±0.11 0.62±0.08 0.53±0.09 0.58±0.04 0.31±0.05 0.29±0.03 0.18±0.06 0.08±0.06 0.13±0.09

EOI 0.41±0.05 0.87±0.07 0.83±0.02 0.37±0.03 0.08±0.03 0.25±0.11 0.42±0.13 0.39±0.08 0.72±0.03 0.64±0.06 0.65±0.05 0.42±0.03 0.47±0.04 0.17±0.05 0.05±0.03 0.07±0.03

QTRAN 0.28±0.08 0.21±0.19 0.75±0.05 0.00±0.00 0.02±0.02 0.08±0.07 0.02±0.01 0.13±0.05 0.43±0.03 0.21±0.07 0.42±0.02 0.40±0.04 0.25±0.02 0.25±0.03 0.13±0.08 0.11±0.05

SCDS 0.37±0.05 0.76±0.07 0.57±0.09 0.21±0.03 0.03±0.01 0.56±0.06 0.00±0.00 0.32±0.08 0.62±0.03 0.57±0.09 0.52±0.03 0.47±0.05 0.38±0.04 0.42±0.13 0.25±0.11 0.47±0.06

PMIC 0.34±0.03 0.82±0.03 0.79±0.05 0.58±0.02 0.51±0.05 0.37±0.03 0.18±0.06 0.19±0.05 0.43±0.07 0.62±0.06 0.47±0.03 0.36±0.02 0.42±0.02 0.23±0.08 0.11±0.07 0.16±0.07

LIPO 0.43±0.02 0.71±0.03 0.76±0.02 0.39±0.04 0.36±0.06 0.27±0.03 0.21±0.03 0.27±0.13 0.52±0.04 0.37±0.04 0.43±0.02 0.46±0.03 0.37±0.03 0.19±0.05 0.07±0.03 0.12±0.05

FoX 0.39±0.03 0.74±0.02 0.64±0.05 0.56±0.03 0.45±0.05 0.52±0.04 0.43±0.04 0.32±0.13 0.67±0.05 0.61±0.09 0.54±0.03 0.56±0.02 0.49±0.02 0.57±0.05 0.41±0.13 0.33±0.08

TEE+QMIX 0.83±0.03 0.95±0.02 0.96±0.03 0.83±0.04 0.85±0.03 0.90±0.03 0.87±0.04 0.85±0.03 0.93±0.05 0.89±0.05 0.96±0.02 0.95±0.03 0.87±0.03 0.79±0.13 0.63±0.16 0.71±0.09

TEE+MAPPO 0.80±0.04 0.97±0.02 0.94±0.04 0.90±0.03 0.87±0.04 0.85±0.03 0.94±0.03 0.76±0.13 0.90±0.06 0.94±0.06 0.87±0.02 0.89±0.02 0.84±0.05 0.68±0.08 0.61±0.12 0.57±0.06

H TRAINING DETAILS AND HYPERPARAMETERS

The overall trajectory encoder used in our method is composed of an encoder and an autoregressive
model. For the encoder, we utilize two MLP layers with a hidden size of 64, followed by batch
normalization. The autoregressive model is implemented using a GRU unit. We use randomly
initialized learnable vectors as identity representations, which have the same dimensions as the
trajectory representations. We integrate TEE with QMIX by adding an intrinsic utility network, which
is composed of a two-layer MLP with a hidden size of 64, optimized to maximize the total intrinsic
rewards. All other components remain identical to the standard QMIX.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

To ensure a fair comparison, the policy networks for all agents are constructed using Deep Recurrent
Q-Networks. At each time step, an agent’s policy network processes a local observation as well as
the last step action through a fully connected hidden layer, a GRU unit, and a final fully connected
layer that generates |U | outputs, corresponding to the available actions. We set the evaluation interval
to 10K steps followed by 32 test episodes. We run all methods for 5 million steps. In SMAC and
SMACv2, target networks are updated using hard updates every 200 episodes, whereas in Pac-Men,
soft updates with a momentum of 0.01 are employed. The hyperparameters for TEE and baseline
methods in Pac-Men, SMAC, and SMACv2 are detailed in Table 2. Parameter sharing is applied
across all methods to enable agents to make action decisions. For generality, we report both the
mean and standard deviation of performance results, averaged over five random seeds. To ensure a
fair comparison, consistent hyperparameters are used across different methods. The replay buffer
size is set to 5K. We implemented our method using NumPy and PyTorch, and all experiments are
conducted on a single NVIDIA GeForce RTX 4090 GPU.

Table 2: Hyperparameters

Pac-Men SMAC SMACv2
hidden dimension 64 128

learning rate 0.0003 0.005
optimizer Adam

target update 0.01(soft) 200(hard)
batch size 32 64

β 0.05 0.05 for 3s5z, 2c_vs_64zg, 8m, 5m_vs_6m, 8m_vs_9m, and 10m_vs_11m,
0.02 for 7sz, 6h_vs_8z, corridor, and 3s5z_vs_3s6z 0.05

α 0.02 0.01 for 3s5z, 2c_vs_64zg, 8m, 5m_vs_6m, 8m_vs_9m, and 10m_vs_11m,
0.02 for 7sz, 6h_vs_8z, corridor, and 3s5z_vs_3s6z 0.01

k 3 8 for 10m_vs_11m, 5 for 3s5z, 7sz, corridor, 3s5z_vs_3s6z, 8m, 5m_vs_6m, and 8m_vs_9m,
1 for 2c_vs_64zg, 4 for 6h_vs_8z

4 for terran_5_vs_5, protoss_5_vs_5, and zerg_5_vs_5,
7 for terran_10_vs_10, 12 for terran_15_vs_15, 18 for terran_20_vs_20

epsilon anneal time 200,000 200,000 for 3s5z, 2c_vs_64zg, 8m, 5m_vs_6m, 8m_vs_9m, and 10m_vs_11m,
500,000 for 7sz, 6h_vs_8z, corridor, and 3s5z_vs_3s6z 500,000

I EVALUATIONS OF TEE WITH DIFFERENT VALUES OF k

The values of k used in different experimental environments are listed in Table 2. To investigate
whether the performance of our method is strongly sensitive to k, we show the performance of our
method with different values of k in the terran_5_vs_5 (including 5 agents) and terran_20_vs_20
(including 20 agents) scenarios in Table 3. We note that different values of k only lead to small
differences in performance in both scenarios. The performance of our method remains robust across
different values of k.

J EVALUATION OF TEE IN SCENARIOS REQUIRING HOMOGENEOUS
BEHAVIOR

While our proposed TEE succeeds in promoting diversity among agents to encourage exploration,
there are situations where agents may benefit from behaving uniformly, especially in simpler scenarios.
For instance, allied agents might employ the same tactic, such as simultaneously firing at a single
enemy to quickly eliminate it. To demonstrate our method’s ability to learn such behaviors, we test it
in four homogeneous SMAC scenarios where the focus fire tactic is advantageous. The results, shown
in Table 4, indicate that our method consistently outperforms QMIX in all scenarios, confirming that
it can support uniform behaviors when they lead to higher environmental rewards. This phenomenon
demonstrates that our method can efficiently balance exploration and exploitation, leading to optimal
cooperative behaviors.

K COMPARISON WITH ε-GREEDY

ε-greedy is a widely used exploration technique in many RL approaches. Increasing the value of ε
generally promotes better exploration. In this section, we compare our entropy maximization method

Table 3: Performance of our method with different values of k

Methods terran_5_vs_5 terran_20_vs_20
k=1 k=2 k=3 k=4 k=1 k=4 k=10 k=15 k=18

TEE+QMIX 0.92 ±0.03 0.90 ±0.03 0.93 ±0.04 0.96 ±0.02 0.85 ±0.03 0.86 ±0.04 0.83 ±0.04 0.88 ±0.05 0.89 ±0.03

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 4: Performance of our method and QMIX in homogeneous scenarios.

Method 8m 5m_vs_6m 8m_vs_9m 10m_vs_11m
TEE+QMIX 0.95±0.03 0.92±0.04 0.94±0.03 0.91± 0.06

QMIX 0.87±0.03 0.65±0.04 0.58±0.05 0.43±0.04

Table 5: Performance comparisons of our method against QMIX with different values of ε

Methods corridor 3s5z_vs_3s6z
Trajectory entropy maximization (Ours) 0.90 ±0.03 0.87 ±0.04

ε = 0.05 0.57 ±0.07 0.36 ±0.12
ε = 0.08 0.61 ±0.04 0.39 ±0.09
ε = 0.12 0.65 ±0.06 0.45 ±0.14

with ε-greedy to demonstrate the effectiveness of our method in promoting exploration in the domain
of MARL. To achieve this, we set the ε values to 0.05, 0.08, and 0.12 for QMIX, respectively. We test
different values of ε in the super hard scenarios corridor and 3s5z_vs_3s6z. The results are shown
in Table 5. Our entropy maximization method is more efficient than increasing the values of ε to
encourage effective exploration in multi-agent environments. We note that increasing the values of ε
does not improve the performance significantly. In multi-agent settings, larger ε values only increase
the stochasticity in action selections of a single agent and ignore the diversity or distinguishability
among agents as they do not consider the trajectories of other agents, thus leading to inefficient
exploration.

L SCALABILITY

Many MARL methods suffers from poor scalability, i.e., the agent performance decreases significantly
as the number of agents increases. This occurs because the state-action space expands exponentially
as the number of agents increases, making efficient exploration crucial. In this section, we evaluate
the scalability of our method across four SMACv2 scenarios with increasing numbers of agents:
terran_5_vs_5, terran_10_vs_10, terran_15_vs_15, and terran_20_vs_20. The results, presented
in Table 6, show that our method substantially outperforms QMIX across all scenarios. QMIX
faces challenges in scalability and struggles to achieve satisfactory performance due to insufficient
exploration. In contrast, our method shows strong scalability, demonstrating that maximizing
trajectory entropy enables efficient exploration.

M VISUALIZATIONS

We present some visualization examples of the diverse policies learned by our method, as shown in Fig-
ure 8, which emerge in the extremely challenging scenarios (6h_vs_8z, corridor, and 3s5z_vs_3s6z).
For instance, in the 6h_vs_8z scenario, one agent moves in the opposite direction of the team to cover
other agents. Most of the enemies are then drawn to the agent’s movements. The agent continues
kiting the pursuing enemies, drawing the majority of their fire. Meanwhile, the remaining enemies
are surrounded by the other agents. This strategy allows agents to cooperatively distribute enemies’
attacks. In contrast, if all agents behaved similarly and rushed toward the enemies, they would be
quickly defeated by the stronger opponents. Similar diverse policies are observed in the other two
scenarios. These results highlight the effectiveness of our method in learning diverse policies, helping
agents cooperatively defeat enemies.

Table 6: Performance of our method and QMIX in scenarios of SMACv2 with different number of
agents

Method terran_5_vs_5 terran_10_vs_10 terran_15_vs_15 terran_20_vs_20
TEE+QMIX 0.96±0.02 0.95 ±0.03 0.92 ±0.04 0.89 ±0.03

QMIX 0.68±0.03 0.39±0.04 0.24 ±0.06 0.11±0.05

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

6h_vs_8z

corridor

3s5z_vs_3s6z

Figure 8: Visualization examples of diverse policies emerging in 6h_vs_8z (top), corridor (medium),
and 3s5z_vs_3s6z (bottom) from initial (left) to final (right). Green and red shadows represent agents
and enemies, respectively. Green and red arrows represent the moving directions of agents and
enemies, respectively.

We also provide additional visitation heatmaps for TEE+QMIX and the baseline methods in SMACv2
scenarios, as shown in Figures 9 and 10. These heatmaps illustrate that our proposed TEE achieves
more efficient exploration compared to the baselines. The mutual information-based baselines such
as MAVEN, EOI, and SCDS do not sufficiently explore the environment, making them less effective
at defeating enemies that appear randomly on the map. While the mutual information objective
encourages multi-agent diversity, it can also impede effective exploration. In contrast, our proposed
TEE leverages the trajectory entropy maximization objective, which drives agents to adopt exploratory
policies without being constrained by mutual dependence.

(a) MAVEN (b) EOI (c)SCDS (d) LIPO (e) FoX (f) TEE+QMIX

Figure 9: Visitation heatmaps of different algorithms in the protoss_5_vs_5 scenario.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) MAVEN (b) EOI (c)SCDS (d) LIPO (e) FoX (f) TEE+QMIX

Figure 10: Visitation heatmaps of different algorithms in the zerg_5_vs_5 scenario.

20

	Introduction
	Backgrounds
	Trajectory Entropy Exploration
	Learning Contrastive Trajectory Representations
	Nonparametric Entropy Maximization
	Learning Algorithm

	Experiments
	Pac-Men
	SMAC
	Ablation Study

	Related Works
	Limitations and Future works
	Conclusion
	Related works about entropy maximization
	Limitation of mutual information-based multi-agent exploration
	The TD loss of QMIX
	The implementation of TEE with policy gradient methods
	Pytorch-style pseudocode for TEE
	Environmental details and Additional experimental results
	Environmental details and experimental results
	Training Details and Hyperparameters
	Evaluations of TEE with different values of k
	Evaluation of TEE in Scenarios Requiring Homogeneous Behavior
	Comparison with -greedy
	Scalability
	Visualizations

