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ABSTRACT

Score-based causal discovery for purely discrete data remains dominated by hill-
climbing with the Bayesian Information Criterion (BIC), yet BIC often struggles
to orient edges within Markov-equivalence classes. We introduce XBIC, a princi-
pled enhancement that soft-weights BIC’s complexity penalty with edge-specific
Shapley evidence: when a candidate parent contributes strongly to its child’s like-
lihood, XBIC reduces the penalty proportionally, while defaulting to standard
BIC when support is weak. Across ten benchmark discrete Bayesian networks
(6-76 nodes) and seven sample-size regimes (700 runs), XBIC yields consistent
gains, improving oriented-edge F) by 5.6% over hill-climbing BIC, 9.6% over
a generalized-score GES variant, and 20.9% over PC. XBIC remains a drop-in
upgrade within the familiar BIC framework. To facilitate adoption and repro-
ducibility, we release code, data splits, and scripts at https://anonymous.
4open.science/r/causal_discovery_shap-6900/README .md.

1 INTRODUCTION

A causal relationship exists when changes in one variable systematically influence another. Bayesian
networks (BNs) encode such relationships as a directed acyclic graph (DAG) G over variables
X1, ..., X together with local mechanisms X; := f;(PA;, U;), where PA; are the parents of X
in G and U; is exogenous noise |Pearl| (2011). This representation supports interventional reasoning
by modifying one variable and assessing induced changes in others.

Causal structure discovery—the task of recovering G from observational data—is challenging be-
cause it must separate causation from correlation, yet it is critical in domains such as medicine
and public health |Spirtes et al.| (2000). We study score-based causal discovery from purely dis-
crete data, a setting that has received relatively less attention than continuous cases |[Goudet et al.
(2018)); Shimizu et al. (2006); Biithlmann et al.| (2014). Discrete data are ubiquitous (e.g., clin-
ical codes, insurance categories, survey responses) [Beinlich et al.| (1989); (Cooper & Herskovits
(1992)); |Sachs et al.[(2005) and present distinct challenges: nonlinear, non-Gaussian dependencies;
high-cardinality conditional probability tables; and sparsity that weakens conditional-independence
testing [Tsamardinos et al.| (2006)).

Two method families dominate causal discovery. Constraint-based methods (e.g., PC [Spirtes et al.
(2000)) iteratively remove edges via conditional-independence tests and return a partially directed
acyclic graph (PDAG) that encodes a Markov equivalence class. Score-based methods search over
DAGs to optimize a decomposable criterion such as BIC or AIC Schwarz|(1978)); Akaike| (1974). A
shared limitation is difficulty resolving edge directions within Markov-equivalent graphs: colliders
(X1 — X5 < X3) can be identified, but mediator and confounder motifs (X; — Xy — X3 vs.
X1 + X2 — X3) both yield X; L X3 | X5, leaving orientations unresolved.

We address this limitation by augmenting the BIC score with directional evidence derived from local
feature attributions. For each node X, we train a classifier to predict X; from X\; and use TreeEx-
plainer to compute Shapley values Lundberg & Lee|(2017);|Lundberg et al.|(2018) that quantify the
marginal contribution of X; to predicting X;. Aggregated over samples, these attributions induce
an edge-specific signal for X; — X;. We integrate this signal by soft-weighting BIC’s complex-
ity penalty: edges with strong directional support are penalized less, whereas edges with weak or
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ambiguous support retain the default penalty. The approach preserves the familiar BIC framework
while injecting asymmetric, edge-level information that helps prefer a single DAG within an equiv-
alence class. In contrast to prior work that uses causal knowledge to constrain explanations Frye
et al.| (2020) or designs causality-aware sampling for global importances Breuer et al.| (2024), we
use explanations to improve structure learning itself when the graph is unknown.

We evaluate on ten benchmark discrete BN structures (6-76 nodes) across seven sample-size regimes
(700 runs). The proposed method (XBIC) consistently improves oriented-edge F over hill-climbing
BIC (by 5.6%), a generalized-score GES variant (by 9.6%), and PC (by 20.9%), while reverting to
standard BIC where directional evidence is weak. These gains come with additional computational
cost due to per-node classifiers and attribution aggregation; we report wall-clock comparisons and
discuss parallelization.

Our key contributions are:

1. A score-based method (XBIC) for discrete causal discovery that integrates edge-specific
Shapley evidence as a soft weight on BIC’s complexity term, providing directional prefer-
ence within Markov equivalence classes while defaulting to standard BIC when evidence
is limited.

2. An extensive empirical study on ten discrete networks and seven sample-size regimes
demonstrating consistent improvements in oriented-edge recovery against strong baselines,
with released code, data splits, and scripts to ensure reproducibility.

2 RELATED WORK

2.1 CAUSAL GRAPH DISCOVERY FOR DISCRETE DATA

Discrete causal discovery is commonly approached with constraint-based and score-based methods.
The PC algorithm |Spirtes et al.| (2000) identifies a graph skeleton and orients a subset of edges
by performing conditional-independence (CI) tests among variable pairs X; and X; given subsets
S C X\ {X;, X;}. The output is a completed partially directed acyclic graph (CPDAG/PDAG) that
encodes a Markov equivalence class; edges whose direction cannot be determined remain undirected
in the CPDAG.

Score-based approaches search over DAGs to optimize a decomposable criterion such as BIC or
AIC |Schwarz| (1978)); |Akaike (1974). The BIC score balances fit and complexity,

BIC(G | D) = logP(D | G) — &% dim(G), (1)

with log-likelihood log P(D | G) = >, , log P(d | G). Although maximizing BIC over DAGs is
NP-hard|Cooper & Herskovits|(1992), local heuristics such as hill climbing (with add/delete/reverse
moves) Koller & Friedman| (2009) and equivalence-class searches such as GES |Chickering| (2002
work well in practice. Hybrid algorithms (e.g., MMHC |T'samardinos et al.| (2006))) first recover a
skeleton via CI tests and then orient edges via a score-based search, often improving scalability on
large sparse graphs.

A central limitation across these families is resolving directions within Markov-equivalence classes.
While collider structures (X; — X5 ¢ X3) are identifiable from CI patterns, mediator and con-
founder motifs (X7 — Xo — X3 vs. X7 < X5 — X3) both induce X; L X3 | X5. Our approach
augments BIC with edge-specific directional evidence to prefer a single DAG when the CI pattern
alone is insufficient, while reverting to standard BIC when such evidence is weak.

2.2 CAUSALITY AND EXPLAINABLE Al (XAI)

Most work at the causality—explainability interface injects causal knowledge to produce more faith-
ful explanations, rather than using explanations to improve structure learning. Asymmetric Shapley
values incorporate a known causal order into the coalition space for local explanations [Frye et al.
(2020). Causal Shapley values leverage (partially) known graphs to separate confounding from in-
teraction in attributions [Heskes et al.| (2020). The choice between observational and interventional
conditioning for “feature removal” has been analyzed as a key design degree of freedom for Shapley
methods Janzing et al. (2020). Shapley Flow generalizes credit assignment from nodes to edges
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on a known causal graph for global explanations Wang et al.| (2021). These lines assume access to
causal structure (full or partial) to constrain or reinterpret explanations. In contrast, we use local
attributions—computed when the graph is unknown—to inform the scoring of candidate structures
in a discrete, score-based pipeline.

2.3 SHAPLEY-GUIDED APPROACHES ADJACENT TO CAUSAL DISCOVERY

Recent efforts bring Shapley-inspired signals into pipelines adjacent to discovery. CAGE proposes
a causality-aware sampling scheme for computing global Shapley importances Breuer et al.|(2024).
CD-RCA attaches Shapley scores to a time-series causal-diagnosis pass to localize root causes of
forecast errors [Yokoyama et al| (2024). ReX ranks edges with KernelSHAP prior to constraint
pruning in continuous settings Renero et al.| (2025). These methods assume real-valued features,
explicit temporal order, or aim at explanation/diagnosis rather than discrete score-based structure
learning.

To the best of our knowledge, our work is the first to directly integrate local feature attributions as
an edge-specific, directional modulation of a score-based objective (BIC) for purely discrete data.
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Figure 1: Overview of the XBIC pipeline. Stage 1: train a per-node classifier. Stage 2: compute and
aggregate Shapley values. Stage 3: perform score-based search with a BIC term soft-weighted by
directional evidence.

3 METHOD
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Algorithm 1 Mean directional attributions per target

Require: data matrix D € RN*M (discrete columns), confidence threshold =
1: fori < 1to M do
2: fi < TRAINXGBOOST(X\;, X;)

30 Si+ {n€[N] : max.Pr(X;=c| X\;=2™) >}
4: Initialize accumulator A; € RM~1 « 0
5:  foreachn € S; do
6: ") « TREEEXPLAINER(f;, a:g;)) {exact SHAP for trees [Lundberg et al.|(2018)}
7: Ay — Aj 4 o™
8: end for
N O Ai/|Sil, |Si] >0
0, otherwise
10:  For each j # i, set ®;_,; to the jth component of ()
11: end for

12: return {®; ;i }3L,

We propose XBIC, a score for structure learning on discrete data that augments the Bayesian In-
formation Criterion (BIC) [Schwarz| (1978) with edge-specific, directional evidence derived from
Shapley values |Lundberg & Lee| (2017). Shapley values are typically used to quantify a feature’s
contribution to a model’s prediction; here we use them to induce an edge-level signal X; — X; and
softly modulate BIC’s complexity penalty during search.

Figure|l| summarizes the three stages.

1. Stage 1: per-node predictors. For each variable X;, train a classifier f; : X\; — X;.

2. Stage 2: directional attributions. For each f;, compute Shapley values for inputs X
(j # 1) and aggregate them over confidently predicted instances to obtain mean attributions
J—i-
3. Stage 3: score-based search. Use a hill-climbing search with an XBIC score that down-
weights the BIC penalty in proportion to the aggregate directional evidence carried by the
edges of the candidate graph.

XBIC score. Let E(G) denote the edge set of DAG G and N the sample size. We define

log N dim(G)

XBICL (G D) = log P G) = == o SHAP(G))

2
where w >0 is a weight and

SHAP(G) = ) [®.i]. 3)
(J—=1)EE(G)

Thus, stronger aggregate evidence on the edges of G (larger SHAP(G)) yields a smaller complexity
penalty. Two immediate properties hold: (i) if w = 0 or SHAP(G) = 0, then XBIC,, = BIC;
(ii) for any fixed w and bounded SHAP(G), the penalty still grows as O(log N), preserving BIC’s
order of penalization.

3.1 STAGE 1: PER-NODE CLASSIFIERS (FIGURE 1A)

For each target X; (i = 1,..., M), we train a supervised model f; on inputs X\; and obtain class
probabilities p;(z) = Pr(X;=c | X\;=z). We instantiate f; with XGBoost |Chen & Guestrin
(2016) (five-fold CV for hyperparameters). For each sample ("), let ¢ = arg max, pi(:z:(”)) and
H,E”) = max, pi(x(")) be the confidence. We retain the instance for attribution only if NE") > 1 for
a fixed threshold 7 € (0, 1). This filter reduces attribution noise from low-certainty predictions and
lowers the number of SHAP evaluations; sensitivity to 7 is examined in Section
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3.2 STAGE 2: AGGREGATION (FIGURE 1B)

Given the confident index set S; for target 7, the per-feature mean attribution is

By = — ST oM, i )

|Sl| nes;

where ¢§") (f:) is the SHAP value of feature X ; for model f; on instance n. Intuitively, if |P1 o] >
|®5_,1], the edge X — X5 has stronger directional support than X5 — X.

3.3 STAGE 3: HILL-CLIMBING WITH XBIC (FIGURE 1C)

We perform a standard local search over DAGs with add/delete/reverse moves, accepting the neigh-
bor with the largest XBIC,, improvement, subject to acyclicity. Caching local families keeps rescor-
ing cost low.

Algorithm 2 Hill-climbing with XBIC,,

Require: data D, weight w, attributions {® i}
I: G < empty DAG (or a given prior)
2: s+ XBIC, (G | D)
3: repeat
4: s <35, GF+ G
5: for each valid local move m € {ADD, DEL, REV} producing G’ do
6.
7
8

s’ + XBIC,(G" | D)
if s’ > s* then
: s*+s, G"«G

9: end if

10:  end for

11: G+ G*, s+ s*

12: until G and s unchanged

13: return G

Computational considerations. Let M be the number of variables and N the samples. (i) Train-
ing M XGBoost models costs O(M - T(N, M)), where T is the learner’s training time. (i) Exact
TreeExplainer for trees Lundberg et al.|(2018)) is linear in the number of trees and their depth; com-
puting and averaging SHAP on |S;| instances per target is parallelizable across . (iii) Each search
iteration evaluates O(M?) neighbors; with family caching, rescoring is local. Overall, XBIC adds a
front-loaded attribution phase to a standard BIC search but parallelizes naturally across targets and
(optionally) across instances.

Consistency remark. Write the penalty term in equation 2| as

log N dim(G)
2 exp(w SHAP(G)) *
( (@)
BIC growth constant factor in G

For fixed w and bounded SHAP(G), this scales as ¢(G) logzN dim(G) with ¢(G) € (0,1]. Hence
the penalty still grows like log IV, under standard regularity conditions for BIC, this preserves large-
sample consistency. Moreover, if SHAP(G) = 0 for all G (e.g., no directional signal passes the
confidence filter), XBIC reduces exactly to BIC.

Hyperparameter w. The weight w trades off reliance on likelihood vs. directional evidence:

larger w lowers the relative penalty on edges supported by ®;_,;, typically increasing recall at some
precision cost. We sweep w and report the precision—recall trade-off in Section4.3]

4 EVALUATION

We evaluate how XBIC improves discrete causal structure learning under varying data regimes.
Experiments use samples generated from known Bayesian networks and span seven sample-size
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settings to probe robustness. Because hill climbing with BIC is sensitive to data quantity Koller &
Friedman|(2009), we report results across all regimes.

4.1 SETUP

Networks. We use 10 benchmark discrete Bayesian networks from the bnlearn repositoryﬂ rang-
ing from 6 to 76 variables and covering healthcare, insurance, weather, and software domains. Ta-
ble [[l summarizes metadata.

Table 1: Summary of benchmark networks.

Network | Nodes | Edges | Parameters | Avg. MB Size | Avg. Degree | Max In-degree Domain
Asia 8 8 18 2.5 2.0 2 Medical
Sachs 11 17 178 3.09 3.09 3 Cell Biology
Survey 6 6 21 2.67 2.0 2 Transport
Alarm 37 46 509 3.51 2.49 4 Medical
Child 20 25 230 3.00 1.25 2 Medical
Insurance 27 52 984 5.19 3.85 3 Insurance
Water 32 66 10083 7.69 4.12 5 Wastewater
Hailfinder 56 66 2656 3.54 2.36 4 Weather
Win95pts 76 112 574 5.92 2.95 7 Software
Hepar2 70 123 1453 451 3.51 6 Medical

Baselines. We compare to (i) hill climbing with standard BIC (BIC-HC), (ii) PC, and (iii) GES using
the generalized score [Huang et al.| (2018)). MMHC targets large sparse graphs and is not the focus
here. For baselines that return a PDAG, we complete it to a DAG by randomly orienting undirected
edges (while preserving acyclicity) before computing directed-edge metrics.

Sample sizes. For each network we generate seven data sizes, from 0.125 M? to 8 M? (where M is
the number of variables). Each setting is repeated 10 times; we report averages over identical splits
across methods.

Classifiers and SHAP. For each target X; we train an XGBoost classifier (five-fold CV; Op-
tuna searc on X,;. Following Algorithm |I} TreeExplainer is applied only on instances whose
predicted-class probability exceeds a fixed CONFIDENCE_THRESHOLD. Varying this threshold
between 0.7 and 0.95 changed downstream F; by < 1% on average, suggesting the filter mainly
reduces SHAP evaluations without materially affecting accuracy.

Shapley weight. We evaluate w € {1,2,3} in XBIC (note: w = 0 recovers BIC). Unless stated
otherwise, XBIC refers to the indicated w.

4.2 METRICS

We report (i) precision: fraction of predicted directed edges that match the ground-truth direction;
(ii) recall: fraction of ground-truth directed edges recovered; (iii) F3: harmonic mean of precision
and recall (emphasized due to sparsity); and (iv) structural Hamming distance (SHD): edge addi-
tions, deletions, and reversals to reach the ground truth (lower is better).

Hyperparameter search. For each target node we run Optuna (50 trials; 5-fold CV; RMSE objec-
tive) over the space in Table [3} the best configuration is refit on all data and its TreeSHAP values
feed Stage 2.

4.3 RESULTS

Table reports F1 deltas of XBIC (w=2) versus baselines. On smaller networks and limited data,
XBIC sometimes does not improve on BIC; this typically occurs when Stage 1 classifiers seldom
surpass the confidence threshold, yielding few instances for reliable attributions and effectively re-
verting XBIC to BIC (SHAP(G) near zero). For medium/large networks and moderate-to-large

"nttps://www.bnlearn.com/bnrepository/
https://github.com/optuna
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Table 2: F-score deltas of XBIC (w=2) relative to BIC, PC, and GES. Columns group sample sizes
from 0.125 M? to 8 M?2. “~” marks GES runs that did not finish all of the runs.

Sample size
0.125M2 0.25M2 0.5M? M? 2M? AM? 8M?
Network | BIC | PC | GES | BIC | PC | GES | BIC | PC | GES | BIC | PC | GES | BIC | PC | GES | BIC | PC | GES | BIC | PC | GES
Asia 0 0 0 0 0 0 0.0 |0.18 | 0.06 | 0.0 |0.17 |-0.05|-0.12 | 0.22 | 0.04 | -0.01 | 0.18 | -0.05 | -0.02 | 0.16 | 0.07
Sachs 0 0 0 |0.02]022|-0.08 | 006 | 0.28 | -0.07 | 0.15 | 0.21 | -0.01 | 0.2 | 0.25 | 0.02 | 0.18 | 0.2 | 0.03 | 0.08 | 0.07 | 0.01
Survey 0 0 0 0 0 0 0 0 0 -0.09 | 0 |-0.02| 007 | 0.1 | 0.04 | 005 | 0.07 | -0.01 | 0.09 | 0.14 | 0.2
Alarm 0.07 | 0.21 | 0.05 | 0.08 | 0.16 | -0.02 | 0.04 | 0.1 - 0.02 | 0.06 - 0.06 | 0.01 - 0.03 | 0.01 - 0.04 | -0.05 -
Child 0.04 | 0.2 | 0.08 | 0.01 | 0.08 | 0.02 | -0.01 | 0.08 | 0.01 | 0.03 | 0.04 | 0.03 | 0.04 | 0.08 | 0.0 | 0.04 | 0.11 - -0.02 | 0.07 -
Insurance | 0.08 | 0.18 | 0.05 | 0.11 | 0.18 | 0.01 | 0.09 | 0.14 | -0.03 | 0.1 | 0.19 | -0.03 | 0.08 | 0.17 - 0.07 | 0.21 - 0.09 | 0.14 -
Water -0.01 | 0.07 | 0.04 | 0.0 | 0.06 | 0.04 | 0.01 | 0.07 | 0.05 | 0.05 | 0.09 - 0.05 | 0.08 - 0.07 | 0.08 - 0.06 | 0.1 -
Hailfinder | 0.08 | 0.13 - 0.08 | 0.18 - 0.12 | 0.12 - 01 | 018 - 0.13 | 0.14 - - - - - - -
Win95pts | 0.0 | 0.11 - 0.0 | 0.06 - 0.02 | 0.04 - 0.07 | 0.05 - 0.07 | 0.04 - 0.0 | -0.05 - -0.09 | -0.15 -
Hepar2 0.01 | 0.17 - 0.01 | 0.19 - 0.01 | 0.24 - 0.0 | 0.25 - 0.0 | 0.26 - -0.02 | 0.28 - 0.0 | 028 -
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Figure 2: Precision and recall of XBIC with w € {1, 2, 3}.

samples, XBIC generally improves F;. We also examined precision and recall separately (Fig-
ure[Z). Larger w tends to increase recall (more edges admitted) while sometimes reducing precision,
as expected from a softer penalty.

Table [4] aggregates improvements across all 700 runs. XBIC with w=2 attains the highest overall
gain: +5.6% vs. BIC, +20.9% vs. PC, and +9.6% vs. GES (relative improvements).

We apply the adjusted Friedman test with p < 0.05 followed by Wilcoxon signed-rank tests. XBIC
(w=1) and XBIC (w=2) significantly outperform all baselines; XBIC (w=3) significantly outper-
forms PC and is competitive with BIC, especially at smaller sample sizes where its higher recall is
advantageous.

4.4 RUNTIME

All experiments ran on Linux with 4 CPUs and 20 GB RAM per task. Table [5] shows that XBIC is
slower than BIC/PC due to classifier training and SHAP aggregation. GES exhibited poor scalability
and often did not finish within 7 days on larger/denser networks.
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Table 3: XGBoost hyperparameters (search space).

Parameter Range / Distribution Notes
n_estimators {50, 100,...,2000} step = 50
eta log-uniform [0.01, 0.3] learning rate
max_depth int [3, 20]

subsample uniform [0.5, 1.0]
colsample_bytree uniform [0.5, 1.0]

A (L2) log-uniform [10~3, 10]

a (L1) log-uniform [10~3, 10]
min_child_weight int [1, 10]

gamma uniform [0, 5] min-loss reduction

Table 4: Average F' improvement of XBIC over baselines across 700 runs.

Type | BIC | PC | GES

XBIC (w=1) Relative | 5.1% | 20.2% | 9.0%
Absolute | 0.03 | 0.11 0.05

XBIC (w=2) Relative | 5.6% | 20.9% | 9.6%
Absolute | 0.04 0.12 0.06

XBIC (w=3) Relative | 2.5% | 17.3% | 6.3%
Absolute | 0.02 | 0.10 | 0.04

Both the classifier training and TreeSHAP stages parallelize across targets (and, if desired, across
instances), reducing wall-clock time in multi-core or distributed environments.

4.5 COMPARISON TO GES

GES exceeded the 7-day limit in many settings. For each (network, sample-size) pair, we retained
only repetitions where GES completed and computed GES statistics on that subset. XBIC was com-
pared head-to-head on the same repetitions. Despite this favorable filtering for GES, XBIC (w=1)
and XBIC (w=2) achieved significantly lower SHD (paired ¢-test, p < 0.05), with improvements
ranging from 6%-32% and 1%—-27%, respectively; XBIC (w=3) showed no significant SHD advan-
tage on this subset. Figure [3| visualizes the SHD differences.

CONCLUSIONS

We presented XBIC, a score-based approach to causal structure discovery for purely discrete data
that augments the Bayesian Information Criterion with edge-specific, directional Shapley evidence.
By softly reducing the complexity penalty on edges with strong attribution support—while reverting
to standard BIC when evidence is weak—XBIC guides hill-climbing toward orientations that are
more consistent with the data-generating mechanisms.

On ten benchmark Bayesian networks (6-76 nodes) across seven sample-size regimes (700 runs),
XBIC improved oriented-edge F) and reduced SHD relative to hill-climbing BIC, PC, and a
generalized-score GES variant, with the strongest overall gains at w=2. These gains come with
added computational cost from per-node classifiers and attribution aggregation. In our evaluation
this cost was manageable for offline discovery, and both training and TreeSHAP computations par-
allelize naturally. XBIC sometimes offers little benefit on small samples, where the underlying
classifiers seldom produce confident predictions and the method effectively defaults to BIC.

We see XBIC as especially relevant where variables are discrete, interventions are costly or infea-
sible, and interpretability matters (e.g., healthcare, environmental monitoring, risk and insurance).
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Table 5: Average runtime per method (seconds).

Network BIC PC XBIC (w=2)
Asia 0.39 0.09 74.78
Sachs 0.49 0.46 106.21
Survey 0.09 0.02 54.21
Alarm 9.30 12.22 523.52
Child 2.08 5.23 234.00
Insurance | 4.51 10.78 382.15
Water 4.97 1.28 402.94
Hailfinder | 36.47 | 15923.14 1904.25
Win95pts | 75.33 3391 2139.27
Hepar2 | 40.33 130.98 1885.44
504 — xbic-ges
10 4
] H | W1
0 w ' L A
_10 -
_20 -
_30 -

T T T T
0 25 50 75 100 125 150 175

Figure 3: SHD difference (XBIC minus GES; lower is better). Negative values favor XBIC.

The method is a drop-in modification of a familiar score, facilitating adoption within existing BIC-
based pipelines.

Limitations and future work. (i) Runtime. We will explore faster base learners (e.g., Light-
GBM/CatBoost) and approximate or batched attribution to reduce overhead, alongside broader par-
allelization. (ii) Small-sample regimes. Adaptive confidence filtering and uncertainty-aware ag-
gregation may strengthen directional signals when data are limited. (iii) Search scalability. Scal-
ing beyond ~75 nodes motivates hybrid or order-based searches (e.g., max—min hill climbing) and
sparsity-aware neighborhoods. (iv) Theory. While XBIC preserves BIC in the absence of attribution
signal, formal analysis of the weighting mechanism (e.g., bounds and convergence properties) is an
important direction.

All code, datasets, and evaluation scripts are publicly available to foster reproducibility and further
researchE|

By bridging causal discovery and explainability, XBIC offers a practical route to more informative
orientations in discrete causal graphs, complementing existing score-based methods while retaining
their familiar workflow.

*https://anonymous.4open.science/r/causal_discovery_shap-6900/README . md
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