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Abstract

In the strategic facility location problem, a set of agents report their locations in a
metric space and the goal is to use these reports to open a new facility, minimizing
an aggregate distance measure from the agents to the facility. However, agents are
strategic and may misreport their locations to influence the facility’s placement
in their favor. The aim is to design truthful mechanisms, ensuring agents cannot
gain by misreporting. This problem was recently revisited through the learning-
augmented framework, aiming to move beyond worst-case analysis and design
truthful mechanisms that are augmented with (machine-learned) predictions. The
focus of this work was on mechanisms that are deterministic and augmented with a
prediction regarding the optimal facility location. In this paper, we provide a deeper
understanding of this problem by exploring the power of randomization as well as
the impact of different types of predictions on the performance of truthful learning-
augmented mechanisms. We study both the single-dimensional and the Euclidean
case and provide upper and lower bounds regarding the achievable approximation
of the optimal egalitarian social cost.

1 Introduction

In the classic facility location problem the goal is to determine the ideal location for a new facility,
taking as input the preferences of a group of n agents. Due to the wide variety of applications that this
problem captures, it has received a lot of attention from different perspectives. A notable example is
the strategic version of this problem which is motivated by the fact that the participating agents may
be able to strategically misreport their preferences, leading to a facility location choice that they prefer
over the one that would be chosen if they were truthful. In the strategic facility location problem,
the goal is to design truthful mechanisms, i.e., mechanisms that elicit the agents’ true preferences
by carefully removing any incentive for the agents to lie [Moulin, 1980, Procaccia and Tennenholtz,
2013]. This problem has played a central role in the broader literature on mechanism design without
money and a lot of prior work has focused on optimizing the quality of the returned location subject
to the truthfulness constraint (see Section 1.2 for a brief overview). However, this work has mostly
focused on worst-case analysis, often leading to unnecessarily pessimistic impossibility results.

Aiming to overcome the limitations of worst-case analysis, a surge of work during the last few years
has focused on the design of algorithms in the learning-augmented framework [Mitzenmacher and
Vassilvitskii, 2022]. According to this framework, the designer is provided with some machine-
learned prediction regarding the instance at hand and the goal is to leverage this additional information
in the design process. However, crucially, this information is not guaranteed to be accurate and can,
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in fact, be arbitrarily inaccurate. The goal is to achieve stronger performance guarantees whenever
the prediction happens to be accurate (known as the consistency guarantee), while at the same time
maintaining some worst-case guarantee even if the prediction is arbitrarily inaccurate (known as the
robustness guarantee).

Agrawal et al. [2022] and Xu and Lu [2022] recently introduced the learning-augmented framework
to mechanism design problems involving self-interested strategic agents with private information, and
both of these works studied the strategic facility location problem. Agrawal et al. [2022] considered
both the egalitarian and the utilitarian social cost objectives and provided tight bounds on the best-
feasible robustness and consistency trade-off for truthful mechanisms augmented with a prediction
regarding what the optimal facility location would be. However, the achievable trade-offs between
robustness and consistency may heavily depend on the specific type of prediction that the mechanism
is augmented with: note that the consistency guarantee only binds if the prediction is accurate, so
more refined predictions bind on fewer instances (the subset of instances where even the refined
prediction is accurate) and could, therefore, enable the design of learning-augmented mechanisms
with improved guarantees. This leaves open the question of whether mechanisms equipped with
more refined predictions can, indeed, achieve better trade-offs between robustness and consistency.
Also, Agrawal et al. [2022] restricted their attention to deterministic mechanisms, leaving open the
possibility for truthful randomized mechanisms to achieve even stronger guarantees. In this work we
significantly expand our understanding of this problem by studying both the power of randomization
and the power of alternative predictions.

1.1 Our Results

We revisit the problem of designing truthful learning-augmented mechanisms for the strategic facility
location problem. These mechanisms ask each agent to report their preferred location in some metric
space (which is private information) and they are also augmented with some (unreliable) prediction
related to this private information. Using the agents’ reported locations, along with the prediction,
the mechanism chooses a facility location in this metric space, aiming to (approximately) minimize
some social cost measure. Our focus in this paper is on the egalitarian social cost, i.e., the maximum
distance between an agent’s preferred location and the location chosen for the facility. Our goal is to
evaluate the performance of mechanisms that can leverage randomization, as well as the power of
different types of predictions.

We first consider the well-studied single-dimensional version of the problem, where all agents lie
on a line and the mechanism needs to choose a facility location on that line. Prior work on the
strategic facility location problem without predictions, showed that for this class of instances no
deterministic truthful mechanism can achieve an approximation better than 2 and no randomized
truthful1 mechanism can achieve an approximation better than 1.5; both of these results are shown to
be tight [Procaccia and Tennenholtz, 2013]. In the learning-augmented framework, Agrawal et al.
[2022] showed there exists a truthful deterministic mechanism provided with a prediction regarding
the optimal facility location that achieves the best of both worlds: a perfect consistency of 1 and an
optimal robustness of 2.

Our main result for the single-dimensional version shows that even if the mechanism is provided
with the strongest possible prediction (i.e., a prediction regarding every agent’s preferred location),
any randomized truthful mechanism that is (1 + δ)-consistent for some δ ∈ [0, 0.5] can be no better
than (2− δ)-robust. This implies that the previously proposed deterministic learning-augmented
mechanism that is 1-consistent and 2-robust and the randomized non-learning-augmented mechanism
that is 1.5-robust (and hence also 1.5-consistent) are both Pareto optimal among all randomized
mechanisms, even if they are augmented with the strongest possible predictions. Beyond these two
extreme points, this result proves a lower bound for the achievable trade-off between robustness and
consistency for any randomized mechanism, even with the strongest predictions. We complement this
bound by observing that this trade-off can, in fact, be achieved by a truthful randomized mechanism
that chooses between the optimal learning-augmented deterministic mechanism and the optimal
non-augmented randomized mechanism, thus verifying that our bound fully characterizes this Pareto
frontier.

1A truthful randomized mechanism guarantees truthfulness in expectation. See Section 2 for more details.
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We then consider the two-dimensional case, for which much less is known about randomized
mechanisms. The best-known truthful randomized mechanism is the Centroid, introduced by Tang
et al. [2020], which guarantees a 2−1/n approximation. We provide a truthful randomized mechanism
that is equipped with a prediction regarding the identities of the most extreme agents (those who
would incur the maximum cost in the optimal solution) and, using this prediction, our mechanism
achieves 1.67-consistency and 2-robustness. The idea is to use these predictions to select at most
three extreme agents, apply the Centroid mechanism to them, and guarantee a 1.67 approximation if
the predictions are accurate not only for these three agents but for all other agents as well, utilizing
the properties of the Euler line.

An interesting observation is that the lower bound of 1.5 from the single-dimensional case does not
extend to two dimensions, so prior work does not imply any lower bound for two dimensions! We
prove a lower bound of 1.118 for all truthful randomized mechanisms and then that no deterministic
mechanism can simultaneously guarantee better than 2-consistency and better than 1+

√
2-robustness,

even if it is augmented with the strongest predictions. Similarly, no truthful randomized mechanism
can simultaneously guarantee 1-consistency and better than 2-robustness. The former result proves
the optimality of a previously introduced 1-consistent and 1 +

√
2-robust truthful deterministic

mechanism provided only with a prediction regarding the optimal facility location [Agrawal et al.,
2022]. We also show that the latter is tight.

1.2 Related Work

Strategic facility location. Moulin [1980] provided a characterization of deterministic truthful
facility location mechanisms on the line and introduced the median mechanism, which returns the
median of the agent location profile x = ⟨x1, · · · , xn⟩. The median mechanism is known to be
truthful, providing an optimal solution for the Utilitarian Social Cost and achieving a 2-approximation
for the Egalitarian Social Cost, as demonstrated by Procaccia and Tennenholtz [2013]. Notably,
Procaccia and Tennenholtz [2013] showed that this 2-approximation factor represents the best
performance achievable by any deterministic truthful mechanism. Building on this, Border and Jordan
[1983] extended these results to the Euclidean space by employing median schemes independently
in each dimension. Subsequently, Barberà et al. [1993] further generalized this outcome to any L1-
norms. Other settings explored include general metric spaces [Alon et al., 2010] and d-dimensional
Euclidean spaces [Meir, 2019, Walsh, 2020, El-Mhamdi et al., 2023, Goel and Hann-Caruthers, 2020],
as well as circles [Alon et al., 2010, Meir, 2019] and trees [Alon et al., 2010, Feldman and Wilf,
2013]. Fundamental results in truthful facility location often focus on characterizing the space of
truthful mechanisms. For the one-dimensional case, Moulin’s characterization [Moulin, 1980] reveals
that all deterministic truthful mechanisms belong to the “general median mechanisms (GCM)” family.
For the two-dimensional case, a similar characterization was provided by Peters et al. [1993]. For a
comprehensive review of previous work on this problem, see the survey by Chan et al. [2021].

Learning-augmented algorithms. Worst-case analysis on its own is often not informative enough,
and several alternative measures have been proposed to overcome its limitations [Roughgarden, 2021].
Learning-augmented algorithms, or algorithms with predictions [Mitzenmacher and Vassilvitskii,
2022], aim to address these limitations by incorporating predictions into the algorithm’s design.
Lykouris and Vassilvitskii [2021] studied the online caching problem and introduced two main
metrics, consistency and robustness, to evaluate the performance of these algorithms. The online
version of the facility location problem, introduced by Meyerson [2001], involves points arriving
online, requiring us to assign them irrevocably to either an existing facility or open a new facility.
The objective is to minimize the distance of each agent to the assigned facility along with the cost of
opening the facilities. Almanza et al. [2021], Jiang et al. [2022], and Fotakis et al. [2021] studied
this problem augmented with predictions regarding the location of the optimal facility for each
incoming point. We direct interested readers to a curated and frequently updated list of papers in this
area [Lindermayr and Megow].

Learning-augmented mechanism design. The framework of learning-augmented mechanism
design was first introduced by Agrawal et al. [2022] and Xu and Lu [2022]. Agrawal et al. [2022]
focused on the strategic facility location problem, proposing mechanisms that leverage predictions
to improve performance while maintaining truthfulness. Their work achieves the best possible
consistency and robustness trade-off given a prediction of the optimal facility location. They also
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evaluated the performance of their mechanisms as a function of the prediction error. More recently,
Christodoulou et al. [2024] provided performance bounds based on an alternative measure of predic-
tion error. Barak et al. [2024] studied this problem assuming that the predictions are regarding each
agent’s location, but a small fraction of these predictions may be arbitrarily inaccurate. Meanwhile,
Chen et al. [2024] evaluated non-truthful mechanisms with respect to their price of anarchy. Istrate
and Bonchis [2022] and Fang et al. [2024] studied the obnoxious facility location version of this
problem, aiming to design truthful mechanisms. Apart from the facility location problem, other
works in learning-augmented mechanism design have been conducted in various contexts, including
strategic scheduling [Xu and Lu, 2022, Balkanski et al., 2023a], auctions [Xu and Lu, 2022, Balkanski
et al., 2023b,a, Lu et al., 2023, Caragiannis and Kalantzis, 2024, Gkatzelis et al., 2024], bicriteria
mechanism design [Balcan et al., 2024], graph problems with private input [Colini-Baldeschi et al.,
2024], and equilibrium analysis [Gkatzelis et al., 2022, Istrate et al., 2024]. Balkanski et al. [2023b]
brought together the line of work on learning-augmented mechanism design with the literature on
online algorithms with predictions by studying online mechanism design with predictions.

2 Preliminaries

In the single facility location problem, there are n strategic agents with a location profile denoted
by x = ⟨x1, · · · , xn⟩, where xi corresponds to the location of agent i. A mechanism f(x) outputs
a, potentially randomized, location for the facility. The cost incurred by agent i is the expected
Euclidean distance E[d(xi, f(x))] between the facility location f(x) and their location xi.

Two renowned cost functions considered in this scenario are Egalitarian Social Cost and Utili-
tarian Social Cost. In this work, the goal is to optimize the Egalitarian Social Cost C(f,x) =
E[maxxi∈x d(xi, f(x))], representing the expected maximum cost experienced by a single agent
for each possible outcome of f(x). The optimal location for the facility in the two-dimensional
Euclidean space corresponds to the center of the smallest circle that encloses all the points, denoted
by o(x).

To minimize the social cost, a mechanism needs to ask the agents to report their preferred locations,
x ∈ R2n, and then use this information to determine the facility location f(x) ∈ R2. However, the
preferred location xi of each agent i is private information, and they can choose to misreport their
preferred location if that can reduce their own cost. A mechanism f : R2n → R2 is considered truthful
when no individual agent can benefit by misreporting their location, i.e., for all instances x ∈ R2n,
every agent i ∈ [n], and every deviation x′

i ∈ R2, we have that d(xi, f(x)) ≤ d(xi, f(x−i, x
′
i)),

where x−i = ⟨x1, · · · , xi−1, xi+1, · · · , xn⟩ is the vector of the locations of all agents except agent i.

In the context of randomized mechanisms, we can distinguish between two forms of truthfulness:
universally truthful and truthful in expectation. A universally truthful mechanism involves a ran-
domization over deterministic truthful mechanisms, with weights that may depend on the input. On
the other hand, a mechanism is considered truthful in expectation if truth-telling yields the agent
the maximum expected value. Specifically, a mechanism f : R2n → R2 is truthful in expectation
if for all instances x ∈ R2n, every agent i ∈ [n], and every deviation x′

i ∈ R2, we have that
E[d(xi, f(x))] ≤ E[d(xi, f(x−i, x

′
i))].

We focus on mechanisms that are both unanimous and anonymous. A mechanism is unanimous if,
when all points x are located at the same position (xi = xj for all i, j ∈ [n]), it places the facility
at that specific location, i.e., f(x) = xi. To ensure bounded robustness, a mechanism must be
unanimous, as the optimal cost is zero when the facility is at the same location as all points, whereas
placing it elsewhere incurs a positive cost. A mechanism is anonymous if its outcome is independent
of the agents’ identities, meaning it remains unchanged under any permutation of the agents. Finally,
we also assume the mechanism is scale-independent, i.e., if we multiply every coordinate of every
agent by the same factor, the coordinate of the chosen facility location are scaled in the same way;
this captures the fact that it is only the relative distances that really matter in this problem.

Learning-augmented algorithms encompass a class of algorithms that enhance their decision-making
process by integrating pre-computed predictions or forecasts. These predictions, obtained from
various sources, like statistical models, serve as inputs without requiring real-time learning from new
data. For instance, in the single facility location problem, one might consider predictions x̂ regarding
all of the agent’s preferred locations, a prediction F ∗ regarding the optimal facility location, or a
prediction regarding the identities of the most extreme agents ê (the ones that suffer the maximum
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cost in the optimal solution), which, as demonstrated in this paper, proves to be quite useful. We
denote mechanisms enhanced with predictions in general as f(x, ∗). Specifically, for each prediction
setting like x̂ or F ∗, we denote a mechanism enhanced with x̂ and F ∗ by f(x, x̂) and f(x, F ∗),
respectively. We define mechanisms enhanced with other kinds of predictions in a similar way.

The effectiveness of learning-augmented mechanisms is evaluated using their consistency and robust-
ness. If x ◁ ∗ denotes all instances x for which prediction ∗ is accurate, a mechanism is

• α-consistent if it achieves an α-approximation when the prediction is correct, i.e.,

max
x,∗:x◁∗

{
C(f(x, ∗),x)
C(o(x),x)

}
≤ α.

• β-robust if it maintains a β-approximation regardless of the quality of the prediction, i.e.,

max
x,∗

{
C(f(x, ∗),x)
C(o(x),x)

}
≤ β.

3 Results for the Line

In this section, we provide a lower bound regarding the performance of any randomized mechanism
for the line, even if it is equipped with the strongest type of prediction, i.e., a prediction x̂ regarding
the preferred location of every agent.
Theorem 1. No mechanism for the line that is truthful in expectation and guarantees 1+δ consistency
for some δ ∈ [0, 0.5] can also guarantee robustness better than 2− δ, even if it is provided with full
predictions x̂ containing each of the agents’ locations.

The proof consists of two main parts. We first show that, for any instance involving two agents, we
can without loss of generality restrict our attention to a class of mechanisms that we call ONLYM
mechanisms. We then show the desired lower bound for ONLYM mechanisms.

We introduce the following notations specific to this section. Let xL be the leftmost reported location
and xR be the rightmost reported location on the line. Therefore, we have xL ≤ xR. Let M denote
the midpoint of these two extreme points, i.e., M = (xL + xR)/2, which would also correspond to
the optimal facility location. For simplicity, we sometimes write f(x1, . . . , xn), dropping the angle
brackets ⟨⟩. ONLYM is the class of mechanisms that, whenever they choose a location within the
interval (xL, xR), then this location is always M .
Definition 1 (ONLYM mechanisms). A mechanism f for the line is an ONLYM mechanism if
P [f(x) ∈ (xL, xR) \ {M}] = 0.

The main lemma for the proof of Theorem 1 is the following reduction that allows to restrict our
attention to ONLYM mechanisms. The complete proof of Lemma 1 can be found in Appendix A.
Lemma 1. For any problem instance involving two agents with reported locations x = ⟨xL, xR⟩
on the line, and any randomized truthful in expectation mechanism achieving α-consistency and
β-robustness over this class of instances, there exists a randomized ONLYM mechanism that is
truthful in expectation and achieves the same consistency and robustness guarantees.

Proof Sketch. Consider a randomized mechanism f(xL, xR) with probabilities pℓ = P[f(xL, xR) ∈
(xL,M)] and pr = P[f(xL, xR) ∈ (M,xR)], representing the chances of selecting a location in
(xL,M) and (M,xR), respectively. If pℓ = pr = 0, the mechanism already satisfies the desired
property. Otherwise, for pℓ > 0 and pr > 0, define the expected locations πℓ = E[f(xL, xR) |
f(xL, xR) ∈ (xL,M)] and πr = E[f(xL, xR) | f(xL, xR) ∈ (M,xR)], which can be expressed as
convex combinations πℓ = qℓxL+(1− qℓ)M and πr = qrxR+(1− qr)M for some qℓ, qr ∈ (0, 1).

We then construct a new mechanism f ′ that modifies f by reassigning probability masses to xL, M ,
and xR as follows:

P[f ′(xL, xR) = x] =



P[f(xL, xR) = x] if x < xL or x > xR,

0 if x ∈ (xL,M) ∪ (M,xR),

P[f(xL, xR) = x] + qℓpℓ if x = xL,

P[f(xL, xR) = x] + (1− qℓ)pℓ + (1− qr)pr if x = M,

P[f(xL, xR) = x] + qrpr if x = xR.
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To show f ′ retains the consistency and robustness guarantees of f , we show that the expected costs
of f and f ′ are identical for instances with two agents (Lemma 2). Finally, we show that f ′ maintains
the truthfulness in expectation property by verifying that agent costs are unchanged between f and f ′

(Lemma 3).

Equipped with Lemma 1, we can now prove Theorem 1.

Proof of Theorem 1. We start by proving the result for two-agent instances on the line using any
ONLYM mechanism. Then, using Lemma 1, the result follows for any randomized mechanism.

First, note that if the chosen facility location y is at distance d(M,y) from the point M =
(xL + xR)/2, then its egalitarian social cost is equal to C(o(x),x) + d(M,y). To verify this
fact, assume without loss of generality that this location is on the left of M and note that its distance
from the agent located at xR is d(xR,M) + d(M,y). As a result, the expected social cost of a
mechanism f with agent locations x is

C(f,x) = C(o(x),x) + E[d(M,f(x))]. (1)

Now, assume that there exists a mechanism that is (1 + δ)-consistent and better than (2− δ)-robust.
For robustness, this would imply that for every instance x, irrespective of the prediction, the mecha-
nism must guarantee that

C(f,x)

C(o(x),x)
< 2− δ ⇒ E[d(M,f(x))]

C(o(x),x)
< 1− δ. (2)

For this mechanism to be truthful in expectation, it must ensure that no agent has an incentive to
misreport their location. Consider the instance x = ⟨xL, xR⟩, and note that the agent at xL has the
option to misreport their location as x′

L = xL − d(xL, xR), which would shift the new midpoint
M ′ to xL in the new instance x′ = ⟨x′

L, xR⟩. This deviation would double the optimal cost, i.e.,
C(o(x′),x′) = 2 · C(o(x),x). Inequality (2), then guarantees that the expected cost for this agent
after the deviation would be at most 2(1− δ) · C(o(x),x) since we have

E[d(M ′, f(x′))]

C(o(x′),x′)
=

E[d(xL, f(x
′))]

2 · C(o(x),x)
< 1− δ. (3)

As a result, to ensure that this agent will not misreport, the mechanism needs to ensure that the
expected cost of the agent if they report the truth is strictly less than 2(1− δ) · C(o(x),x). If we let
P (≤ L) = P[f(x) ≤ xL] denote the probability that the chosen location is weakly on the left of xL,
and P (M) = P[f(x) = M ] denote the probability that the chosen location is M , then the expected
cost of the agent located at xL is at least C(o(x),x)P (M) + 2C(o(x),x)(1− P (M)− P (≤ L))
because the mechanism is an ONLYM mechanism. This is even if we assume that the only chosen
facility locations weakly on the left of xL (and weakly on the right of xR, respectively) are exactly
on xL (and exactly on xR, respectively). Therefore, the mechanism needs to always satisfy

C(o(x),x)(P (M) + 2(1− P (M)− P (≤ L))) < 2(1− δ)C(o(x),x)

⇒ P (M) + 2(1− P (M)− P (≤ L)) < 2(1− δ) ⇒ P (≤ L) > δ − P (M)

2
.

(4)

If we consider the same instance x = ⟨xL, xR⟩, and assume that the mechanism is also provided
with accurate predictions x̂L = xL and x̂R = xR regarding the agent locations, to guarantee 1 + δ
consistency, Inequality (1) implies that

C(f(x, x̂ = x),x)

C(o(x),x)
≤ 1 + δ ⇒ E[d(M,f(x, x̂))]

C(o(x),x)
≤ δ. (5)

Finally, if we once again consider the same instance with inaccurate predictions x̂L = xL and
x̂R = xR + d(xL, xR), we observe that in this case the agent located at xR would have the option to
instead report x′′

R = xR + d(xL, xR) = x̂R, and the predictions would then appear to be accurate,
forcing the mechanism to satisfy Inequality (5) in order to maintain the required consistency bound.
Since the true location xR would now coincide with the middle point M ′′ of the misreported instance
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x′′ = ⟨xL, x
′′
R⟩, this would yield the agent located at xR who misreported an expected cost of

2δ · C(o(x),x) since we have

E[d(M ′′, f(x′′, x̂))]

C(o(x′′),x′′)
=

E[d(xR, f(x, x̂))]

2 · C(o(x),x)
≤ δ. (6)

As a result, to ensure that this agent will not misreport, the mechanism needs to ensure that the
expected cost of the agent if they report the truth is at most 2δ · C(o(x),x). If we once again let
P (≤ L) denote the probability that the chosen location is weakly on the left of xL, and P (M) denote
the probability that the chosen location is M , then the expected cost of the agent located at xR is at
least C(o(x),x)P (M) + 2C(o(x),x)P (≤ L). This is even if we once again assume that the only
chosen facility locations weakly on the left of xL (and weakly on the right of xR, respectively) are
exactly on xL (and exactly on xR, respectively). Therefore, the mechanism needs to always satisfy

P (M) + 2P (≤ L) ≤ 2δ ⇒ P (≤ L) ≤ δ − P (M)

2
.

However, this contradicts Inequality (4), so we conclude that no mechanism can simultaneously
guarantee (1 + δ) consistency and a robustness better than (2− δ).

3.1 The hardness result for the line is tight

We observe that the lower bound regarding the robustness and consistency trade-off shown in
Theorem 1 is actually tight. Specifically, it can be achieved by an appropriate randomization between
the optimal deterministic learning-augmented mechanism and the optimal non-learning-augmented
randomized mechanism.
Proposition 1. For any δ ∈ [0, 0.5], there exists a randomized mechanism on the line which, given
prediction F ∗, is truthful in expectation, (1 + δ)-consistent, and (2− δ)-robust.

As a result, the bound of Theorem 1 precisely captures the optimal robustness consistency trade-off
over all truthful in expectation mechanisms for instances on the line.

3.2 Other prediction settings

To gain a more complete picture of different prediction settings, we study an alternative strong
prediction that is not strictly stronger than the predicted optimal facility location F ∗. Specifically,
we consider a setting where predictions are available for all pieces of information except for one of
the extreme locations. We show that these predictions are not helpful, even without any robustness
constraints, to improve the consistency guarantee alone.
Theorem 2. Given a prediction set that provides the identities of all n agents, there exist n−1 agents
such that, even if we have their exact locations, there is no deterministic truthful mechanism on the
line that is better than 2-consistent, and there is no randomized mechanism on the line that is truthful
in expectation and better than 1.5-consistent.

4 Results for the Plane

We now consider instances in the Euclidean plane, with a location profile x = ⟨x1, . . . , xn⟩, where
xi ∈ R2 for each agent i. Missing proofs of this section can be found in Appendix B.

4.1 Impossibility Results

Before considering the robustness and consistency guarantees achievable by randomized mechanisms
augmented with different types of predictions, we start off by reducing the gap on what is known for
mechanisms without predictions.

Since the problem of designing good facility location mechanisms in two dimensions is “harder” than
the one-dimensional case, it may seem counterintuitive at first, but the lower bound that prior work
proved for all one-dimensional instances does not extend to two dimensions. The reason is that the
design space for two-dimensional mechanisms is much richer, and the known lower bounds apply
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only to the more restricted class of one-dimensional mechanisms. For example, consider a simple
instance with just two agents in two dimensions. For this two-dimensional instance, the mechanism
can return a location for the facility that is not on the line containing the two agents’ locations, which
it, of course, cannot do in one dimension.

Note that, in terms of social cost alone, returning such a location is always Pareto-dominated by
returning an appropriate location on the line (e.g., its projection onto the line). However, returning a
location that is not on this line also allows the designer to affect the incentives of the participating
agents in new and non-trivial ways that are impossible in the one-dimensional case. Specifically,
returning points that are not on the line allows us to induce previously impossible cost vectors. For a
simple example, in a one-dimensional instance involving two agents at distance 1 from each other, the
only facility location that yields the same cost to both agents is the midpoint between them, leading
to a cost vector of (0.5, 0.5). However, in two dimensions, we can induce a cost vector of (c, c) for
any c ≥ 0.5 by simply returning the appropriate point on the interval’s perpendicular bisector.

This additional flexibility could potentially provide the designer with novel ways to ensure that the
agents do not misreport their locations; for example, the classic technique of “money burning,” used
to achieve incentive compatibility without monetary payments, heavily depends on the designer’s
ability to penalize and reward agents based on their reports. Although we conjecture that truthful
mechanisms are always better off returning a facility on the line containing the agents’ locations in this
instance, proving such a result appears non-trivial. Due to this additional flexibility in two dimensions,
proving inapproximability results for this broader class of mechanisms is a more challenging problem
and seems to require new techniques and insights.
Theorem 3. Any randomized mechanism that is truthful in expectation in the Euclidean metric space
has an approximation ratio of at least 1.118.

Our following two results provide impossibility results for both deterministic and randomized
mechanisms augmented with perfect predictions. For deterministic mechanisms, Agrawal et al.
[2022] showed that there is a mechanism that, given a prediction about the optimal facility location,
is 1-consistent and

(
1 +

√
2
)
-robust. Our impossibility result for deterministic mechanisms shows

that stronger predictions do not help: even with predictions about the location of each agent, there
is no deterministic mechanism that achieves a robustness better than 1 +

√
2 and a consistency that

improves over the best approximation achievable without predictions.
Theorem 4. For any δ > 0, there is no deterministic truthful mechanism that is (2− δ)-consistent
and

(
1 +

√
2− δ

)
-robust, even if it is provided with full predictions x̂ (the location of each agent).

The next result shows that there is no hope of achieving the best of both worlds in the randomized
setting; to obtain 1 consistency, we would need to sacrifice robustness.
Theorem 5. For any δ > 0, there is no randomized mechanism that is truthful in expectation,
1-consistent, and (2− δ)-robust, even for two-agent instances and even if it is provided with full
predictions x̂ (the location of each agent). This is tight, i.e., there exists a randomized mechanism
that is truthful in expectation, 1-consistent, and 2-robust for two-agent instances.

4.2 Positive Results Using Extreme ID Prediction

We now turn to positive results, and provide a learning-augmented randomized mechanism that
is provided with a new type of prediction: the prediction does not provide us with any actual
location, but instead only provides us with the identities ê = ⟨e1, · · · , ek⟩ of the k agents who
would suffer the maximum cost in the optimal solution (we refer to them as “extreme agents”), i.e.,
{e1, . . . , ek} = argmaxei∈[n] d(xei , o(x)). Note that the smallest circle that encloses all the points
is the circumcircle of the locations of the extreme agents. Therefore, the center of this circle is o(x),
the optimum solution.

We propose a mechanism leveraging predictions derived from IDs of extreme agents. The main idea
is to return the centroid of the extreme agents, denoted by G with a probability of half, and each of
the extreme points with a probability of 1/2k to prevent misreporting incentives.

Tang et al. [2020] run this mechanism over all agents (not only the extreme ones) and achieve a
2− 1/n approximation. We improve the approximation factor (in case of having good predictions) to
2 − 1

3 ≈ 1.67 by running this mechanism only on extreme agents. We use their ideas to maintain
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Mechanism 1: Centroid Mechanism on Extreme Agents
Input :Location profile x = ⟨x1, · · · , xn⟩, Predictions ê = ⟨e1, · · · , ek⟩
Output :Probability distribution P on location of the facility

With probability 1/2:
return the centroid G =

xe1
+···+xek

k
With probability 1/2k:
return each point xe1 , · · · , xek

truthfulness and we use new techniques to show the approximation guarantees for an arbitrarily
number of agents. Moreover, as long as any returned location falls within the minimum enclosing
circle of the agents predicted to be extreme (which is the case for Mechanism 1), this ensures an
approximation factor of 2 in case of having bad predictions.

First, we argue that k ≥ 2, meaning that there are at least two extreme agents on the minimum
enclosing circle. Otherwise, one can find a smaller circle containing all the points. As a warm-up, we
first consider the k = 2 case and propose a randomized mechanism that is truthful in expectation and
achieves 1.5 consistency and 2 robustness for any number of agents.

Theorem 6. Assume there are only two extreme agents, i.e., k = 2. Then, given predictions
ê = ⟨e1, e2⟩ that provides the IDs of the only two extreme agents, there exists a randomized
mechanism that is truthful in expectation and achieves 1.5 consistency and 2 robustness for any
number of agents.

We then show that it is sufficient to only consider the case where we have exactly three extreme
agents on the minimum enclosing circle, meaning k = 3. If we have more than three agents located
on the minimum enclosing circle, a continuous perturbation of the points makes the probability of
having at least four points lying on a circle infinitesimally small [Berg et al., 2008]. For k = 3, we
use the properties of the Euler line to prove the 1.67 consistency.

Theorem 7. Given a prediction set that provides the IDs of the extreme agents, there exists a
randomized mechanism that is truthful in expectation and achieves 1.67 consistency and 2 robustness
for any number of agents.

Proof. Let us first consider instances with only three extreme agents. Mechanism 1 is truthful since
other agents apart from xe1 , xe2 , xek cannot influence the result and Mechanism 1 is equivalent to
the mechanism of Tang et al. [2020] over agents e1, . . . , ek and since this mechanism is truthful in
expectation, agents e1, . . . , ek cannot benefit from misreporting their locations. Since the mechanism
returns the reported locations, rather than their predictions, and the centroid is guaranteed to be inside
the circumcircle, we can conclude that the mechanism has a robustness factor of 2. The technical
aspect of this proof involves establishing the consistency guarantee by considering the Euler line.

Euler line. Given three arbitrary points x1, . . . , x3, their circumcircle is the smallest circle that
encloses the three points, their centroid is (x1 + x2 + x3)/3, and their orthocenter is the point where
the three altitudes (the perpendicular line segments from a vertex to the line that contains the opposite
side) intersect. In any triangle, the center of the circumcircle (O), the centroid (G), and the orthocenter
(H) are collinear, forming the Euler line. One property of the Euler line is that G is positioned midway
between O and H . Additionally, d(O,G) = d(G, H)/2, implying d(O,G) = d(O,H)/3.

Let R denote the radius of the circumcircle of xe1 , xe2 , xe3 and assume without loss of generality
that the optimum cost is R = 1. For any j ∈ [n], we have

d(xj ,G) ≤ d(xj , O) + d(O,G) ≤ R+ d(O,G)

where the first inequality is by triangle inequality and the second is because all the points are within
the circumcircle of the locations of the extreme agents when the predictions are correct. Since H lies
within the circumcircle, we infer d(O,H) ≤ R, conclusively showing that d(O,G) ≤ R/3. Since R
is the optimum cost and any agent can reach O by paying that cost, the cost of returning G for any
agent is upper bounded by R+ d(O,G), which is at most 1.34R. Consequently, the approximation
of Mechanism 1 in case of having accurate predictions is less or equal than
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Altitudes
Medians
Perpendicular Bisectors

Euler line

Figure 1: G = (xe1 + xe2 + xe3)/3 is the centroid of xe1 , . . . , xe3 , which is the intersection of the
three medians. H is the orthocenter, which is the intersection of the three altitudes, and O is the center
of the circumcircle, which is the intersection of the three perpendicular bisectors. In any triangle,
the circumcenter (O), the centroid (G), and the orthocenter (H) are collinear, forming the Euler line.
Moreover, d(O,G) = 1

2d(G, H).

1

2k

1

R

k∑
i=1

max
j∈[n]

d(xei , xj) +
1

2

1

R
max
j∈[n]

d(xj ,G) ≤ 1 +
1

2

R+ d(O,G)
R

≤ 1 +
1

2

(
1 +

1

3

)
≈ 1.67.

where the first inequality is since d(xei , xj) ≤ d(xei , O) + d(O, xj) ≤ 2R when the predictions
are correct. Next, we show how we can modify the mechanism to achieve the same approximation
guarantees as having three extreme agents while maintaining truthfulness.

As mentioned previously, the key concept involves perturbing the instance before requesting predic-
tions to have at most three extreme agents. Given any instance x = ⟨x1, · · · , xn⟩, define a perturbed
instance x̃ = ⟨x̃1, · · · , x̃n⟩, which is the result of a continuous perturbation of x. Consider the set of
predictions for the IDs of extreme agents in x̃. Although the extreme agents of the perturbed instance
x̃ might differ from those of the original instance x, their costs remain very close to the maximum
cost in case of having good predictions. Therefore, the circumcircle of them is a good representation
of the minimum enclosing circle and results in the same approximation guarantees.

Since we run the mechanism on the main instance x, truthfulness holds as before. Note that since
we ask for the ID of extreme agents of the perturbed instance x̃, we have consistency guarantees
if predictions are accurate based on the perturbed instance x̃, and in any case we can ensure the
robustness factor of 2.

5 Future Directions

The problem of designing randomized facility location mechanisms in the Euclidean space is very
natural and several open questions remain, even without predictions. While numerous studies have
addressed this problem in restricted spaces, there remains a gap regarding between the best possible
approximation guarantee in (1.118, 2− 1/n). The possibility of a truthful in expectation mechanism
achieving better than a 2− 1/n approximation is intriguing. Obtaining a stronger lower bound than
1.118 would also be very interesting.

Augmenting these mechanisms with predictions introduces a new dimension to the problem. While
we have explored various prediction settings and provided both positive and negative results, many
of the current findings in Euclidean space lack tightness. Finding tight results for different types of
predictions would enable meaningful comparisons and help identify which prediction strategy is most
effective in different scenarios.
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Agents’ reported locations

Mid point

Non-zero probability outcomes

Arbitrary Mechanism

Mechanism

Figure 2: The original mechanism f(.) and the new ONLYM mechanism f ′(.) in the proof
of Lemma 1, where pℓ = P[f(xL, xR) ∈ (xL,M)] and pr = P[f(xL, xR) ∈ (M,xR)],
πℓ = E[f(xL, xR) | f(xL, xR) ∈ (xL,M)] and πr = E[f(xL, xR) | f(xL, xR) ∈ (M,xR)],
and qℓ and qr are such that πℓ = qℓxL + (1− qℓ)M and πr = qrxR + (1− qr)M .

A Missing Proof of Section 3

Lemma 1. For any problem instance involving two agents with reported locations x = ⟨xL, xR⟩
on the line, and any randomized truthful in expectation mechanism achieving α-consistency and
β-robustness over this class of instances, there exists a randomized ONLYM mechanism that is
truthful in expectation and achieves the same consistency and robustness guarantees.

Proof. Consider any randomized mechanism f(xL, xR) and let pℓ = P[f(xL, xR) ∈ (xL,M)]
and pr = P[f(xL, xR) ∈ (M,xR)] represent the probabilities that this mechanism chooses a
facility location in (xL,M) and (M,xR), respectively. If pℓ = pr = 0, the mechanism al-
ready satisfies the desired property, and the proof is complete. Otherwise, if pℓ > 0, define
πℓ = E[f(xL, xR) | f(xL, xR) ∈ (xL,M)] and, if pr > 0, define πr = E[f(xL, xR) | f(xL, xR) ∈
(M,xR)] as the expected locations returned by the mechanism when restricted to (xL,M) and
(M,xR), respectively.

Since πℓ lies in (xL,M) and πr lies in (M,xR), we can express these two points as convex com-
binations of xL, M , and xR: πℓ = qℓxL + (1− qℓ)M and πr = qrxR + (1− qr)M for some
qℓ, qr ∈ (0, 1). We then modify the original mechanism f to a new ONLYM mechanism f ′ defined as

P[f ′(xL, xR) = x] =



P[f(xL, xR) = x] if x < xL or x > xR

0 if x ∈ (xL,M) ∪ (M,xR)

P[f(xL, xR) = x] + qℓpℓ if x = xL

P[f(xL, xR) = x] + (1− qℓ)pℓ + (1− qr)pr if x = M

P[f(xL, xR) = x] + qrpr if x = xR

The construction of f ′ is illustrated in Figure 2. To show that mechanism f ′ achieves the same
consistency and robustness guarantees as mechanism f , we show that their expected costs are equal
on all instances with two agents.

Lemma 2. For all mechanisms f for the line and instances x = ⟨xL, xR⟩ with two agents, the
expected costs of f and f ′ over x are equal, i.e., C(f,x) = C(f ′,x).

Proof. First, note that

E
[

max
xi∈{xL,xR}

d(xi, f(x)) | f(x) ∈ (xL,M)

]
· P[f(x) ∈ (xL,M)]

= E [d(xR, f(x)) | f(x) ∈ (xL,M)] · pℓ
= d(xR, πℓ) · pℓ.

Similarly, we have

E
[
max

xi∈{x}
d(xi, f(x)) | f(x) ∈ (M,xR)

]
· P[f(x) ∈ (M,xR)] = d(πr, xL) · pr,
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which implies that

C(f ′,x)− C(f,x) = E
[

max
xi∈{xL,xR}

d(xi, f
′(x))

]
− E

[
max

xi∈{xL,xR}
d(xi, f(x))

]
= d(xR, xL) · (P[f ′(x) ∈ {xL, xR}]− P[f(x) ∈ {xL, xR}])

+ d(xR,M) · (P[f ′(x) = M ]− P[f(x) = M ])

− d(xR, πℓ) · pℓ − d(xL, πr) · pr
= d(xR, xL) · (qℓpℓ + qrpr) + d(xR,M) · ((1− qℓ)pℓ + (1− qr)pr)

− d(xR, πℓ) · pℓ − d(xL, πr) · pr
= d(xR, xL) · (qℓpℓ + qrpr) + d(xR,M) · ((1− qℓ)pℓ + (1− qr)pr)

− d(xR, xL) · qℓpℓ − d(xR,M) · (1− qℓ)pℓ
− d(xL, xR) · qrpr − d(xL,M) · (1− qr)pr

= 0.

Next, to show that mechanism f ′ is also truthful in expectation, we first show that the costs of the
agents do not change between f and f ′.

Lemma 3. For all mechanisms f for the line and instances x = ⟨xL, xR⟩ with two agents, the cost of
the agent at location xL is identical under both f and f ′, i.e., E [d(xL, f(x))] = E [d(xL, f

′(x))] .
Similarly, we have E [d(xR, f(x))] = E [d(xR, f

′(x))] .

Proof. By definition of f ′, we have

E [d(xL, f(x))]− E [d(xL, f
′(x))]

= d (xL,E [f(x) | f(x) ∈ (xL,M)] = πℓ) · P [f(x) ∈ (xL,M)]

+ d (xL,E [f(x) | f(x) ∈ (M,xR)] = πr) · P [f(x) ∈ (M,xR)]

+ d (xL,M) · (P [f(x) = M ]− P [f ′(x) = M ])

+ d (xL, xR) · (P [f(x) = xR]− P [f ′(x) = xR])

= d(xL, qℓxL + (1− qℓ)M) · pℓ + d(xL, qrxR + (1− qr)M) · pr
− d(xL,M)((1− qℓ)pℓ + (1− qr)pr)− d(xL, xR)(qrpr)

= d(xL,M)(1− qℓ)pℓ + d(xL, xR)qrpr + d(xL,M)(1− qr)pr
− d(xL,M)(1− qℓ)pℓ − d(xL,M)(1− qr)pr − d(xL, xR)qrpr

= 0.

Next, we use the previous lemma to show that mechanism f ′ preserves the truthful in expectation
guarantee of f .

Lemma 4. If a mechanism f for the line is truthful in expectation over instances with two agents,
then f ′ is also truthful in expectation over instances with two agents.

Proof. Assume that f is truthful in expectation over instances with two agents. Assume that one of
the agents deviates and reports a false location in mechanism f ′. Due to symmetry, and without loss
of generality, assume that the agent located at xL deviates and reports a false location x′

L. We need
to show

E [d(xL, f
′(x′

L, xR))] ≥ E [d(xL, f
′(xL, xR))] .

Since the original mechanism f(xL, xR) is truthful in expectation, we have

E [d(xL, f(x
′
L, xR))] ≥ E [d(xL, f(xL, xR))] . (7)

Combining these two inequalities with Lemma 3, it suffices to show

E [d(xL, f
′(x′

L, xR))] ≥ E [d(xL, f(x
′
L, xR))] .
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To prove the above inequality, we consider two main cases. First, we focus on the scenario where
the agent located at xL deviates to the right, i.e., xL < x′

L. Let M ′ =
x′
L+xR

2 . Assume x′
L ≤ xR,

define p′ℓ = P[f(x′
L, xR) ∈ (x′

L,M
′)] and p′r = P[f(x′

L, xR) ∈ (M ′, xR)]. If p′ℓ = p′r = 0, then
f ′(x′

L, xR) = f(x′
L, xR), and hence E [d(xL, f

′(x′
L, xR))] = E [d(xL, f(x

′
L, xR))]. Therefore, the

proof is complete in this case.

Next, consider the distribution where the mechanism f(x′
L, xR) returns a random facility location

within the intervals (x′
L,M

′) if p′ℓ > 0, or within (M ′, xR) if p′r > 0. The expected locations
within these intervals are π′

ℓ ∈ (x′
L,M

′) and π′
r ∈ (M ′, xR), which can be expressed as π′

ℓ =
q′ℓx

′
L + (1− q′ℓ)M

′ and π′
r = q′rxR + (1− q′r)M

′, where q′ℓ and q′r are the respective convex
coefficients.

In the first case, where xL < x′
L, we show that the cost to the left agent is the same across the two

mechanisms. The key idea is that the difference between the two mechanisms, in terms of their
returned locations, lies within the intervals (x′

L,M
′) and (M ′, xR), both on the right side of xL.

Thus, the agent’s cost is fully determined by the expected locations in these intervals. Specifically we
have

E [d(xL, f(x
′
L, xR))]− E [d(xL, f

′(x′
L, xR))]

= d (xL,E [f(x′
L, xR) | f(x′

L, xR) ∈ (x′
L,M

′)] = π′
ℓ) · P [f(x′

L, xR) ∈ (x′
L,M

′)]

+ d (xL,E [f(x′
L, xR) | f(x′

L, xR) ∈ (M ′, xR)] = π′
r) · P [f(x′

L, xR) ∈ (M ′, xR)]

+ d (xL, x
′
L) · (P [f(x′

L, xR) = x′
L]− P [f ′(x′

L, xR) = x′
L])

+ d (xL,M
′) · (P [f(x′

L, xR) = M ′]− P [f ′(x′
L, xR) = M ′])

+ d (xL, xR) · (P [f(x′
L, xR) = xR]− P [f ′(x′

L, xR) = xR])

= d(xL, q
′
ℓx

′
L + (1− q′ℓ)M

′) · p′ℓ + d(xL, q
′
rxR + (1− q′r)M

′) · p′r
− d(xL, x

′
L)q

′
ℓp

′
ℓ − d(xL,M

′)((1− q′ℓ)p
′
ℓ + (1− q′r)p

′
r)− d(xL, xR)q

′
rp

′
r

= d(xL, x
′
L)q

′
ℓp

′
ℓ + d(xL,M

′)(1− q′ℓ)p
′
ℓ + d(xL, xR)q

′
rp

′
r + d(xL,M

′)(1− q′r)p
′
r

− d(xL, x
′
L)q

′
ℓp

′
ℓ − d(xL,M

′)((1− q′ℓ)p
′
ℓ + (1− q′r)p

′
r)− d(xL, xR)q

′
rp

′
r

= 0.

Note that in the case of xR < x′
L, the same arguments hold with a minor change in notation.

Define p′ℓ = P[f(x′
L, xR) ∈ (M ′, x′

L)] and p′r = P[f(x′
L, xR) ∈ (xR,M

′)]. Consider the expected
locations π′

ℓ and π′
r within the intervals (M ′, x′

L) and (xR,M
′), respectively.

Focusing our attention on the more interesting case where x′
L < xL, we aim to show that

E [d(xL, f
′(x′

L, xR))] ≥ E [d(xL, f(x
′
L, xR))]. If we focus on the interval (x′

L,M
′) and assume

xL ≤ M ′, the expected location of the facility returned by the two mechanisms, f(x′
L, xR) and

f ′(x′
L, xR), conditioned on the facility being in the interval (x′

L,M
′), is the same; this is true by

construction (our reduction maintains the expected location π′
ℓ between the reported location and

the midpoint). The crucial difference between the two mechanisms is that although f(x′
L, xR) may

return any facility location in the (x′
L,M

′) interval, the mechanism f ′(x′
L, xR) returns the same

expected location using only x′
L and M ′ in its support. We show that the cost to an agent located at

any point xL in the (x′
L,M

′) interval is weakly higher in f ′(x′
L, xR) than it is in f(x′

L, xR), thus
maintaining the truthfulness guarantee. Intuitively, this is true because the two mechanisms return
the same expected location π′

ℓ in that interval, but f ′(x′
L, xR) only returns the extreme points of the

interval, which hurt the agent at xL the most.

More formally, we replace any probability assigned to a point in (x′
L,M

′) with a convex combination
between x′

L and M ′, and each time we do this, we weakly increase the cost to an agent who is
located at any point in (x′

L,M
′). Specifically, for any outcome y ∈ (x′

L,M
′) of the mechanism

f(x′
L, xR) and any xL ∈ (x′

L,M
′), if we have y = w · x′

L + (1− w) · M ′ then d(xL, y) <
w · d(xL, x

′
L) + (1− w) · d(xL,M

′).
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Since π′
ℓ = q′ℓx

′
L + (1− q′ℓ)M

′, at the end of this process, we will end up with q′ℓp
′
ℓ probability

increase on x′
L, and (1− q′ℓ)p

′
ℓ probability increase on M ′. Therefore, we have

E [d(xL, f(x
′
L, xR))] < d(xL, x

′
L)q

′
ℓp

′
ℓ + d(xL,M

′) ((1− q′ℓ)p
′
ℓ + (1− q′r)p

′
r) + d(xL, xR)q

′
rp

′
r

= E [d(xL, f
′(x′

L, xR))] .

In the case where xL > M ′, similar arguments apply in the interval (M ′, xR).

The proof of Lemma 1 then immediately follows from Lemma 2 and Lemma 4.

Proposition 1. For any δ ∈ [0, 0.5], there exists a randomized mechanism on the line which, given
prediction F ∗, is truthful in expectation, (1 + δ)-consistent, and (2− δ)-robust.

Proof. We show that the bound of the robustness consistency trade-off in Theorem 1 is tight. To verify
the tightness for δ = 0.5, note that it is possible to achieve a robustness of 1.5 (and therefore also a
consistency of 1.5) using the following randomized truthful in expectation mechanism of Procaccia
and Tennenholtz [2013]:

Mechanism 1 (LRM). Given input x, return xL with probability 1/4, xR with probability 1/4, and
M with probability 1/2.

On the other extreme, to verify the tightness of the theorem for δ = 0, note that it is possible to achieve
a robustness of 2 with a consistency of 1 using the following truthful deterministic learning-augmented
mechanism of Agrawal et al. [2022]:

Mechanism 2 (MinMaxP). Given x, and a prediction F ∗ regarding the optimal facility location,
return F ∗ if F ∗ ∈ [xL, xR], otherwise return xL if F ∗ < xL, and return xR if F ∗ > xR.

In fact, for any δ ∈ [0, 0.5], we can achieve a robustness of 2 − δ and a consistency of 1 + δ by
randomly choosing which one of these two mechanisms to run. Specifically, we can achieve these
bounds by running the LRM mechanism with probability 2δ and the MinMaxP mechanism with
probability 1−2δ. Note that since the decision regarding which one of the two truthful mechanisms to
run is independent of the agents’ reports, the resulting randomized mechanism is truthful as well.

Theorem 2. Given a prediction set that provides the identities of all n agents, there exist n−1 agents
such that, even if we have their exact locations, there is no deterministic truthful mechanism on the
line that is better than 2-consistent, and there is no randomized mechanism on the line that is truthful
in expectation and better than 1.5-consistent.

Proof. We first address the deterministic case with two agents whose locations are given by x =
⟨xL, xR⟩. Assume we have a prediction x̂L, which predicts the location of the leftmost agent. We
will show that even if x̂L is accurate, there is no truthful mechanism with a consistency better than 2.

We use the same argument as in Theorem 3.2 of Procaccia and Tennenholtz [2013]. Assume, for
contradiction, that f : R2 → R is a truthful mechanism with a consistency less than 2. Consider the
location profile x = ⟨xL = 0, xR = 1⟩ and the prediction x̂L = 0. To achieve consistency better
than 2, the mechanism needs to choose a facility location y = f(x) such that y ∈ (0, 1).

Now consider an alternative location profile x′ = ⟨x′
L = 0, x′

R = y⟩ with the prediction x̂L = 0.
The optimal facility location for this profile is at y/2, yielding a maximum cost of y/2. To maintain
consistency better than 2, the mechanism should place the facility within the interval (0, y). However,
if this were to occur, the rightmost agent would have an incentive to report a location of 1 instead
of y, as this lie would place the facility exactly at y, rather than within (0, y). This contradicts the
truthfulness of the mechanism.

This argument extends to cases with arbitrary n by situating all other agents at 0 in both profiles x
and x′, with accurate predictions for them at 0. Similar reasoning holds true.

For the randomized setting, we use the idea from the proof of Theorem 3.4 in Procaccia and
Tennenholtz [2013]. We first focus on the case with two agents and then extend the result to any
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Figure 3: Instances x = ⟨x1 = (0, 0), x2 = · · · = xn−1 = (1/2, 0), xn = (1, 0)⟩, and x′ = ⟨x′
1 =

(0, 0), x′
2 = · · · = x′

n−1 = (1/2, 0), x′
n = (2, 0)⟩ in the proof of Theorem 2. It is assumed that

d(xn, f(x)) ≥ 1/2 and x⋆ ∈ argminy:d(xn,y)≥1/2 C(y,x)
.

number of agents. Let f be a randomized truthful in expectation mechanism. Consider the location
profile x = ⟨xL = 0, xR = 1⟩. We have f(x) = P , where P is a probability distribution over R.
There exists xi ∈ x such that E[d(xi,P)] ≥ 1/2. If this agent’s location prediction is unavailable,
we can prove that consistency better than 1.5 cannot be achieved.

Assume E[d(xR,P)] ≥ 1/2 and that we have an accurate prediction x̂L = 0 for the leftmost agent xL.
Consider the profile x′ = ⟨x′

L = 0, x′
R = 2⟩, with an accurate prediction x̂L = 0. For truthfulness,

the expected distance from the location 1 should still be 1/2, otherwise the rightmost agent would
lie in profile x. We know that if E[d(M,P)] = ∆, then the expected maximum cost is ∆+ 1. With
∆ ≥ 1/2, the expected cost is at least 1.5, whereas the optimal cost is 1, resulting in a consistency of
at least 1.5.

This argument extends to arbitrary n by situating all other agents at 1/2 in both profiles x and x′,
with accurate predictions for them at 1/2. Similar reasoning holds true.

B Missing Proofs of Section 4

Theorem 3. Any randomized mechanism that is truthful in expectation in the Euclidean metric space
has an approximation ratio of at least 1.118.

Proof. Let f(x) = P be a randomized truthful in expectation mechanism, where P is a probability
distribution over R2. Consider the location profile x = ⟨x1 = (0, 0), x2 = · · · = xn−1 =
(1/2, 0), xn = (1, 0)⟩. There exists an xi (either x1 or xn) such that d(xi, f(x)) = Ey∼Pd(xi, y) ≥
1/2. Without loss of generality, assume that d(xn, f(x)) ≥ 1/2. Now consider the location profile
x′ = ⟨x′

1 = (0, 0), x′
2 = · · · = x′

n−1 = (1/2, 0), x′
n = (2, 0)⟩. To maintain truthfulness, we must

have d(xn = (1, 0), f(x′)) ≥ 1/2, preventing the agent at location xn = (1, 0) in the profile x from
having an incentive to lie about being at location x′

n = (2, 0).

Extending the result of Theorem 3.4 in Procaccia and Tennenholtz [2013] from the line to the
Euclidean metric, if we have d(o(x), f(x)) ≥ ∆, then the expected maximum cost is at least√

∆2 + C(o(x),x)
2
.

Therefore, the expected cost of x′ is at least
√

1
4 +

(
2
2

)2
, resulting in a

√
1.25 ≈ 1.118 approximation,

as the optimum cost is
d(x′

1,x
′
n)

2 = 1.

Theorem 4. For any δ > 0, there is no deterministic truthful mechanism that is (2− δ)-consistent
and

(
1 +

√
2− δ

)
-robust, even if it is provided with full predictions x̂ (the location of each agent).

Proof. Using the characterization provided by Peters et al. [1993], we know that any deterministic,
strategyproof, anonymous, and unanimous mechanism can be expressed as a Generalized Coordinate-
wise Median (GCM) mechanism with n− 1 constant points in P . The GCM mechanism takes as
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input the reported locations x of the n agents and a multiset P of fixed points (known as phantom
points), which are constant and independent of the agents’ reported locations. It then outputs the
coordinatewise median of the combined set x ∪ P .

Consider a five-agent instance with x containing four agents at (0, 20) and one agent at (0, 10). Our
proof first shows that to achieve a consistency better than 2, this mechanism needs to introduce four
constant points all with y-coordinates greater than 10. Otherwise, even if the predictions are correct,
the y-coordinate of GCM(x, P ) will be at most 10, leading to consistency greater than or equal to 2,
since the optimal point would be (0, 15).

Then, we show that if all these four constant points have y-coordinates greater than 10, the robustness
of the GCM mechanism is at least 1 +

√
2. Let x̃ be the median of the x-coordinates of the four

constant points, and now consider the following instance, where the optimal cost is 1.

Consider a five-agent instance with x containing three agents at (x̃, 0), one agent at (x̃− 1, 1), and
one agent at

(
x̃− 1− 1√

2
,− 1√

2

)
.

Since x̃ is the median of the x-coordinates of both true agent locations x and constant points P , x̃
will be the x-coordinate of the GCM(x, P ). Since all the constant points have y-coordinates greater
than 10, the y-coordinate of the GCM(x, P ) will be 1.

Since (x̃, 1) has a distance of 1 +
√
2 from

(
x̃− 1− 1√

2
,− 1√

2

)
while (x̃− 1, 0), the optimal

point, has a distance of 1 from all the points, we can conclude that the robustness factor is at least
1 +

√
2.

Theorem 5. For any δ > 0, there is no randomized mechanism that is truthful in expectation,
1-consistent, and (2− δ)-robust, even for two-agent instances and even if it is provided with full
predictions x̂ (the location of each agent). This is tight, i.e., there exists a randomized mechanism
that is truthful in expectation, 1-consistent, and 2-robust for two-agent instances.

Proof. Consider the instance x = ⟨xL = 0, xR = 2⟩, and assume we have predictions x̂ = ⟨x̂L =
0, x̂R = 2⟩. To achieve 1-consistency, a mechanism should return M = 1 with probability 1.

Now consider another instance x′ = ⟨x′
L = 0, x′

R = 1⟩ with incorrect predictions x̂ = ⟨x̂L =
0, x̂R = 2⟩. To ensure that the rightmost agent will not misreport to xR = 2 and have a cost of zero,
the mechanism needs to ensure that the expected cost of the agent if they report the truth is at most
zero, which means returning x′

R with probability 1. This results in a robustness factor of 2.

Agrawal et al. [2022] proposed a deterministic Minimum Bounding Box mechanism that is 1-
consistent and 1 +

√
2-robust. We argue that this mechanism is 1-consistent and 2-robust for

two-agent instances.

Mechanism 3 (Minimum Bounding Box). Given n points x = ⟨(x1, y1), · · · , (xn, yn)⟩, and a pre-
diction F ∗ = (xF , yF ), return (MinMaxP (⟨x1, · · · , xn⟩, xF ),MinMaxP (⟨y1, · · · , yn⟩, yF )).

Observation 1. Mechanism 3 is 1-consistent and 2-robust for instances with only two agents.

Proof. One of the two diagonals of the minimum bounding box has two agents on its vertices.
Therefore, any point inside or on this box has the approximation factor of 2.

Therefore, the upper and lower bounds match for instances with two agents, but it remains unclear
where the exact value is even for three agents.

Theorem 6. Assume there are only two extreme agents, i.e., k = 2. Then, given predictions
ê = ⟨e1, e2⟩ that provides the IDs of the only two extreme agents, there exists a randomized
mechanism that is truthful in expectation and achieves 1.5 consistency and 2 robustness for any
number of agents.

Proof. If we only have two agents xe1 and xe2 located on the minimum enclosing circle, xe1xe2
represent a diameter of this circle; otherwise, we can find a smaller circle containing all the points.
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Therefore, the middle point of these two locations, (xe1 + xe2)/2, is the optimum location of the
facility. Mechanism 1 runs LRM mechanism on the diameter of the minimum enclosing circle,
meaning that it returns the optimum location with a probability of 1/2 and each of the reported
locations of the extreme agents with a probability of 1/4, resulting in a 1.5 consistency.

In terms of truthfulness, since no other agent besides xe1 and xe2 impacts the mechanism, it suffices
to show that they do not have an incentive to lie. Agents xe1 and xe2 lack such incentive for reasons
similar to those in LRM Mechanism. Additionally, as any returned location falls within the minimum
enclosing circle, it ensures a robustness factor of 2.
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made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The contributions of our paper are mainly theoretical and pose no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We utilize models of learning-augmented algorithms and learning-augmented
mechanisms, and our related work discussion appropriately cites all prior work and its
contributions.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The contributions of our paper are mainly theoretical and we did not introduce
a new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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