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ABSTRACT

{y constrained optimization is widely used in machine learning, especially for
high-dimensional problems, as it effectively promotes sparse learning. A promi-
nent technique for solving these problems is hard-thresholding gradient descent.
However, the inherent expansibility of hard-thresholding operators can lead to
convergence issues, necessitating strategies to accelerate the algorithm. In this
article, we believe the random hard-thresholding algorithm can be interpreted as
an equivalent biased gradient algorithm. By introducing appropriate biases, we
can mitigate some of the issues of hard-thresholding and enhance convergence.
We categorize the biases into memory-biased and recursive-biased, examining
their distinct applications within hard-thresholding algorithms. Next, we explore
the zeroth-order versions of these algorithms, which introduce additional biases
from zeroth-order gradients. Our findings indicate that recursively bias effec-
tively counteracts some of the issues caused by hard-thresholding, resulting in
improved performance for first-order algorithms. Conversely, due to the accumu-
lation of errors from zeroth-order gradients during recursive bias, the performance
of zeroth-order algorithms is inferior to that influenced by historical gradients. To
address these insights, we propose the SARAHT and BVR-SZHT algorithms for
first-order and zeroth-order hard-thresholding, respectively, both of which demon-
strate faster convergence speeds compared to previous methods. We validate our
hypotheses through black-box adversarial experiments and ridge regression eval-
uations.

1 INTRODUCTION

£y constrained optimization is a fundamental technique in large-scale machine learning, especially
in high-dimensional settings where sparsity is crucial (Fan & Li, 2001; [Zhang, |2010). It promotes
sparse learning, offering benefits like reduced memory usage, lower computational costs, and im-
proved efficiency. In this study, we address the following problem:

min f(r) =+ 3" filw), stlalo <k,
=1

zERY

where f(2) represents the empirical risk, and ||z[|o denotes the number of non-zero elements. The
£y constraint makes this problem NP-hard, limiting the use of traditional methods. Unlike ¢; opti-
mization (e.g., LASSO), [y optimization naturally has lower computational costs, making [y-based
algorithms faster in general. Additionally, in scenarios requiring strict sparsity, /1 often struggles
because it is difficult to directly specify the sparsity level.

To solve this problem, we are particularly interested in gradient hard-thresholding methods (Raskutti
et al 2011} Jain et al., [2014; Nguyen et al.,[2017; | Yuan et al.,|2017), which are used for obtaining
approximate solutions to ¢y constrained optimization problems. This technique alternates between
a gradient step and the application of the hard threshold operator Hy (), which retains the top k
elements of x while setting all other directions to zero. The gradient hard-thresholding iteration is
given by:

o' = Hi(a" —ng(a"), )
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where g(z?) is the gradient oracle.

Hard-thresholding was first used for its full gradient form (Jain et al., 2014). (Nguyen et al.,
2017) developed a stochastic gradient descent Stochastic Gradient Descent(SGD) version of hard-
thresholding known as StoIHT. Nevertheless, StolHT’s convergence condition is overly stringent for
practical applications (L1 et al.,[2016)). To address this issue, (Zhou et al.,|2018)), (Shen & Li, 2017)
and (Li et al) [2016) implemented variance reduction techniques to improve the performance of
StoIHT in real-world problem-solving. Furthermore, (de Vazelhes et al.| [2022) designed the stochas-
tic zeroth-order hard-thresholding algorithm and found that the expansion of hard-thresholding gra-
dients and the errors in zeroth-order gradients can create a kind of antagonism, causing the algorithm
to struggle with convergence. (Yuan et al.,|2024) found that reducing the variance could help miti-
gate this conflict.

In previous works, the gradient oracle process and the hard-thresholding iterative process were
treated separately, without examining their interrelationship in influencing algorithm convergence.
In this paper, We view the stochastic gradient decent step and the hard-thresholding step as a whole
and consider them as an equivalent gradient Vi, . = (2! — 2'*1) /5. This approach enables us to
reinterpret the hard-thresholding algorithm as a specific type of biased gradient algorithm. By do-
ing so, we uncover the potential to enhance convergence by designing appropriate biased gradient
oracles.

Recently, there has been increasing interest in SGD using biased gradient oracles, which has been
explored in various studies across multiple domains. A notable example includes zeroth-order meth-
ods, such as in optimizing black-box functions (Nesterov & Spokoiny,|2017) or in generating adver-
sarial examples in deep learning (Moosavi-Dezfooli et al.| |2017; Chen et al.,|2017). Many zeroth-
order training techniques leverage biased gradient oracles (Liu et al.,2018; Bergou et al.,|2020)), and
biased estimators can outperform their unbiased counterparts in specific contexts (Beznosikov et al.|
2020).

Actually, there has been a recent surge of interest in SGD with biased gradient oracles, which has
been studied in several papers and applied in different domains. A typical example is zeroth-order
methods, which are often utilized when there is no access to unbiased gradients, e.g., for optimiza-
tion of black-box functions (Nesterov & Spokoinyl[2017) or for finding adversarial examples in deep
learning (Moosavi-Dezfooli et al., 2017 |Chen et al.,|2017). Many zeroth-order training methods ex-
ploit biased gradient oracles (Liu et al.l 2018; Bergou et al., 2020). Moreover, biased estimators
may show better performance over their unbiased equivalents in certain settings (Beznosikov et al.,
2020). This raises some interesting questions:

In algorithms that utilize multiple biased gradient oracles, how do these biases interact?
More specifically, how do they affect the hard-thresholding algorithm when viewed as an equiv-
alent biased algorithm?

In this paper, we investigate how appropriate biases can mitigate the challenges posed by hard-
thresholding and enhance convergence. We categorize these biases into memory-biased and
recursive-biased, examining their distinct applications within hard-thresholding algorithms. Ad-
ditionally, we explore the zeroth-order versions of these algorithms, which introduce further bi-
ases from zeroth-order gradients. Our findings indicate that recursively bias effectively counteracts
some issues caused by hard-thresholding, leading to improved performance in first-order algorithms.
However, the accumulation of errors from zeroth-order gradients during recursively bias results in
inferior performance compared to historical gradients. To address these insights, we propose the
SARAH-HT and BVR-SZHT algorithms for first-order and zeroth-order hard-thresholding, respec-
tively, both demonstrating faster convergence speeds compared to previous methods. We validate
our hypotheses through black-box adversarial experiments and ridge regression evaluations, provid-
ing a thorough examination of the effects of multiple biases on convergence and their integration
with the hard-thresholding operator.

1. To the best of our knowledge, this is the first time a biased gradient approach is used
to analyze the hard-thresholding algorithm, accelerating the algorithm through a biased
gradient oracle.
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2. We analyze the relationships between multiple biases and zeroth-order bias, providing a
method to potentially eliminate these biases.

3. We propose a series of (zeroth-order) hard-thresholding bias algorithms and analyze their
convergence, showing improved convergence speed compared to existing algorithms.

2 UNDERSTANDING BIAS IN OPTIMIZATION

In this section, we will provide a detailed introduction to several forms of bias mentioned in this
paper and explain how these biases affect convergence. We use ||z|| to denote the Euclidean norm
for a vector, ||| to denote the maximum absolute component of that vector, and ||z||o to denote
the £y norm (which is not a proper norm).

2.1 BIAS AND CONVERGENCE

It is well known that the mean squared error (MSE) of gradient estimation E||g(z) — V f(z)]|? is a
key factor in evaluating the quality of the gradient oracle g(z). A smaller MSE usually indicates a
faster convergence rate. In fact:

Elg(z) - Vf(@)|* = [Eg(z) — Vf(2)|* + Ellg(z) — E[g(x)]|*, 2)
where E||g(x) — E[g(z)]||? is the variance of g(z) and |[Eg(x) — V f(x)||? is the squared norm of
the bias g(z). This suggests that bias can often lead to non-convergence. However, many algorithms

reduce variance through specific biases, thereby decreasing the MSE and accelerating convergence.
We refer to this as the biased gradient descent oracle.

Remark 1 In hard-thresholding algorithms, the MSE of g(x) does not completely determine the

.’L‘t+1—.’L‘t

as a substitute.

convergence of the algorithm. However, we can use V' =

2.2 BIASED VARIANCE REDUCE ESTIMATION

Biased gradient descent estimation is used in many algorithms, such as BSVRG, BSAGA, and
SARAH. Their estimation are:

B-SAGA: g(x') = § (V£ (21) = Vi, (¢l) + £ S0, Vi,

1 —n
- . o det [ oD i Vi) fort € YNy
B-5VRG: 9o = {ijt (z) = Vfj(@e—1) + 230 Vi) ow.
1 n
. i def [ 7D Vi) fort € vNy
SARAH: g(z!) = {ijt(xt) SN ) 4 g o

Here, ¢ means the historical information. The parameter v represents how many steps occur between
full gradient evaluations.

These algorithms, through specific configurations, reduce the MSE even in the presence of bias.The
vast majority of such algorithms satisfy the following BMSE assumption.

Assumption 1 (Driggs et al.,|2022) (Bounded MSE) The stochastic gradient estimator g(x') is said
to satisfy the BMSE (M1, Ma, par, pr, m) property with parameters My, Ms > 0, par, pr € (0, 1]
and m > 1 if there exist sequences M, and F; such that

m(s+1)—1

> E[lott) -7 @] < Mo,

t=ms

and the following bounds hold:

m(s+1)—1 n

Mus < (1= par)™ Min(s—1) + Fns + % Z Z]E [vai (z"*1) =V f; (ft)HQ} ;

t=ms =1
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s Mo (1 — p m(s—4£) m(s+1)—1 n
Foo < 3 MO ST S R 94 () -V ()]
£=0 t=ms =1

We can broadly categorize these configurations into two parts. That is:

Definition 1 (Memory-biased gradient oracle) The stochastic gradient oracle g(zt) is memory-
biased with parameters > 0,B1; > 0, and m > 1 if

Vi (2") ~Erg(a') = <1 - ;) (Vf (z%) = iZVf (%)) :

for some {‘Pi}?:l C {xg}z;(l), and for any s € Ny,

m(s+1)—1 1 n . m(s+1)—1 )
> Y E|lef -l =B X B[ o
k=ms i=1 k=ms

The parameter % represents the degree of bias. When 0 = 1, the algorithm is unbiased.

Definition 2 (Recursive-biased gradient oracle) For any sequence {xy}, let ﬁk be a stochastic
gradient oracle generated from the points {xg}lzzo. This estimator is recursive-biased with v > 1 if

0 for k € vNy,

V() — Egg(a') = {(Vf (zh_1) — ﬁk_1> o.w. .

The parameter v represents how many steps occur between full gradient evaluations.

BSVRG and BSAGA have memory-biased gradient oracle and SARAH has recursive-biased gradi-
ent oracle(Driggs et al.l [2022). Through this classification, we can systematically study the impact
of such biases in greater detail in section 3.

2.3 HARD-THRESHOLDING OPERATOR

As described in Section 1, we can view the stochastic gradient decent step and the hard-thresholding

step as a whole and consider them as an equivalent gradient Vi, = (z* — 2'*1) /0. Following this

reasoning:

Lemma 1 For any {x!}that satisfies x*1 = Hy.(z* — ng(z?)) and z € RY, we have:

1 1 1
(e = Nt =l + Sllat = al]? = P Vhrl 2 n g(et),at1 — ),

where v, = \/k*/k/2 is the hard-thresholding coefficient.

In addition, we use two assumptions, which are widely adopted in hard-thresholding algorithm (L1
et al.,[2016; [Nguyen et al., 2017).

Assumption 2 (Restricted strong convexity (RSC) (Li et al.,2016; Nguyen et al., 2017)) A dif-
ferentiable function f is restricted vs-strongly convex at sparsity s if there exists a generic constant
vs > 0 such that for any x, ©' € R% with ||z — 2/ ||y < s, we have:

f@) = @) = (Vi @)w =) = Zla— oI 3

Assumption 3 (Restricted strong smoothness (RSS) (Li et al., 2016; Nguyen et al., 2017)) For
any i € [n], a differentiable function f; is restricted Ls-strongly smooth at sparsity level s if there
exists a generic constant L, > 0 such that for any x, v’ € R with ||x — z'||g < s, we have

IV fi(z) = Vi) < L[l — 2.
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We assume that the objective function f(x) satisfies the RSC condition and that each component
function { f;(x)}7—, satisfies the RSS condition. We also define the restricted condition number as
ks = vs/ L. This assumption ensures that the objective function behaves like a strongly convex and
smooth function over a sparse domain, even when it is non-convex.

2.4 ZEROTH-ORDER GRADIENT

The zeroth-order gradient oracle obtained by Gaussian smoothing is a typical scenario of biased
gradients (Stich, [2020) In hard-thresholding algorirthm, A commonly used zeroth-order estimation
is(de Vazelhes et al.l [2022; |Yuan et al., [2024))

q

V(@) = 2 Yo+ ) = fa) @

where each random direction u; is a unit vector sampled uniformly from the set {u € R : ||ul|o <
sa, |Ju|| = 1}, ¢ is the number of random unit vectors, and p > 0 is a constant called the smoothing
radius (typically taken as small as possible, but no too small to avoid numerical errors). To obtain
these vectors, we can first sample a random set of coordinates .S of size sy from [d]. Following,
we sample a random vector w supported on S, in other words, uniformly sampled from the set
{ueR :ug_s =0, |ul| =1}.

3 MUTI-BIAS INTERACTION IN HARD-THRESHOLDING

In this section, we will examine the performance of memory-biased and recursive-biased in dif-
ferent scenarios to investigate the interaction between biases. Specifically, we will first study the
performance of memory-biased gradient and recursive-biased gradient oracle in the first-order hard-
thresholding algorithm, and then analyze their performance in the zeroth-order hard-thresholding
algorithm.

3.1 FIRST-ORDER HARD-THRESHOLDING
In first-order algorithms, from Lemmal[I] we have

Lemma 2 Suppose g(x) is a recursively biased oracle. Suppose | satisfies the RSC condition with
vg > 0. The following inequality holds:

nE[f () = f(27) + (5 = vl = 2] S E[glla" — 2| = 5 [ Ve

2 &)
+ nk <VFf (xt) —g(ah), 2" — x*>]

Remark 2 In (§)), |lz! — 2*||? is the convergence term. nE (Vpf(z') — g(at), 2t —2*) —

%HV%T\P implies the bias of hard-thresholding. And nE (Vi f (zt) — g(x?), x* — z*) is the bi-
ased caused by recursive bias, since when the gradient oracle is unbiased, this term is 0.

For E(Vef (z') — g(z'), 2" — x*), when g(x) is recursively biased, we have:

—~ —~
no
~ ~—

E(Vrf (o) — g(a').a" —a) W E(Vif (') ~ Bigla').a’ — o)
E(Vrf (2'7) —ga'™"),2" —a™).

IN

We can pass the conditional expectation E;_; into the second inner-product in (1) because x;_1 is
independent of j;_;. Inequality (2) uses the definition of a recursively biased gradient oracle. This
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is a recursive inequality, and expanding the recursion gives
E(Vpf (z") —g(a' 1), 2" — 2*)
=E(Vrf (@) —g(@'™),2" =2 + E(Vpf (271) —g(@' 1), 2" —a”)

t—1
< D0 E(VRS () STl =) (VRS () — gl o - )
l=vs+1

t—1
1 _ _ _
= D E(Vef(a') —gla' el — o),
l=vs+1
here equation 1 is because (2”° — 2*)pe = 0 and (Vg f (2V°) — g(2¥®))p = 0.

Remark 3 We should mention that Vp f (V) # g(x*®). (Ve f (!71) — g(a!1), 2! — x*) relies
on hard-thresholding operator to make sure (xV* — x*) pe = 0, which means that the bias is partly
canceled by hard-thresholding.

Therefore, we have:

Lemma 3 If g(zt) is recursively biased, for any € > 0, there is
LT B (Ve (1) — glat ), ot — )| < v ST B [ 190 () - @)+ 4 [t~ 2]

(6)

By BMSE condition, we know E (Vg f (z'7!) — g(2'~!), 2’ — 2*) can be controlled by V1
during the iteration. This implies that the bias caused by the hard threshold in (3 will be partially
canceled out.

Remark 4 From Lemmas2)and 3} we conclude that the bias of the recursively biased algorithm is
partially canceled when t = vs. Consequently, during the iterations of this algorithm, the bias of
the equivalent gradient is also mitigated. This suggests that the recursively biased algorithm for the
hard-threshold can counteract some bias, thus accelerating convergence.

Lemma 4 Suppose g(x) is a first-order memory-biased oracle. Suppose 6 > 1 and that f satisfies
the RSC condition with vs > 0. the following inequality holds:

nE[f (") — f(z*) + (3 — )" — 2P < n(g(a’) — Ve f(ah),z" — 2 + §Ilwt —z*?
onls —1, o L 1 t i)12
Iy —
I P 4+ 1= )t -

)

In the iterative process of the algorithm, we can use [[Vi||*> bound based on the
(9(a") = Vpf(z'),z" — ') due to Assumption and (1 — 7)[|z" — ¢i||* due to definition
The complete proof steps can be found in the appendix.

Remark 5 In a memory-biased algorithm, the bias cannot be effectively eliminated. Therefore, (7)
has worse bounds compared to (3)), indicating poorer convergence.

3.2 ZEROTH-ORDER HARD-THRESHOLDING

We should mention that for recursively biased oracles in zeroth-order method, lemma|2|is still holds.
Therefore, we can use the same approach to study recursively biased zeroth-order hard-thresholding
estimation. And

Lemma 5 If g(xt) is zeroth-order recursively biased, for any € > 0, there is

v(s+1)—1 v(s+1)—1

> BRI —g@t et —a) < YD E[TIVef(@) - gl + o2t - o)
t=vs+1 t=vs+1
+ L NVrf (@) = Vel @) + (Vef@ ™) = Vef@' o' =) + (Vef @) - (@), 2" —a") .

®)
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Remark 6 Since V f(zt) # Eyg(xt) due to the bias of zeroth-order estimation and (V g f (x"*) #
g(z")) F due to the zeroth-order estimation cannot use the same u in different t. This means that
in recursively biased zeroth-order hard-thresholding algorithms, not only is the bias not partially
canceled, but it also accumulates throughout the iterations. This implies that recursively biased is
unlikely to achieve good convergence speed in the zeroth-order hard-thresholding setting.

Now, we turn our attention to memory biased zeroth-order hard-threshodling. In the first-order dis-
cussion, we know that the bias produced by memory biased and hard-threshodling does not interact
well. Therefore, we only need to study the MSE of g(x). By doing so, we can understand the
relationship between memory biased and zeroth-order biases.

Lemma 6 If g(zt) is memory biased estimation, for any 0 > 1 and q < d, we have

LBV () = Vafu )P + 8+ 25) SV fie(0) — Vafula)l?

+AE|VEF(2") + 7%,

Ellg(z)5 < o

2
where 7; = Byt 4 [% (si (2t ut) — s; (whut)) |Jut]]” ul + s (wh, w) Hu||2up]

Remark 7 We point out that when T; is the bias introduced by zeroth-order estimation by the defi-
nition of s;(x,u). As 0, which is the bias introduced by memory bias, increases, the bias introduced
by zeroth-order correspondingly decreases. This indicates that the bias from memory can cancel out
part of the bias from zeroth-order.

3.3 CONCLUSION

From the above discussion, we know that the recursive-biased algorithm can partially cancel out the
bias in first-order hard-thresholding, while the Memory-biased algorithm can cancel out part of the
bias in zeroth-order hard-thresholding. This suggests that, compared to existing algorithms, we can
design SARAH-HT and BVR-SZHT algorithms to achieve faster convergence rates.

4 BIASED HARD-THRESHOLDING ALGORITHM

In this chapter, we will provide a convergence analysis for the first-order algorithms SARAH-HT,
BSVRG-HT, and BSAGA-HT, as well as the zeroth-order algorithm BVR-SZHT. Due to spatial
limitations, the the algorithm for first-order will be placed in the appendix.

4.1 BIASED FIRST-ORDER HARD-THRESHOLDING ALGORITHM

Theorem 1 (Recursive-biased estimators) Let g(x) be a recursive-biased gradient oracle pa-

rameterized by v > 1, which satisfies the BMSE(My, Ms, pyr, pr, m) property. Let Ba &

min {v,1/pp}, © = Mert2M2 g0 5 — min {pyrr, pr}. Assume that each f; is Ly—RSS and

PMPF

that vs—RSC. For any stochastic hard-thresholding algorithms, we can establish the following:

Ela™ X (f(z™) — f(@*)) + 5lla™ — 2*|
5 amK _ oK (10)

V),

2N amk (a

< o FE (f(2°) - fla®) + %Hwo —a" |7+ 1)

L2
=n, a=1+09/ks — 2V,

Vg

where §' =

Remark 8 The SARAH gradient estimator is recursively biased with parameters pp = 0 and v =
m, and it satisfies the BMSE property with parameters M1 = m,py = 1, pr = 1, and My = 0.
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Remark 9 We note that if f has a k*-sparse unconstrained minimizer, which could happen in sparse
reconstruction, or with overparameterized deep networks, then we would have ||V f(x*)|| = 0, and
hence that part of the system error would vanish.

Theorem 2 (Memory-biased estimation)Let g(x) be a memory-biased gradient oracle, which sat-
isfies the BUSE(My, Ms, pyrr, pr,m) property. Let 0 > land B, > 0, © = Mprt2Ms g4

PMPF

p = min{pas, pr }.Assume that each f; is Ls—RSS and that vs—RSC. For any stochastic hard-
thresholding algorithm, we can establish the following:

Ela™X (f(a™5) — f(z*)) + = ™K

Sz — )

§ amK _ oK (1T)

—m ! * 1 * 2
<a "RE[S(f(2°) = f2) + 5 ﬁmnvf@f I

Slla® = "2 +

where §' = 52 a=140/ks — 27

B 2% +1—(LBi(1—4)+ (ﬁ—f +1)Ls(2v20 + 1)1 — 27
- -

Remark 10 The B-SAGA gradient estimator is memory-biased with By = 2n(2n + 1), and it
satisfies the BM S E property with parameters py; = =1,My=0,pr =1, and

2n’

2 6 € (0,2]
M, = 2 .
2n+1)(1—3)" 60>2

The B-SVRG gradient estimator is memory-biased with By = 3m(m+ 1), and it satisfies the BUSE
property with parameters ppr = 1, Mo = 0, pp = 1, and

3m(m+1)
M=) L XS (0,2].
3mm+1)(1-3)" 6>2

Remark 11 The convergence rate is o', which means that we can be using 6 to compare it. In this
way, we can find that SARAH-HT has a faster convergence rate than SVRG-HT.

4.2 BIASED ZEROTH-ORDER HARD-THRESHOLDING ALGORITHM

Theorem 3 Assume the functions { f;(0)}?_,satisfy the RSS condition Suppose that we run BVR-
SZHT with random supports of size sa, q random directions, a learning rate of 0, and k coordinates
kept at each iteration. We have: For BVR-SZHT algorithm, Let 0 > 0 Assume that each f; is
Ls—RSS and vs—RSC with s = 2k + k*. we run BVR-SZHT with random supports of size sasrandom
directions, a learning rate of m, and k coordinates kept at each iteration. We have:

gm—1 4 1 1 .
el = g+ 30— g = a1 = p))lle” — "3

La(l - gV EIVeF )P

Ella™ —2*||3 <(8™ -

B"YL
4
+ 5_1
where 8 = o1 — =\ /= + L 2(1 — 3)/5 + /5 + P gy L2 —

a:\/l—i—(K/k—l—\/m)/Q

(12)

5 EXPERIMENTS

In this section, we conduct experiments on both the first-order and zeroth-order algorithms, focusing
on adversarial attacks and sparse feature selection. The experiments are presented in two parts: first,
we evaluate the effectiveness of different algorithms in sparse feature selection to highlight the
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Algorithm 1 Stochastic bias variance reduced Hard-Thresholding algorithm (BVR-SZHT)

Input: Learning rate 7, maximum number of iterations 7T, initial point °, SVRG update frequency
m, number of random directions ¢, and number of coordinates to keep at each iteration %, biased
coefficient 6.

Output: z7.
forr=1,...,T do

1.(0) _ xrfl;

o= % E?:1 Vfi(x(o));

fort=0,1,...,m—1do
Randomly sample i, € {1,2,...,n};
Compute ZO estimate V f;, (z(), V f;, (z(9)) with the same direction u;
20 =2 —(5(V i, (20)) = Vi, (@) + 2));
2(r+1) — Hy (f(rJrl));

end for

2" = 2, random ' € [m — 1]

end for

advantages of BVR-SZHT and SARAH-HT. Then, we analyze black-box adversarial attacks as a
real-world application scenario for zeroth-order algorithms. The ridge regression and sensitivity
analysis experiments, previously conducted to validate parameter effects, are now provided in the
appendix for reference. These supplementary experiments include detailed sensitivity analysis of the
parameter k in the first-order algorithms and the parameter p in the zeroth-order algorithms, aimed
at observing the bias cancellation effects under increased bias from hard thresholding and zeroth-
order estimation. The performance of the algorithms will be evaluated in terms of the following
three aspects:

* IFO: the iterative first-order oracle, i.e. number of calls to f;.
* 1ZO: the iterative zeroth-order oracle, i.e. number of calls to f;.
e NHT: the number of hard-thresholding operations.

Black-box Adversarial Attacks Adversarial attacks trick machine learning models by adding
carefully designed subtle perturbations to inputs, leading to mispredictions. Black-box adversarial
attacks occur when attackers can’t access a model’s internals and must deduce its behavior from in-
puts and outputs. The Black-box attack method is closer to real-world attack scenarios. Therefore,
we consider a few-pixel universal adversarial attack scenarios and assume there is a well-trained
classifier that can only be accessed as a black box. In this scenario, zeroth-order algorithms ex-
cel over first-order ones in black-box settings as they don’t need model gradients, estimating them
through output queries instead. As is usual in black-box adversarial attacks, we maximize the fol-
lowing Carlini-Wagner loss (Carlini & Wagner;, 2017} |Chen et al.,|2017), which promotes the model
the model to make incorrect predictions:

fi(w) =max{F,, (clip(z; + w)) — r_r;ax Fj(clip(z; + w)), 0},
J7Yi

where F' denotes a pre-trained model, x; is the i-th image (rescaled to have values in [—0.5, 0.5])
with true class y;, clip denotes the clipping operation into [—0.5, 0.5], w is the universal perturbation
that we seek to optimize, and each F; outputs the log-probability of image x; being of class n as
predicted by the model (j € {1, .., J}, J is the number of classes, similarly to (Chen et al., 2017}
Huang et al., [2019)). We use the pre-trained model on the CIFAR-10 as the model F'. It can be
obtained from the supplementary material of (de Vazelhes et al., [2022). Similarly to [Liu et al.
(2018), we evaluate the algorithms on a dataset of n = 10 images from the test-set of the CIFAR-10
dataset(Krizhevsky & Hintonl [2009). We set & = 60, u = 0.001, ¢ = 10, so = d = 3,072, the
number of inner iterations of the variance reduced algorithms to /m = 10 and the bias coefficient % =
0.65. We check at each iteration the number of IZO, and we stop training if it exceeds 600. Finally,
we grid-search the learning rate 7 in {0.001, 0.005,0.01,0.05} and select the one that minimizes
the loss value for each algorithm. The training curves are presented in Figure 5] We can observe
that BVR-SZHT achieved the lowest loss value and showed significant performance improvement
compared to VR-SZHT in this tasks.
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Figure 1: Loss values of ZO algorithms in black-box adversarial attack

Sparse Feature Selection Feature selection is a crucial step in reducing dimensionality and im-
proving model interpretability, especially when dealing with high-dimensional biological datasets
like scRNA-seq data. In our work, we applied several feature selection algorithms, BSVRG-HT,
SAGA, and SARAH-HT, to efficiently select a subset of features that best represent the underlying
biological signals. SAGA-LASSO, a popular approach for sparse logistic regression, uses the L1
penalty to encourage sparsity while leveraging stochastic optimization to solve large-scale problems
efficiently. We conducted feature selection on scRNA-seq data and MINST/CIFAR-10 datasets from
colorectal cancer cell lines. Following feature selection, we trained a deep neural network (DNN)
to classify cell types based on the selected features. We optimized the hyperparameters, such as
learning rates and batch sizes, for each feature selection algorithm to maximize the classification
accuracy. The results of our experiments demonstrate the effectiveness of these methods in high-
dimensional biological settings. BVRSZHT and SARAH both provided significant performance
improvements in feature reduction while maintaining high accuracy. The selected features were
subsequently used to train the DNN classifier, resulting in robust and interpretable predictions of
cell type identities.

Dataset Algorithm Accuracy Num_Features Selection_Time (s)
Cancer BVRSZHTn 0.8850 2863 71.92
Cancer SAGA-LASSO  0.9204 3470 645.07
Cancer BVRSZHT12 0.8673 2863 68.30
Cancer VRSZHT 0.8496 2863 73.12
Cancer SARAH 0.8938 2863 65.66
CIFAR-10  BVRSZHTn 0.4575 1843 153.32
CIFAR-10 SAGA-LASSO  0.5102 3053 5148.21
CIFAR-10 BVRSZHT12 0.5109 1843 152.18
CIFAR-10 VRSZHT 0.5029 1843 150.75
CIFAR-10 SARAH 0.5126 1843 153.08
MNIST BVRSZHTn 0.9593 235 70.09
MNIST SAGA-LASSO  0.9729 644 1131.67
MNIST BVRSZHT12 0.9563 235 70.43
MNIST VRSZHT 0.9407 235 70.63
MNIST SARAH 0.9616 235 64.00

Table 1: Reasult in sparse feature selesction

6 CONCLUSION

This paper investigates the interrelationship between gradient biases caused by different factors
through the study of several specific algorithms. We found that the equivalent bias generated by
hard-thresholding can be partially offset by the recursively biased in algorithms like SARAH, while
the bias caused by zeroth-order gradients can be partially counteracted by the memory biased in
BSVRG-type algorithms. Based on this theory, we designed the SARAH-HT algorithm and the
BSVRG-HT algorithm, both of which demonstrate faster convergence compared to existing meth-
ods in first-order and zeroth-order hard-thresholding algorithms, respectively.

10
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A NOTATIONS AND DEFINITIONS

Throughout this appendix, we will use the following notations:

* Vf(x) denotes the gradient of f at x.

* g(z) denotes the gradient oracle of f at x.

« Vf(x) denotes the zeroth-order of f at x.

* wu is the direction of zeroth-order.

* Vrf(x) denotes the gradient of f at « in F.

* [d] denotes the set of all integers between 1 and d : {1,...,d}.

* u,; denotes the i-th coordinate of vector u, and V, f(x) the i-th coordinate of V f(x).
* || - ||o denotes the £y norm (which is not a proper norm).

* || - || denotes the £5 norm.

* || - |loc denotes the maximum absolute component of a vector.

e x ~ ‘P denotes that the random variable X (denoted as x ), of realization x, follows a
probability distribution P (we abuse notation by denoting similarly a random variable and
its realization).

iid .. .
* X1,...,Tn '~ P denotes that we draw n i.i.d. samples of a random variable x, each from
the distribution P.

* P(z) denotes the value of the probability of x according to its probability distribution.

* E,p (or simply E, if there is no possible confusion) to denote the expectation of  which
follows the distribution P.

* We denote by supp(z) the support of a vector @, that is the set of its non-zero coordinates.
* | F| the cardinality (number of elements) of a set F'.

* All the sets we consider are subsets of [d]. So for a given set F, F'° denotes the complement
of Fin [d]

* SYR) (or S*(R) for simplicity if R = 1 ) denotes the d-sphere of radius R, that is
SYR) = {u € R?/||lu|]| = R}.

U (S d) the uniform distribution on that unit sphere.

* (d) is the surface area of the unit d-sphere defined above.

+ S¢ denotes a set that we call the restricted d-sphere on S, described as: {ug/u € {v €
R?/|Jvg|| = 1} }, that is the set of unit vectors supported by S.

* U (8¢) denotes the uniform distribution on that restricted sphere above.

* We denote by ur (resp. Vg f(x) ) the hard-thresholding of w (resp. V f(x) ) over the sup-
port F, that is, a vector which keeps u (resp. V f(x) ) untouched for the set of coordinates
in F', but sets all other coordinates to O .

« (1) denotes the set of all subsets of [d] that contain s elements: (1) = {S:|S| = 5,5 C
[d]}.
- U ( ([‘:])) denotes the uniform distribution on the set above.

[ denotes the identity matrix ;x 4.

* Ig denotes the identity matrix with 1 on the diagonal only at indices belonging to the
support S : I; ; = 1if 7 € S, and O elsewhere.

¢ S 5 e denotes that set S contains the element e.

* (u;), denotes the n-uple of elements w1, . .., Wy,.

13
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B LEMMA

For convenience proof, we need to divide the biased variance reduce algorithm into two parts.
memorization biased part and iteration biased part.

B.1 PROOF OF LEMMA 1:

By the definition of
(a8 =2 —ng(a'),z — 2"*) <l — ) ?

’I’]<g(l‘t),1‘t+1 _ $> + <$t _ $t+1’x _ $t+1> S Vkathl _ .56”2

1 1 1
n{gla), @+t = o)+ Sllat =2+ Sl — o] — St — o < 2t —
1 1 1 .
(= Nt =l + et = al]? = St — o2 2 0 (Vf(@), o - )

(13)

B.2 PROOF OF LEMMA 2, 3 AND 5:

Proof of lemma 2: From the RSS-condition:

n(f (") = f(=")) <n<VFf( 2" —a")

_77<fo( B —g(a®), 2" —a*) +n{g(a"),z" — z*).

WELV S () = g2t = %) + (e = Pl =" P + 3o

t

IA.

1
Tt $t+1||2}

— * 2_
Z? = 5l

Proof of lemma 3:For E (Vg f (z) — g(a!), 2! — 2*), we have:

t

IE<VFf (xt) —g(zh), 2" — m*> &) E(fo (wt) —Eig(a?), 2" — :c*> (%) E<fo (mt_l) — gz, 2t — x*>

We can pass the conditional expectation E;_; into the second inner-product in (1) because z;_; is
independent of j,_;. Inequality (2) uses the definition of a recursively biased gradient oracle. This
is a recursive inequality, and expanding the recursion gives

]E<VFf (xt—l) —g(xt_l),xt _ .’1?*>

B (Vo] () — g(at ) ) 4 E(VeS () — gl 0t - o)

< Z E <va (xl_l) — g(xl_l),xl _ .%‘l_1> T E(Vpf(a*) — g(zv®), 2" — z*)
l=vs+1

Z E <VFf (Jﬁl_l) _ g(.ﬁl_l),xl _ l‘l_1>

l=vs+1

Equation 1 is due to the fact that Vg f (xlfl) = g(z!~1). Taking the absolute value and summing
this from¢t =vs+1tot =v(s+1) —1

[~

v(s+1)—1
2 EVFET) =g, —an)|
t=vs+1
v(s+1)—1 ¢—1 ) 1 )
<X X E[SIVE) e g o - (14
t=vs+1 f(=vs+1
v(s+1)—1 c ) 1
<v 3 B[5IV @) -]+ g o o]
t=vs+1

14
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Summing this inequality from s = 0 tos = .S completes the proof.
Lemma 5 can be easily proof by lemm 3

B.3 PROOF OF LEMMA 4:

Proof: By assumption, 1 — é > 0, so we can apply RSC to obtain:

UCORNICRER IR Zfz o) — fi(z")
% (Vf(ah),a" —z*) + 2(1 - %) > (Vfilgh), ot — %)
=1
n 1< ‘ 77 1<
=5 (Vi )x—x>+ (1= 5) D (Vfileh) ot =) + (1= ) Y _(VSileh), ' —a7)
=1 i=1 (15)
Since g(x) is memory-biased,
SV 1= ) Vil ()]
=1
Therefore,
VRt =)+ 1= ) S (Ve - o)
i=1
=E[n(g(a’), 2" —2")] (16)
=E[y(9(z"),2" — 2" )]+ E[n (g(a*), 2" —a*)]
<Efy (g(a), 2" — )+ (e — )l =P 4 2l — 2| et — ]

The inequality is due to lemma[I|with 2 = z*. Combining these two inequalities, we have shown:

n
R (5t fa) + Zfz o)~ i)
<Efn{g(a’), o' —a"™1) = (5 =) |2 — 2| + %th — 2*|?
=Lt — a2 20— D S ) ot - o)

2 n 0 — AT

1 1

<Efy(g(a) = Vf(@@"), 2" =) + (V') 2" =2 — (5 = w)a" =27 + Sl —2"|?

1 1 " .
gl =t T ST (Tl ot — o)

n =1
1

< E[n <g(mt) _ Vf(xt)7xt _ xt+1> + f(xt) _ f($t+1) _ (5 _ 'Yk)HxH_l _ x*HQ + §||xt _ x*HQ

nLs -1, 4 L2 o 1 - "
# ! a4 20 ) S (TGl a)

a7)

15
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Here, organize the equation. Using RSS condition, we have:
1 1
0 < —nE[f(@"1) = f@)] + 1 (g(") = Vf(@@"), 2" = 2") = (5 = w)a"*F —2"* + Sl = 2™|”
nLs—1 1 1 — P
+ (5t =2 4 (1 - ) (f(oct) =22 L)+ 5 > (Ve e ah)
i=1 i=1

< B[ () — F@)] 4 (g(at) — V), at — ) — (3wl -+ %nxt — P

nLs —1 t 12 @ _1 t_ 2
+ ()t =2 + 22 (1= 2)llat = ol
(18)
B.4 PROOF OF LEMMA 6
By the definition of g , we can verify the second claim as:
2 le t le e
Ellg(z)|lz = E\I*szi (z" ur) — g Vzli (wr, ug) + Vzf (wr,u) ||
< HQ]EIIUM Vzfir(x) = upiui Vefir(z*)|* +4E|VEF(z) + 7|
* ]' *
+dllupu” (V2 fi(e) = Vafil@")) = gurii (Vfilp) = Vafi("))|” (19)

+ ]E||UF||2HU||2||(VIfi(SD) —Vzfi(z¥)) - ]E(szi( ) = Vzfi(z*)|?
< HQdEHVIfu( z) =V fula")|* + (8+ )*||VIfz( ) = Vzfie(z®)|?
+4R|Vp F(x*) 4 7|2

B.5 OTHER LEMMAS

Lemma 7 (MSE bound) Suppose that the stochastic gradient oracle Ve satisfies the
BMSE(My, M, par, pr,m) property, let p = min{pr, pr}, and let o5 be any sequence satisfying
os(1— p)mt=h < oy(1 — £)™(=D. For convenience, define © = MlgfliﬁMz and L = Ly + Ty 41.
The MSE of the gradient oracle is bounded as

m(s+1)—1 m(s+1)—1
> E[Vefa') —gf@)P<or: Y E[a - o)
t=ms t=ms

Proof First, we derive a bound on the sequence f,, arising in the BMSE property. Summing this
sequence from s = (0to s = S.

s m(s—1) m(s+1)—
< N~ Maos(1 = pr) (==0) k1 V12
Usfms > Z n Z ZE Hva ) VFfZ(‘T )” }
=0 k=ms =1
m(s+1)—1 n
MQU[(I )m(s 1)
< Z - S S E(Vefi(EE) = Vefi(ah)]?]
=0 k=ms i=1
(20)
- pr .\ Maos "R k1 N
<y (- 5 ) > D E(IVefie*th) = Ve fi(ah)]?]

k=ms i=1

N
I
=

m(s+1)—1 n

> Y ENVR@E) - Vefia))]

k=ms =1

[\

MQUS

npr
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For M, similarly:

m(s+1)— S
M X
0Mins S 0u | frs =5 Y ZEHva @) = Ve fi@) P | + (1= pa)™ Y 0sMonao1)
k=ms i=1 5=
m(s+1)—1 n
M + 2M.
< o, % S S EVRfi() = VEfi(h)]? (1—f Zps 1 Mim(s-1)

k=ms =1

<
1=0 npr k=ms =1
m(s+1)—1 n
20,0
<2 Y S EIVEGT) - Vefi))

k=ms i=1

m(s+1)—1 n

<20Lio, Y ) E[la" -k

k=ms i=1

From assumption 1, we have the conclusion.

s=1

0o m(s+1)—
(Zu—’)f) )as Mipr 420 "SR i ) T

1)

Lemma 8 0 > 1 and that fis Lg — RSC with u > 0. For any V > 0, the following inequality

holds:
" ! Lg/N — v N
P )= Fa) < sl VA4 5 et P a2 (P ot g2
(22)
Proof: from RSS and RSC condition, when 77 < % we have:
* * Vs *
F@) 2 f@') + (V@) 2" —a') + S lla’ —a|? (23)
and I
) < flah) + (V') 2" —at) + fllwt+1 — | 24
From (23) and (24), we have:
* * LS Us *
Fath) = fa) < (V@2 =ty + et =t - Tt - o
N t s N 2 t+1 2 S|4+l )2
< SIVSE) = VIR + SNTI@) P + ool =[P + 2+t - ot -
)\/ ]. * Ls )\/Ls — Vs *
< 5IVf(@ NP+ o™ — a2+ 2™ =2+ ()l — 2|
2\ 2 2
(25)
Lemma 9 From RSS-condition, we have:
[ = fah) <(Vf(h), a2 —at) + L | |
Ly
< (Vf(a) - glat),at ! - xf> +(glat), 2 ) + et -t
(26)
From lemma, let © = zt, we have:
f(xt+1) _ f(xt) < <Vf(l‘*) _ g(xt),xtH _ xt> o 2 — 2y, — 'f]Ls th . .Z‘t+1||2

2n

17

Vs

2

[

t

_x*HQ
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Lemma 10 (Proofed in (Liu & Foygel Barber, 2020)) The relative concavity of hard-thresholding

is given by
k*
V&

2

Ve =

Lemma 11 Let b € R? be an arbitrary vector and b € R be an arbitrary vector and v € R? be
any K-sparse signal. For any k > K, we have the following bound.:

I902(8) — ol < VE1D el = |1+ (K7 + T KTRIRTR) 2

Lemma 12 (Proofed by \de Vazelhes et al| (2022))) Let F be a sub section of [d], of size s, with

(s,d) € N2. We have the following:
s
Eynsi(sey lur] < 7

S
Euai(se) lurl” = 5 @7)
4 (s+2)s

Lemma 13 Let the random vector u drawn from the multivariate Gaussian distribution N (0, I).
For the L-smooth function f; and any x € R% i € [n], the estimator in Eq.(2) satisfies:

Vi) = upu Vi) + s ) ful, e8)
and its expectation w.r.t. u is
B, [gza(e 0] = 5Ve () + (L= 5)Vrf() + 2 n(e,u),
Proof of Lemma [13|For the RSS condition, we have the following Taylor expansion,

2
filz + pu) = fi(z) + p(Vfi(x),u) + %UTVin (') u,
where 2/ € (z, 2 + vu). From the definition of Vg f;(x), we have
UV To2 ’
gz.i(z,u) = up (u, Vfi(x)) + §u Vefi (@) uup
Lv
= uFuTVfi(x) + Tsi(x,u)HuHZup

where the last equality employs the fact that 0 < V?2f; (z') < L for any accessible 2/, and the
function s;(z, u) is confined to the range [0, 1]. Taking the expectation w.r.t. u for V f;(x), we have

_ e+ ) — fil)

W
=Elur <u',Vfi(z) >] + %JE [si(2, u)l|ul*ur]

ur

E [@Ifi(ﬂfa U)}

= 595 + 5B [t Pur].

Since || [s; (2, u)|Jul?ur]|| < E[ si(x,u)HuHQuF‘H < E[|||ulPur]]] = E[Jup]], with
Eq. E[|upll] < /5. we then have ||E [s;(z,u)|lul[*u]|| < /5. For the expected norm,

18
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we have

E {H@fi(fcau) —upu’ Vi fi(z*)

@El

L2 2
5 El

|
L
i@ w) [ul?up — upu” Vi fi(a)

upu' Vpfi(z) + 5

21

ull*llur?] + 2By [ul®[lur I*Ei| Ve fi(2) = Ve fila®)]?

IN

< L2125
- 2

() = Ve fi(a")|?

Lemma 14 Let v be any vector in R, For the random vector u with the Gaussian distribution, i.e.,
u~N(0,1;), we have

E, |[luruo|*] = jlol?

Proof.
2
B, [[luraTo]*] = Eu [lurlPlal?lol?] = 4jol?

Lemma 15 For the L-smooth function f;,i € [n), the expected value of g* defined in Eq.(13) is

1 1 L
Buaes o] = 51/ 5908 () + 0= /5907 () + D,

where ||T; ;| = ‘ Eyut {% (s; (2t ul) — 55 (wh,ut)) HutH2 ub + s (w',u) ||u||2uF} H with the

norm |7 || < 2+/q/d.

C PROOF FOR FIRST-ORDER ALGORITHM

Proof of Theorem 1:
from Lemmal|[8]9]and 2] we have:

E[(n+6)f (=) = f(@)] + TE[(f (") — f(z"))]

146X\ —2 14 6Le/N — bu,
§5’<(xt)—VFf(xt) ot =ttty - (LN =20yt ey DL N 000 ey

1— 0L, 2 — 2y, — nL, B B .
IV - o SR 4 (Vef (271) — g(at™1), ot — o).
(29)

t —
TN 2 2 )l

Let N = =—,a =14 §/ks — 27%. Multiplying by ot , and summing over the epoch ¢ = ms to
t=m(s+ ) 1, we have:

m(s+1)—1
> "B+ 0)f(@") = (@) + 8 (faF) = f(2h)]
t=ms
1 1 o m(s+1)—1
< 7mes _ 17*”2 _ 7am(s+1)me(s+1) _ I*||2 + b Z atHva(x*)HQ
2 2 2 2
t=ms (30)
m(s+1)—1
+ > A'B[0(Vef(a"7h) —ga'h), 2t —a*) + 8 (g(a') - Vef(a'), 2’ - 2TT)
t=ms
1-0L, ;2 — 2, — 0L + 112
(ot It ot gt
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Here, we have:

1
af <ol <ot lim (1+ —)" =ea®
m— oo m

where e is Euler’s number. We use Lemma [7| with 0, = o to bound the MSE. Recall p =
min{pys, pr} and n/ks — 27, < £.This choice for o satisfies the conditions of Lemmabecause

™ (1—p)™k < o™k=1)(1—p/2)™*, We use the fact that the gradient oracle is recursively biased
to bound the trem <fo (1) - Ve f(at1),zt — x*>and (g(at) = Vpf(at),at — 2t+1) <

llg(z?) — Ve f(zh)| - ||zt — 2**1||. After that, summing the inequality from s = 0to s = S — 1,
T = Then:

S—1 m(s+1)—1
doam Y Eln+0)f@ ) = f@) + 8 (f@) = fah)]
s=0 t=ms
< Lt =i = Lot ooy 0 3o ey G
2 2 2 P
S—1 m(s+1)—1
+C Z a™s Z EH,Tt _ {Et+1||2
s=0 t=ms

Where C' = ¢ (35762” +3BonL?eO + 6'V20L, — (20E= + 6’27272’“7;%5 )).6’ = in. We see C
is zero if: ) - ) )
5 25 +1— (322 £ 6B,L%€0 + - L,v20)n — 2
L,
Recalling that we have an% <§< 22—’:. So we have

L+ 2 _ 2L +1— (382 + 6B,L%0 + L L,V20)n — 2

V&
<2—
Nnkg L, T Ks
That is:
e 4 2y — (255 + 1) Pt Bnle 4 9y — (23 +1)

<n<
32 1 GB,12¢0 + 7v/20 | 3E2 1 6B,12¢0 + 11,7/20
leaves So the step size in the theorem statement ensures C' = 0 we have

T-1 T-1
(+38+0) Y a'BIf (@) = f2")] = 0" Y a'E[f(a") — f(a")]
t=0 t=0
14 6Ly /N — 6v 14 6Ly /N — 6 mE
< 52 s|‘l't71'*||2* 52 SamK||xt+17m*”2+27)\/ Z Ozk||VFf($*)||2
k=0

(32)
Since §' = ’;j— and n < Li <1+ i, we would like to show that (1 + § 4+ ¢§’) > ad’ so that the

s

terms on the first line telescope.

5/amKE[f(£EmK) _ f(:E*)] + %OchH(EmK _ x*H2

33)
1 § ami — X (
<45 0y * 140 %2 s *\1(12
< FBF () - fat)] + 5lla® — "2+ 55 T V)
Here we get the theorem.
Proof of Theorem 2:
from Lemma 4|8 and[9] we have:
El(n +0)f(a") = f(a*) + &' (f(@"T) = f(2"))]
140N =2 . 0 .
< (n+8) (9(a") = Vi)' = att) = (e =2t P 4 g V@)

1+(SLS/)\/—6’U5 + 2 1_7]Ls_6Ls 2 — 2y, —nLs
_ % = o
A G L

nL

2n
(34)
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Let N = Lo =146/, — 2y, <1+ L. Multiplying by o' , and summing over the epoch
t= mk;tot =m(k+ 1) — 1 for some k € No,wehave
m(s+1)—1
Y Bl +0) )~ fa) + 8 (@) - f(2h))]
k=ms
1 1 Sk m(s+1)—1
< 5 mk”xmk _ 1,*”2 _ 5 m(k+1) ||1,m(k+l) _ £L'*||2 + 75 Z OthVf(CC*)||2
k=ms (35)
m(s+1)— 1 ‘
+ Z g)Hﬂft — @il + 4+ ) (g(a") = V(') 2" —2"T)
k=ms
1—nLs— 0Ly 2 — 2y, —nLg 112
- (I T ot

Let § < k(27 + =), we have:
O(t < am(k—‘rl) < amk lim (1+ i)m — eamk
m— o0 m

where e is Euler’s number. Summing the inequality from epoch k = 0to k = K — 1:

Za [+ 0)f (@) = F(a*) + 8" (f(2") = fa"))]

k=0
m(K—1)
1 . 1, . OKs X
< gllat —a®)? = Sa™ 2t — et P 2 Y aFs| V)l
2 2 2
k=0 (36)
K-1 m(s+1)—1 oL
+y amt eE[5-(1- *)ll "= @il + (0 +8) (g(ah) = V(') 2" -2
k=0 t=mk
1—nLs—46L 2 — 2y, —nL
o s S 6/ S t_ t+1(12
(e g gt gt
We use Lemma [7] with 0, = o™ (k + 1) to bound the MSE. Recall p = min{py, pr} and

Oks — 27k < ” .This choice for o, satisfies the conditions of Lemmabecause « ’“(1 — p)mk <
a1 — p / 2)™k We use the fact that the gradient oracle is memory-biased to bound the term

1%2?:1 2 = @}|1* and (g(a*) = Vf(a'), 2" —a**1) < lg(a’) = VF(@)] - [la* — 2] This
caves

1Y QFE[(1L 4 )7 (@) - Fa®) + 8 (F) — ()]
k=0

m(K—1)
1 . . 0K N
R A LR R S S TL €
k=0
K-1 m(s+1)—1
C Z amk Z eIE||xt _ :L‘t+1H2
=0 t=mk

2n Vs

k
WhereC:e<’7L§Bl(1 )+ (n+ 6)V20L, — (= ”L Ls 4 §r2=20e—nle ))5 = Lin. We
see C'is zero if:

2 2
28 41— (LBi(1— ) + (5= + 1) Ly(2V20 + 1))y — 2y

Ly

Recalling that we have an% <0 <2T: So we have

2 2
L 2ny 298 1= (BBl = )+ (5 + DL2V2O + Dn =20 _ 5
NKg - L, ~ K,
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That is:
L? sKs+2nye L L2
Q’YSSLS + 27]“ B (2 vj + 1) < n < = :zs%L + 2’716 - (2 Vs + 1)
LBi(1—-3 4+ (E L 1DL,2v20+1) ~ 7~ LBi(1- 3+ (2 +1)L,(2v20 +1)
0 Vg 0 Vg

So the step size in the theorem statement ensures C' = 0 we have

K-1 K-1
n(L+8+8) D aFE[f(+) = f()] - 8 Y oFB[f (") - f(a")]
k=0 k=0
1+ 0Ls/N — bu, 1+ 6Lg/N — du, § m(K—1)
< 52 éth_x*”Q_ 52 éoémK”xt—s-l_x*||2_|_W Z OékHVf(.I*)'P
k=0

(38)

Since 6’ = L= and n < £, we would like to show that (1 + & + §') > a.d’ so that the terms on the

Vs
first line telescope.

* 1 m m *
98 KB (2 — f(a)] + Sam e — ot P

1 2 k) O/nK _ OéK (39)
4 0 * 0 * (|2 *\ (|2
< nd'E[f(z") — f(z")] + §||33 —z"||" + ﬁﬁ“vﬂw i

Here we get the theorem.
D PROOF FOR ZEROTH-ORDER ALGORITHM
D.1 GRADIENT ORACLE IN ZEROTH-ORDER OPTIMIZATION
we define:

- T filxe 4 pu) — fi(x

VFf(.’I:,U/’,LL):ZL_lf( l’l’) f<)UF

W

To be convenience, we define:

Vefi(z,u) = Ve fi(e up): Vef(zu) = Vef(zup)

First we need to get the algorithm. We have two vision, first is vr and the second is dvr. Here is the
dvr:
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Proof:

Elv— 2| < Ella’ — 27| + n"Ellgz(2")[I — 2n (2" — 2", Egz(a"))

< Bllat =[P+ B )13 - 20 (ot =2t 3 59 (1) 4[5 Vs (o) + Eom)
<Bla’ —2* | + B gb(a") 1§ - 2”[ 70 - 5]~ 2001~ /3 176 ~ 160

N N Y P LY (RN v e
FaLo(= 3210 = ati+ Ly Sl + Saalet - a2

<=2 5 o [S)lat = a8 = matr - 5l - 18

I NETE R 2"[ 7~ 7)) = 2001 = 5[5 [F6)  fa)]
201 = D2 1560 = ] + 1y Sl + PR3

<2 f5 s \fmn\f et = 218 = (a1 = ) — 201400 - )21 = a*13
~onyf3 [ - )] + A\ﬂ sl + 7B 5 )|

) = f(a?)]

(40)
For any ¢ € [n] and = with supp(x) C Z, consider:
oi(z) = fi(x) — f(a*)— < Vfi(z"),z — 2" >
Since Vo, (z*) = V fi(z*) — Vfi(z*) = 0, we have ¢;(z*) = min,¢(x), which implies:
0= ¢i(z") < minydi(x —nVrpei(z)) < min ¢i(x) = nl[Vr|* + ()13
(41)
1
= 6u(2) — 5V ri(@)I3
where the second 1nequahty follows from the RSS condition and the last equality follows from the
fact that n = mlmmlzes the function. From , we have:
IVEfi(z) = Vzfi(x")|I3 < 2Ls[filz) — file")— < Vpfi(a®),z — 2" >]. (42)

Since the sampling of ¢ from [n] is uniform, we have from (42)

BV i(e) — Vafia )i = SIVefi(e) — Vahla) < 2L [F (@)~ ') < VR, —a >
<2L4[F(z) — F(z*)+ < VpF(z%),x — 2" >] <AL, F(z) — F(z")]
(43)

where the last inequality is from the restricted convexity of F'(z) and the fact that ||(z —2*)%|jo = 0
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By the definition of g in (3.4), we can verify the second claim as:
1o 1 -
Ellg(z)[l5 = EllZ5Vzfi (2! ur) = 5Vafs (we,un) + Vo f (wy, ) |
4
< ZEllur Vi fi(z) = upiui Vofi(@)|* + 4BV pF(z") + 7|

+Alupu (Vzfilp) = Vzfi(z")) — ;Uqu (Vzfi(w) = Ve fi(z"))II?

+E|lup|*lul®(Vzfi(e) — V2 fi(z") — E(Vzfilp) — Vzfi(a™))I?

(44)
A EIVzfi () = Vafu@P + 8+ ) UIV2fule) — Vafula)P

_92d
+4E|VF(z*) + 7|?
4s 1 /s
<(=Ls— —/2)E|lz —z*|* + (8 Lr o — "2
< gl 9| DBl =21 + 6+ 75) SLllo = a°)

2 /s 6 _ (g ) + 712
ﬂ;\ﬁ [F(a) — f(z)] + 4|V pF(a*) + 7]

So we have:

1
E 2 L2 t_ x)|2
o=l < (1= 20 2 - 2 oy 2 e - et — a1
1 S S 4s
~ s = )2~ L. - P Lo— — 8Ly Y|z — o
(1 = 03 = O+ )0 = 905~y — 8L D)0 — 13
S
Sl + 4RIV ) + il

45)
That is:
Bl — 2|2 < a( — /S —nL.2(1 = ) = An) + (5 L — ot — 273
= d' 0 s 0 027" 2 2
1 s 1 1 s 4s
—a(us( = )42 = L+ )1 — /S =P —8d020 )12 — 272
sl = /5 = a1+ 0= 5 L~ 8SL e — o
S
+ oSl + QB F ) + il
(46)
We let B = a(l — L= /2 +nL, 2( — V5 +M/E + P 5 L2 — 2n, and v = a(nus(1 —
VS —2nLs(1— §)\/5 — P Legsy — 8n2LS§)If we use a count ), Then we have:
m z* m ﬂm - *
Efz 1> < (8 L)E)20 - 23
47)
a4n2EHVFF( Y+ 7|2

E MORE ALGORITHM

F MORE EXPERIMENTS

Ridge Regression Ridge regression is a commonly used biased estimation linear regression
method in statistics and machine learning. It improves the stability and generalization ability of
the model by adding a regularization term ({3 norm) to the least squares method. For consistency in
narration, we consider the expression for ridge regression as follows:

A
filw) = (z]w = )" + S wII3,
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Algorithm 2 StochAstic Recursive grAdient algoritHm with Hard-Thresholding(SARAH-HT)

Input: Learning rate 1, maximum number of iterations 7', initial point 2°, SVRG update frequency
m, and number of coordinates to keep at each iteration k.
Output: =7 .
forr=1,...,Tdo
33‘(0) _ (ET_l;
v =I5 VEO);
zM = 20 — 0
fort=0,1,...,m—1do
Randomly sample i; € {1,2,...,n};
VY =V (2i41) — Vi, (2 +0®);
x(t-i—l) _ 'Hk(:l:(t) _ nvt-ﬁ-l);
end for
2" = 2 random t’ € [m — 1]
end for

Algorithm 3 Stochastic bias variance reduced Hard-Thresholding algorithm (BVR-SHT)

Input: Learning rate 7, maximum number of iterations 7', initial point z°, SVRG update frequency
m, and number of coordinates to keep at each iteration k.
Output: z7.
forr=1,...,T do
1'(0) _ (ET_l;
Compute 1 = 3+ 37, V fi(2(©);
fort=0,1,...,m—1do
Randomly sample i, € {1,2,...,n};
7 =3O — (LT, (o) = Vi, (0)) + )
$(t+1) = H; (f(t+1));
end for
¢" =2, random t' € [m — 1]
end for
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where ) is the regularization parameter, w is the model weight. We randomly generate each z; from
a hyper-sphere with a unit radius in R?, and the true model weight w* is drawn from a Gaussian
distribution NV (0, I;x4). Bach y; is calculated as y; = xiTw*. In our ZO comparative experiment,
we set the constants as such: n = 10,d = 5, A = 0.5. Before training, we preprocess each column
by subtracting its mean and dividing it by its empirical standard deviation. We run each algorithm
with k = 3,q = 200, = 10~*, 55 = d = 5, and for the variance reduced algorithms, we choose
m = 10 and bias coefficient § = 2. For all algorithms, the learning rate 7 is found through grid-
search in {0.005,0.01,0.05,0.1,0.5}. We choose the 1 giving the lowest function value (averaged
over several runs) at the end of training. We stop each algorithm once its IZO reaches 80,000. All
curves are averaged over 3 runs, and we plot their mean and standard deviation in Figure 3] It can
be observed that BVR-SZHT converges faster than other algorithms and reaches lower loss values.

048 —— SZOHT —— SZOHT

—— VR-SZHT —— VR-SZHT
—— SARAH-ZHT —— SARAH-ZHT
—— BVR-SZHT(ours)

—— BVR-SZHT(ours)

0 10000 20000 30000 40000 50000 60000 70000 80000 0 50 100 150 200 250 300 350 400

1ZO NHT

Figure 2: Loss values of ZO algorithms in ridge regression tasks

In the first-order part, we define bias coefficient § = 2 or n and use gradients instead of zeroth-order
oracle. All curves are also averaged over 3 runs, and we plot their mean and standard deviation in
Figure 2. It can be observed that SARAH-HT converges faster than other algorithms.

— WRSHT
a3s SARAH-HT
— BVRHT12
— BVRHTA

] 2000 000 6000 8000 10000 o 500 1000 1500 2000 2500

# IFO # NHT

Figure 3: Loss values of FO algorithms in ridge regression tasks

Sensitivity analysis To validate the bias cancellation effect of SARAH in the first-order hard-
thresholding algorithm and BSVRG-HT in the zeroth-order hard-thresholding algorithm, we con-
ducted sensitivity analysis based on ridge regression experiments. In first-order algorithms, since
the bias from hard thresholding is restricted solely by k, we subtracted the loss function of BVR-
SHT from that of SARAH-HT (as shown in Figure 3). Due to the inevitable oscillations in the early
stages of convergence, which can affect observation, we focus more on the stable phase of the itera-
tions. As k increases, the difference in loss functions grows, indicating that SARAH shows a greater
advantage over BVRSZHT when variance is large, thanks to its stronger variance cancellation effect.
For the zeroth-order algorithm, we conduct a sensitivity analysis on p based on the ridge regression
experiments for BVR-SZHT and SARAH. We emphasize once again that x can control the bias of
the zeroth-order gradient. We observed that BVR-SZHT is not sensitive to changes in p, whereas
SARAH’s convergence gradually worsens as y increases. This demonstrates that BVR-SZHT can
partially offset the bias introduced by the zeroth-order gradient.

Black-box Adversarial Attacks Adversarial attacks trick machine learning models by adding
carefully designed subtle perturbations to inputs, leading to mispredictions. Black-box adversarial
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flw)
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Figure 4: Sensitive Analysis for FO(left) and ZO(right)

attacks occur when attackers can’t access a model’s internals and must deduce its behavior from in-
puts and outputs. The Black-box attack method is closer to real-world attack scenarios. Therefore,
we consider a few-pixel universal adversarial attack scenarios and assume there is a well-trained
classifier that can only be accessed as a black box. In this scenario, zeroth-order algorithms ex-
cel over first-order ones in black-box settings as they don’t need model gradients, estimating them
through output queries instead. As is usual in black-box adversarial attacks, we maximize the fol-
lowing Carlini-Wagner loss (Carlini & Wagner;, 2017} |Chen et al.,|2017), which promotes the model
the model to make incorrect predictions:

fi(w) =max{F,, (clip(z; + w)) — I&ax Fj(clip(z; + w)), 0},
J7Yi

where F' denotes a pre-trained model, x; is the i-th image (rescaled to have values in [—0.5, 0.5])
with true class y;, clip denotes the clipping operation into [—0.5, 0.5], w is the universal perturbation
that we seek to optimize, and each F; outputs the log-probability of image x; being of class n as
predicted by the model (j € {1, .., J}, J is the number of classes, similarly to (Chen et al., 2017}
Huang et al., [2019)). We use the pre-trained model on the CIFAR-10 as the model F'. It can be
obtained from the supplementary material of (de Vazelhes et al.| [2022). Similarly to [Liu et al.
(2018), we evaluate the algorithms on a dataset of n = 10 images from the test-set of the CIFAR-10
dataset(Krizhevsky & Hintonl, [2009). We set & = 60, u = 0.001, g = 10, so = d = 3,072, the
number of inner iterations of the variance reduced algorithms to /m = 10 and the bias coefficient % =
0.65. We check at each iteration the number of IZO, and we stop training if it exceeds 600. Finally,
we grid-search the learning rate 7 in {0.001, 0.005,0.01,0.05} and select the one that minimizes
the loss value for each algorithm. The training curves are presented in Figure 5] We can observe
that BVR-SZHT achieved the lowest loss value and showed significant performance improvement
compared to VR-SZHT in this tasks.

n —+— VR-SZHT u —+— VR-SZHT
SZOHT SZOHT

10 —a— SARAH-ZHT 10 —+— SARAH-ZHT
—— BVR-SZHT(ours) —+— BVR-SZHT(ours)

flw)
flw)

) 100 200 300 400 500 600 o 10 20

30
1ZO NHT

40 50

Figure 5: Loss values of ZO algorithms in black-box adversarial attack

Sparse Feature Selection Feature selection is a crucial step in reducing dimensionality and im-
proving model interpretability, especially when dealing with high-dimensional biological datasets
like scRNA-seq data. In our work, we applied several feature selection algorithms, BSVRG-HT,
SAGA, and SARAH-HT, to efficiently select a subset of features that best represent the underlying
biological signals. SAGA-LASSO, a popular approach for sparse logistic regression, uses the L1
penalty to encourage sparsity while leveraging stochastic optimization to solve large-scale problems
efficiently. We conducted feature selection on scRNA-seq data and MINST/CIFAR-10 datasets from
colorectal cancer cell lines. Following feature selection, we trained a deep neural network (DNN)
to classify cell types based on the selected features. We optimized the hyperparameters, such as
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learning rates and batch sizes, for each feature selection algorithm to maximize the classification
accuracy. The results of our experiments demonstrate the effectiveness of these methods in high-
dimensional biological settings. BVRSZHT and SARAH both provided significant performance
improvements in feature reduction while maintaining high accuracy. The selected features were
subsequently used to train the DNN classifier, resulting in robust and interpretable predictions of

cell type identities.

Dataset Algorithm Accuracy Num_Features Selection_Time (s)
Cancer BVRSZHTn 0.8850 2863 71.92
Cancer SAGA-LASSO  0.9204 3470 645.07
Cancer BVRSZHT12 0.8673 2863 68.30
Cancer VRSZHT 0.8496 2863 73.12
Cancer SARAH 0.8938 2863 65.66
CIFAR-10 BVRSZHTn 0.4575 1843 153.32
CIFAR-10 SAGA-LASSO  0.5102 3053 5148.21
CIFAR-10 BVRSZHTI12 0.5109 1843 152.18
CIFAR-10 VRSZHT 0.5029 1843 150.75
CIFAR-10 SARAH 0.5126 1843 153.08
MNIST BVRSZHTn 0.9593 235 70.09
MNIST SAGA-LASSO  0.9729 644 1131.67
MNIST BVRSZHT12 0.9563 235 70.43
MNIST VRSZHT 0.9407 235 70.63
MNIST SARAH 0.9616 235 64.00

Table 2: Reasult in sparse feature selesction
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