
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FIGHT FIRE WITH FIRE: MULTI-BIASED INTERAC-
TIONS IN HARD-THRESHOLDING

Anonymous authors
Paper under double-blind review

ABSTRACT

ℓ0 constrained optimization is widely used in machine learning, especially for
high-dimensional problems, as it effectively promotes sparse learning. A promi-
nent technique for solving these problems is hard-thresholding gradient descent.
However, the inherent expansibility of hard-thresholding operators can lead to
convergence issues, necessitating strategies to accelerate the algorithm. In this
article, we believe the random hard-thresholding algorithm can be interpreted as
an equivalent biased gradient algorithm. By introducing appropriate biases, we
can mitigate some of the issues of hard-thresholding and enhance convergence.
We categorize the biases into memory-biased and recursive-biased, examining
their distinct applications within hard-thresholding algorithms. Next, we explore
the zeroth-order versions of these algorithms, which introduce additional biases
from zeroth-order gradients. Our findings indicate that recursively bias effec-
tively counteracts some of the issues caused by hard-thresholding, resulting in
improved performance for first-order algorithms. Conversely, due to the accumu-
lation of errors from zeroth-order gradients during recursive bias, the performance
of zeroth-order algorithms is inferior to that influenced by historical gradients. To
address these insights, we propose the SARAHT and BVR-SZHT algorithms for
first-order and zeroth-order hard-thresholding, respectively, both of which demon-
strate faster convergence speeds compared to previous methods. We validate our
hypotheses through black-box adversarial experiments and ridge regression eval-
uations.

1 INTRODUCTION

ℓ0 constrained optimization is a fundamental technique in large-scale machine learning, especially
in high-dimensional settings where sparsity is crucial (Fan & Li, 2001; Zhang, 2010). It promotes
sparse learning, offering benefits like reduced memory usage, lower computational costs, and im-
proved efficiency. In this study, we address the following problem:

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x), s.t.∥x∥0 ≤ k,

where f(x) represents the empirical risk, and ∥x∥0 denotes the number of non-zero elements. The
ℓ0 constraint makes this problem NP-hard, limiting the use of traditional methods. Unlike ℓ1 opti-
mization (e.g., LASSO), l0 optimization naturally has lower computational costs, making l0-based
algorithms faster in general. Additionally, in scenarios requiring strict sparsity, ℓ1 often struggles
because it is difficult to directly specify the sparsity level.

To solve this problem, we are particularly interested in gradient hard-thresholding methods (Raskutti
et al., 2011; Jain et al., 2014; Nguyen et al., 2017; Yuan et al., 2017), which are used for obtaining
approximate solutions to ℓ0 constrained optimization problems. This technique alternates between
a gradient step and the application of the hard threshold operator Hk(x), which retains the top k
elements of x while setting all other directions to zero. The gradient hard-thresholding iteration is
given by:

xt+1 = Hk(x
t − ηg(xt)), (1)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

where g(xt) is the gradient oracle.

Hard-thresholding was first used for its full gradient form (Jain et al., 2014). (Nguyen et al.,
2017) developed a stochastic gradient descent Stochastic Gradient Descent(SGD) version of hard-
thresholding known as StoIHT. Nevertheless, StoIHT’s convergence condition is overly stringent for
practical applications (Li et al., 2016). To address this issue, (Zhou et al., 2018), (Shen & Li, 2017)
and (Li et al., 2016) implemented variance reduction techniques to improve the performance of
StoIHT in real-world problem-solving. Furthermore, (de Vazelhes et al., 2022) designed the stochas-
tic zeroth-order hard-thresholding algorithm and found that the expansion of hard-thresholding gra-
dients and the errors in zeroth-order gradients can create a kind of antagonism, causing the algorithm
to struggle with convergence. (Yuan et al., 2024) found that reducing the variance could help miti-
gate this conflict.

In previous works, the gradient oracle process and the hard-thresholding iterative process were
treated separately, without examining their interrelationship in influencing algorithm convergence.
In this paper, We view the stochastic gradient decent step and the hard-thresholding step as a whole
and consider them as an equivalent gradient ∇t

HT = (xt − xt+1)/η. This approach enables us to
reinterpret the hard-thresholding algorithm as a specific type of biased gradient algorithm. By do-
ing so, we uncover the potential to enhance convergence by designing appropriate biased gradient
oracles.

Recently, there has been increasing interest in SGD using biased gradient oracles, which has been
explored in various studies across multiple domains. A notable example includes zeroth-order meth-
ods, such as in optimizing black-box functions (Nesterov & Spokoiny, 2017) or in generating adver-
sarial examples in deep learning (Moosavi-Dezfooli et al., 2017; Chen et al., 2017). Many zeroth-
order training techniques leverage biased gradient oracles (Liu et al., 2018; Bergou et al., 2020), and
biased estimators can outperform their unbiased counterparts in specific contexts (Beznosikov et al.,
2020).

Actually, there has been a recent surge of interest in SGD with biased gradient oracles, which has
been studied in several papers and applied in different domains. A typical example is zeroth-order
methods, which are often utilized when there is no access to unbiased gradients, e.g., for optimiza-
tion of black-box functions (Nesterov & Spokoiny, 2017) or for finding adversarial examples in deep
learning (Moosavi-Dezfooli et al., 2017; Chen et al., 2017). Many zeroth-order training methods ex-
ploit biased gradient oracles (Liu et al., 2018; Bergou et al., 2020). Moreover, biased estimators
may show better performance over their unbiased equivalents in certain settings (Beznosikov et al.,
2020). This raises some interesting questions:

In algorithms that utilize multiple biased gradient oracles, how do these biases interact?
More specifically, how do they affect the hard-thresholding algorithm when viewed as an equiv-
alent biased algorithm?

In this paper, we investigate how appropriate biases can mitigate the challenges posed by hard-
thresholding and enhance convergence. We categorize these biases into memory-biased and
recursive-biased, examining their distinct applications within hard-thresholding algorithms. Ad-
ditionally, we explore the zeroth-order versions of these algorithms, which introduce further bi-
ases from zeroth-order gradients. Our findings indicate that recursively bias effectively counteracts
some issues caused by hard-thresholding, leading to improved performance in first-order algorithms.
However, the accumulation of errors from zeroth-order gradients during recursively bias results in
inferior performance compared to historical gradients. To address these insights, we propose the
SARAH-HT and BVR-SZHT algorithms for first-order and zeroth-order hard-thresholding, respec-
tively, both demonstrating faster convergence speeds compared to previous methods. We validate
our hypotheses through black-box adversarial experiments and ridge regression evaluations, provid-
ing a thorough examination of the effects of multiple biases on convergence and their integration
with the hard-thresholding operator.

1. To the best of our knowledge, this is the first time a biased gradient approach is used
to analyze the hard-thresholding algorithm, accelerating the algorithm through a biased
gradient oracle.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2. We analyze the relationships between multiple biases and zeroth-order bias, providing a
method to potentially eliminate these biases.

3. We propose a series of (zeroth-order) hard-thresholding bias algorithms and analyze their
convergence, showing improved convergence speed compared to existing algorithms.

2 UNDERSTANDING BIAS IN OPTIMIZATION

In this section, we will provide a detailed introduction to several forms of bias mentioned in this
paper and explain how these biases affect convergence. We use ∥x∥ to denote the Euclidean norm
for a vector, ∥x∥∞ to denote the maximum absolute component of that vector, and ∥x∥0 to denote
the ℓ0 norm (which is not a proper norm).

2.1 BIAS AND CONVERGENCE

It is well known that the mean squared error (MSE) of gradient estimation E∥g(x) −∇f(x)∥2 is a
key factor in evaluating the quality of the gradient oracle g(x). A smaller MSE usually indicates a
faster convergence rate. In fact:

E∥g(x)−∇f(x)∥2 = ∥Eg(x)−∇f(x)∥2 + E∥g(x)− E[g(x)]∥2, (2)
where E∥g(x) − E[g(x)]∥2 is the variance of g(x) and ∥Eg(x) − ∇f(x)∥2 is the squared norm of
the bias g(x). This suggests that bias can often lead to non-convergence. However, many algorithms
reduce variance through specific biases, thereby decreasing the MSE and accelerating convergence.
We refer to this as the biased gradient descent oracle.

Remark 1 In hard-thresholding algorithms, the MSE of g(x) does not completely determine the
convergence of the algorithm. However, we can use ∇t

HT = xt+1−xt

η as a substitute.

2.2 BIASED VARIANCE REDUCE ESTIMATION

Biased gradient descent estimation is used in many algorithms, such as BSVRG, BSAGA, and
SARAH. Their estimation are:

B-SAGA: g(xt)
def
= 1

θ

(
∇fjt(xt)−∇fjt(φ

jt
t)
)
+ 1

n

∑n
i=1 ∇fi(φ

i
t),

B-SVRG: g(xt)
def
=

{
1
n

∑n
i=1 ∇fi(φ) for t ∈ νN0

∇fjt(xt)−∇fjt(xt−1) +
1
n

∑n
i=1 ∇fi(φ) o.w.

SARAH: g(xt)
def
=

{
1
n

∑n
i=1 ∇fi(φ) for t ∈ νN0

∇fjt(xt)−∇fjt(xt−1) + g(xt−1) o.w.

Here, φ means the historical information. The parameter ν represents how many steps occur between
full gradient evaluations.

These algorithms, through specific configurations, reduce the MSE even in the presence of bias.The
vast majority of such algorithms satisfy the following BMSE assumption.

Assumption 1 (Driggs et al., 2022) (Bounded MSE) The stochastic gradient estimator g(xt) is said
to satisfy the BMSE (M1,M2, ρM , ρF ,m) property with parameters M1,M2 ≥ 0, ρM , ρF ∈ (0, 1]
and m ≥ 1 if there exist sequences Mt and Ft such that

m(s+1)−1∑
t=ms

E
[∥∥g(xt)−∇f

(
xt
)∥∥2] ≤ Mms,

and the following bounds hold:

Mms ≤ (1− ρM)
m Mm(s−1) + Fms +

M1

n

m(s+1)−1∑
t=ms

n∑
i=1

E
[∥∥∇fi

(
xt+1

)
−∇fi

(
xt
)∥∥2] ;

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Fms ≤
s∑

ℓ=0

M2 (1− ρF)
m(s−ℓ)

n

m(s+1)−1∑
t=ms

n∑
i=1

E
[∥∥∇fi

(
xt+1

)
−∇fi

(
xt
)∥∥2] .

We can broadly categorize these configurations into two parts. That is:

Definition 1 (Memory-biased gradient oracle) The stochastic gradient oracle g(xt) is memory-
biased with parameters θ > 0, B1 ≥ 0, and m ≥ 1 if

∇f
(
xt
)
− Ekg(x

t) =

(
1− 1

θ

)(
∇f

(
xt
)
− 1

n

n∑
i=1

∇fi
(
φi
k

))
,

for some
{
φi
k

}n
i=1

⊂ {xℓ}t−1
ℓ=0, and for any s ∈ N0,

m(s+1)−1∑
k=ms

1

n

n∑
i=1

E
[∥∥xt − φi

k

∥∥2] ≤ B1

m(s+1)−1∑
k=ms

E
[∥∥xt − xt−1

∥∥2] .
The parameter 1

θ represents the degree of bias. When θ = 1, the algorithm is unbiased.

Definition 2 (Recursive-biased gradient oracle) For any sequence {xk}, let ∇̃k be a stochastic
gradient oracle generated from the points {xℓ}kℓ=0. This estimator is recursive-biased with ν ≥ 1 if

∇f (xk)− Ekg(x
t) =

{
0 for k ∈ νN0,(
∇f (xk−1)− ∇̃k−1

)
o.w. .

The parameter ν represents how many steps occur between full gradient evaluations.

BSVRG and BSAGA have memory-biased gradient oracle and SARAH has recursive-biased gradi-
ent oracle(Driggs et al., 2022). Through this classification, we can systematically study the impact
of such biases in greater detail in section 3.

2.3 HARD-THRESHOLDING OPERATOR

As described in Section 1, we can view the stochastic gradient decent step and the hard-thresholding
step as a whole and consider them as an equivalent gradient ∇t

HT = (xt − xt+1)/η. Following this
reasoning:

Lemma 1 For any {xt}that satisfies xt+1 = Hk(x
t − ηg(xt)) and x ∈ Rd, we have:

(γk − 1

2
)∥xt+1 − x∥2 + 1

2
∥xt − x∥2 − 1

2
η2∥∇t

HT ∥2 ≥ η
〈
g(xt), xt+1 − x

〉
,

where γk =
√
k∗/k/2 is the hard-thresholding coefficient.

In addition, we use two assumptions, which are widely adopted in hard-thresholding algorithm (Li
et al., 2016; Nguyen et al., 2017).

Assumption 2 (Restricted strong convexity (RSC) (Li et al., 2016; Nguyen et al., 2017)) A dif-
ferentiable function f is restricted vs-strongly convex at sparsity s if there exists a generic constant
vs > 0 such that for any x, x′ ∈ Rd with ∥x− x′∥0 ≤ s, we have:

f(x)− f(x′)− ⟨∇f(x′), x− x′⟩ ≥ vs
2
∥x− x′∥22. (3)

Assumption 3 (Restricted strong smoothness (RSS) (Li et al., 2016; Nguyen et al., 2017)) For
any i ∈ [n], a differentiable function fi is restricted Ls-strongly smooth at sparsity level s if there
exists a generic constant Ls > 0 such that for any x, x′ ∈ Rd with ∥x− x′∥0 ≤ s, we have

∥∇fi(x)−∇fi(x
′)∥ ≤ Ls∥x− x′∥.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We assume that the objective function f(x) satisfies the RSC condition and that each component
function {fi(x)}ni=1 satisfies the RSS condition. We also define the restricted condition number as
κs = vs/Ls. This assumption ensures that the objective function behaves like a strongly convex and
smooth function over a sparse domain, even when it is non-convex.

2.4 ZEROTH-ORDER GRADIENT

The zeroth-order gradient oracle obtained by Gaussian smoothing is a typical scenario of biased
gradients (Stich, 2020) In hard-thresholding algorirthm, A commonly used zeroth-order estimation
is(de Vazelhes et al., 2022; Yuan et al., 2024)

∇̂f(x) =
d

qµ

q∑
i=1

(f(x+ µui)− f(x))ui, (4)

where each random direction ui is a unit vector sampled uniformly from the set {u ∈ Rd : ∥u∥0 ≤
s2, ∥u∥ = 1}, q is the number of random unit vectors, and µ > 0 is a constant called the smoothing
radius (typically taken as small as possible, but no too small to avoid numerical errors). To obtain
these vectors, we can first sample a random set of coordinates S of size s2 from [d]. Following,
we sample a random vector u supported on S, in other words, uniformly sampled from the set
{u ∈ Rd : u[d]−S = 0, ∥u∥ = 1}.

3 MUTI-BIAS INTERACTION IN HARD-THRESHOLDING

In this section, we will examine the performance of memory-biased and recursive-biased in dif-
ferent scenarios to investigate the interaction between biases. Specifically, we will first study the
performance of memory-biased gradient and recursive-biased gradient oracle in the first-order hard-
thresholding algorithm, and then analyze their performance in the zeroth-order hard-thresholding
algorithm.

3.1 FIRST-ORDER HARD-THRESHOLDING

In first-order algorithms, from Lemma 1 we have

Lemma 2 Suppose g(x) is a recursively biased oracle. Suppose f satisfies the RSC condition with
vs ≥ 0. The following inequality holds:

ηE[f(xt+1)− f(x∗) + (
1

2
− γk)∥xt+1 − x∗∥2] ≤ E[

1

2
∥xt − x∗∥2 − η2

2
∥∇t

HT ∥2

+ ηE
〈
∇F f

(
xt
)
− g(xt), xt − x∗〉]. (5)

Remark 2 In (5), ∥xt − x∗∥2 is the convergence term. ηE ⟨∇F f (xt)− g(xt), xt − x∗⟩ −
η2

2 ∥∇t
HT ∥2 implies the bias of hard-thresholding. And ηE ⟨∇F f (xt)− g(xt), xt − x∗⟩ is the bi-

ased caused by recursive bias, since when the gradient oracle is unbiased, this term is 0.

For E ⟨∇F f (xt)− g(xt), xt − x∗⟩, when g(x) is recursively biased, we have:

E
〈
∇F f

(
xt
)
− g(xt), xt − x∗〉 (1)

= E
〈
∇F f

(
xt
)
− Etg(x

t), xt − x∗〉
(2)

≤ E
〈
∇F f

(
xt−1

)
− g(xt−1), xt − x∗〉 .

We can pass the conditional expectation Et−1 into the second inner-product in (1) because xt−1 is
independent of jt−1. Inequality (2) uses the definition of a recursively biased gradient oracle. This

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

is a recursive inequality, and expanding the recursion gives
E
〈
∇F f

(
xt−1

)
− g(xt−1), xt − x∗〉

= E
〈
∇F f

(
xt−1

)
− g(xt−1), xt − xt−1

〉
+ E

〈
∇F f

(
xt−1

)
− g(xt−1), xt−1 − x∗〉

≤
t−1∑

l=vs+1

E
〈
∇F f

(
xl−1

)
− g(xl−1), xl − xl−1

〉
+ E ⟨∇F f (xvs)− g(xvs), xvs − x∗⟩

1
=

t−1∑
l=vs+1

E
〈
∇F f

(
xl−1

)
− g(xl−1), xl − xl−1

〉
,

here equation 1 is because (xνs − x∗)F c = 0 and (∇F f (xvs)− g(xvs))F = 0.

Remark 3 We should mention that ∇F f (xvs) ̸= g(xvs).
〈
∇F f

(
xl−1

)
− g(xl−1), xl − x∗〉 relies

on hard-thresholding operator to make sure (xνs − x∗)F c = 0, which means that the bias is partly
canceled by hard-thresholding.

Therefore, we have:

Lemma 3 If g(xt) is recursively biased, for any ϵ > 0, there is∑ν(s+1)−1
t=νs+1

∥∥E 〈∇F f
(
xt−1

)
− g(xt−1), xt − x∗〉∥∥ ≤ ν

∑ν(s+1)−1
t=νs+1 E

[
ϵ
2 ∥∇F f (xt)− g(xt)∥2 + 1

2ϵ

∥∥xt+1 − xt
∥∥2] .

(6)

By BMSE condition, we know E
〈
∇F f

(
xt−1

)
− g(xt−1), xt − x∗〉 can be controlled by ∇HT

during the iteration. This implies that the bias caused by the hard threshold in (5) will be partially
canceled out.

Remark 4 From Lemmas 2 and 3, we conclude that the bias of the recursively biased algorithm is
partially canceled when t = νs. Consequently, during the iterations of this algorithm, the bias of
the equivalent gradient is also mitigated. This suggests that the recursively biased algorithm for the
hard-threshold can counteract some bias, thus accelerating convergence.

Lemma 4 Suppose g(x) is a first-order memory-biased oracle. Suppose θ ≥ 1 and that f satisfies
the RSC condition with vs ≥ 0. the following inequality holds:

ηE[f(xt+1)− f(x∗) + (
1

2
− γk)∥xt+1 − x∗∥2] ≤ η

〈
g(xt)−∇F f(x

t), xt − xt+1
〉
+

1

2
∥xt − x∗∥2

+ η2
ηLs − 1

2
∥∇t

HT ∥2 +
ηL

2n
(1− 1

θ
)∥xt − φi

t∥2

(7)

In the iterative process of the algorithm, we can use ∥∇t
HT ∥2 bound based on the〈

g(xt)−∇F f(x
t), xt − xt+1

〉
due to Assumption 1 and (1 − 1

θ)∥x
t − φi

t∥2 due to definition 1.
The complete proof steps can be found in the appendix.

Remark 5 In a memory-biased algorithm, the bias cannot be effectively eliminated. Therefore, (7)
has worse bounds compared to (5), indicating poorer convergence.

3.2 ZEROTH-ORDER HARD-THRESHOLDING

We should mention that for recursively biased oracles in zeroth-order method, lemma 2 is still holds.
Therefore, we can use the same approach to study recursively biased zeroth-order hard-thresholding
estimation. And

Lemma 5 If g(xt) is zeroth-order recursively biased, for any ϵ > 0, there is
ν(s+1)−1∑
t=νs+1

∥E⟨∇F f(x
t−1)− g(xt−1), xt − x∗⟩∥ ≤

ν(s+1)−1∑
t=νs+1

E[νϵ
2
∥∇F f(xt)− g(xt)∥2 + ν

2ϵ
∥xt+1 − xt∥2

+
νϵ

2
∥∇F f(xt)− ∇̂F f(xt)∥2 + ⟨∇F f(x

t−1)− ∇̂F f(x
t−1), xt − x∗⟩+

〈
∇̂F f (xvs)− g(xvs), xvs − x∗

〉]
.

(8)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Remark 6 Since ∇f(xt) ̸= Etg(x
t) due to the bias of zeroth-order estimation and (∇F f(x

νs) ̸=
g(xt))F due to the zeroth-order estimation cannot use the same u in different t. This means that
in recursively biased zeroth-order hard-thresholding algorithms, not only is the bias not partially
canceled, but it also accumulates throughout the iterations. This implies that recursively biased is
unlikely to achieve good convergence speed in the zeroth-order hard-thresholding setting.

Now, we turn our attention to memory biased zeroth-order hard-threshodling. In the first-order dis-
cussion, we know that the bias produced by memory biased and hard-threshodling does not interact
well. Therefore, we only need to study the MSE of g(x). By doing so, we can understand the
relationship between memory biased and zeroth-order biases.

Lemma 6 If g(xt) is memory biased estimation, for any θ > 1 and q < d, we have

E∥g(x)∥22 ≤ 4q

θ2d
E∥∇Ifit(x)−∇Ifit(x

∗)∥2 + (8 +
4

θ2
)
q

d
∥∇Ifit(φ)−∇Ifit(x

∗)∥2

+ 4E∥∇FF (x∗) + τi∥2,
(9)

where τi = Eu,ut,i

[
1
θ (si (x

t, ut)− si (w
t, ut)) ∥ut∥2 ut

F + s (wt, u) ∥u∥2uF

]
Remark 7 We point out that when τi is the bias introduced by zeroth-order estimation by the defi-
nition of si(x, u). As θ, which is the bias introduced by memory bias, increases, the bias introduced
by zeroth-order correspondingly decreases. This indicates that the bias from memory can cancel out
part of the bias from zeroth-order.

3.3 CONCLUSION

From the above discussion, we know that the recursive-biased algorithm can partially cancel out the
bias in first-order hard-thresholding, while the Memory-biased algorithm can cancel out part of the
bias in zeroth-order hard-thresholding. This suggests that, compared to existing algorithms, we can
design SARAH-HT and BVR-SZHT algorithms to achieve faster convergence rates.

4 BIASED HARD-THRESHOLDING ALGORITHM

In this chapter, we will provide a convergence analysis for the first-order algorithms SARAH-HT,
BSVRG-HT, and BSAGA-HT, as well as the zeroth-order algorithm BVR-SZHT. Due to spatial
limitations, the the algorithm for first-order will be placed in the appendix.

4.1 BIASED FIRST-ORDER HARD-THRESHOLDING ALGORITHM

Theorem 1 (Recursive-biased estimators) Let g(x) be a recursive-biased gradient oracle pa-

rameterized by ν ≥ 1, which satisfies the BMSE(M1,M2, ρM , ρF ,m) property. Let B2
def
=

min {ν, 1/ρB}, Θ = M1ρF+2M2

ρMρF
and ρ = min {ρM , ρF }. Assume that each fi is Ls−RSS and

that vs−RSC. For any stochastic hard-thresholding algorithms, we can establish the following:

E[αmK(f(xmK)− f(x∗)) +
1

2
∥xmK − x∗∥2]

≤ α−mKE[δ′(f(x0)− f(x∗)) +
1

2
∥x0 − x∗∥2] + δ

2λ′
αmK − αK

αmk(α− 1)
∥∇f(x∗)∥2,

(10)

where δ′ =
L2

s

vs
η, α = 1 + δ/κs − 2γk,

δ =
2 1
vs

+ 1− (3B2

ϵ + 6B2L
2ϵΘ+ 1

vs
Ls

√
2Θ)η − 2γk

Ls

Remark 8 The SARAH gradient estimator is recursively biased with parameters ρB = 0 and ν =
m, and it satisfies the BMSE property with parameters M1 = m, ρM = 1, ρF = 1, and M2 = 0.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Remark 9 We note that if f has a k∗-sparse unconstrained minimizer, which could happen in sparse
reconstruction, or with overparameterized deep networks, then we would have ∥∇f(x∗)∥ = 0, and
hence that part of the system error would vanish.

Theorem 2 (Memory-biased estimation)Let g(x) be a memory-biased gradient oracle, which sat-
isfies the BMSE(M1,M2, ρM , ρF ,m) property. Let θ > 1,and B1 ≥ 0, Θ = M1ρF+2M2

ρMρF
and

ρ = min {ρM , ρF }.Assume that each fi is Ls−RSS and that vs−RSC. For any stochastic hard-
thresholding algorithm, we can establish the following:

E[αmK(f(xmK)− f(x∗)) +
1

2
∥xmK − x∗∥2]

≤ α−mKE[δ′(f(x0)− f(x∗)) +
1

2
∥x0 − x∗∥2] + δ

2λ′
αmK − αK

αmk(α− 1)
∥∇f(x∗)∥2,

(11)

where δ′ =
L2

s

vs
η,α = 1 + δ/κs − 2γk

δ =
2
L2

s

vs
+ 1− (LsB1(1− 1

θ) + (
L2

s

vs
+ 1)Ls(2

√
2Θ + 1))η − 2γk

Ls

Remark 10 The B-SAGA gradient estimator is memory-biased with B1 = 2n(2n + 1), and it
satisfies the BMSE property with parameters ρM = 1

2n ,m = 1,M2 = 0, ρF = 1, and

M1 =

{
2n+1
θ2 θ ∈ (0, 2]

(2n+ 1)
(
1− 1

θ

)2
θ > 2

.

The B-SVRG gradient estimator is memory-biased with B1 = 3m(m+1), and it satisfies the BMSE
property with parameters ρM = 1,M2 = 0, ρF = 1, and

M1 =

{
3m(m+1)

θ2 θ ∈ (0, 2]

3m(m+ 1)
(
1− 1

θ

)2
θ > 2

.

Remark 11 The convergence rate is α−1, which means that we can be using δ to compare it. In this
way, we can find that SARAH-HT has a faster convergence rate than SVRG-HT.

4.2 BIASED ZEROTH-ORDER HARD-THRESHOLDING ALGORITHM

Theorem 3 Assume the functions {fi(θ)}ni=1satisfy the RSS condition Suppose that we run BVR-
SZHT with random supports of size s2, q random directions, a learning rate of η, and k coordinates
kept at each iteration. We have: For BVR-SZHT algorithm, Let θ > 0 Assume that each fi is
Ls−RSS and vs−RSC with s = 2k+k∗. we run BVR-SZHT with random supports of size s2random
directions, a learning rate of η, and k coordinates kept at each iteration. We have:

E∥xm − x∗∥22 ≤(βm − βm − 1

β − 1
α(ηvs −

4

θ2
+

η

2
(1− 1

θ
− Lsη(1−

1

θ
))))∥x0 − x∗∥22

+ 4
βm − 1

β − 1
α(1− 1

θ
)2E∥∇FF (x∗)∥2

(12)

where β = α(1− ηvs

θ

√
s
d + ηLs2(1− 1

θ)
√

s
d + λη

√
s
d + η2 4s

θ2dLs2− 2η,

α =

√
1 +

(
K/k +

√
(4 +K/k)K/k

)
/2

5 EXPERIMENTS

In this section, we conduct experiments on both the first-order and zeroth-order algorithms, focusing
on adversarial attacks and sparse feature selection. The experiments are presented in two parts: first,
we evaluate the effectiveness of different algorithms in sparse feature selection to highlight the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 1 Stochastic bias variance reduced Hard-Thresholding algorithm (BVR-SZHT)
Input: Learning rate η, maximum number of iterations T , initial point x0, SVRG update frequency

m, number of random directions q, and number of coordinates to keep at each iteration k, biased
coefficient θ.

Output: xT .
for r = 1, . . . , T do

x(0) = xr−1;
µ̂ = 1

n

∑n
i=1 ∇̂fi(x

(0));
for t = 0, 1, . . . ,m− 1 do

Randomly sample ir ∈ {1, 2, . . . , n};
Compute ZO estimate ∇̂fir (x

(r)), ∇̂fir (x
(0)) with the same direction u;

x̄(r+1) = x(r) − η(1θ (∇̂fir (x
(r))− ∇̂fir (x

(0))) + µ̂));
x(r+1) = Hk(x̄

(r+1));
end for
xr = x(t′), random t′ ∈ [m− 1]

end for

advantages of BVR-SZHT and SARAH-HT. Then, we analyze black-box adversarial attacks as a
real-world application scenario for zeroth-order algorithms. The ridge regression and sensitivity
analysis experiments, previously conducted to validate parameter effects, are now provided in the
appendix for reference. These supplementary experiments include detailed sensitivity analysis of the
parameter k in the first-order algorithms and the parameter µ in the zeroth-order algorithms, aimed
at observing the bias cancellation effects under increased bias from hard thresholding and zeroth-
order estimation. The performance of the algorithms will be evaluated in terms of the following
three aspects:

• IFO: the iterative first-order oracle, i.e. number of calls to fi.
• IZO: the iterative zeroth-order oracle, i.e. number of calls to fi.
• NHT: the number of hard-thresholding operations.

Black-box Adversarial Attacks Adversarial attacks trick machine learning models by adding
carefully designed subtle perturbations to inputs, leading to mispredictions. Black-box adversarial
attacks occur when attackers can’t access a model’s internals and must deduce its behavior from in-
puts and outputs. The Black-box attack method is closer to real-world attack scenarios. Therefore,
we consider a few-pixel universal adversarial attack scenarios and assume there is a well-trained
classifier that can only be accessed as a black box. In this scenario, zeroth-order algorithms ex-
cel over first-order ones in black-box settings as they don’t need model gradients, estimating them
through output queries instead. As is usual in black-box adversarial attacks, we maximize the fol-
lowing Carlini-Wagner loss (Carlini & Wagner, 2017; Chen et al., 2017), which promotes the model
the model to make incorrect predictions:

fi(ω) =max{Fyi(clip(xi + ω))−max
j ̸=yi

Fj(clip(xi + ω)), 0},

where F denotes a pre-trained model, xi is the i-th image (rescaled to have values in [−0.5, 0.5])
with true class yi, clip denotes the clipping operation into [−0.5, 0.5], ω is the universal perturbation
that we seek to optimize, and each Fj outputs the log-probability of image xi being of class n as
predicted by the model (j ∈ {1, .., J}, J is the number of classes, similarly to (Chen et al., 2017;
Huang et al., 2019)). We use the pre-trained model on the CIFAR-10 as the model F . It can be
obtained from the supplementary material of (de Vazelhes et al., 2022). Similarly to Liu et al.
(2018), we evaluate the algorithms on a dataset of n = 10 images from the test-set of the CIFAR-10
dataset(Krizhevsky & Hinton, 2009). We set k = 60, µ = 0.001, q = 10, s2 = d = 3, 072, the
number of inner iterations of the variance reduced algorithms to m = 10 and the bias coefficient 1

θ =
0.65. We check at each iteration the number of IZO, and we stop training if it exceeds 600. Finally,
we grid-search the learning rate η in {0.001, 0.005, 0.01, 0.05} and select the one that minimizes
the loss value for each algorithm. The training curves are presented in Figure 5. We can observe
that BVR-SZHT achieved the lowest loss value and showed significant performance improvement
compared to VR-SZHT in this tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 1: Loss values of ZO algorithms in black-box adversarial attack

Sparse Feature Selection Feature selection is a crucial step in reducing dimensionality and im-
proving model interpretability, especially when dealing with high-dimensional biological datasets
like scRNA-seq data. In our work, we applied several feature selection algorithms, BSVRG-HT,
SAGA, and SARAH-HT, to efficiently select a subset of features that best represent the underlying
biological signals. SAGA-LASSO, a popular approach for sparse logistic regression, uses the L1
penalty to encourage sparsity while leveraging stochastic optimization to solve large-scale problems
efficiently. We conducted feature selection on scRNA-seq data and MINST/CIFAR-10 datasets from
colorectal cancer cell lines. Following feature selection, we trained a deep neural network (DNN)
to classify cell types based on the selected features. We optimized the hyperparameters, such as
learning rates and batch sizes, for each feature selection algorithm to maximize the classification
accuracy. The results of our experiments demonstrate the effectiveness of these methods in high-
dimensional biological settings. BVRSZHT and SARAH both provided significant performance
improvements in feature reduction while maintaining high accuracy. The selected features were
subsequently used to train the DNN classifier, resulting in robust and interpretable predictions of
cell type identities.

Dataset Algorithm Accuracy Num Features Selection Time (s)
Cancer BVRSZHTn 0.8850 2863 71.92
Cancer SAGA-LASSO 0.9204 3470 645.07
Cancer BVRSZHT12 0.8673 2863 68.30
Cancer VRSZHT 0.8496 2863 73.12
Cancer SARAH 0.8938 2863 65.66
CIFAR-10 BVRSZHTn 0.4575 1843 153.32
CIFAR-10 SAGA-LASSO 0.5102 3053 5148.21
CIFAR-10 BVRSZHT12 0.5109 1843 152.18
CIFAR-10 VRSZHT 0.5029 1843 150.75
CIFAR-10 SARAH 0.5126 1843 153.08
MNIST BVRSZHTn 0.9593 235 70.09
MNIST SAGA-LASSO 0.9729 644 1131.67
MNIST BVRSZHT12 0.9563 235 70.43
MNIST VRSZHT 0.9407 235 70.63
MNIST SARAH 0.9616 235 64.00

Table 1: Reasult in sparse feature selesction

6 CONCLUSION

This paper investigates the interrelationship between gradient biases caused by different factors
through the study of several specific algorithms. We found that the equivalent bias generated by
hard-thresholding can be partially offset by the recursively biased in algorithms like SARAH, while
the bias caused by zeroth-order gradients can be partially counteracted by the memory biased in
BSVRG-type algorithms. Based on this theory, we designed the SARAH-HT algorithm and the
BSVRG-HT algorithm, both of which demonstrate faster convergence compared to existing meth-
ods in first-order and zeroth-order hard-thresholding algorithms, respectively.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Elie Bergou, Evgeny Gorbunov, and Peter Richtárik. Stochastic three points method for uncon-
strained smooth minimization. SIAM Journal on Optimization, pp. 2726–2749, 2020.

Aleksandr Beznosikov, Samuel Horvath, Peter Richtarik, and Mher Safaryan. On biased compres-
sion for distributed learning. arXiv preprint arXiv:2002.12410, 2020.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39–57. Ieee, 2017.

PinYu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and ChoJui Hsieh. Zoo: Zeroth order opti-
mization based black-box attacks to deep neural networks without training substitute models. In
Proceedings of the 10th ACM workshop on artificial intelligence and security, pp. 15–26, 2017.

William de Vazelhes, Hualin Zhang, Huimin Wu, Xiaotong Yuan, and Bin Gu. Zeroth-order hard-
thresholding: Gradient error vs. expansivity. Advances in Neural Information Processing Systems,
pp. 22589–22601, 2022.

Derek Driggs, Jingwei Liang, and Carola-Bibiane Schönlieb. On biased stochastic gradient estima-
tion. Journal of Machine Learning Research, pp. 1–43, 2022.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American statistical Association, pp. 1348–1360, 2001.

Feihu Huang, Bin Gu, Zhouyuan Huo, Songcan Chen, and Heng Huang. Faster gradient-free prox-
imal stochastic methods for nonconvex nonsmooth optimization. In Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 1503–1510, 2019.

Prateek Jain, Ambuj Tewari, and Purushottam Kar. On iterative hard thresholding methods for high-
dimensional m-estimation. Advances in neural information processing systems, 2014.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Xingguo Li, Raman Arora, Han Liu, Jarvis Haupt, and Tuo Zhao. Nonconvex sparse learning via
stochastic optimization with progressive variance reduction. arXiv preprint arXiv:1605.02711,
2016.

Haoyang Liu and Rina Foygel Barber. Between hard and soft thresholding: optimal iterative thresh-
olding algorithms. Information and Inference: A Journal of the IMA, pp. 899–933, 2020.

Sijia Liu, Bhavya Kailkhura, PinYu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-
order stochastic variance reduction for nonconvex optimization. Advances in Neural Information
Processing Systems, 2018.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1765–1773, 2017.

Yurii Nesterov and Vladimir Spokoiny. Randomized first-order methods for convex optimization.
SIAM Journal on Optimization, pp. 1558–1585, 2017.

Nam Nguyen, Deanna Needell, and Tina Woolf. Linear convergence of stochastic iterative greedy
algorithms with sparse constraints. IEEE Transactions on Information Theory, pp. 6869–6895,
2017.

Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Minimax rates of estimation for high-
dimensional linear regression over ℓq-balls. IEEE transactions on information theory, pp. 6976–
6994, 2011.

Jie Shen and Ping Li. A tight bound of hard thresholding. The Journal of Machine Learning
Research, pp. 7650–7691, 2017.

Ahmad Ajalloeian1 Sebastian U Stich. Analysis of sgd with biased gradient estimators. arXiv
preprint arXiv:2008.00051, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

XiaoTong Yuan, Ping Li, and Tong Zhang. Gradient hard thresholding pursuit. J. Mach. Learn. Res.,
pp. 6027–6069, 2017.

Xinzhe Yuan, William de Vazelhes, Bin Gu, and Huan Xiong. New insight of variance reduce in
zero-order hard-thresholding: Mitigating gradient error and expansivity contradictions. In The
Twelfth International Conference on Learning Representations, 2024.

CunHui Zhang. Nearly unbiased variable selection under minimax concave penalty. 2010.

Pan Zhou, Xiaotong Yuan, and Jiashi Feng. Efficient stochastic gradient hard thresholding. Advances
in Neural Information Processing Systems, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A NOTATIONS AND DEFINITIONS

Throughout this appendix, we will use the following notations:

• ∇f(x) denotes the gradient of f at x.

• g(x) denotes the gradient oracle of f at x.

• ∇̂f(x) denotes the zeroth-order of f at x.

• u is the direction of zeroth-order.

• ∇F f(x) denotes the gradient of f at x in F .

• [d] denotes the set of all integers between 1 and d : {1, . . . , d}.

• ui denotes the i-th coordinate of vector u, and ∇if(x) the i-th coordinate of ∇f(x).

• ∥ · ∥0 denotes the ℓ0 norm (which is not a proper norm).

• ∥ · ∥ denotes the ℓ2 norm.

• ∥ · ∥∞ denotes the maximum absolute component of a vector.

• x ∼ P denotes that the random variable X (denoted as x), of realization x, follows a
probability distribution P (we abuse notation by denoting similarly a random variable and
its realization).

• x1, . . . , xn
i.i.d∼ P denotes that we draw n i.i.d. samples of a random variable x, each from

the distribution P .

• P (x) denotes the value of the probability of x according to its probability distribution.

• Ex∼P (or simply Ex if there is no possible confusion) to denote the expectation of x which
follows the distribution P .

• We denote by supp(x) the support of a vector x, that is the set of its non-zero coordinates.

• |F | the cardinality (number of elements) of a set F .

• All the sets we consider are subsets of [d]. So for a given set F, F c denotes the complement
of F in [d]

• Sd(R) (or Sd(R) for simplicity if R = 1) denotes the d-sphere of radius R, that is
Sd(R) =

{
u ∈ Rd/∥u∥ = R

}
.

• U
(
Sd
)

the uniform distribution on that unit sphere.

• β(d) is the surface area of the unit d-sphere defined above.

• Sd
S denotes a set that we call the restricted d-sphere on S, described as: {uS/u ∈ {v ∈
Rd/ ∥vS∥ = 1

}}
, that is the set of unit vectors supported by S.

• U
(
Sd
S

)
denotes the uniform distribution on that restricted sphere above.

• We denote by uF (resp. ∇F f(x)) the hard-thresholding of u (resp. ∇f(x)) over the sup-
port F , that is, a vector which keeps u (resp. ∇f(x)) untouched for the set of coordinates
in F , but sets all other coordinates to 0 .

•
(
[d]
s

)
denotes the set of all subsets of [d] that contain s elements:

(
[d]
s

)
= {S : |S| = s, S ⊆

[d]}.

• U
((

[d]
s

))
denotes the uniform distribution on the set above.

• I denotes the identity matrix Id×d.

• IS denotes the identity matrix with 1 on the diagonal only at indices belonging to the
support S : Ii,i = 1 if i ∈ S, and 0 elsewhere.

• S ∋ e denotes that set S contains the element e.

• (ui)
n
i=1 denotes the n-uple of elements u1, . . . ,un.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B LEMMA

For convenience proof, we need to divide the biased variance reduce algorithm into two parts.
memorization biased part and iteration biased part.

B.1 PROOF OF LEMMA 1:

By the definition of γk 〈
xt − xt+1 − ηg(xt), x− xt+1

〉
≤ γk∥xt+1 − x∥2

η
〈
g(xt), xt+1 − x

〉
+
〈
xt − xt+1, x− xt+1

〉
≤ γk∥xt+1 − x∥2

η
〈
g(xt), xt+1 − x

〉
+

1

2
∥xt − xt+1∥2 + 1

2
∥xt+1 − x∥2 − 1

2
∥xt − x∥2 ≤ γk∥xt+1 − x∥2

(γk − 1

2
)∥xt+1 − x∥2 + 1

2
∥xt − x∥2 − 1

2
∥xt − xt+1∥2 ≥ η

〈
∇̂f(x), xt+1 − x

〉
(13)

B.2 PROOF OF LEMMA 2 , 3 AND 5:

Proof of lemma 2: From the RSS-condition:
η(f(xt)− f(x∗)) ≤ η

〈
∇F f(x

t), xt − x∗〉
= η

〈
∇F f

(
xt
)
− g(xt), xt − x∗〉+ η

〈
g(xt), xt − x∗〉 .

(13)

≤ ηE[
〈
∇F f

(
xt
)
− g(xt), xt − x∗〉+ (γk − 1

2
)∥xt+1 − x∗∥2 + 1

2
∥xt − x∗∥2 − 1

2
∥xt − xt+1∥2]

Proof of lemma 3:For E ⟨∇F f (xt)− g(xt), xt − x∗⟩, we have:

E
〈
∇F f

(
xt
)
− g(xt), xt − x∗〉 (1)

= E
〈
∇F f

(
xt
)
− Etg(x

t), xt − x∗〉 (2)

≤ E
〈
∇F f

(
xt−1

)
− g(xt−1), xt − x∗〉

We can pass the conditional expectation Et−1 into the second inner-product in (1) because xt−1 is
independent of jt−1. Inequality (2) uses the definition of a recursively biased gradient oracle. This
is a recursive inequality, and expanding the recursion gives

E
〈
∇F f

(
xt−1

)
− g(xt−1), xt − x∗〉

= E
〈
∇F f

(
xt−1

)
− g(xt−1), xt − xt−1

〉
+ E

〈
∇F f

(
xt−1

)
− g(xt−1), xt−1 − x∗〉

≤
t−1∑

l=vs+1

E
〈
∇F f

(
xl−1

)
− g(xl−1), xl − xl−1

〉
+ E ⟨∇F f (xvs)− g(xvs), xvs − x∗⟩

1
=

t−1∑
l=vs+1

E
〈
∇F f

(
xl−1

)
− g(xl−1), xl − xl−1

〉
Equation 1 is due to the fact that ∇F f

(
xl−1

)
= g(xl−1). Taking the absolute value and summing

this from t = νs+ 1 to t = ν(s+ 1)− 1

ν(s+1)−1∑
t=νs+1

∥∥E 〈∇f
(
xt−1

)
− g(xt−1), xt − x∗〉∥∥

≤
ν(s+1)−1∑
t=νs+1

t−1∑
ℓ=νs+1

E
[
ϵ

2

∥∥∇f
(
xℓ
)
− g(xℓ)

∥∥2 + 1

2ϵ

∥∥xℓ+1 − xℓ
∥∥2]

≤ ν

ν(s+1)−1∑
t=νs+1

E
[
ϵ

2

∥∥∇f (xt)− g(xt)
∥∥2 + 1

2ϵ

∥∥xt+1 − xt
∥∥2]

(14)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Summing this inequality from s = 0 tos = S completes the proof.
Lemma 5 can be easily proof by lemm 3

B.3 PROOF OF LEMMA 4:

Proof: By assumption, 1− 1
θ ≥ 0, so we can apply RSC to obtain:

η

θ
(f(xt)− f(x∗)) +

η

n
(1− 1

θ
)(

n∑
i=1

fi(φ
i
t)− fi(x

∗))

≤ n

θ

〈
∇f(xt), xt − x∗〉+ η

n
(1− 1

θ
)

n∑
i=1

〈
∇fi(φ

i
t), φ

i
t − x∗〉

=
n

θ

〈
∇f(xt), xt − x∗〉+ η

n
(1− 1

θ
)

n∑
i=1

〈
∇fi(φ

i
t), φ

i
t − xt

〉
+

η

n
(1− 1

θ
)

n∑
i=1

〈
∇fi(φ

i
t), x

t − x∗〉
(15)

Since g(x) is memory-biased,

1

θ
∇f(xt) +

1

n
(1− 1

θ
)

n∑
i=1

∇fi(φ
i
t) = Et[g(x

t)]

Therefore,

n

θ

〈
∇f(xt), xt − x∗〉+ η

n
(1− 1

θ
)

n∑
i=1

〈
∇fi(φ

i
t), x

t − x∗〉
= E[η

〈
g(xt), xt − x∗〉]

= E[η
〈
g(xt), xt − xt+1

〉
] + E[η

〈
g(xt), xt+1 − x∗〉]

≤ E[η
〈
g(xt), xt − xt+1

〉
+ (γk − 1

2
)∥xt+1 − x∗∥2 + 1

2
∥xt − x∗∥2 − 1

2
∥xt − xt+1∥2]

(16)

The inequality is due to lemma 1 with x = x∗. Combining these two inequalities, we have shown:

n

θ
(f(xt)− f(x∗)) +

η

n
(1− 1

θ
)(

n∑
i=1

fi(φ
i
t)− fi(x

∗))

≤ E[η
〈
g(xt), xt − xt+1

〉
− (

1

2
− γk)∥xt+1 − x∗∥2 + 1

2
∥xt − x∗∥2

− 1

2
∥xt − xt+1∥2 + η

n
(1− 1

θ
)

n∑
i=1

〈
∇fi(φ

i
t), x

t − x∗〉]
≤ E[η

〈
g(xt)−∇f(xt), xt − xt+1

〉
+
〈
∇f(xt), xt − xt+1

〉
− (

1

2
− γk)∥xt+1 − x∗∥2 + 1

2
∥xt − x∗∥2

− 1

2
∥xt − xt+1∥2 + η

n
(1− 1

θ
)

n∑
i=1

〈
∇fi(φ

i
t), x

t − x∗〉]
≤ E[η

〈
g(xt)−∇f(xt), xt − xt+1

〉
+ f(xt)− f(xt+1)− (

1

2
− γk)∥xt+1 − x∗∥2 + 1

2
∥xt − x∗∥2

+ (
ηLs − 1

2
)∥xt − xt+1∥2 + η

n
(1− 1

θ
)

n∑
i=1

〈
∇fi(φ

i
t), x

t − x∗〉]
(17)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Here, organize the equation. Using RSS condition, we have:

0 ≤ −ηE[f(xt+1)− f(x∗)] + η
〈
g(xt)−∇f(xt), xt − xt+1

〉
− (

1

2
− γk)∥xt+1 − x∗∥2 + 1

2
∥xt − x∗∥2

+ (
ηLs − 1

2
)∥xt − xt+1∥2 + η(1− 1

θ
)

(
f(xt)− 1

n

n∑
i=1

fi(φ
i
t) +

1

n

n∑
i=1

〈
∇fi(φ

i
t), φ

i
t − xt

〉)

≤ −ηE[f(xt+1)− f(x∗)] + η
〈
g(xt)−∇f(xt), xt − xt+1

〉
− (

1

2
− γk)∥xt+1 − x∗∥2 + 1

2
∥xt − x∗∥2

+ (
ηLs − 1

2
)∥xt − xt+1∥2 + ηL

2n
(1− 1

θ
)∥xt − φi

t∥2

(18)

B.4 PROOF OF LEMMA 6

By the definition of g , we can verify the second claim as:

E∥g(x)∥22 = E∥1
θ
∇̂Ifi

(
xt, uk

)
− 1

θ
∇̂Ifi (wk, uk) + ∇̂If (wk, u) ∥

≤ 4

θ2
E∥uF,iu

T∇Ifit(x)− uF,iu
T
i ∇Ifit(x

∗)∥2 + 4E∥∇FF (x∗) + τ∥2

+ 4∥uFu
T (∇Ifi(φ)−∇Ifi(x

∗))− 1

θ
uF,iu

T
i (∇Ifi(φ)−∇Ifi(x

∗))∥2

+ E∥uF ∥2∥u∥2∥(∇Ifi(φ)−∇Ifi(x
∗))− E(∇Ifi(φ)−∇Ifi(x

∗))∥2

≤ 4s

θ2d
E∥∇Ifit(x)−∇Ifit(x

∗)∥2 + (8 +
4

θ2
)
q

d
∥∇Ifit(φ)−∇Ifit(x

∗)∥2

+ 4E∥∇FF (x∗) + τ∥2

(19)

B.5 OTHER LEMMAS

Lemma 7 (MSE bound) Suppose that the stochastic gradient oracle ∇̂F satisfies the
BMSE(M1,M2, ρM , ρF ,m) property, let ρ = min{ρM , ρF }, and let σs be any sequence satisfying
σs(1− ρ)m(s−l) ≤ σl(1− ρ

2)
m(s−l). For convenience, define Θ = M1ρF+2M2

ρMρF
and I = Ik + Ik+1.

The MSE of the gradient oracle is bounded as

m(s+1)−1∑
t=ms

E[∥∇F f(x
t)− gf(xt)∥2] ≤ ΘL2

s

m(s+1)−1∑
t=ms

E[∥xt+1 − xt∥2

Proof First, we derive a bound on the sequence fms arising in the BMSE property. Summing this
sequence from s = 0 to s = S.

σsfms ≤
s∑

l=0

M2σs(1− ρF)
m(s−l)

n

m(s+1)−1∑
k=ms

n∑
i=1

E[∥∇F fi(x
k+1)−∇F fi(x

t)∥2]

≤
s∑

l=0

M2σl(1− ρF

2)m(s−l)

n

m(s+1)−1∑
k=ms

n∑
i=1

E[∥∇F fi(x
k+1)−∇F fi(x

t)∥2]

≤
∞∑
l=0

(1− ρF
2
)l
M2σs

n

m(s+1)−1∑
k=ms

n∑
i=1

E[∥∇F fi(x
k+1)−∇F fi(x

t)∥2]

=
2M2σs

nρF

m(s+1)−1∑
k=ms

n∑
i=1

E[∥∇F fi(x
k+1)−∇F fi(x

t)∥2]

(20)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

For Mms similarly:

σsMms ≤ σs

fms +
M1

n

m(s+1)−1∑
k=ms

n∑
i=1

E[∥∇F fi(x
k+1)−∇F fi(x

k)∥2]

+ (1− ρM)m
S∑

s=1

σsMm(s−1)

≤ σs

M1ρF + 2M2

nρF

m(s+1)−1∑
k=ms

n∑
i=1

E[∥∇F fi(x
k+1)−∇F fi(x

k)∥2]

+ (1− ρM
2

)m
S∑

s=1

ρs−1Mm(s−1)

≤

(∞∑
l=0

(1− ρM
2

)ml

)
σs

M1ρF + 2M2

nρF

m(s+1)−1∑
k=ms

n∑
i=1

E[∥∇F fi(x
k+1)−∇F fi(x

k)∥2]

≤ 2σsΘ

n

m(s+1)−1∑
k=ms

n∑
i=1

E[∥∇F fi(x
k+1)−∇F fi(x

k)∥2]

≤ 2ΘL2
sσs

m(s+1)−1∑
k=ms

n∑
i=1

E[∥xk+1 − xk∥2]

(21)

From assumption 1, we have the conclusion.

Lemma 8 θ ≥ 1 and that f is LS − RSC with µ ≥ 0. For any ∇ > 0, the following inequality
holds:

f(xt+1)−f(x∗) ≤ 1

2λ′ ∥∇f(x∗)∥2+λ′

2
∥xt+1−x∗∥2+Ls

2
∥xt+1−xt∥2+(

Ls/λ
′ − vs
2

)∥xt−x∗∥2

(22)

Proof: from RSS and RSC condition, when η < 1
Ls

, we have:

f(x∗) ≥ f(xt) +
〈
∇f(xt), x∗ − xt

〉
+

vs
2
∥xt − x∗∥2 (23)

and
f(xt+1) ≤ f(xt) +

〈
∇f(xt), xt+1 − xt

〉
+

Ls

2
∥xt+1 − xt∥2 (24)

From (23) and (24), we have:

f(xt+1)− f(x∗) ≤
〈
∇f(xt), xt+1 − x∗〉+ Ls

2
∥xt+1 − xt∥2 − vs

2
∥xt − x∗∥2

≤ λ′

2
∥∇f(xt)−∇f(x∗)∥2 + λ′

2
∥∇f(x∗)∥2 + 1

2λ′ ∥x
t+1 − x∗∥2 + Ls

2
∥xt+1 − xt∥2 − vs

2
∥xt − x∗∥2

≤ λ′

2
∥∇f(x∗)∥2 + 1

2λ′ ∥x
t+1 − x∗∥2 + Ls

2
∥xt+1 − xt∥2 + (

λ′Ls − vs
2

)∥xt − x∗∥2

(25)

Lemma 9 From RSS-condition, we have:

f(xt+1)− f(xt) ≤
〈
∇f(xt), xt+1 − xt

〉
+

Ls

2
∥xt+1 − xt∥2

≤
〈
∇f(xt)− g(xt), xt+1 − xt

〉
+
〈
g(xt), xt+1 − xt

〉
+

Ls

2
∥xt+1 − xt∥2

(26)

From lemma 1 , let x = xt, we have:

f(xt+1)− f(xt) ≤
〈
∇f(xt)− g(xt), xt+1 − xt

〉
− 2− 2γk − ηLs

2η
∥xt − xt+1∥2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Lemma 10 (Proofed in (Liu & Foygel Barber, 2020)) The relative concavity of hard-thresholding
is given by

γk =

√
k∗

k

2

Lemma 11 Let b ∈ Rd be an arbitrary vector and b ∈ Rd be an arbitrary vector and x ∈ Rd be
any K-sparse signal. For any k ≥ K, we have the following bound:

∥Hk(b)− x∥2 ≤
√
ν∥b− x∥2, ν =

√
1 +

(
K/k +

√
(4 +K/k)K/k

)
/2

Lemma 12 (Proofed by de Vazelhes et al. (2022)) Let F be a sub section of [d], of size s, with
(s, d) ∈ N2

∗. We have the following:

Eu∼U(Sd) ∥uF ∥ ≤
√

s

d

Eu∼U(Sd) ∥uF ∥2 =
s

d

Eu∼U(Sd) ∥uF ∥4 =
(s+ 2)s

(d+ 2)d

(27)

Lemma 13 Let the random vector u drawn from the multivariate Gaussian distribution N (0, Id).
For the L-smooth function fi and any x ∈ Rd, i ∈ [n], the estimator in Eq.(2) satisfies:

∇̂fi(x, u) = uFu
⊤∇F fi(x) +

Lv

2
usi(x, u)∥u∥2, (28)

and its expectation w.r.t. u is

Eu [gI,i(x, u)] =
1

θ
∇F f(x

t) + (1− 1

θ
)∇F f(x

0) +
Lv

2
τi(x, u),

Proof of Lemma 13 For the RSS condition, we have the following Taylor expansion,

fi(x+ µu) = fi(x) + µ ⟨∇fi(x), u⟩+
µ2

2
u⊤∇2fi (x

′)u,

where x′ ∈ (x, x+ vu). From the definition of ∇F fi(x), we have

gI,i(x, u) = uF ⟨u,∇fi(x)⟩+
v

2
u⊤∇2fi (x

′)uuF

= uFu
⊤∇fi(x) +

Lv

2
si(x, u)∥u∥2uF

where the last equality employs the fact that 0 ⪯ ∇2fi (x
′) ⪯ L for any accessible x′, and the

function si(x, u) is confined to the range [0, 1]. Taking the expectation w.r.t. u for ∇̂fi(x), we have

E
[
∇̂Ifi(x, u)

]
=

fi(x+ µu)− fi(x)

µ
uF

= E[uF < u⊤,∇fi(x) >] +
Lv

2
E
[
si(x, u)∥u∥2uF

]
=

√
s

d
∇fi(x) +

Lv

2
E
[
si(x, u)∥u∥2uF

]
.

Since
∥∥E [si(x, u)∥u∥2uF

]∥∥ ≤ E
[∥∥∥si(x, u) ∥u∥2 uF

∥∥∥] ≤ E
[∥∥∥u∥2uF

∥∥] = E [∥uF ∥], with

Eq.(27) E [∥uF ∥] ≤
√

s
d , we then have

∥∥E [si(x, u)∥u∥2u]∥∥ ≤
√

s
d . For the expected norm,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

we have

E
[∥∥∥∇̂fi(x, u)− uFu

T∇F fi(x
∗)
∥∥∥2]

(4)
= E

[∥∥∥∥uFu
⊤∇F fi(x) +

Lµ

2
si(x, u) ∥u∥2 uF − uFu

T∇F fi(x
∗)

∥∥∥∥2
]

≤ L2µ2

2
E
[
∥u∥4∥uF ∥2

]
+ 2Eu∥u∥2∥uF ∥2Ei∥∇F fi(x)−∇F fi(x

∗)∥2

≤ L2µ2s

2d
+ 2

q

d
E∥∇F fi(x)−∇F fi(x

∗)∥2

Lemma 14 Let v be any vector in Rd. For the random vector u with the Gaussian distribution, i.e.,
u ∼ N (0, Id), we have

Eu

[∥∥uFu
⊤v
∥∥2] = q

d
∥v∥2

Proof.
Eu

[∥∥uFu
⊤v
∥∥2] = Eu

[
∥uF ∥2∥u∥2∥v∥2

]
=

q

d
∥v∥2

Lemma 15 For the L-smooth function fi, i ∈ [n], the expected value of gt defined in Eq.(13) is

Eu,ut,i

[
gt
]
=

1

θ

√
s

d
∇F f

(
xt
)
+ (1− 1

θ
)

√
s

d
∇F f

(
wt
)
+

Lv

2
τi,k,

where ∥τi,k∥ =
∥∥∥Eu,ut,i

[
1
θ (si (x

t, ut)− si (w
t, ut)) ∥ut∥2 ut

F + s (wt, u) ∥u∥2uF

]∥∥∥ with the

norm ∥τi,k∥ ≤ 2
√
q/d.

C PROOF FOR FIRST-ORDER ALGORITHM

Proof of Theorem 1:
from Lemma 8,9 and 2, we have:

E[(η + δ)f(xt+1)− f(x∗)] + δ′E[(f(xt+1)− f(xt))]

≤ δ′
〈
g(xt)−∇F f(x

t), xt − xt+1
〉
− (

1 + δλ′ − 2γk
2

)∥xt+1 − x∗∥2 + 1 + δLs/λ
′ − δvs

2
∥xt − x∗∥2

+
δ

2λ′ ∥∇F f(x
∗)∥2 − (

1− δLs

2
+ δ′

2− 2γk − ηLs

2η
)∥xt − xt+1∥2 + η

〈
∇F f

(
xt−1

)
− g(xt−1), xt − x∗〉 .

(29)

Let λ′ = 1
κs

,α = 1+ δ/κs − 2γk. Multiplying (29) by αt , and summing over the epoch t = ms to
t = m(s+ 1)− 1, we have:

m(s+1)−1∑
t=ms

αtE[(η + δ)f(xt+1)− f(x∗) + δ′(f(xt+1)− f(xt))]

≤ 1

2
∥xms − x∗∥2 − 1

2
αm(s+1)∥xm(s+1) − x∗∥2 + ηκs

2

m(s+1)−1∑
t=ms

αt∥∇F f(x
∗)∥2

+

m(s+1)−1∑
t=ms

αtE
[
δ
〈
∇F f

(
xt−1

)
− g(xt−1), xt − x∗〉+ δ′

〈
g(xt)−∇F f(x

t), xt − xt+1
〉

− (
1− δLs

2
+ δ′

2− 2γk − δLs

2η
)∥xt − xt+1∥2

]
(30)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Here, we have:

αt < αT ≤ αT−1 lim
m→∞

(1 +
1

m
)m = eαT

where e is Euler’s number. We use Lemma 7 with σk = αT to bound the MSE. Recall ρ =
min{ρM , ρF } and η/κs − 2γk ≤ ρ

2 .This choice for σs satisfies the conditions of Lemma 7 because
αmk(1−ρ)mk ≤ αm(k−1)(1−ρ/2)mk. We use the fact that the gradient oracle is recursively biased
to bound the trem

〈
∇F f

(
xt−1

)
− ∇̃F f(x

t−1), xt − x∗
〉

and
〈
g(xt)−∇F f(x

t), xt − xt+1
〉

≤
∥g(xt) − ∇F f(x

t)∥ · ∥xt − xt+1∥. After that, summing the inequality from s = 0 to s = S − 1,
T = Then:

S−1∑
s=0

αms

m(s+1)−1∑
t=ms

E[(η + δ)f(xt+1)− f(x∗) + δ′(f(xt+1)− f(xt))]

≤ 1

2
∥xt − x∗∥2 − 1

2
αmS∥xt+1 − x∗∥2 + δκs

2

mS∑
t=0

αt∥∇F f(x
∗)∥2

+ C

S−1∑
s=0

αms

m(s+1)−1∑
t=ms

E∥xt − xt+1∥2

(31)

Where C = e
(

3B2η
2ϵ + 3B2ηL

2ϵΘ+ δ′
√
2ΘLs − (1−δLs

2 + δ′ 2−2γk−ηLs

2η)
)

.δ′ = 1
vs
η. We see C

is zero if:

δ =
2 1
vs

+ 1− (3B2

ϵ + 6B2L
2ϵΘ+ 1

vs
Ls

√
2Θ)η − 2γk

Ls

Recalling that we have 1+2nγk

nκs
≤ δ ≤ 2γk

κs
. So we have

1 + 2nγk
nκs

≤
2 1
vs

+ 1− (3B2

ϵ + 6B2L
2ϵΘ+ 1

vs
Ls

√
2Θ)η − 2γk

Ls
≤ 2

γk
κs

That is:
2γkLs

κs
+ 2γk − (2 1

vs
+ 1)

3B2

ϵ + 6B2L2ϵΘ+ κs

√
2Θ

≤ η ≤
Lsκs+2nγkLs

nκs
+ 2γk − (2 1

vs
+ 1)

3B2

ϵ + 6B2L2ϵΘ+ κs

√
2Θ

leaves So the step size in the theorem statement ensures C = 0 we have

(η + δ + δ′)

T−1∑
t=0

αtE[f(xt+1)− f(x∗)]− δ′
T−1∑
t=0

αtE[f(xt)− f(x∗)]

≤ 1 + δLs/λ
′ − δvs

2
∥xt − x∗∥2 − 1 + δLs/λ

′ − δvs
2

αmK∥xt+1 − x∗∥2 + δ

2λ′

m(K−1)∑
k=0

αk∥∇F f(x
∗)∥2

(32)

Since δ′ = Ls

vs
and η < 1

Ls
< 1 + 1

m , we would like to show that (1 + δ + δ′) ≥ αδ′ so that the
terms on the first line telescope.

δ′αmKE[f(xmK)− f(x∗)] +
1

2
αmK∥xmK − x∗∥2

≤ δ′E[f(x0)− f(x∗)] +
1

2
∥x0 − x∗∥2 + δ

2λ′
αmK − αK

α− 1
∥∇f(x∗)∥2

(33)

Here we get the theorem.
Proof of Theorem 2:
from Lemma 4,8 and 9, we have:
E[(η + δ)f(xt+1)− f(x∗) + δ′(f(xt+1)− f(xt))]

≤ (η + δ′)
〈
g(xt)−∇f(xt), xt − xt+1

〉
− (

1 + δλ′ − 2γk
2

)∥xt+1 − x∗∥2 + δ

2λ′ ∥∇f(x∗)∥2

+
1 + δLs/λ

′ − δvs
2

∥xt − x∗∥2 − (
1− ηLs − δLs

2
+ δ′

2− 2γk − ηLs

2η
)∥xt − xt+1∥2 + ηL

2n
(1− 1

θ
)∥xt − φi

t∥2

(34)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Let λ′ = 1
κs

,α = 1 + δ/κs − 2γk < 1 + 1
m . Multiplying (34) by αt , and summing over the epoch

t = mk to t = m(k + 1)− 1 for some k ∈ N0, we have:

m(s+1)−1∑
k=ms

αtE[(η + δ)f(xt+1)− f(x∗) + δ′(f(xt+1)− f(xt))]

≤ 1

2
αmk∥xmk − x∗∥2 − 1

2
αm(k+1)∥xm(k+1) − x∗∥2 + δκs

2

m(s+1)−1∑
k=ms

αt∥∇f(x∗)∥2

+

m(s+1)−1∑
k=ms

αtE
[ηL
2n

(1− 1

θ
)∥xt − φi

t∥2 + (η + δ′)
〈
g(xt)−∇f(xt), xt − xt+1

〉
− (

1− ηLs − δLs

2
+ δ′

2− 2γk − ηLs

2η
)∥xt − xt+1∥2

]

(35)

Let δ < κs(2γk + 1
m), we have:

αt < αm(k+1) ≤ αmk lim
m→∞

(1 +
1

m
)m = eαmk

where e is Euler’s number. Summing the inequality from epoch k = 0 to k = K − 1:
K−1∑
k=0

αkE[(η + δ)f(xt+1)− f(x∗) + δ′(f(xt+1)− f(xt))]

≤ 1

2
∥xt − x∗∥2 − 1

2
αmK∥xt+1 − x∗∥2 + δκs

2

m(K−1)∑
k=0

αks∥∇f(x∗)∥2∞

+

K−1∑
k=0

αmk

m(s+1)−1∑
t=mk

eE
[ηL
2n

(1− 1

θ
)∥xt − φi

t∥2 + (η + δ′)
〈
g(xt)−∇f(xt), xt − xt+1

〉
− (

1− ηLs − δLs

2
+ δ′

2− 2γk − ηLs

2η
)∥xt − xt+1∥2

]
(36)

We use Lemma 7 with σk = αm(k + 1) to bound the MSE. Recall ρ = min{ρM , ρF } and
δκs − 2γk ≤ ρ

2 .This choice for σs satisfies the conditions of Lemma 7 because αmk(1 − ρ)mk ≤
αm(k−1)(1 − ρ/2)mk We use the fact that the gradient oracle is memory-biased to bound the term
1
n

∑n
i=1 ∥xt − φi

k∥2 and
〈
g(xt)−∇f(xt), xt − xt+1

〉
≤ ∥g(xt) − ∇f(xt)∥ · ∥xt − xt+1∥. This

leaves

η

K−1∑
k=0

αkE[(1 + δ)f(xt+1)− f(x∗) + δ′(f(xt+1)− f(xt))]

≤ 1

2
∥xt − x∗∥2 − 1

2
αmK∥xt+1 − x∗∥2 + δκs

2

m(K−1)∑
k=0

αk∥∇f(x∗)∥2

+ C

K−1∑
k=0

αmk

m(s+1)−1∑
t=mk

eE∥xt − xt+1∥2

(37)

Where C = e
(

ηLsB1

2 (1− 1
θ) + (η + δ′)

√
2ΘLs − (1−ηLs−δLs

2 + δ′ 2−2γk−ηLs

2η)
)

.δ′ = L2
s

vs
η. We

see C is zero if:

δ =
2
L2

s

vs
+ 1− (LsB1(1− 1

θ) + (
L2

s

vs
+ 1)Ls(2

√
2Θ + 1))η − 2γk

Ls

Recalling that we have 1+2nγk

nκs
≤ δ ≤ 2γk

κs
. So we have

1 + 2nγk
nκs

≤
2
L2

s

vs
+ 1− (LsB1(1− 1

θ) + (
L2

s

vs
+ 1)Ls(2

√
2Θ + 1))η − 2γk

Ls
≤ 2

γk
κs

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

That is:

2γkLs

κs
+ 2γk − (2

L2
s

vs
+ 1)

LsB1(1− 1
θ) + (

L2
s

vs
+ 1)Ls(2

√
2Θ + 1)

≤ η ≤
Lsκs+2nγkLs

nκs
+ 2γk − (2

L2
s

vs
+ 1)

LsB1(1− 1
θ) + (

L2
s

vs
+ 1)Ls(2

√
2Θ + 1)

So the step size in the theorem statement ensures C = 0 we have

η(1 + δ + δ′)

K−1∑
k=0

αkE[f(xt+1)− f(x∗)]− δ′
K−1∑
k=0

αkE[f(xt)− f(x∗)]

≤ 1 + δLs/λ
′ − δvs

2
∥xt − x∗∥2 − 1 + δLs/λ

′ − δvs
2

αmK∥xt+1 − x∗∥2 + δ

2λ′

m(K−1)∑
k=0

αk∥∇f(x∗)∥2

(38)

Since δ′ = Ls

vs
and η < 1

Ls
, we would like to show that (1 + δ + δ′) ≥ αδ′ so that the terms on the

first line telescope.

ηδ′αmKE[f(xmK)− f(x∗)] +
1

2
αmK∥xmK − x∗∥2

≤ ηδ′E[f(x0)− f(x∗)] +
1

2
∥x0 − x∗∥2 + δ

2λ′
αmK − αK

α− 1
∥∇f(x∗)∥2

(39)

Here we get the theorem.

D PROOF FOR ZEROTH-ORDER ALGORITHM

D.1 GRADIENT ORACLE IN ZEROTH-ORDER OPTIMIZATION

we define:

∇̂F f(x, u, µ) =

∑n
i=1 fi(x+ µu)− fi(x)

µ
uF

To be convenience, we define:

∇̂F fi(x, u) = ∇̂F fi(x, u, µ); ∇̂F f(x, u) := ∇̂F f(x, u, µ)

First we need to get the algorithm. We have two vision, first is vr and the second is dvr. Here is the
dvr:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Proof:

E∥v − x∗∥2 ≤ E∥xt − x∗∥2 + η2E∥ĝtI(xt)∥22 − 2η
〈
xt − x∗,EĝtI(xt)

〉
≤ E∥xt − x∗∥2 + η2E∥ĝtI(xt)∥22 − 2η

〈
xt − x∗,

1

θ

√
s

d
∇F f

(
xt
)
+

√
s

d
(1− 1

θ
)∇F f

(
wt
)
+

Lµ

2
τi,t

〉
≤ E∥xt − x∗∥2 + η2E∥ĝtI(xt)∥22 −

2η

θ

√
s

d

[
f(xt)− f(x∗)

]
− 2η(1− 1

θ
)

√
s

d

[
f(x0)− f(x∗)

]
− (

vsη

θ
)

√
s

d
∥xt − x∗∥22 − ηvs(1−

1

θ
)

√
s

d
∥x0 − x∗∥22 − 2η(1− 1

θ
)

√
s

d

[
f(xt)− f(x0)

]
+ ηLs(1−

1

θ
)

√
s

d
∥x0 − xt∥22 +

η

λ

√
s

d
∥τi,t∥2 +

√
s

d
λη∥xt − x∗∥2

≤ (1− ηvs
θ

√
s

d
+ λη

√
s

d
)∥xt − x∗∥22 − ηvs(1−

1

θ
)

√
s

d
∥x0 − x∗∥22

+ ηLs(1−
1

θ
)

√
s

d
∥x0 − xt∥22 −

2η

θ

√
s

d

[
f(xt)− f(x∗)

]
− 2η(1− 1

θ
)

√
s

d

[
f(x0)− f(x∗)

]
+ 2ηLs(1−

1

θ
)

√
s

d

[
f(x0)− f(xt)

]
+

η

λ

√
s

d
∥τi,t∥2 + η2E∥ĝtI(xt)∥22

≤ (1− ηvs
θ

√
s

d
+ ηLs2(1−

1

θ
)

√
s

d
+ λη

√
s

d
)∥xt − x∗∥22 − (ηvs(1−

1

θ
)− 2ηLs(1−

1

θ
))

√
s

d
∥x0 − x∗∥22

− 2η

√
s

d

[
f(xt)− f(x∗)

]
+

η

λ

√
s

d
∥τi,t∥2 + η2E∥ĝtI(xt)∥22

(40)

For any i ∈ [n] and x with supp(x) ⊂ I, consider:

ϕi(x) = fi(x)− f(x∗)− < ∇fi(x
∗), x− x∗ >

Since ∇ϕi(x
∗) = ∇fi(x

∗)−∇fi(x
∗) = 0, we have ϕi(x

∗) = minxϕ(x), which implies:

0 = ϕi(x
∗) ≤ minηϕi(x− η∇Fϕi(x)) ≤ min

η
ϕi(x)− η∥∇F ∥2 +

Lsη
2

2
∥∇Fϕi(x)∥22

= ϕi(x)−
1

2Ls
∥∇Fϕi(x)∥22

(41)

where the second inequality follows from the RSS condition and the last equality follows from the
fact that η = 1

Ls
minimizes the function. From (41), we have:

∥∇F fi(x)−∇Ifi(x
∗)∥22 ≤ 2Ls[fi(x)− fi(x

∗)− < ∇F fi(x
∗), x− x∗ >]. (42)

Since the sampling of i from [n] is uniform, we have from (42)

E∥∇F fi(x)−∇Ifi(x
∗)∥22 =

1

n
∥∇F fi(x)−∇Ifi(x

∗)∥22 ≤ 2Ls[F (x)− F (x∗)− < ∇FF (x∗), x− x∗ >]

≤ 2Ls[F (x)− F (x∗)+ < ∇FF (x∗), x− x∗ >] ≤ 4Ls[F (x)− F (x∗)]
(43)

where the last inequality is from the restricted convexity of F (x) and the fact that ∥(x−x∗)CI ∥0 = 0

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

By the definition of g in (3.4), we can verify the second claim as:

E∥g(x)∥22 = E∥1
θ
∇̂Ifi

(
xt, uk

)
− 1

θ
∇̂Ifi (wk, uk) + ∇̂If (wk, u) ∥

≤ 4

θ2
E∥uF,iu

T∇Ifit(x)− uF,iu
T
i ∇Ifit(x

∗)∥2 + 4E∥∇FF (x∗) + τ∥2

+ 4∥uFu
T (∇Ifi(φ)−∇Ifi(x

∗))− 1

θ
uF,iu

T
i (∇Ifi(φ)−∇Ifi(x

∗))∥2

+ E∥uF ∥2∥u∥2∥(∇Ifi(φ)−∇Ifi(x
∗))− E(∇Ifi(φ)−∇Ifi(x

∗))∥2

≤ 4s

θ2d
E∥∇Ifit(x)−∇Ifit(x

∗)∥2 + (8 +
4

θ2
)
q

d
∥∇Ifit(φ)−∇Ifit(x

∗)∥2

+ 4E∥∇FF (x∗) + τ∥2

≤ (
4s

θ2d
Ls −

1

2η

√
s

d
)E∥x− x∗∥2 + (8 +

4

θ2
)
q

d
Ls∥φ− x∗∥2

+
2

η

√
s

d

[
f(xt)− f(x∗)

]
+ 4E∥∇FF (x∗) + τ∥2

(44)

So we have:

E∥v − x∗∥2 ≤ (1− ηvs
θ

√
s

d
+ ηLs2(1−

1

θ
)

√
s

d
+ λη

√
s

d
+ η2((

4s

θ2d
Ls −

1

2η
))∥xt − x∗∥22

− (ηvs(1−
1

θ
)

√
s

d
− (ηLs(1 +

1

δ
)(1− 1

θ
))

√
s

d
− η2Ls

4s

θ2d
− 8η2Ls

q

d
)∥x0 − x∗∥22

+

√
s

d
∥τi,t∥2 + 4η2E∥∇FF (x∗) + τi,t∥2

(45)

That is:

E∥xt+1 − x∗∥2 ≤ α(1−
√

s

d
(
ηvs
θ

− ηLs2(1−
1

θ
)− λη) + η2(

4

θ2
Ls −

1

2η
∥xt − x∗∥22

− α(ηvs(1−
1

θ
)

√
s

d
− (ηLs(1 +

1

δ
)(1− 1

θ
))

√
s

d
− η2Ls

4s

θ2d
− 8

q

d
η2Ls)∥x0 − x∗∥22

+ α

√
s

d
∥τi,t∥2 + α4η2E∥∇FF (x∗) + τi,t∥2

(46)

We let β = α(1 − ηvs
θ

√
s
d + ηLs2(1 − 1

θ)
√

s
d + λη

√
s
d + η2 4s

θ2dLs2 − 2η, and γ = α(ηvs(1 −
1
θ)
√

s
d − 2ηLs(1− 1

θ)
√

s
d − η2Ls

4s
θ2d − 8η2Ls

q
d)If we use a count θ, Then we have:

E∥xm − x∗∥2 ≤ (βm − βm − 1

β − 1
γ)E∥x0 − x∗∥22

+
βm − 1

β − 1
α

√
s

d
∥τi,t∥2 +

βm − 1

β − 1
α4η2E∥∇FF (x∗) + τi,t∥2

(47)

E MORE ALGORITHM

F MORE EXPERIMENTS

Ridge Regression Ridge regression is a commonly used biased estimation linear regression
method in statistics and machine learning. It improves the stability and generalization ability of
the model by adding a regularization term (ℓ2 norm) to the least squares method. For consistency in
narration, we consider the expression for ridge regression as follows:

fi(ω) = (x⊤
i ω − yi)

2 +
λ

2
∥ω∥22,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 2 StochAstic Recursive grAdient algoritHm with Hard-Thresholding(SARAH-HT)
Input: Learning rate η, maximum number of iterations T , initial point x0, SVRG update frequency

m, and number of coordinates to keep at each iteration k.
Output: xT .

for r = 1, . . . , T do
x(0) = xr−1;
v(0) = 1

n

∑n
i=1 ∇fi(x

(0));
x(1) = x(0) − ηv(0)

for t = 0, 1, . . . ,m− 1 do
Randomly sample it ∈ {1, 2, . . . , n};
v(t+1) = ∇fit(xt+1)−∇fit(xt + v(t));
x(t+1) = Hk(x

(t) − ηvt+1);
end for
xr = x(t′), random t′ ∈ [m− 1]

end for

Algorithm 3 Stochastic bias variance reduced Hard-Thresholding algorithm (BVR-SHT)
Input: Learning rate η, maximum number of iterations T , initial point x0, SVRG update frequency

m, and number of coordinates to keep at each iteration k.
Output: xT .

for r = 1, . . . , T do
x(0) = xr−1;
Compute µ = 1

n

∑n
i=1 ∇fi(x

(0));
for t = 0, 1, . . . ,m− 1 do

Randomly sample ir ∈ {1, 2, . . . , n};
x̄(t+1) = x(t) − η(1θ (∇̂fit(x

(t))− ∇̂fit(x
(0))) + µ));

x(t+1) = Hk(x̄
(t+1));

end for
xr = x(t′), random t′ ∈ [m− 1]

end for

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

where λ is the regularization parameter, ω is the model weight. We randomly generate each xi from
a hyper-sphere with a unit radius in Rd, and the true model weight ω∗ is drawn from a Gaussian
distribution N (0, Id×d). Each yi is calculated as yi = xT

i ω
∗. In our ZO comparative experiment,

we set the constants as such: n = 10, d = 5, λ = 0.5. Before training, we preprocess each column
by subtracting its mean and dividing it by its empirical standard deviation. We run each algorithm
with k = 3, q = 200, µ = 10−4, s2 = d = 5, and for the variance reduced algorithms, we choose
m = 10 and bias coefficient θ = 2. For all algorithms, the learning rate η is found through grid-
search in {0.005, 0.01, 0.05, 0.1, 0.5}. We choose the η giving the lowest function value (averaged
over several runs) at the end of training. We stop each algorithm once its IZO reaches 80,000. All
curves are averaged over 3 runs, and we plot their mean and standard deviation in Figure 3. It can
be observed that BVR-SZHT converges faster than other algorithms and reaches lower loss values.

Figure 2: Loss values of ZO algorithms in ridge regression tasks

In the first-order part, we define bias coefficient θ = 2 or n and use gradients instead of zeroth-order
oracle. All curves are also averaged over 3 runs, and we plot their mean and standard deviation in
Figure 2. It can be observed that SARAH-HT converges faster than other algorithms.

Figure 3: Loss values of FO algorithms in ridge regression tasks

Sensitivity analysis To validate the bias cancellation effect of SARAH in the first-order hard-
thresholding algorithm and BSVRG-HT in the zeroth-order hard-thresholding algorithm, we con-
ducted sensitivity analysis based on ridge regression experiments. In first-order algorithms, since
the bias from hard thresholding is restricted solely by k, we subtracted the loss function of BVR-
SHT from that of SARAH-HT (as shown in Figure 3). Due to the inevitable oscillations in the early
stages of convergence, which can affect observation, we focus more on the stable phase of the itera-
tions. As k increases, the difference in loss functions grows, indicating that SARAH shows a greater
advantage over BVRSZHT when variance is large, thanks to its stronger variance cancellation effect.
For the zeroth-order algorithm, we conduct a sensitivity analysis on µ based on the ridge regression
experiments for BVR-SZHT and SARAH. We emphasize once again that µ can control the bias of
the zeroth-order gradient. We observed that BVR-SZHT is not sensitive to changes in µ, whereas
SARAH’s convergence gradually worsens as µ increases. This demonstrates that BVR-SZHT can
partially offset the bias introduced by the zeroth-order gradient.

Black-box Adversarial Attacks Adversarial attacks trick machine learning models by adding
carefully designed subtle perturbations to inputs, leading to mispredictions. Black-box adversarial

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 4: Sensitive Analysis for FO(left) and ZO(right)

attacks occur when attackers can’t access a model’s internals and must deduce its behavior from in-
puts and outputs. The Black-box attack method is closer to real-world attack scenarios. Therefore,
we consider a few-pixel universal adversarial attack scenarios and assume there is a well-trained
classifier that can only be accessed as a black box. In this scenario, zeroth-order algorithms ex-
cel over first-order ones in black-box settings as they don’t need model gradients, estimating them
through output queries instead. As is usual in black-box adversarial attacks, we maximize the fol-
lowing Carlini-Wagner loss (Carlini & Wagner, 2017; Chen et al., 2017), which promotes the model
the model to make incorrect predictions:

fi(ω) =max{Fyi(clip(xi + ω))−max
j ̸=yi

Fj(clip(xi + ω)), 0},

where F denotes a pre-trained model, xi is the i-th image (rescaled to have values in [−0.5, 0.5])
with true class yi, clip denotes the clipping operation into [−0.5, 0.5], ω is the universal perturbation
that we seek to optimize, and each Fj outputs the log-probability of image xi being of class n as
predicted by the model (j ∈ {1, .., J}, J is the number of classes, similarly to (Chen et al., 2017;
Huang et al., 2019)). We use the pre-trained model on the CIFAR-10 as the model F . It can be
obtained from the supplementary material of (de Vazelhes et al., 2022). Similarly to Liu et al.
(2018), we evaluate the algorithms on a dataset of n = 10 images from the test-set of the CIFAR-10
dataset(Krizhevsky & Hinton, 2009). We set k = 60, µ = 0.001, q = 10, s2 = d = 3, 072, the
number of inner iterations of the variance reduced algorithms to m = 10 and the bias coefficient 1

θ =
0.65. We check at each iteration the number of IZO, and we stop training if it exceeds 600. Finally,
we grid-search the learning rate η in {0.001, 0.005, 0.01, 0.05} and select the one that minimizes
the loss value for each algorithm. The training curves are presented in Figure 5. We can observe
that BVR-SZHT achieved the lowest loss value and showed significant performance improvement
compared to VR-SZHT in this tasks.

Figure 5: Loss values of ZO algorithms in black-box adversarial attack

Sparse Feature Selection Feature selection is a crucial step in reducing dimensionality and im-
proving model interpretability, especially when dealing with high-dimensional biological datasets
like scRNA-seq data. In our work, we applied several feature selection algorithms, BSVRG-HT,
SAGA, and SARAH-HT, to efficiently select a subset of features that best represent the underlying
biological signals. SAGA-LASSO, a popular approach for sparse logistic regression, uses the L1
penalty to encourage sparsity while leveraging stochastic optimization to solve large-scale problems
efficiently. We conducted feature selection on scRNA-seq data and MINST/CIFAR-10 datasets from
colorectal cancer cell lines. Following feature selection, we trained a deep neural network (DNN)
to classify cell types based on the selected features. We optimized the hyperparameters, such as

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

learning rates and batch sizes, for each feature selection algorithm to maximize the classification
accuracy. The results of our experiments demonstrate the effectiveness of these methods in high-
dimensional biological settings. BVRSZHT and SARAH both provided significant performance
improvements in feature reduction while maintaining high accuracy. The selected features were
subsequently used to train the DNN classifier, resulting in robust and interpretable predictions of
cell type identities.

Dataset Algorithm Accuracy Num Features Selection Time (s)
Cancer BVRSZHTn 0.8850 2863 71.92
Cancer SAGA-LASSO 0.9204 3470 645.07
Cancer BVRSZHT12 0.8673 2863 68.30
Cancer VRSZHT 0.8496 2863 73.12
Cancer SARAH 0.8938 2863 65.66
CIFAR-10 BVRSZHTn 0.4575 1843 153.32
CIFAR-10 SAGA-LASSO 0.5102 3053 5148.21
CIFAR-10 BVRSZHT12 0.5109 1843 152.18
CIFAR-10 VRSZHT 0.5029 1843 150.75
CIFAR-10 SARAH 0.5126 1843 153.08
MNIST BVRSZHTn 0.9593 235 70.09
MNIST SAGA-LASSO 0.9729 644 1131.67
MNIST BVRSZHT12 0.9563 235 70.43
MNIST VRSZHT 0.9407 235 70.63
MNIST SARAH 0.9616 235 64.00

Table 2: Reasult in sparse feature selesction

28

	Introduction
	Understanding Bias in Optimization
	Bias and Convergence
	Biased variance reduce estimation
	Hard-Thresholding operator
	Zeroth-Order Gradient

	Muti-Bias Interaction in Hard-Thresholding
	First-Order hard-thresholding
	Zeroth-Order Hard-Thresholding
	Conclusion

	Biased Hard-Thresholding Algorithm
	Biased First-Order Hard-Thresholding Algorithm
	Biased Zeroth-Order Hard-Thresholding Algorithm

	Experiments
	Conclusion
	Notations and Definitions
	Lemma
	Proof of Lemma 1:
	Proof of Lemma 2 , 3 and 5:
	Proof of Lemma 4:
	Proof of lemma 6
	 Other lemmas

	Proof for First-Order algorithm
	Proof for zeroth-order algorithm
	gradient oracle in zeroth-order Optimization

	More Algorithm
	More Experiments

