Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

BACKWARD CHAINING CIRCUITS IN A TRANSFORMER
TRAINED ON A SYMBOLIC REASONING TASK

Jannik Brinkmann®' Abhay Sheshadri’> Victor Levoso™ Paul Swoboda*
Christian Bartelt!

University of Mannheim 2Georgia Institute of Technology ®Independent
4Heinrich-Heine University of Diisseldorf

ABSTRACT

Transformers demonstrate impressive performance on a range of reasoning bench-
marks. To evaluate the degree to which these abilities are a result of actual rea-
soning, existing work has focused on developing sophisticated benchmarks for
behavioral studies. However, these studies do not provide insights into the inter-
nal mechanisms driving the observed capabilities. To improve our understanding
of the internal mechanisms of transformers, we present a comprehensive mecha-
nistic analysis of a transformer trained on a synthetic reasoning task. We identify a
set of interpretable mechanisms the model uses to solve the task, and validate our
findings using correlational and causal evidence. Our results suggest that it imple-
ments a depth-bounded recurrent mechanisms that operates in parallel and stores
intermediate results in selected token positions. We anticipate that the motifs we
identified in our synthetic setting can provide valuable insights into the broader
operating principles of transformers and thus provide a basis for understanding
more complex models.

1 INTRODUCTION

Transformer-based language models (Vaswani et al.,[2017) demonstrate impressive performance on
reasonin tasks (Kojima et al.,[2023)), mathematical problem-solving (Cobbe et al.,[2021)), and plan-
ning (Huang et al.,2022). However, despite strong performance on certain reasoning benchmarks, it
remains unclear to what extent these abilities are a result of actual reasoning or simple pattern mem-
orization (Huang & Chang} [2023)). To understand the reasoning capabilities of language models,
existing work has focused on developing sophisticated benchmarks for behavioral studies (Tafjord:
et al., 2021; [Saparov & Hel 2023} |Valmeekam et al.,|2023). However, the conclusions drawn from
these studies do not provide insights into the internal mechanisms driving the observed capabili-
ties. In contrast, recent work in the field of mechanistic interpretability attempts to understand the
algorithms that models implement by reverse-engineering their internal mechanisms, and describ-
ing them at a certain level of abstraction (Elhage et al.| [2021). For example, Nanda et al.| (2023a)
reverse-engineered how a small transformer model implements modular addition, providing insights
into the specific computations performed by different components of the model. Similarly, |Olsson
et al.[(2022)) discovered “induction heads” in transformers, which enable a distinct copying mecha-
nism that is considered to be crucial for the in-context learning abilities of language models.

Contributions This paper studies reasoning in language models by reverse-engineering the in-
ternal mechanisms of a transformer trained on a symbolic multi-step reasoning task. Specifically,
we focus on path finding in a tree, a variation of the task proposed in [Saparov & He| (2023). By
analyzing the internal representations of the model, we identify several key mechanisms:

1. A specific type of copying operation implemented in attention heads, which we call deduction
heads. These are similar to induction heads as observed in [Olsson et al.| (2022). In our context,

tEqual contribution. Correspondence to jannik.brinkmann@uni-mannheim.de. The code is available at
github.com/abhay-sheshadri/backward-chaining-circuits,

'In this paper, we consider a form of deductive reasoning as studied in |[Saparov & He|(2023). For a discus-
sion of different forms of reasoning, refer to Huang & Chang| (2023).

mailto:jannik.brinkmann@uni-mannheim.de
https://github.com/abhay-sheshadri/backward-chaining-circuits

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

deduction heads intuitively serve the purpose of moving one level up the tree. These heads are
implemented in multiple consecutive layers which allows the model to climb the tree multiple
layers in a single inference step.

2. A parallelization motif whereby the early layers of the model choose to solve several subprob-
lems in parallel that may be relevant for solving harder instances of the task.

3. A heuristic for tracking the children of the current node and whether these children are leaf
nodes of the tree. This mechanism is used when the model is unable to solve the problem using
deduction heads in parallel.

We validate our findings using correlational and causal evidence, using techniques such as linear
probing (Alain & Bengio, 2018)), activation patching (Vig & Belinkov, 2019)), and causal scrub-
bing (Chan et al.| 2022).

2 METHODS

Linear Probes. To investigate whether information is encoded in intermediate representations of
the model, we use linear probes (Alain & Bengio, 2018)) implemented as a linear projection from
the residual stream. This involves training a logistic regression model on a dataset of activations x*
to predict an auxiliary classification problem, where x! are the activations at position i in layer .
Activation Patching. To evaluate the importance of a model component for a given prediction,
we intervene by patching in the activations it would have had on a different input (also called re-
sampling ablations) (Vig et al,, |2020; [Meng et al., [2022). This involves using a clean input s with
an associated target prediction r, and a corrupted input s’ with a different target r’. Then, we cache
the activations of the component on s, and evaluate the effect of patching in these activations when
running the model on s’. To evaluate the effect of this intervention, we compute the difference in
logits: LD(r, ") = Logit(r) — Logit(r’).

Causal Scrubbing. To evaluate specific hypotheses about internal mechanisms, we use causal
scrubbing which evaluates the effect of behavior-preserving resampling ablations (Chan et al.,[2022).
Specifically, given a hypothesis about which component of a model implements a specific behavior,
we replace the activations of that component on some input with activations on another input, where
our hypothesis predicts that the activations represent the same thing. Then, we evaluate the impact
of this intervention by computing how much of the initial performance is recovered. In contrast to
activation patching, which provides insights about whether a specific activation is causally linked to
the output, causal scrubbing provides stronger evidence about the role of activations.

3 EXPERIMENTAL SETUP

Task Description We focus on path finding in trees as a modified version of the task proposed
by [Saparov & He| (2023). Our adaptation shifts the focus from reasoning in natural language to
abstract symbolic reasoning. This allows us to better understand motifs that the models might be
using to solve analogous problems in natural language. In our experimental setup, we generate
training samples by generating binary trees uniformly at random from the set of all trees with 16
nodes. Then, for each tree, a leaf node is randomly selected as the goal node (see Figure[I). The
model is given the edge list [A1]1[B11, [A2]1[B21,... [A,][By], the selected goal node [G], and
the root node [P], and should predict the path from the root node to the goal [P,] [P3] ... [Py]
such that [P,,] = [G], as shown in Figure @ Thus, to predict the next step in the path, the model
must perform multiple reasoning steps in a single forward pass without relying on techniques such
as chain-of-thought or scratchpad (Wei et al., [2022)), making the task non-trivial.

Model and Training In our experiments, we use a 6-layer, decoder-only transformer with an
embedding dimension of 128, a single attention head per layer, and a feed-forward dimension of
512, resulting in a total of 1.2 million parameters. The training dataset consists of 150,000 generated
trees. The edge lists of these trees are shuffled to prevent the model from learning simple heuristics
and encourage structural understanding of trees. To evaluate the performance of our model, we
compute the accuracy based on the exact match of complete sequences using greedy decoding. Our

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

1. Generate a Random Tree 2. Select a Leaf Node as Goal 3. Generate the Path

T

TR R A
A9h 299Y @@@
$8db” & ddb & edb

Figure 1: Data Generation. To generate our training set, we (1) generate a binary tree, (2) select a
random leaf node as the goal node, and (3) determine the path from the root to the goal node.

Prompt: 10 -3 , 10 —-14 , 3 -7 , 3 —»1 , 7 —6 , Edge List
6 -13 , 7 -5 , 1 —15 , 15 —-9 , 14 —4 |, 14 —8 , 4 =0

0O -2 , 0 —»11 , 8 —12 9 : 10 Goal Node : Root Node
Model Qutput: | —+3 1 [—»15 — 9 Path

Figure 2: Prompt Format. The model receives input in a structured format, with each box represent-
ing a token. The edge list of the tree is denoted as token pairs [A;] [B1],..., [A,][By], followed
by the task specification, including the goal [G] and the root node [P;]. The model’s objective
is to predict the nodes in the path [P,] ... [P,], culminating in the goal node [P,] = [G]. For
simplification, our tokenization distinguishes tokens representing source and target nodes of each
edge, suchas [15] and [—15].

model achieves 99.7 % accuracy on a test set of 15,000 unseen trees, despite seeing just a small
fraction of all possible trees during training (see Appendix [C). This suggests that generalization is
required for meaningful performance and that the model is capable of solving the task.

4 RESULTS

In this section, we present a mechanistic interpretation of the internal mechanisms of the model and
provide correlation and causal evidence for these mechanisms. Our findings suggest that the model
uses an interpretable and meaningful backward chaining algorithm to perform pathfinding in a tree.
To help guide the reader, we present an intuitive explanation before breaking down the individual
algorithmic steps.

The Backward Chaining Algorithm First, the model aggregates the source and target nodes of
each edge in the edge list into the target node position (see Appendix [D.T). Then, the model starts
at the goal node and moves up the tree one level with each layer of the model. This mechanism
is implemented using specific attention heads, which we term “deduction heads” (see Section {.T)).
By the composition of multiple deduction heads in consecutive layers, the model can traverse the
tree upwards for up to L — 1 edges, where L is the number of layers in the model. We refer to
this mechanism as backward chaining, inspired by the use of the term in the symbolic artificial
intelligence literature (Russell & Norvig, [2009). In more complex scenarios, where the required
path exceeds the depth of the model, it relies on backward chaining from multiple nodes in the tree
in parallel (see Section[4.2)). This creates multiple subpaths that can be combined to find the correct
next step. In addition, the model uses a simple heuristic as a fallback mechanism, where it identifies
child nodes of the current position and evaluates whether these are leaf nodes of the tree. This
enables the model to make informed guesses when backward chaining alone is insufficient to solve
the problem (see Appendix [D.2).

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

4.1 BACKWARD CHAINING USING DEDUCTION HEADS

The most important mechanism the model uses to predict the correct next step is an iterative algo-
rithm, which we refer to as backward chaining. The algorithm starts at the goal node and climbs
the tree one step at a time. To this end, the model copies the target node [G] into the final token
position [P;] and then applies what we call “deduction heads” in each subsequent layer.

Mechanism: Deduction Heads The
function of deduction heads is to search for

the edge in the context in which the cur-
rent position is the target node [B], find the [H 1]D[H ﬁ[]@[ﬁ 4]@@[” 3]@@@

corresponding source token [A], and then (€) Backward

copy the source token over to the current m D ﬁ E Chammg 3 m @ B @

position. Thus, deduction heads complete

the pattern by mapping [A] [B] ... [B] — [% 1L)ERI)= 4] lo][= 3]l Ce)

A]. In other wor his mechanism en-
[A] other words, this mechanism e A) Edge Token (8) Goal

ables the model to go one step up the tree Concatenat,on TD @ﬁ@@ﬁ Movement 0

and append [A] after having seen the last

[B] in the sequence. This mechanism de- B YUEEDLNREALDRE D DEER

pends on edge-token concatenation, which

copies information about the source token Fjoyre 3: Backward Chaining. Given an input prompt,
[A] onto the target token [B] for eachedge the model concatenates edge tokens in a single token
in the context (see Appendix [D.T). position (A), and copies the goal node into the final
By composition of multiple deduction token position (B). The next step is then identified by
heads in consecutive layers, the model is applying an iterative algorithm that climbs the tree one
able to climb multiple steps up the tree. 1€vel per layer (C).

This creates a subpath at the final token

position whose lengths is equivalent to the

number of layers involved. In our model, we observe that the attention heads after the first layer can
act as deduction heads, resulting in a backward chaining depth of at most L — 1 steps.

Experiment: Causal Scrubbing To confirm that the model uses backward chaining to predict the
next step for paths up to a depth of L — 1, we use causal scrubbing (see Section[2)). Specifically, we
hypothesize that the attention head of layer / is responsible for writing the node that is £ — 1 edges
above the goal to the final token position in the residual stream. This implies that the output of the
attention head in layer ¢ should be consistent across trees that share the same node £ — 1 edges above
the goal. To test this, we generate a clean and corrupted graph that share the same node £ — 1 edges
above the goal node. Then, we substitute the output of the head on the clean graph with the output
of the head on the corrupted graph, and measure the difference in the logits.

Results Figure [4] illustrates the effect of this intervention. We find that we can recover most of
the performance (almost 100 %) of the model for paths up to a length of L — 1, providing strong
evidence in favour of our backward chaining hypothesis. We also find that this hypothesis explains
the behaviour of the attentional heads in the first four layers of the model for paths with more than
L — 1 steps; only the attentional heads in the last two layers behave significantly differently, such
that the model ends up making incorrect predictions after we apply causal scrubbing.

4.2 PATH MERGING

In cases where the goal is more than L — 1 steps away from the current position, backward chaining
from the goal node is insufficient. To address this, we find that the model performs backward
chaining in parallel from multiple different positions in the tree and combines the resulting subpaths
to facilitate more complex scenarios.

Mechanism: Path Merging To compute paths for which backward chaining on the final token po-
sition is not sufficient, the model performs backward chaining in parallel from multiple positions in
the tree. To this end, it selects intermediate goals nodes in the tree and performs backward chaining
from them. To store the resulting subpaths, the model identifies tokens that do not contain any useful

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

100 /:\/—\. 4

-100

% of Loss Recovered
r
&0
I T
Iz

-200 4 7 10 13

Path Length

Figure 4: To test whether the model uses back-
ward chaining, we perform causal scrubbing.
We find that we can recover close to 100 % of
the performance for paths up to length L — 1,
providing strong evidence for our backward
chaining hypothesis.

200

150

100

Logit Difference

50

1 4 7 10 13
Path Length

Figure 5: To test whether the model relies on
subpaths stored in register tokens, we perform
resampling ablations on the register token posi-
tions. Our findings demonstrate that these sub-
paths are causally relevant for predictions on
paths of length greater than L — 1.

information for the actual task and uses them to store intermediate results (see Appendix [D.5). We
refer to these tokens as register tokens. This results in a multiple subpaths being stored at different
positions in the sequence. Then, the model can combine these by finding overlapping subpaths. To
illustrate, assuming that a subpath [B]— [C]— [G] has been stored in the final token position and
a different subpath [A]— [E]— [B] has been stored in some register token, the model combines
these subpaths on the final token position, enabling it to move the tree up multiple steps at a time.

Experiment: Register Token Patching To evaluate whether the subpaths stored in the register
tokens have a causal effect on the prediction of the model, we perform resampling ablations on the
register token positions in (i) trees which contain sufficiently long paths such that simple backward
chaining is insufficient, and (ii) positions where nodes have multiple child nodes, ensuring that the
model has to decide between multiple options. The corrupted activations are extracted from another
tree in the same class. Then, we compute the effect of this intervention using the logit difference.

Results Figure [3] illustrates the impact of patching register tokens on the model predictions at
different path lengths. Our results show that the intervention has no effect on performance up to a
path depth of four and minimal effect at depth five, which is consistent with our backward chaining
hypothesis. Beyond this depth, this intervention has a significant effect on the performance. This
suggests that the encoded subpaths are causally relevant for predicting next steps on paths that are
more than I — 1 steps away from the goal. However, our findings also indicate that the predictions
are not solely dependent on these subpaths derived, but other factors besides the subpaths contribute
to the prediction. This includes the influence of a one-step lookahead mechanism, which identifies
child nodes of the current position and increases the probabilities of the children that are not leaf
nodes of the tree (see Appendix [D.2). This enables the model to make informed guesses in cases
where backward chaining alone is not sufficient to solve the problem.

5 CONCLUSION AND DISCUSSION

Our findings in this synthetic setting demonstrate the ability of a transformer to perform deductive
reasoning up to a certain reasoning depth, after which it resorts to simple heuristics. By using paral-
lelized computations to store intermediate results in register tokens and then combining these results
on the final token position, the model demonstrates a form of multi-step deductive reasoning that,
while effective within a given setting, is constrained by architectural inductive biases. This obser-
vation suggests that transformers may exhibit a inductive bias towards adopting highly parallelized
strategies for tasks involving search, planning, or reasoning.

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

ACKNOWLEDGEMENT

Jannik Brinkmann is supported by the German Federal Ministry for Digital and Transport (BMDV)
and the German Federal Ministry for Economic Affairs and Climate Action (BMWK). Abhay She-
shadri and Victor Levoso have been supported by Lightspeed Grants.

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes, 2018.

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned
lens, 2023.

Emily M. Bender and Alexander Koller. Climbing towards NLU: On meaning, form, and under-
standing in the age of data. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault
(eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pp. 5185-5198, Online, July 2020. Association for Computational Linguistics.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency, FAccT ’21, pp. 610-623, New York,
NY, USA, 2021. Association for Computing Machinery.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the Ability and Limitations of Transform-
ers to Recognize Formal Languages. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu
(eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pp. 7096-7116. Association for Computational Linguistics, November 2020.

Eugeéne Charles Catalan. Note sur une équation aux différences finies. Journal de Mathématiques
Pures et Appliquées, 3:508-516, 1838.

Lawrence Chan, Adria Garriga-Alonso, Nicholas Goldowsky-Dill, Ryan Greenblatt, Jenny, Ansh
Radhakrishnan, Buck, and Nate Thomas. Causal Scrubbing: a method for rigorously testing
interpretability hypotheses. 2022.

Bilal Chughtai, Lawrence Chan, and Neel Nanda. Neural networks learn representation theory:
Reverse engineering how networks perform group operations. In ICLR 2023 Workshop on Physics
for Machine Learning, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adria
Garriga-Alonso. Towards automated circuit discovery for mechanistic interpretability, 2023.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers, 2023.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A. Ortega. Neural networks
and the chomsky hierarchy, 2023.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and consequences. Minds
and Machines, 30(4):681-694, 2020.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
associations in auto-regressive language models. In The 2023 Conference on Empirical Methods
in Natural Language Processing, 2023.

Olga Golovneva, Moya Chen, Spencer Poff, Martin Corredor, Luke Zettlemoyer, Maryam Fazel-
Zarandi, and Asli Celikyilmaz. Roscoe: A suite of metrics for scoring step-by-step reasoning,
2023.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens, 2023.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics,
and function using networkx. In Giel Varoquaux, Travis Vaught, and Jarrod Millman (eds.),
Proceedings of the 7th Python in Science Conference (SciPy2008), pp. 11-15, Pasadena, CA
USA, Aug 2008.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Luke Benson, Lucy
Sun, Ekaterina Zubova, Yujie Qiao, Matthew Burtell, David Peng, Jonathan Fan, Yixin Liu, Brian
Wong, Malcolm Sailor, Ansong Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Shafiq Joty,
Alexander R. Fabbri, Wojciech Kryscinski, Xi Victoria Lin, Caiming Xiong, and Dragomir Radev.
Folio: Natural language reasoning with first-order logic, 2022.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. In
Findings of the Association for Computational Linguistics: ACL 2023, pp. 1049—1065, Toronto,
Canada, July 2023. Association for Computational Linguistics.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-
shot planners: Extracting actionable knowledge for embodied agents. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of
the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 9118-9147. PMLR, 17-23 Jul 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners, 2023.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representa-
tions, 2023.

Kevin Meng, David Bau, Alex J Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
(eds.), Advances in Neural Information Processing Systems, 2022.

William Merrill, Yoav Goldberg, Roy Schwartz, and Noah A. Smith. Provable limitations of acquir-
ing meaning from ungrounded form: What will future language models understand? Transactions
of the Association for Computational Linguistics, 9:1047-1060, 2021.

William Merrill, Ashish Sabharwal, and Noah A. Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843-856,
2022.

Neel Nanda and Joseph Bloom. Transformerlens. https://github.com/neelnanda—-io/
TransformerLens, 2022.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress mea-
sures for grokking via mechanistic interpretability. In The Eleventh International Conference on
Learning Representations, 2023a.

https://github.com/neelnanda-io/TransformerLens
https://github.com/neelnanda-io/TransformerLens

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Neel Nanda, Senthooran Rajamanoharan, Janos Kramdr, and Rohin Shah. Fact find-
ing: Attempting to reverse-engineer factual recall on the neuron level, Dec 2023b.
URL https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/

fact-finding-attempting-to-reverse-engineer-factual-recalll

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads, 2022.

Jorge Pérez, Pablo Barceld, and Javier Marinkovic. Attention is turing-complete. Journal of Ma-
chine Learning Research, 22(75):1-35, 2021.

Stuart Russell and Peter Norvig. Artificial intelligence. Pearson, Upper Saddle River, New Jersey, 3
edition, December 2009.

Tilman Réuker, Anson Ho, Stephen Casper, and Dylan Hadfield-Menell. Toward transparent ai: A
survey on interpreting the inner structures of deep neural networks, 2023.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. In The Eleventh International Conference on Learning Representations,
2023.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of arith-
metic reasoning in language models using causal mediation analysis. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 7035-7052, Singapore, December 2023. Association for Computa-
tional Linguistics.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. Transformers as rec-
ognizers of formal languages: A survey on expressivity, 2023.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli (eds.), Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,
pp- 3621-3634. Association for Computational Linguistics, August 2021.

Curt Tigges, Oskar John Hollinsworth, Atticus Geiger, and Neel Nanda. Linear representations of
sentiment in large language models, 2023.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning
and reasoning about change. In Thirty-seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a transformer language
model. In Tal Linzen, Grzegorz Chrupata, Yonatan Belinkov, and Dieuwke Hupkes (eds.), Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pp. 63-76, Florence, Italy, August 2019. Association for Computational Linguistics.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and
Stuart Shieber. Investigating gender bias in language models using causal mediation analysis.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 12388-12401. Curran Associates, Inc., 2020.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan Sun.
Towards understanding chain-of-thought prompting: An empirical study of what matters. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2717—
2739, Toronto, Canada, July 2023a. Association for Computational Linguistics.

https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in GPT-2 small. In The Eleventh
International Conference on Learning Representations, 2023b.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. Transactions on Machine Learning Research, 2022.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
transformers universal approximators of sequence-to-sequence functions? In International Con-
ference on Learning Representations, 2020.

Dylan Zhang, Curt Tigges, Zory Zhang, Stella Biderman, Maxim Raginsky, and Talia Ringer.
Transformer-based models are not yet perfect at learning to emulate structural recursion, 2024.

A EXTENDED DISCUSSION OF RELATED WORK

Expressiveness of Transformers To understand the capabilities of transformers, one line of work
characterizes their theoretical properties (Bhattamishra et al.,[2020; |Merrill et al., 2021} |Pérez et al.,
20215 Merrill et al., 2022; [Liu et al., [2023)). These studies answer questions about the expressive-
ness of the transformer architecture by treating them as approximators of different classes of func-
tions (Yun et al., [2020), or by characterizing the class of formal languages that a transformer can
recognize (Strobl et al., 2023)).

Mechanistic Interpretability In contrast to these theoretical investigations, a number of studies
have adopted an empirical approach in order to understand what transformers learn in practice |El-
hage et al|(2021); [Delétang et al.| (2023); Zhang et al. (2024). Our analysis is inspired by ex-
isting work in the field of mechanistic interpretability, attempting to discover and understand the
algorithms implemented in a model by reverse-engineering its internal mechanisms (Riuker et al.,
2023). To explore these internal mechanisms, the field has adopted techniques such as activation
patching Wang et al.| (2023b), causal scrubbing (Chan et al., |2022), and circuit discovery (Conmy
et al., 2023). In addition, considerable focus has been placed on the study of small models trained
on specialized tasks, such as modular addition (Nanda et al.,|2023a), or group operations (Chughtai
et al.| [2023), providing a more manageable framework for understanding complex computational
processes.

Evaluating Reasoning Capabilities Existing approaches to evaluate the reasoning capabilities of
language models focus on their performance on a range of downstream tasks (Huang & Chang,
2023). To enable a more formal analysis of reasoning, a number of studies have developed sophis-
ticated metrics and benchmarks (Han et al., 2022; |Golovneva et al., [2023; Wang et al.l [2023a)). For
example, Saparov & He|(2023)) use a synthetic question-answering dataset based on a world model
expressed in first-order logic to parse the generated reasoning processes into symbolic proofs for
formal analysis. Their results suggest that language models are capable of making correct individ-
ual deduction steps. However, these approaches stop short of exploring the internal mechanisms
that enable these capabilities (Huang & Chang, [2023). The approach that comes closest to our work
is|Stolfo et al.|(2023)), presenting a mechanistic interpretation of arithmetic reasoning by investigat-
ing the information flow in the model given simple mathematical questions.

B TRANSFORMER NOTATION

Transformers (Vaswani et al.,[2017) represent input text as a sequence t1, to, ..., ¢ of tokens, such
that t; € V where V is a vocabulary. Each token t; is embedded as a vector x{ € R using an
embedding matrix W € RIVI*?, where d is the dimension of the hidden state. These embeddings
initialize the residual stream, which is then transformed through a sequence of L transformer blocks,
each consisting of a multi-head attention sublayer and an MLP sublayer. The representation of token

t; at layer ¢ is obtained by:

xf :xf*1 +af+mf (D

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

where af and m! are the outputs of the attention and MLP sublayers. To predict the next token in

the sequence, it applies an unembedding matrix Wy, € R!V!*? to the residual stream x ¥, translating
it into a probability distribution over the vocabulary.

C EXPERIMENTAL SETUP

C.1 IMPLEMENTATION AND COMPUTING

All experiments were carried out on a single NVIDIA RTX A6000 GPU. The total computa-
tion time for training the transformer model was less than 24 hours. To generate the trees, we
used networkx (Hagberg et al., [2008). For training and execution of all experiments, we used
TransformerLens (Nanda & Bloom| 2022). For details on the model and training configura-
tion, see Tables[T]and

C.2 SI1ZE OF TRAINING SET

Our dataset consists of 150,000 randomly generated examples, each including a labeled binary tree
with 16 nodes. The number of possible unlabeled binary trees with n + 1 nodes is given by the n-th
Catalan number (Catalan, |1838)):

(2n)!
(n+1)!-n!

When considering labeled binary trees, this number grows to (n + 1)! - C(n) unique trees. This
suggests that memorization is infeasible, and generalization is required for meaningful performance.

C(n) =

C.3 TRAINING CONFIGURATION

Table 1: Training Configuration

Parameter Value
Learning Rate le-3
Optimizer AdamW
Batch Size 64
Betas (0.9, 0.99)
Weight Decay 0.01

C.4 MODEL CONFIGURATION

Table 2: Model Configuration

Parameter Value
Number of Layers 6
Number of Heads 1
Residual Stream Dim. 128
Attention Head Dim. 128
Feed-Forward Dim. 512
Activation Function gelu
Vocabulary Size 35
Context Size 63

10

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

D EXTENDED DISCUSSION OF RESULTS

D.1 EDGE TOKEN CONCATENATION

The attention head in the first layer of the model creates edge embeddings by moving the information
about the source token onto the target token for each edge in the context. Thus, for each edge [A]
[B] it copies the information from [A] into the residual stream at position [B]. This mechanism has
some similarities with “Previous Token Heads”, as observed in pre-trained language models (Olsson
et al., [2022; [Wang et al.| [2023a).

Experiment: Linear Probes To validate that the model creates edge embeddings, we train a
linear probe to predict the associated edge given the activations x' at the positions of target nodes.
The probe is trained using 8,000 examples and evaluated on a test dataset of the same size. For
comparison, we also report the performance of a linear probe given the activations x° at the positions
of the target nodes and probes given the activations at the positions of the source node.

Table 3: Performance of linear probes trained to predict the edge [A] [B] given the residual stream
activations at position [A] or [B].

X x}
Linear {[A] — [A][B]} 0.13 0.19
Linear {[B] — [A][B]} 0.11 1.00

Results Table 3] reports the performance of the linear probe measured using the F1 score. We find
that we can successfully extract the source and target token ([A] [B]) from the residual stream
activations x! at the position of the target tokens after the first layer, providing strong evidence
for the edge token concatenation hypothesis as described above. Moreover, it does not encode the
complete edge in the position of the source token, attributed to the causal masking in the attention
mechanism.

D.2 ONE-STEP LOOKAHEAD

We find that the model uses an additional mechanism, which identifies child nodes of the current
position and increases the prediction probabilities of the children that are not leaf nodes of the tree.
This enables the model to make informed guesses in cases where backward chaining is not sufficient.
This mechanism is particularly effective on long paths as these have a lower branching factor in our
experimental setup. Thus, it is a pragmatic strategy to minimize the training error.

Experiment: Linear Probes To validate that the model represents the child nodes of the current
position, including whether these are leaf nodes, we use linear probes. These probes are trained
to predict this information given the activations on the final token position. Table [reports the
performance of the linear probes measured using the F1 score. Our analysis shows that the model
starts to collect information about the child and leaf nodes from the fourth layer and represents both
aspects in the fifth layer.

4
xi X X;

Linear {[P;] — [Childs;]} 0.00 47.88 98.20
Linear {[P;] — [Leafs;]} 0.00 49.71 95.76

Table 4: F1 score of linear probes trained to predict the children of the current position and whether
these are leafs of the tree given the residual stream activations at position [P;].

Experiment: Causal Scrubbing To evaluate the impact of the mechanism, we perform causal
scrubbing such that it incorporates the aforementioned mechanisms. We reuse the experimental
setup from Section [.1] but add additional constraints to our resampling scheme. We avoid resam-
pling the contributions of the target node and register token positions through the attention heads.

11

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

The results are illustrated in Figure [f] We find that we can recover most of the performance of the
model for paths across the full training distribution, providing strong evidence that the observed
mechanisms together account for most of the model behavior.

o
o
g
S 0
x
" L1.H1
8 L2.H1
— -100 L3.H1
S e 4. H1
e 5. H1
° L6.H1

-200

1 4 7 10 13

Path Length

Figure 6: To test the effect of the one-step lookahead, we perform causal scrubbing such that it
accounts for this mechanism. We find that we can recover most of the performance of the model for
paths across the full training distribution, providing strong evidence that the observed mechanisms
together account for most of the model behavior.

Mechanism for Computing Children and Leaf Nodes We provide some insights into how the
model determines which nodes are the children of the current token and which of those are not
leaf nodes of the tree. We find that attention heads L5.H1 and L6.H1 are responsible for this
task, as suggested by Table d] We examine how these attention heads directly compose with the
unembedding matrix. We compute the contribution of each target node position to the logits at the
path position through the attention heads L5 . H1 and L6 . H1. The results are shown in Figure 7}

8>9
8>7
25

e .
)
s
15>2
12>13
0>15

-10.0

Edge in Context
v VY
Vomoe
a5 &
: 5

>0 >1 >2 >3 >4 >5 >6 >7 >8 >9 >10 >11 >12 >13 >14 >15
Output Token

Figure 7: Direct logit attribution from the output of the path position to the target node positions.
We sum the contributions of L5.H1 and L6 . H1 on a specific example.

The QK-circuits of these two heads attend to the target node of every edge, except those for which
the source node is the current path position. Since both nodes of the edge will be represented in the
target node position (see Section [D.T)), we will refer to the target node as the edge. We break down
the mechanism in the OV-circuits of these heads into three components:

1. Each edge decreases the logit of its target node.
2. Each edge increases the logit of its source node.
3. Each token in the path decreases its logit.

As a result of these mechanisms, the logits of the leaf nodes in the graph will decrease while the

logits of the children will increase. For the other nodes, the logit increase from being a parent, and
the logit decrease from being a child node roughly cancel out, causing their logit to remain the same.

12

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

D.3 ATTENTION PATTERNS

Here, we visualize attention patterns of our model on a few example inputs to provide intuition for
the backward chaining mechanism. In each example, we highlight the attention from the final token
position and the register tokens that are causally relevant for the prediction. To determine these, we
use attention knockout |Geva et al.| (2023) on the register token positions. This prevents the final
token from attending to register tokens by zero-ing out the attention weights. This allows us to test
whether critical information propagates from them. More formally, let a, b € [1, N] be two positions
such that a <= b, we block x}, from attending to x/ at layer ¢ < L by updating the attention weights
to that layer:

M = —coVj € [1, H])

a

Thus, this restricts the source position from obtaining information from the target position, at that
particular layer. To avoid information leakage across positions, we block attention edges in multiple
layers rather than a single one. Specifically, we block attention to the register tokens in the final two
layers of the model.

()

L1.H1 6—+9,8—1,12—145—11,7—4,2—3,13—+15,1—+5,9—+2,4— 13,0~ 8,11—-7,14—6,10—0,12— 10—.:12
L2.H1 6— 9,888 12— 14,5— 11,7— 4,2— 3,135\, 1— 5,9892 4— 13,0~ 8,11— 7,14—6,10— 0,12— 10—15:12
L3.H1 6-,8—> 1,12—14,5—11,7—4,2—3,13—15,1—5,9— 2,4-,0-,11—> 7,14—6,10— 0,12— 10—15:12
L4.H1 6—9,8—1,12—14,5—11,7—4,2—3,13—15,1—5,9—2,4— 13,0— 8,115, 145506 10890, 12— 10—15:12
L5.H1 6—9,8~1,12— 14,5_,7—) 4,2—3,13—+15,1—+59—+2,4—13,0—8,11—7,14—6,10— 0|12—> 10—15k12
L6.H1 6—9,8=1,12— 14,5—~11,7—4,2— 3,13— 15,1598, 9— 2,4— 13,0898,11— 7,14=%6,10— 0,12— 10—15:12

Figure 8: Visualization of multi-layer attention patterns on an example input. We show the attention
from three selected positions: the path position, register token at position 39, and register token at
position 44. We show that the path node starts backward chaining from the specified goal, while
the two register tokens start backward chaining from different subgoals. Each token is highlighted
by the color of the token that most strongly attends to it. The intensity of the color is based on the
magnitude of the attention score.

L1.H1 5—+6,15—7,11—2,13—+8,7—0,10—+15,9—1,1—5,10— 14,8—4,6— 12,14— 13,4—9,2— 3,0— 11— 10
L2.H1 5—6,15—7,11—2,13—8,7— 0,10— 15,9— 1, 1[55§,10— 14,354 68 14— 13,4— 9,2— 3,0— 11—12:10
L3.H1 56, 15— 7,11— 2,13858,7— 0,10— 15,988,1— 5,10— 14,8 + 4,6 — 12,14— 13,4—9,2— 3,0— 11—12:10
L4.Hl1 | 5—6,15—7,11—2,13—8,7—0,10— 15,9— 1, 1[5 10— 14,8 — 4,6 — 12, 145418, 4888 2— 3,0— 11—12:10
L5.H1 5—6,15—7,11—+2,13—8,7—0,10— 15,98, 1— 5,10— 14,8+ 4,6 — 12,14— 13,458 2— 3,0— 11—12:10
L6.H1 5—+6,15—7,11—2,13=58,7— 0,10— 15,9—1,1—5,10— 14,8554, 6 — 12,14=13, 4588 2— 3,0— 11—12:10

Figure 9: Visualization of multi-layer attention patterns on an example input, similar to Figure
We show the attention from three different positions: path position, register token at position 39, and
register token at position 45.

13

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

(R

L1.H1 1—+4,6—+9,2—6,9—1512—2,10—12,7—5,11—3,14—13,3—14,4—10,15—0,8— 1,13— 7,8 11—0:8
L2.H1 1—4,6—9,2—6,9— 15, 12888,10— 12,7— 5,11— 3,14— 13,3— 14,4— 10, 15F80,8— 1,13— 7,8 - 11—0:8
L3.H1 1—4,6—9,2— 6,905, 12— 2,102, 7— 5,11— 3,14— 13,3— 14,4—10,15— 0,8 — 1,13— 7,8 11—0:8
L4.H1 1—4,6—9,2586,9— 15,12—2,10— 12,7— 5,11— 3,14— 13,3— 14,45510,15— 0,8 — 1,13— 7,8 - 11—0:8
L5.H1 1—4,6—9,2—6,9— 15 1298,10— 12,7—5,11—3,14— 13,3— 14,4—10,15— 0,8 — 1,13— 7,8 - 11—0:8

L6.H1 1—4,6—9,2=6,9—15,12— 2,108, 7— 5,11— 3,14— 13,314 45910,15— 0,8 — 1,13—57,8— 11—0:8
. J

Figure 10: Visualization of multi-layer attention patterns on an example input, similar to Figure
We show the attention from three different positions: path position and register token at position 41

(A
L1.H1 | 14—4,13—152—5,0—12,10—8,7—2,7—3,12—1,3—13,15—6,11— 9,4— 11,6— 10,5— 14,8 — 0—l:7

L2.H1 14—4,13—15,2—5,0—12,10— 8,7— 2,7— 3,128, 3— 13,1586 11— 9,4— 11,6 — 10,5— 14,8 —+ 0—1:7
L3.H1 | 14— 4,135585 2— 5 0@ 10— 8,7—~2,7—3,12—1,3— 13,15 6,11— 9,4— 11,6~ 10,5— 14,8 » 0—1:7
L4.H1 14—4,13—15,2—5,0—12,10—8,7—2,7— 3,12— 1,3E8l8,15—6,11— 9,4— 11,6 — 10,5— 14, SE§—1:7
L5.H1 | 14—4,13—+15,2—5,0—12,10=58,7—2,7— 3,12— 1,3— 13,15F56,11— 9,4— 11, 650, 5-+14,8— 0—1:f

L6.H1 | 14— 4,13}00§ 2=+5 02512, 10888, 7— 2,7— 3,12— 1, 35808, 156, 115 9,4 — 11,65 10,5514, 8E80— 1.
(. J

Figure 11: Visualization of multi-layer attention patterns on an example input, similar to Figure
We show the attention from three different positions: path position and register token at position 36

4 A
L1.H1 8—+6,10—»3,2—+53—-+94—12,13—2,11—+135—-0,15—+4,14—7,6— 14,12—11,10— 15,9—8,0— 1—.:10

L2.H1 8—6,10—3,2—5,3—9,4— 12,1388 11— 13,5 0,15— 4,14— 7,6— 14, 1255, 10— 15,9— 8,0l —1:10
L3.H1 8—6,10—3,2—5,3— 9,4512,13— 2, 1155918 550 . 15— 4,14— 7,6 — 14,12— 11,10— 15,9— 8,0— 1—1:10
L4.H1 | 8—6,10—3,2—5,3—9,4— 12,138 11— 13,5— 0,154 14— 7,6— 14, 125, 10— 15,9— 8J0— 1—1:10
L5.H1 8—6,10—3,2—5,3—+9,4— 12,1352, 115518,5~0,15—4,14—7,6— 14,12—11,10— 15,9— 8,0— 1— 1l
L6.H1 | 8—6,10— 3,258,379 4— 12,1352, 1 1518,5— 0,154 14— 7,6— 14, 1251, 10— 15,9=58,0— 1—1:10

Figure 12: Visualization of multi-layer attention patterns on an example input, similar to Figure
We show the attention from three different positions: path position, register token at position 41, and
register token at position 42.

14

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

D.4 ATTENTION HEAD COMPOSITION

In this section, we perform additional experiments to verify that L1 .H1 performs edge token con-
catenation, and L2 . H1 is a deduction head. |[Elhage et al.|(2021) show that transformers can learn
induction heads in two different ways involving different compositions: the K-composition, where
the Wi of the head reads from the output of the previous head, and V-composition, where the Wy,
of the head reads from the output of the previous head. Our findings suggest that the deduction
heads we found in our model are a result of K-composition. In the following subsections, we adopt
the conventions of |Elhage et al.[(2021)).

Layer 1 - Edge Token Concatenation Head 11.H1 serves as a variation of a previous token
head studied in [Elhage et al.| (2021)), effectively transferring source node information to the corre-
sponding target node in each edge. This is captured in the QK-circuit:

Mgy =Wp W WhH

Mg % (see Figure | shows that the attention values are maximized when the query vector cor-
responds to the position embedding of an incoming node, and the key vector corresponds to the
position embedding of the immediately preceding outgoing node. Then, following the goal node at
position 45, the head persistently attends to the goal position.

0

Position Embedding in Query
w B w N =
o o o o o

(=2}
o
L

T T T
0 10 20 30 40 50 60
Position Embedding in Key

Figure 13: Visualization of Mg

Layer 2 - Deduction Head 1.2.H1 is a deduction head, which attends to the target node that
matches the goal at positions in the path. It then moves information about the source node of that
edge into the last position in the window. It can be viewed as a reverse induction head (Olsson et al.}
2022) that uses a K-composition (Elhage et al.| [2021)) to map a sequence [A] [B] ... [A] — [B],
where [B] represents target nodes and [A] represents source nodes. This can again be verified by
looking at the QK-circuit:

Mcng = (MLP’(Wgy, Wg) + ngWE)VVcngWJzT

This matrix shows the interactions of the embedding of the source and target tokens at layer 2 (see
Figure[T4). Our analysis is complicated by the fact that our model is not attention-only, as attention
heads can compose with each other through the MLP, which makes similar analyses in later layers
of the model intractable. However, our causal scrubbing results provide evidence that the attention
heads in the subsequent layers implement a similar mechanism to L2 . H1, but use the output of the
previous layer’s attention head to backward chain further up the tree.

D.5 REGISTER TOKENS AND SUBGOALS

In this section, we provide more details on the role of the register tokens in our model. From each
register token position, the model attends to a random node in the context and starts backward-
chaining from that node. The initial selection of a node by the register token can be viewed as
identifying a subgoal, from which the model can perform backward chaining. This precomputation

15

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Key Token

01234567 8 9101112131415

Query Token (Goal Representation)

Figure 14: Visualization of a subset of M, (,13 x showing interactions between source and target node
tokens.

occurs before the actual goal is specified and occurs fully parallel to the main backward-chaining
mechanism. These findings hint that transformers may exhibit an inductive bias towards learning
highly parallelized algorithms when trained to perform search, planning, or reasoning.

To see whether there is any structure in the selection of subgoals, we empirically study which node
the register tokens select as subgoals across 1000 samples. The results are illustrated in Figures[T3]

100

N g

SO AW W W
A N H O 00 O
L L L L

H 20

QN v 2% X 6 6 A %Q,\,Q\/\,\"L,\’/b\’b(\‘;)éo&\@

Register Token Position

S
o

Label Attended
Figure 15: Preferences in Subgoal Selection (1): Ratio of register tokens attending to different
source tokens aggregated across 1000 samples. We consider a register token to select a subgoal
based on an attention threshold of 0.3.

We observe that the model usually attends to the same tokens, e.g. position 36 attends to token [6]
most of the time. However, we observe an interesting dynamic in which the register token selects a
different subgoal in two cases:

1. If the node doesn’t occur before the register token position, it cannot attend to it due to
causal masking.

2. If the node is a leaf node of the tree since it doesn’t have a corresponding source token to
attend to.

To validate this, we again examine the probability of the model selecting subgoals in trees where the
most common subgoal occurs before the register token position and is not a leaf node (see Figure[T6).

Further exploration reveals that the subgoals selected by each register token position can be some-
what understood through an examination of the embedding matrices. We evaluate a selection of
seven register token positions that are used on several different examples and show their preferred
subgoals. By composing the embedding and position embedding matrices with the QK-circuit of
the first layer’s attention head, we define Rp as:

Rp = WpW§ Wi

16

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

. 100
38 . 80

60
41 4

. 40
u{ 20
451 -

T T T T T T T T T T 0

Q\’L%V‘)@\%Q\Q,\:\,QQ,&‘,\’%

w w
© o
L L

Register Token Position
ey
N
)

Label Attended

Figure 16: Preferences in Subgoal Selection (2): Ratio of register tokens attending to different
subgoals aggregated across 1000 samples on trees where the node is attends to most often is not a
leaf node of the tree and occurs before the register token. We again consider a register token to select
a subgoal based on an attention threshold of 0.3.

where W is the embedding matrix, Wp is the position embedding matrix, and Wé, Wé are the
key and query projection matrices of L1 .H1. This explains how the model selects subgoals, by
having the key for each positional embedding of a register token match with some specific source
node token.

- 1.0
B
3
O 35 . 0.8
<
o 4
£39 0.6
3
841—
€ 42 4 . 0.4
w
S 444 . 0.2
ol M
— .l lgo
QO v ¥ % % 9 6 A % 9o ,\/0 ,\"\0,\/’) ,»b‘ \f)

Token Embedding in Key

Figure 17: Plot of Rp

E EXTENDED DISCUSSION

Register Tokens Our model uses some token positions as a form of working memory to store
intermediate results. This observation aligns with |Darcet et al.|(2023)) which found that image mod-
els use some image patches to accumulate global information while discarding spatial information.
Similarly, Goyal et al.|(2023) show that adding uninformative tokens at the end of each prompt can
enhance language model performance on downstream tasks without introducing additional param-
eters, and [Tigges et al|(2023) show that models have “summarization tokens” where information
about the sentiment of the context is aggregated on tokens that do not have inherent sentiment. Our
findings suggest that these techniques enable the model to store more intermediate results and per-
form more computations in parallel. This is consistent with theoretical insights from Merrill et al.
(2022) which highlights how the effective state of a transformer depends on the number of tokens in
the sequence.

Structural Recursion Transformers, which are by definition non-recurrent, struggle with emulat-
ing structural recursion and extracting recursive rules from training data (Zhang et al., |2024). This
aspect of learning is crucial in domains such as programming and formal mathematics, where under-
standing complex relationships relies on these abilities. Our analysis provides insights into possible
reasons for this limitation. In our setting, training the model using standard objectives for next-token
prediction forces the model to unroll the entire recursive structure in a single forward pass. This re-
stricts their abilities to process recursion, leading them to resort to shortcut solutions (Liu et al.
2023).

17

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Reasoning in Transformers There is an ongoing debate about the reasoning capabilities of trans-
formers/Huang & Chang|(2023). Some argue that these models might just be capable of memorizing
patterns without gaining causal understanding, which could lead to diminishing performance on out-
of-distribution data/Bender & Koller|(2020); Floridi & Chiriatti|(2020);|/Bender et al.|(2021); Merrill
et al.(2021). However, there are several observations that suggest that transformers might be capable
of more than just pattern recognition; e.g./Olsson et al.{(2022) found a simple algorithm implemented
in attention heads that contributes to the in-context learning abilities of transformers and applies in-
dependent of the specific tokens. This algorithm is doing more than memorizing patterns and can
in some sense work out-of-distribution. In our synthetic setting, we found that the model learned an
interpretable and meaningful backward chaining algorithm, supporting the claim that transformers
might be capable of a form of reasoning that goes beyond simple pattern memorization. However,
it is important to note that findings from our synthetic settings do not support the boarder claim that
transformers possess general reasoning capabilities, highlighting the need for further investigations.

F LIMITATIONS

Synthetic Task Our experiments were conducted on a symbolic reasoning task. This allowed us to
bypass the complexities associated with natural language, such as multi-token embeddings (Nanda
et al.,[2023b)). In addition, our tokenization distinguishes tokens representing source and target nodes
of each edge, such as [15] and [—15]. Therefore, our findings are specific to our model and it
remains unclear whether large language models trained on natural language use similar mechanisms
to solve this task. However, we anticipate that the motifs we discovered in our synthetic setting can
provide valuable insights into the broader operating principles of transformers and thus provide a
basis for understanding more complex models.

Input Format To prevent the model from learning shortcuts based on the order of the edges in the
prompt, we trained our model on shuffled edge lists. However, our analysis is limited to sequences
in which the edge list is presented in backward order. By backward order we mean a listing of edges
that starts with the leaf nodes and ascends level by level to the root node, as opposed to a forward
order where the listing starts with the root node and progresses downwards through each level. Our
investigation does not extend to a detailed examination of alternative arrangements of the edge list.
However, preliminary observations suggest that the model uses comparable mechanisms with minor
variations, such as the use of different register tokens.

G TUNED LENS

In this section, we provide an additional piece of evidence in favor of the existence of the back-
ward chaining mechanism. To understand how the predictions of a transformer are built layer-by-
layer, Belrose et al.|(2023)) develop the Tuned Lens, a method that involves training a linear model
to translate the activations from an intermediate layer directly to the input of the unembedding layer.

Inspired by this approach, we replace the last n layers of the model with a linear transformation
trained to predict the next token from the residual stream activations x*~". Similar to the Tuned
Lens, this method allows us to skip over these layers and see the current best prediction that can
be made from the model’s residual stream. Intuitively, this allows us to peek at the iterative com-
putations a transformer uses to compute the next token. Here, we present a visualization of some
example trees and the results of the iterative computation (see Figures[I8|to[21)). These figures high-
light the current best prediction a linear transformation could make based on the internal activations.
We project the logits output by the linear model back onto the tree structure to better visualize the
backward-chaining procedure.

18

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Layer 1 Layer 2

=]]

i

Layer 3 Layer 4

o"”}'

"

Layer 5 Layer 6

:;.;- u':')?f

Figure 18: Example 1 (Path Length 5): Results of a linear transformation to predict the next step
based on the residual stream activations after each layer, projected onto the tree structure. The
yellow border highlights the current best prediction(s) of the linear transformation.

i

19

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Layer 1 Layer 2

v A d

Layer 5 Layer 6

Figure 19: Example 2 (Path Length 8): Results of a linear transformation to predict the next step
based on the residual stream activations after each layer, projected onto the tree structure. The
yellow border highlights the current best prediction(s) of the linear transformation.

20

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Layer 1 Layer 2
Layer 3 Layer 4

Layer 5 Layer 6

... @

2t 2t '.

Figure 20: Example 3 (Path Length 10): Results of a linear transformation to predict the next step
based on the residual stream activations after each layer, projected onto the tree structure. The
yellow border highlights the current best prediction(s) of the linear transformation.

21

Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Layer 1 Layer 2

. S

Layer 3 Layer 4

Layer 5 Layer 6

Figure 21: Example 4 (Path Length 13): Results of a linear transformation to predict the next step
based on the residual stream activations after each layer, projected onto the tree structure. The
yellow border highlights the current best prediction(s) of the linear transformation.

	Introduction
	Methods
	Experimental Setup
	Results
	Backward Chaining using Deduction Heads
	Path Merging

	Conclusion and Discussion
	Extended Discussion of Related Work
	Transformer Notation
	Experimental Setup
	Implementation and Computing
	Size of Training Set
	Training Configuration
	Model Configuration

	Extended Discussion of Results
	Edge Token Concatenation
	One-Step Lookahead
	Attention Patterns
	Attention Head Composition
	Register Tokens and Subgoals

	Extended Discussion
	Limitations
	Tuned Lens

