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Figure 1: GPU memory usage comparison between Inf-CL and previous methods (CLIP, Open-
CLIP). The dashed line marks the common GPU memory limit. Memory costs exceeding the bot-
tleneck of 80G A800 are estimated by curve fitting. ❶ Left: With 8×A800, CLIP and OpenCLIP’s
memory consumption increases quadratically, while Inf-CL achieves linear growth, reducing mem-
ory costs by 78× at a batch size of 256k. ❷ Right: At a batch size of 1024k, even with 128 GPUs,
previous methods exceed memory limits, whereas Inf-CL reduces memory demand by 281×.

ABSTRACT

Contrastive loss is a powerful approach for representation learning, where larger
batch sizes enhance performance by providing more negative samples to better
distinguish between similar and dissimilar data. However, scaling batch sizes is
constrained by the quadratic growth in GPU memory consumption, primarily due
to the full instantiation of the similarity matrix. To address this, we propose a
tile-based computation strategy that partitions the contrastive loss calculation to
arbitrary small blocks, avoiding full materialization of the similarity matrix. Fur-
thermore, we introduce a multi-level tiling strategy to leverage the hierarchical
structure of distributed systems, employing ring-based communication at the GPU
level to optimize synchronization and fused kernels at the CUDA core level to re-
duce I/O overhead. Experimental results show that the proposed method scales
batch sizes to unprecedented levels. For instance, it enables contrastive training
of a CLIP-ViT-L/14 model with a batch size of 4M or 12M using 8 or 32 A800
80GB without sacrificing any accuracy. Compared to SOTA memory-efficient
solutions, it achieves a two-order-of-magnitude reduction in memory while main-
taining comparable speed. The code will be made publicly available.

1 INTRODUCTION

Contrastive learning serves as a foundational technique across various applications, such as multi-
modality retrieval (Radford et al., 2021; Luo et al., 2022; Girdhar et al., 2023), self-supervised
representation learning (Chen et al., 2020a; He et al., 2020; Gao et al., 2022), and dense text re-
trieval (Wang et al., 2022). It learns an embedding space in which similar data pairs stay close while
dissimilar ones are far apart (Hadsell et al., 2006; Oord et al., 2018; Weng, 2021). Large batch sizes
are critical to the success of contrastive learning due to their reliance on in-batch negatives (Chen
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Figure 2: (a) Vanilla implementation of contrastive loss gathers features to all devices to calculate
all similarity simultaneously, where the similarity with squared complexity are repeatedly stored in
all devices, causing huge memory costs for loss calculation when batch size increases. (b) Our
Inf-CL significant decreases the memory cost by serial and distributed tile-wise computation.

et al., 2020a; Radford et al., 2021). Specifically, larger batches provide a diverse set of negative
samples, enhancing the model’s ability to learn discriminative representations (Pham et al., 2021).

Despite the above benefits, scaling batch size in contrastive learning is severely limited by GPU
memory. The memory required for computing and storing image-text similarity matrices (see Fig-
ure 2(a)) grows quadratically with batch size, making further scaling impractical and limiting the
potential performance gains, even with advanced hardware. Several methods have been proposed
to address memory limitations in scaling batch sizes for contrastive learning. Gradient-Cache (Gao
et al., 2021) reduces memory usage by decoupling model and loss computations, but the mem-
ory cost of the loss remains a significant bottleneck. OpenCLIP (Ilharco et al., 2021) and DisCo-
CLIP (Chen et al., 2023) improve efficiency by distributing contrastive loss computation across n
GPUs, reducing memory consumption by a factor of n. However, despite advances in memory-
efficient techniques, most studies are limited to a batch size of 128k, restricting the potential of
contrastive learning and the scaling demands of modern models and datasets (Saunshi et al., 2019;
Chen et al., 2022; Kaplan et al., 2020).

In this paper, we introduce Inf-CL, a novel approach to mitigate the quadratic memory cost in
contrastive learning, which is caused by the full instantiation of the similarity matrix for log-sum-
exp (LSE) computation. Instead of storing the entire matrix, Inf-CL partitions the LSE calculation
into smaller, sequentially computed tiles, leveraging the cumulative property of LSE. This confines
memory usage to the tile size and the number of parallel tiles, allowing for a trade-off between
memory and computational efficiency. To enhance practical efficiency, we propose a multi-level
tiling strategy. At a coarse-grained level, image and text batches are distributed across multiple
GPUs, with each GPU performing serial LSE computations on multiple rows. As computations pro-
ceed, asynchronous column-wise data exchange minimizes communication overhead, as illustrated
in Figure 2(b). At a fine-grained level, row-wise computations are parallelized across CUDA cores
within each GPU, consolidating iterations into a single kernel to reduce I/O overhead. Theoretically,
Inf-CL can compute contrastive loss with nearly infinite batch sizes using a small tile size, albeit
with reduced speed. The multi-level tiling strategy is crucial to achieving practical scalability and
efficiency, balancing memory reduction with computation speed.

We evaluate Inf-CL on the image-text contrastive learning task. As shown in Figure 1, Inf-CL
reduces space complexity from quadratic (e.g., O(b2) for CLIP, O(b2/n) for OpenCLIP) to lin-
ear (O(b/n2) for Inf-CL), where b is the batch size and n is the number of GPUs. This significant
reduction in memory cost enables efficient training of large batch sizes. For instance, training a ViT-
L/14 CLIP model with a batch size exceeding 10M on 32 A800 GPUs (80 GB each) requires only
1.44 GB of memory per GPU—over a 30× improvement compared to previous methods. Moreover,
Inf-CL maintains precision consistent with existing approaches, ensuring no loss in accuracy. In
terms of computation time, Inf-CL matches the performance of prior methods, requiring approxi-
mately 59 hours to process a 64k batch size on 8 A800 GPUs. The time cost scales nearly linearly
with batch size, as demonstrated by a batch size increase from 64k to 256k resulting in a roughly 4×
growth in training time (220.3/49.4 ≈ 4).
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In summary, our contributions include:

• We propose a tile-based contrastive loss implementation that iteratively accumulates the
LSE term, removing the need to instantiate the full similarity matrix and significantly re-
ducing memory overhead. This approach theoretically allows training with nearly infinite
batch sizes using sufficiently small tiles.

• We propose a multi-level tiling strategy for a distributed training system, which reasonably
leverages parallelism to achieve a balance between memory and computational efficiency.

• Our experiments demonstrate that Inf-CL scales batch sizes to unprecedented levels (e.g.,
12M for CLIP-ViT-L/14 on 32 A800 80GB GPUs) while maintaining accuracy and com-
parable training speed to state-of-the-art methods.

2 PRELIMINARIES

2.1 DISTRIBUTED TRAINING SYSTEM

Cross-GPU Communication: For scaling batch size, training across multiple GPUs is crucial to
handle memory and computational demands. However, communication overhead between GPUs
can limit performance. Techniques like hierarchical all-reduce and ring-based communication al-
leviate such overhead by optimizing synchronization between GPUs (Liu et al., 2023). Blockwise
parallelism, as employed in methods like ring attention, further improves efficiency by overlapping
computation and communication.

GPU Memory and Execution: The performance of modern deep learning models relies heavily
on hardware resources, particularly GPU memory and execution capabilities. GPUs, like A100s,
typically have two different types of memory: HBM (High Bandwidth Memory) and SRAM (Static
Random Access Memory). HBM serves as the primary memory with a capacity of up to 80GB. In
contrast, SRAM is much smaller (usually measured in megabytes) but offers a significantly faster
access speed, acting as a vital cache for frequently accessed data and enabling rapid computations.
Techniques like FlashAttention (Dao et al., 2022) show that fine-grained control over the memory
access of HBM and the fuse the operations can achieve faster training and less memory usage.

2.2 VANILLA IMPLEMENTATION OF CONTRASTIVE LOSS

In contrastive learning, the objective is to learn an embedding space where similar samples (positive
pairs) are pulled closer, while dissimilar samples (negative pairs) are pushed away. A typical im-
plementation, exemplified by CLIP (Radford et al., 2021), is depicted in Figure 2. The image and
text encoders are trained with contrastive loss after extracting features. For brevity, we only discuss
image-to-text contrastive loss as an example in the following sections, since the implementation of
text-to-image contrastive loss is symmetric. Specifically, given a batch size of b and the in-batch
c-dimensional visual feature I ∈ Rb×c and textual feature T ∈ Rb×c, the image-to-text contrastive
loss is defined as

LI = −1

b

b∑
i=1

log
exi,i∑b
j=1 e

xi,j

(1)

where xi,j = Ii · Tj is the scaled cosine similarity between the i-th image and j-th text, and xi,i

represents the positive pair. Here, we omitted the temperature factor for simplicity.

The vanilla implementation first computes the similarity matrix X ∈ Rb×b = I · T ′ and stores it
in high-bandwidth memory (HBM). Afterward, softmax normalization followed by the calculation
of negative log-likelihood is applied to the similarity matrix. The memory required to store X and
its normalized results scales as O(b2), which can occupy a substantial amount of GPU memory
when b is large. Figure 2 gives an example of training ViT-B/16 with a batch size of 64k, using
model memory optimization techniques such as Gradient Cache (Gao et al., 2021; Pham et al.,
2021). As can be seen, the GPU memory footprint of the model itself is only 5.24GB while the loss
calculation still requires 66GB. This indicates that, with batch size scaling, the memory bottleneck
during training lies in the loss calculation. Although large batch sizes are necessary for improving
model performance (Saunshi et al., 2019; Chen et al., 2022), the traditional implementation struggles
to support them due to excessive memory consumption in the loss calculation.

3
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3 METHOD

3.1 TILE-WISE CONTRASTIVE LEARNING

As discussed in Section 2.2, the root cause of the quadratic memory growth in the vanilla implemen-
tation is the full materialization of the similarity matrix X . To eliminate the memory cost, we first
decompose the operations related to X from the loss function:

LI = −1

b

b∑
i=1

(xi,i − log

b∑
j=1

exi,j ) = −1

b

b∑
i=1

xi,i +
1

b

b∑
i=1

log

b∑
j=1

exi,j , (2)

where the spatial complexity of the first part is O(b), and for the second log-sum-exp (LSE) part,
it is O(b2). Based on this formulation, we introduce a tile-wise contrastive learning method that
avoids the full materialization of X by iterative accumulation between tiles. The following sections
provide a detailed formulation of the forward and backward processes.

Tile-Wise Forward. To reduce the dependency on storing X entirely, we adopt a tile-wise approach
for calculating l. The process is show as below: X1,1 · · · X1,nc

...
. . .

...
Xnr,1 · · · Xnr,nc


︸ ︷︷ ︸

Tiled computation of X

→

 l1,1 · · · l1,nc

...
. . .

...
lnr,1 · · · lnr,nc


︸ ︷︷ ︸

Merged serially via Eq. 4

→

 l1

...
lnr

 = l (3)

where nr and nc represent the number of tiles along the rows and columns, respectively. The
computation proceeds by dividing X into multiple tiles, denoted as Xi,j , and then calculating the
intermediate LSE values li,j = LSE(Xi,j) within each tile. The resulting LSE values from each
column of tiles are then merged serially along the rows to obtain the final global LSE vector l.

To prevent numerical instability and overflow during the merging process, the following numerically
stable operation is performed:

li ← li + log(1 + el
i,j−li), j = 1, . . . , nc, (4)

where the initial value of li is 0. In each iteration, the intermediate value li,j is merged with li, and
after processing all nc tiles, the global LSE vector l is obtained.

During the computation of LSE(Xi,j), direct exponentiation can lead to numerical overflow. To
address this, we compute li,j using the following stabilized formulation:

li,j = log
∑
k

eX
i,j
:,k = mi,j + log

∑
k

eX
i,j
:,k−mi,j

, (5)

where mi,j = maxk X
i,j
:,k is a vector, with each element representing the maximum value of the

corresponding row in Xi,j . This vector acts as a normalization factor, ensuring that the values inside
the exponential function remain numerically stable.

This tile-wise approach significantly reduces the memory requirement by allowing each GPU to
compute and store only a subset of the similarity matrix at any given time, rather than the entire
b × b matrix. Additionally, this method facilitates scaling to larger batch sizes by enabling parallel
computation of the tiles on multiple GPUs or across different nodes in a distributed system.

Tile-Wise Backward. According to the chain rule, the gradients w.r.t. Ii and Tj are
∂LI

∂Ii
=

∑
j

∂LI

∂xi,j
· ∂xi,j

∂Ii
,

∂LI

∂Tj
=

∑
i

∂LI

∂xi,j
· ∂xi,j

∂Tj
. (6)

Taking the gradients w.r.t. Ii as an example, according to Equation 2, the complete formulation is
∂LI

∂Ii
= −1

b

∑
j

(
∂LI

∂xi,i
· ∂xi,i

∂xi,j
· ∂xi,j

∂Ii
− ∂LI

∂li
· ∂li
∂xi,j

· ∂xi,j

∂Ii
)

= −1

b
· Ti +

1

b

∑
j

exi,j−li · Tj .

(7)
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Figure 3: Multi-level tiling strategy. Top: for cross-GPU tiling, each GPU is assigned with multi-
ple rows. The computation and the column-wise communication are performed asynchronously to
reduce the cost. Bottom: for in-GPU tiling, the calculations in each GPU are further divided into
tiles and the row-wise calculation is distributed to multiple CUDA cores. The accumulative opera-
tions of each row are merged into one kernel for reducing I/O times between SRAM and HBM.

From the formula, it can be seen that the second term requires the similarities xi,j with O(b2)
memory in common implementations, whether stored in the forward process or computed directly
in the backward process. To tackle this, we apply the similar tile-based method as the forward
process to compute the gradient. Specifically, we first store l, which has only b elements during
forward propagation, and calculate the gradient w.r.t Ii by iterative accumulation in multiple tiles:

I ′
i ← I ′

i + exi,j−li · Tj , j = 1, . . . , nc,

∂LI

∂Ii
= −1

b
· Ti +

1

b
I ′
i,

(8)

where I ′
i is a temporary variable for accumulation. The detailed algorithm is shown in Appendix.

3.2 MULTI-LEVEL TILING

The scaling of batch size is usually accompanied by the scaling of the number of GPUs. In order to
fully utilize the parallelism between multiple GPUs while exploiting partially serial computation on
a single GPU to reduce the memory cost, we propose a multi-level tiling method that distributes the
above LSE calculation to coarse-grained cross-GPU tiles and fine-grained in-GPU tiles.

Cross-GPU Tile. As shown in Algorithm 1, in data parallel training with n GPUs, the i-th GPU
first processes a portion of images and texts to visual features Ii ∈ Rbs×c and textual features
T i ∈ Rbs×c, where bs = b/n is the batch size in one GPU. Then for the calculation of the contrastive
loss, we distribute computations of different rows to different GPUs and synchronize the columns
between GPUs step-by-step, considering the row-wise characteristic. Specifically, the i-th GPU is
responsible for calculating Xi,: and the corresponding li. For memory considerations, based on
the tiling strategy described in Section 3.1 where only one tile Xi,j is computed at a time, Xi,: is
further divided into Xi,j for n step to calculate li following Equation 4, where the local LSE li,j is
calculated by in-gpu tiling as described in the next part.

Moreover, since the computation of Xi,j while i ̸= j requires the textual feature T j stored in other
GPUs, additional communication overhead is inevitable, especially as the number of GPUs grows.
In order to reduce or even eliminate the communication overhead, we associate all GPUs with a
ring topology, based on the idea of overlapping communication time and computation time overlap
as much as possible. Concretely, starting with T i, each GPU process sends the current textual

5
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features to the next process and receives the textual features from the previous process using the ring
topology while computing Equation 4. In this way, the communication time cost is negligible when
it is greater than the computation time overhead.

Algorithm 1 Forward Process of Multi-level Tile-Wise Global LSE Calculation

Require: Number of GPUs n, in-memory visual features Ii ∈ Rbs×c and textual features T i ∈
Rbs×c for each GPU.

1: for counter = 1 to n do
2: Update LSE:
3: Each GPU computes the local LSE vector via Algorithm 2 with in-memory features.
4: Each GPU updates the LSE vector via Equation 4.
5: Asynchronously Communication:
6: Each GPU sends the in-memory textual feature to the next GPU in the ring.
7: Each GPU receives the textual feature from the previous GPU in the ring.
8: end for
9: Return the final LSE vector li for each GPU .

In-GPU Tile. With the cross-GPU tiling technique, the memory complexity becomes O(b2s) for
directly storing Xi,j where bs = b/n. Since the number of GPU n is somehow limited, we further
introduce in-GPU tiling to reduce the O(b2s) memory cost to O(bs) for enabling further batch size
scaling. Specifically, we first split X̃ = Xi,j into tiles:

X̃ = [X̃i,j ], i = 1, . . . , ñr, j = 1, . . . , ñc, (9)

where ñr = ⌈b/tr⌉ and ñc = ⌈b/tc⌉ and tr and tc is the row-wise and column-wise size of a tile.
For implementation, we distribute rows to multiple CUDA cores to make full use of the parallel
computing power of the GPU, and serial process the row-wise tiles in each kernel by applying
Equation 5 and Equation 4 to X̃i,j , as shown in Algorithm 2.

The iterative computation requires multiple memory access for variable li. To avoid expensive I/O
from HBM to SRAM, we fuse the row-wise iterative calculation into one kernel. Specifically, li

and X̃i,j are allocated in SRAM. In this way, the image features are loaded to SRAM only once at
beginning, and l̃i is written to HBM only once in the end, as shown in Figure 3.

Algorithm 2 Forward Process of Tile-Wise Local LSE Calculation

Require: Visual features: Ĩ ∈ Rbs×c and textual features: T̃ ∈ Rbs×c, the row-wise and column-
wise size of a tile: tr and tc.

1: Divide Ĩ into Ĩi, where i = 1, 2, . . . , ñr.
2: Divide T̃ into T̃ j , where j = 1, 2, . . . , ñc.
3: parallel for each Ĩi do
4: Load Ĩi from HBM to on-chip SRAM.
5: Initialize l̃i = 0 ∈ Rtr .
6: for j = 1 to ñr do
7: Load T̃j from HBM to on-chip SRAM.
8: On chip, compute X̃i,j = Ĩi · T̃ j′ ∈ Rtr×tc .
9: On chip, calculate tile LSE l̃i,j based on Equation 5:

10: l̃i,j = m̃i,j + LSE(X̃i,j − m̃i,j), where m̃i,j = rowmax(X̃i,j).
11: On chip, update LSE l̃i based on Equation 4:
12: l̃i ← l̃i + log(1 + exp(l̃i,j − l̃i)).
13: end for
14: Write l̃i to HBM.
15: end parallel for
16: Return l̃.

6
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Model
Loss (Peak) Memory Cost (GB)

32k 64k 128k 256k 1024k
8×A800 (≈ 8× 80GB)

CLIP 16.67 (46.40) 66.11 (77.94) ✗ ✗ ✗
OpenCLIP 2.27 (43.97) 8.63 (46.38) 33.64 (51.23) ✗ ✗
Inf-CL 0.18 (44.20) 0.36 (46.63) 0.72 (51.46) 1.45 (61.13) ✗
Inf-CL∗ 0.18 (42.40) 0.36 (42.49) 0.72 (42.69) 1.45 (43.07) 6.53 (45.40)

32×A800 (≈ 32×80GB)
CLIP 16.66 (42.85) 66.11 (75.52) ✗ ✗ ✗
OpenCLIP 0.71 (42.46) 2.45 (43.06) 8.98 (44.26) 34.35 (46.71) ✗
Inf-CL 0.05 (42.48) 0.09 (43.08) 0.18 (44.30) 0.35 (46.71) 1.44 (61.20)

Table 1: Training Memory Cost Across Different Hardware and Batch Sizes. Experiments
utilize Data Parallelism with Automatic Mixed Precision for efficient distributed training. The base-
lines include the Vanilla loss (CLIP) and Local loss (OpenCLIP). To minimize memory consump-
tion, Gradient Cache is adopted, with an accumulation batch size of 128. ∗ indicates the use of the
data offload strategy, which reduces memory usage by transferring only a small data batch from CPU
to GPU during each accumulation step. ✗ denotes cases where the baseline exceeds the hardware
memory limit for a given batch size, making training infeasible. Memory cost is evaluated using the
ViT-L/14 architecture and the AdamW optimizer.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset and Data Processing. We assess the effectiveness of our Inf-CL on Laion400M
dataset (Schuhmann et al., 2021) where we used 280M (out of 400M) samples for training due
to the unavailability of images in the remaining samples. Images undergo preprocessing using Ran-
domResizedCrop with a crop ratio of [0.75, 1.33] and a scale of [0.08, 1.0].

Training Hyperparameters. A modified AdaFactor optimizer (Shazeer & Stern, 2018) is employed
for training, following the settings of ViT-g (Zhai et al., 2022a). The optimizer is configured with a
learning rate of 1× 10−3, weight decay of 1× 10−4, and coefficients β1 = 0.9 and β2 = 0.95 (Zhai
et al., 2023). Training spans 8 epochs, using a cosine learning rate schedule with a linear warm-up
during the first 0.5 epoch.

Implementation Details. For distributed training, we employ Data Parallelism (Li et al., 2020)
with Automatic Mixed Precision (float16)(Micikevicius et al., 2017). To support larger batch sizes,
we adopt Gradient Cache (Gao et al., 2021) which decouples contrastive loss computation from the
model’s forward and backward passes. Consequently, the peak memory cost per iteration, Mpeak, is
calculated as:

Mpeak ≈Mdata +max(Mloss,Mbackbone), (10)

where Mdata is the memory for data, Mloss is for loss computation, and Mbackbone is for the model’s
forward and backward operations.

Baselines. We compare our method against two baselines: the vanilla loss from CLIP and the local
loss from OpenCLIP/DisCo-CLIP. The vanilla loss computes a b× b similarity matrix by gathering
both row and column features from all GPUs, while the local loss requires only column features to
calculate a b/n× b similarity matrix, where b and n are the batch size and the number of GPUs.

4.2 COST ANALYSIS

Our method, as detailed in Section 3.2, divides the calculation of contrastive loss into tiles and
distributes them across different GPUs and GPU kernels. To rigorously assess its memory efficiency,
we compare our approach with previous methods like CLIP and OpenCLIP by evaluating “Memory

7
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Budget
Maximum Batch Size (Loss Memory Cost) Improvement

CLIP OpenCLIP Inf-CL (Ours / Sota)
ViT-B/16

8×A800 68k (74.39 GB) 172k (59.95 GB) 800k (3.01 GB) 4.65 (800k/172k)
32×A800 68k (74.39 GB) 360k (66.29 GB) 3456k (3.27 GB) 9.60 (3456k/360k)

ViT-L/14
8×A800 64k (66.11 GB) 152k (47.23 GB) 448k (2.52 GB) 2.94 (448k/152k)

32×A800 64k (66.11 GB) 352k (64.13 GB) 2048k (2.89 GB) 5.82 (2048k/256k)
ViT-L/14 w/ data offload

8×A800 64k (66.11 GB) 184k (69.10 GB) 4096k (26.12 GB) 22.26 (4096k/184k)
32×A800 64k (66.11 GB) 368k (64.13 GB) 12288k (19.59 GB) 33.39 (12288k/368k)

Table 2: Maximum batch size for model training using different hardware and contrastive loss
methods. The training setting of this experiment is aligned with Table 1.
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Figure 4: Training Speed of ViT-L/14 CLIP on 8×A800 for Varying Batch Sizes. The left figure
shows the time per iteration step, while the right displays the time per epoch. Loss calculation con-
tributes minimally to the total iteration time, making Inf-CL’s iteration time comparable to previous
methods. Furthermore, the iteration time of Inf-CL scales linearly with batch size, leading to a
stable training duration of approximately 59 hours per epoch.

Consumption”,“Max Supported Batch Size” and “Speed” across various model architectures and
hardware settings. The effective memory cost is determined by peak memory (Equation 10), which
is the maximum memory needed during an iteration.

Memory Consumption. To illustrate the memory efficiency of Inf-CL, we compared it to previous
methods using the same batch size. Table 1 shows that for loss calculation, Inf-CL requires signifi-
cantly less memory than its predecessors. Specifically, with a batch size of 128k on 8×A800, Inf-CL
only consumes 0.72 GB, whereas OpenCLIP requires 33.64 GB. However, while the memory cost
of loss calculation with Inf-CL is minimal, peak memory usage still increases rapidly with batch size
due to growing data memory, as discussed in “Max Supported Batch Size.” By integrating Inf-CL
with “data offload”, we can mitigate this memory increase, enabling us to train a ViT-L/14 model
with a batch size of 1024k on 8×A800.

Maximum Batch Size. We compare the maximum batch size of Inf-CL with those of previous ap-
proaches under various model architectures (ViT-B/16 or ViT-L/14) and training budgets (8×A800
or 32×A800). As shown in Table 2. Inf-CL significantly outperforms previous SOTA methods,
achieving improvements of 4.65× for ViT-B/16 on 8×A800, which is further increased to 9.60×
when using 32×A800. Notably, as we scale up the model size, the improvements decrease; for in-
stance, from 4.65 to 2.94 when changing from ViT-B/16 to ViT-L/14. To understand this trend, we
analyze peak memory usage. Since Inf-CL has negligible memory requirements, peak memory is
primarily driven by Mbackbone +Mdata. Mbackbone is constant, meaning the rapid growth in peak

8
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Method (Batch Size)
ImageNet MSCOCO R@1

Validation v2 ObjectNet OOD I→T T→I
Vanilla (64K) 74.74 65.30 46.31 66.13 25.71 44.31

OpenCLIP (64K) 74.86 65.22 46.29 66.75 25.98 44.02
Inf-CL (64K) 74.93 65.27 46.13 66.77 26.01 43.95
Inf-CL (256K) 75.12 65.12 46.44 67.15 25.90 44.61
Inf-CL (1024K) 73.58 63.87 44.55 64.60 24.53 41.58

Table 3: Performance Verification. The training strategies is consistent with Table 2. We choose
ViT-B/16 as the model architecture and adopt LiT strategy like Table 4. We evaluate zero-shot top-1
classification accuracy on several data sets, e.g., ImageNet-Validation Deng et al. (2009), ImageNet-
v2 (Recht et al., 2019), ObjectNet (Barbu et al., 2019) and ImageNet-OOD (Hendrycks et al., 2021).
We also evaluate zero-shot image-text top-1 retrieval accuracy on MSCOCO (Chen et al., 2015).

Cross-GPU In-GPU
Data Loss Backbone Peak

ImageNet
Memory Complexity Memory Memory Memory

(Vanilla) 1.96 O(b2) 66.21 8.26 69.24 74.82
(OpenCLIP) 1.96 O(b2/n) 16.96 8.26 20.79 74.86

✔ 1.96 O(b2/n2) 4.81 8.26 12.30 74.78
✔ ✔ 1.96 O(b/n2) 0.81 8.26 12.30 74.93

Table 4: Ablation Study of Multi-level Tiling Strategy. The training strategies is consistent with
Table 2, using the ViT-B/16 architecture. To reduce memory consumption and expedite experimen-
tation, we freeze the image encoder and load pretrained weights as done in LiT. The global batch
size is fixed at 64k with an accumulation batch size of 256 per GPU. These experiments are con-
ducted on 4×A800 (80G) GPUs. “Complexity” denotes the space complexity of loss calculation. b
denotes batch size, while n denotes the number of GPUs.

memory is mainly due to increased Mdata. Since ViT-L/14 has a larger Mbackbone, the remaining
memory can accommodate only a smaller batch size for Mdata. To address this issue, we implement
“data offload”, which allows us to load only a small batch of data onto the GPU for each accumula-
tion step, effectively stabilizing the data memory usage. Therefore, by combining data offload with
our Inf-CL, we can scale the batch size to over 10M on 32×A800.

Training Speed. We compare the training speed of our Inf-CL with previous methods. As shown
in Figure 4, using Inf-CL to train ViT-L/14 on 8×A800 has almost the same speed as previous
methods. Even when increasing batch size beyond the limits of previous methods, Inf-CL maintains
a linear increase in iteration time, with one epoch consistently taking about 59 hours. Combining
training speed results with memory cost results demonstrates that our Inf-CL has superior memory
efficiency, while only introducing a little additional time cost (extra analysis in Appendix A.2).

4.3 PERFORMANCE ANALYSIS

In this section, we investigate whether introducing Inf-CL negatively affects CLIP performance
and whether increasing batch size with Inf-CL enhances performance. Due to the limit of GPU
resources, we utilize the ViT-B/16 with Bert-Base (Devlin, 2018). We follow the training strategy
of LiT (Zhai et al., 2022b) to freeze the visual backbone and use the pre-trained weights instead.

Performance Verification. We evaluate CLIP models trained with different loss implementations,
with the results presented in Table 3. As shown, under the same batch size, our Inf-CL performs sim-
ilarly to previous methods, with performance differences falling within the error margin, confirming
that our design incurs no precision loss in the loss calculations. Furthermore, the results indicate
that increasing the batch size within a certain range yields performance enhancements, thereby un-
derscoring the significance of our method for helping scale the batch size. However, under our

9
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experimental conditions, we currently observe that an excessively large batch size—previously un-
examined in the literatures—results in suboptimal performance. This may be attributed to factors
such as unoptimized hyperparameters, inadequate training iterations, or constraints related to data
size (for a comprehensive analysis, see Appendix A.3). Since our work mainly focus on how to
enable large batch size training, these factors warrant further investigation in future work.

Ablation Study. We ablate multi-level tiling in Table 4 and show that our designs incur no precision
loss in loss calculations. This allows arbitrary combinations to achieve nearly the same zero-shot
classification accuracy (about 74.8% on ImageNet for 64k batch size), while significantly reducing
memory costs. According to the Equation 10, their Mpeak is decided by Mbackbone + Mdata rather
than Mloss + Mdata as in prior methods. For complexity analysis, Cross-GPU tiling is O(b2/n2),
resulting in a memory cost that is 1/n of OpenCLIP (16.96/4.81 ≈ 4 in Table 4). Based on it,
introducing In-GPU tiling can further reduce memory cost and make the growth of memory cost
linear, i.e., O(b2/n2)→ O(b/n2).

5 RELATED WORK

Contrastive Learning: The core idea of contrastive learning is to learn better representations by
distinguishing between positive and negative pairs of samples (van den Oord et al., 2018; Chen et al.,
2020b). This approach demonstrates strong effectiveness across diverse tasks, as the nature of the
paired samples varies depending on the specific application. In image foundation models, such as
SimCLR (Chen et al., 2020a) and MoCo (He et al., 2020), positive pairs are created by augmenting
the same image in different ways. For cross-modal retrieval, as exemplified by CLIP (Radford et al.,
2021) and ALIGN (Jia et al., 2021), the positive pairs consist of aligned image and text samples.
Similarly, for dense text retrieval (Karpukhin et al., 2020; Wang et al., 2022; Zhang et al., 2022),
the positive pairs are composed of query and document pairs. Several works improve contrastive
learning performance by enhancing dataset quality, modifying the loss function, or refining negative
sample selection (Vasu et al., 2024; Zhai et al., 2023; Zhang et al., 2023). Moreover, several studies,
both empirical and theoretical, have demonstrated from various perspectives that larger batch sizes
contribute to learning better representations (Saunshi et al., 2019; Chen et al., 2022). Due to the
quadratic growth of memory usage with batch size in classical contrastive loss, most existing studies
have stopped scaling their batch sizes to 128k, even when leveraging hundreds of GPUs (Radford
et al., 2021; Jia et al., 2021; Yang et al., 2022).

Memory-efficient Training: As deep learning models continue to grow in size and complexity, the
demand for computational resources, particularly GPU memory, has increased significantly. Tech-
niques such as Gradient Checkpointing (Sohoni et al., 2022) recompute activations during back-
propagation to save memory at the expense of additional computation. Flash Attention (Dao et al.,
2022) reduces memory overhead by computing attention in blocks without storing large interme-
diate states. Ring Attention (Liu et al., 2023) distributes long sequence activations across multiple
devices, overlapping computation and communication to train sequences far longer than previous
methods. For contrastive learning, GradCache (Gao et al., 2021) and BASIC (Pham et al., 2021) in-
troduce a gradient caching technique that decouples backpropagation between contrastive loss and
the encoder, which reduces memory usage in the model by accumulating gradients per mini-batch.
OpenCLIP (Ilharco et al., 2021) and DisCo-CLIP (Chen et al., 2023) reducing memory consumption
by distributing the computation of contrastive loss across multiple GPUs.

6 CONCLUSION

This paper addresses the GPU memory bottleneck in scaling batch sizes for contrastive loss. To
overcome the quadratic memory consumption resulting from the full instantiation of the similarity
matrix, we proposed a tile-based computation strategy that partitions the calculation into smaller
blocks, thus avoiding full matrix materialization. Furthermore, we introduced a multi-level tiling
strategy that leverages ring-based communication and fused kernels to optimize synchronization
and minimize I/O overhead. Our experiments demonstrated that our method scales contrastive loss
batch sizes to unprecedented levels without compromising accuracy or training speed. This approach
marks a significant advancement in large-scale contrastive learning, shedding light on further devel-
opments in areas such as self-supervised learning and dense text retrieval.
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A APPENDIX

A.1 BACKWARD PROCESS

Algorithm 3 Backward Process of Multi-level Tile-Wise Global LSE Calculation

Require: Number of GPUs n, saved intermediate variables from the forward pass: in-memory
visual features Ii ∈ Rbs×c and textual features T i ∈ Rbs×c for each GPU, global LSE vectors
li ∈ Rbs .

1: Initialize vector: dIi = 0 ∈ Rbs×c, dTcache = 0 ∈ Rbs×c on each GPUi.
2: for j = 1 to n do
3: Asynchronously Text Feature Communication:
4: Each GPU sends in-memory textual feature to the next GPU and receive the textual

feature from the previous GPU in the ring.
5: Backward Calculation:
6: Index of current text feature tile for each GPU: k = (i+ j − 1) mod n
7: Call Algorithm 4 with (Ii, T k, li) , obtaining gradients dIi

temp and dT k
temp.

8: Update gradients dIi += dIi
temp.

9: Update gradients dTcache += dT k
temp.

10: Asynchronously Gradient Communication:
11: Each GPU sends in-memory dTcache to the next GPU in the ring.
12: Each GPU receive the gradient feature from the previous GPU and write to dTcache.
13: end for
14: dT i = dTcache in each GPU.
15: Return the gradients dIi, dT i for each GPU.

Algorithm 4 Backward Process from of intra-GPU Tile-Wise LSE calculation

Require: Saved intermediate variables from the forward pass: visual features Ĩ ∈ Rb×c, textual
features T̃ ∈ Rb×c, the local LSE vector l̃ ∈ Rb.
The row-wise and column-wise size of a tile: tr and tc,

1: Divide Ĩ into Ĩi, where i = 1, 2, . . . , ñr.
2: Divide T̃ into T̃ j , where j = 1, 2, . . . , ñc.
3: Divide l̃ into l̃i, where i = 1, 2, . . . , ñr.
4: Initialize gradients vectors: dĨ ∈ Rtr×c and dT̃ ∈ Rtc×c.
5: for each Ĩi do
6: Load Ĩi and l̃i from HBM to on-chip SRAM.
7: Initialize dĨi = 0 ∈ Rtr×c.
8: for j = 1 to [b//tc] do
9: Load T̃ j from HBM to on-chip SRAM.

10: On chip, compute X̃i,j = Ĩi · T̃ j
′
∈ Rtr×tc .

11: On chip, compute dX̃i,j = exp(X̃i,j − l̃i) ∈ Rtr×tc .
12: Update gradients dĨi += dX̃i,j · T̃ j .
13: Load dT̃ j from HBM to on-chip SRAM.
14: dT̃ j += Ĩi · dX̃i,j .
15: Write updated dT̃ j back to HBM.
16: end for
17: Write updated dĨi back to HBM.
18: end for
19: return dĨ(i.e. ∂ l̃

∂Ĩ
), dT̃ (i.e. ∂ l̃

∂T̃
).

A.2 ANALYSIS OF TRAINING SPEED EFFICIENCY IN INF-CL

Although Inf-CL might be expected to exhibit slower performance because it breaks the loss cal-
culation to small tiles and serially process these tiles, it achieves comparable speed to previous

14
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Figure 5: Performance of ViT-B/32 across Varying Batch Sizes. Except batch size, other ex-
periment settings ar e consistent. ❶ Left: On CC12M, performance plateaus at a batch size of
approximately 32k. ❷ Right: On Laion400M, performance saturates around a batch size of 256k.

methods, as shown in Figure 4. This is primarily due to two factors: (1) Loss calculation represents
only a minor fraction of the total iteration time, especially for large models, thereby exerting min-
imal impact on the overall iteration time. (2) While Inf-CL has similar computational complexity
to standard contrastive loss, its tiling approach could introduce some speed overhead due to reduced
parallelism. However, Inf-CL fuses the operations of similarity matrix calculation and softmax,
which in regular contrastive loss require two separate communications between SRAM and HBM.
By merging these into a single communication, Inf-CL effectively reduces I/O time, mitigating the
cost of serial tile computation.

A.3 FACTORS INFLUENCING PERFORMANCE WHEN SCALING BATCH SIZE

While larger batch size is theoretically expected to enhance performance Chen et al. (2022), our
experimental results deviate from this expectation. To better understand this discrepancy, we analyze
the factors that impact performance when scaling up batch size.

Hyperparameters. Although larger batch sizes provide more diverse negative samples for con-
trastive learning, potentially improving the embedding space, careful tuning of hyperparameters is
necessary to ensure model convergence. Previous research indicates that when increasing batch
size, the learning rate should be scaled proportionally to maintain a consistent parameter update
norm throughout training (Goyal, 2017). Since a fixed learning rate is used across all experiments,
this may have contributed to the reduced performance observed with larger batch sizes. Moreover,
prior studies suggest that large batch sizes require longer training epochs to ensure sufficient pa-
rameter updates and avoid suboptimal convergence (Hoffer et al., 2017). Overall, the performance
gains from larger batch sizes are contingent on the careful tuning of multiple hyperparameters be-
yond just learning rate and epochs, highlighting the importance of comprehensive hyperparameter
optimization to fully exploit the benefits of scaling.

Data Scale. Increasing batch size improves the precision of gradient estimation for the representa-
tion distribution defined by the dataset Chen et al. (2022). Larger datasets more accurately capture
real-world distributions, and thus, employing a larger batch size enables contrastive loss to generate
more precise gradients, enhancing the model’s ability to learn discriminative representations. As
shown in Figure 5, our experiments on different data scales (e.g., CC12M and Laion400M) indi-
cate that the optimal batch size increases with dataset size. Specifically, performance on CC12M
saturates at a batch size of 32k, whereas Laion400M achieves saturation at a batch size of 256k.

In summary, while scaling up batch sizes is critical for enhancing contrastive learning, our findings
suggest that performance does not monotonically improve with batch size increases. As seen in
our previous experiments (Table 3), extremely large batch sizes (e.g., 1024k) can lead to a decline
in performance, indicating that factors such as hyperparameter tuning and dataset scale are among
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the many considerations that influence model effectiveness. This highlights the need for a balanced
approach when increasing batch sizes, ensuring that optimal configurations are found to fully exploit
the benefits of contrastive learning.
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