
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BREAKING THE MEMORY BARRIER: NEAR INFINITE
BATCH SIZE SCALING FOR CONTRASTIVE LOSS

Anonymous authors
Paper under double-blind review

64 128 256 512 1024
Batch Size (k)

0

20

40

60

80

100

130

G
PU

 M
em

or
y 

(G
B

)

A800 Bottleneck

78×

1 8 16 32 64 128
Number of GPUs

100

101

102

103

104

G
PU

 M
em

or
y 

(G
B

)

A800 Bottleneck

281×

CLIP OpenCLIP Inf-CL (Ours)

Figure 1: GPU memory usage comparison between Inf-CL and previous methods (CLIP, Open-
CLIP). The dashed line marks the common GPU memory limit. Memory costs exceeding the bot-
tleneck of 80G A800 are estimated by curve fitting. ❶ Left: With 8×A800, CLIP and OpenCLIP’s
memory consumption increases quadratically, while Inf-CL achieves linear growth, reducing mem-
ory costs by 78× at a batch size of 256k. ❷ Right: At a batch size of 1024k, even with 128 GPUs,
previous methods exceed memory limits, whereas Inf-CL reduces memory demand by 281×.

ABSTRACT

Contrastive loss is a powerful approach for representation learning, where larger
batch sizes enhance performance by providing more negative samples to better
distinguish between similar and dissimilar data. However, scaling batch sizes is
constrained by the quadratic growth in GPU memory consumption, primarily due
to the full instantiation of the similarity matrix. To address this, we propose a
tile-based computation strategy that partitions the contrastive loss calculation to
arbitrary small blocks, avoiding full materialization of the similarity matrix. Fur-
thermore, we introduce a multi-level tiling strategy to leverage the hierarchical
structure of distributed systems, employing ring-based communication at the GPU
level to optimize synchronization and fused kernels at the CUDA core level to re-
duce I/O overhead. Experimental results show that the proposed method scales
batch sizes to unprecedented levels. For instance, it enables contrastive training
of a CLIP-ViT-L/14 model with a batch size of 4M or 12M using 8 or 32 A800
80GB without sacrificing any accuracy. Compared to SOTA memory-efficient
solutions, it achieves a two-order-of-magnitude reduction in memory while main-
taining comparable speed. The code will be made publicly available.

1 INTRODUCTION

Contrastive learning serves as a foundational technique across various applications, such as multi-
modality retrieval (Radford et al., 2021; Luo et al., 2022; Girdhar et al., 2023), self-supervised
representation learning (Chen et al., 2020a; He et al., 2020; Gao et al., 2022), and dense text re-
trieval (Wang et al., 2022). It learns an embedding space in which similar data pairs stay close while
dissimilar ones are far apart (Hadsell et al., 2006; Oord et al., 2018; Weng, 2021). Large batch sizes
are critical to the success of contrastive learning due to their reliance on in-batch negatives (Chen

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

··· ··· ···

Memory Usage (ViT-B/16, 64k)

D
is

tr
ib

ut
e 

to
 d

ev
ic

es

Block Similarity & LSE 𝓞(𝒃/𝒏𝟐)

A CatA CatA CatA CatA CatA Cat

Text
Encoder

Image
Encoder

Model forward/backward Loss forward/backward
8.26GB 66.21GB

A
gg

re
ga

te
 a

cr
os

s a
ll 

de
vi

ce
s

Exchange between devices(a) Vanilla Implementation (b) Ours

Cross Entropy

All Similarity 𝓞(𝒃𝟐)

LSE Loss

In-memory local variables

Unloaded local variables

Memory of a device

Memory of all devices

Aggregate across all devices

Figure 2: (a) Vanilla implementation of contrastive loss gathers features to all devices to calculate
all similarity simultaneously, where the similarity with squared complexity are repeatedly stored in
all devices, causing huge memory costs for loss calculation when batch size increases. (b) Our
Inf-CL significant decreases the memory cost by serial and distributed tile-wise computation.

et al., 2020a; Radford et al., 2021). Specifically, larger batches provide a diverse set of negative
samples, enhancing the model’s ability to learn discriminative representations (Pham et al., 2021).

Despite the above benefits, scaling batch size in contrastive learning is severely limited by GPU
memory. The memory required for computing and storing image-text similarity matrices (see Fig-
ure 2(a)) grows quadratically with batch size, making further scaling impractical and limiting the
potential performance gains, even with advanced hardware. Several methods have been proposed
to address memory limitations in scaling batch sizes for contrastive learning. Gradient-Cache (Gao
et al., 2021) reduces memory usage by decoupling model and loss computations, but the mem-
ory cost of the loss remains a significant bottleneck. OpenCLIP (Ilharco et al., 2021) and DisCo-
CLIP (Chen et al., 2023) improve efficiency by distributing contrastive loss computation across n
GPUs, reducing memory consumption by a factor of n. However, despite advances in memory-
efficient techniques, most studies are limited to a batch size of 128k, restricting the potential of
contrastive learning and the scaling demands of modern models and datasets (Saunshi et al., 2019;
Chen et al., 2022; Kaplan et al., 2020).

In this paper, we introduce Inf-CL, a novel approach to mitigate the quadratic memory cost in
contrastive learning, which is caused by the full instantiation of the similarity matrix for log-sum-
exp (LSE) computation. Instead of storing the entire matrix, Inf-CL partitions the LSE calculation
into smaller, sequentially computed tiles, leveraging the cumulative property of LSE. This confines
memory usage to the tile size and the number of parallel tiles, allowing for a trade-off between
memory and computational efficiency. To enhance practical efficiency, we propose a multi-level
tiling strategy. At a coarse-grained level, image and text batches are distributed across multiple
GPUs, with each GPU performing serial LSE computations on multiple rows. As computations pro-
ceed, asynchronous column-wise data exchange minimizes communication overhead, as illustrated
in Figure 2(b). At a fine-grained level, row-wise computations are parallelized across CUDA cores
within each GPU, consolidating iterations into a single kernel to reduce I/O overhead. Theoretically,
Inf-CL can compute contrastive loss with nearly infinite batch sizes using a small tile size, albeit
with reduced speed. The multi-level tiling strategy is crucial to achieving practical scalability and
efficiency, balancing memory reduction with computation speed.

We evaluate Inf-CL on the image-text contrastive learning task. As shown in Figure 1, Inf-CL
reduces space complexity from quadratic (e.g., O(b2) for CLIP, O(b2/n) for OpenCLIP) to lin-
ear (O(b/n2) for Inf-CL), where b is the batch size and n is the number of GPUs. This significant
reduction in memory cost enables efficient training of large batch sizes. For instance, training a ViT-
L/14 CLIP model with a batch size exceeding 10M on 32 A800 GPUs (80 GB each) requires only
1.44 GB of memory per GPU—over a 30× improvement compared to previous methods. Moreover,
Inf-CL maintains precision consistent with existing approaches, ensuring no loss in accuracy. In
terms of computation time, Inf-CL matches the performance of prior methods, requiring approxi-
mately 59 hours to process a 64k batch size on 8 A800 GPUs. The time cost scales nearly linearly
with batch size, as demonstrated by a batch size increase from 64k to 256k resulting in a roughly 4×
growth in training time (220.3/49.4 ≈ 4).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In summary, our contributions include:

• We propose a tile-based contrastive loss implementation that iteratively accumulates the
LSE term, removing the need to instantiate the full similarity matrix and significantly re-
ducing memory overhead. This approach theoretically allows training with nearly infinite
batch sizes using sufficiently small tiles.

• We propose a multi-level tiling strategy for a distributed training system, which reasonably
leverages parallelism to achieve a balance between memory and computational efficiency.

• Our experiments demonstrate that Inf-CL scales batch sizes to unprecedented levels (e.g.,
12M for CLIP-ViT-L/14 on 32 A800 80GB GPUs) while maintaining accuracy and com-
parable training speed to state-of-the-art methods.

2 PRELIMINARIES

2.1 DISTRIBUTED TRAINING SYSTEM

Cross-GPU Communication: For scaling batch size, training across multiple GPUs is crucial to
handle memory and computational demands. However, communication overhead between GPUs
can limit performance. Techniques like hierarchical all-reduce and ring-based communication al-
leviate such overhead by optimizing synchronization between GPUs (Liu et al., 2023). Blockwise
parallelism, as employed in methods like ring attention, further improves efficiency by overlapping
computation and communication.

GPU Memory and Execution: The performance of modern deep learning models relies heavily
on hardware resources, particularly GPU memory and execution capabilities. GPUs, like A100s,
typically have two different types of memory: HBM (High Bandwidth Memory) and SRAM (Static
Random Access Memory). HBM serves as the primary memory with a capacity of up to 80GB. In
contrast, SRAM is much smaller (usually measured in megabytes) but offers a significantly faster
access speed, acting as a vital cache for frequently accessed data and enabling rapid computations.
Techniques like FlashAttention (Dao et al., 2022) show that fine-grained control over the memory
access of HBM and the fuse the operations can achieve faster training and less memory usage.

2.2 VANILLA IMPLEMENTATION OF CONTRASTIVE LOSS

In contrastive learning, the objective is to learn an embedding space where similar samples (positive
pairs) are pulled closer, while dissimilar samples (negative pairs) are pushed away. A typical im-
plementation, exemplified by CLIP (Radford et al., 2021), is depicted in Figure 2. The image and
text encoders are trained with contrastive loss after extracting features. For brevity, we only discuss
image-to-text contrastive loss as an example in the following sections, since the implementation of
text-to-image contrastive loss is symmetric. Specifically, given a batch size of b and the in-batch
c-dimensional visual feature I ∈ Rb×c and textual feature T ∈ Rb×c, the image-to-text contrastive
loss is defined as

LI = −1

b

b∑
i=1

log
exi,i∑b
j=1 e

xi,j

(1)

where xi,j = Ii · Tj is the scaled cosine similarity between the i-th image and j-th text, and xi,i

represents the positive pair. Here, we omitted the temperature factor for simplicity.

The vanilla implementation first computes the similarity matrix X ∈ Rb×b = I · T ′ and stores it
in high-bandwidth memory (HBM). Afterward, softmax normalization followed by the calculation
of negative log-likelihood is applied to the similarity matrix. The memory required to store X and
its normalized results scales as O(b2), which can occupy a substantial amount of GPU memory
when b is large. Figure 2 gives an example of training ViT-B/16 with a batch size of 64k, using
model memory optimization techniques such as Gradient Cache (Gao et al., 2021; Pham et al.,
2021). As can be seen, the GPU memory footprint of the model itself is only 5.24GB while the loss
calculation still requires 66GB. This indicates that, with batch size scaling, the memory bottleneck
during training lies in the loss calculation. Although large batch sizes are necessary for improving
model performance (Saunshi et al., 2019; Chen et al., 2022), the traditional implementation struggles
to support them due to excessive memory consumption in the loss calculation.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHOD

3.1 TILE-WISE CONTRASTIVE LEARNING

As discussed in Section 2.2, the root cause of the quadratic memory growth in the vanilla implemen-
tation is the full materialization of the similarity matrix X . To eliminate the memory cost, we first
decompose the operations related to X from the loss function:

LI = −1

b

b∑
i=1

(xi,i − log

b∑
j=1

exi,j ) = −1

b

b∑
i=1

xi,i +
1

b

b∑
i=1

log

b∑
j=1

exi,j , (2)

where the spatial complexity of the first part is O(b), and for the second log-sum-exp (LSE) part,
it is O(b2). Based on this formulation, we introduce a tile-wise contrastive learning method that
avoids the full materialization of X by iterative accumulation between tiles. The following sections
provide a detailed formulation of the forward and backward processes.

Tile-Wise Forward. To reduce the dependency on storing X entirely, we adopt a tile-wise approach
for calculating l. The process is show as below: X1,1 · · · X1,nc

...
. . .

...
Xnr,1 · · · Xnr,nc


︸ ︷︷ ︸

Tiled computation of X

→

 l1,1 · · · l1,nc

...
. . .

...
lnr,1 · · · lnr,nc


︸ ︷︷ ︸

Merged serially via Eq. 4

→

 l1

...
lnr

 = l (3)

where nr and nc represent the number of tiles along the rows and columns, respectively. The
computation proceeds by dividing X into multiple tiles, denoted as Xi,j , and then calculating the
intermediate LSE values li,j = LSE(Xi,j) within each tile. The resulting LSE values from each
column of tiles are then merged serially along the rows to obtain the final global LSE vector l.

To prevent numerical instability and overflow during the merging process, the following numerically
stable operation is performed:

li ← li + log(1 + el
i,j−li), j = 1, . . . , nc, (4)

where the initial value of li is 0. In each iteration, the intermediate value li,j is merged with li, and
after processing all nc tiles, the global LSE vector l is obtained.

During the computation of LSE(Xi,j), direct exponentiation can lead to numerical overflow. To
address this, we compute li,j using the following stabilized formulation:

li,j = log
∑
k

eX
i,j
:,k = mi,j + log

∑
k

eX
i,j
:,k−mi,j

, (5)

where mi,j = maxk X
i,j
:,k is a vector, with each element representing the maximum value of the

corresponding row in Xi,j . This vector acts as a normalization factor, ensuring that the values inside
the exponential function remain numerically stable.

This tile-wise approach significantly reduces the memory requirement by allowing each GPU to
compute and store only a subset of the similarity matrix at any given time, rather than the entire
b × b matrix. Additionally, this method facilitates scaling to larger batch sizes by enabling parallel
computation of the tiles on multiple GPUs or across different nodes in a distributed system.

Tile-Wise Backward. According to the chain rule, the gradients w.r.t. Ii and Tj are
∂LI

∂Ii
=

∑
j

∂LI

∂xi,j
· ∂xi,j

∂Ii
,

∂LI

∂Tj
=

∑
i

∂LI

∂xi,j
· ∂xi,j

∂Tj
. (6)

Taking the gradients w.r.t. Ii as an example, according to Equation 2, the complete formulation is
∂LI

∂Ii
= −1

b

∑
j

(
∂LI

∂xi,i
· ∂xi,i

∂xi,j
· ∂xi,j

∂Ii
− ∂LI

∂li
· ∂li
∂xi,j

· ∂xi,j

∂Ii
)

= −1

b
· Ti +

1

b

∑
j

exi,j−li · Tj .

(7)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

A CatA CatA CatA CatA CatA Cat

Text
Encoder

Image
Encoder

Eq. (2)Update LSE
Eq. (4)

GPU 3 GPU 1 GPU 2 GPU 2

G
PU

 1
G

PU
 2

G
PU

 3

GPU 1 GPU 2 GPU 3 GPU 3 GPU 1

Calculate LSE
Algo. (2)

Cross-GPU 
Tiling

In-GPU 
Tiling

··
·

Kernel 𝒏

Kernel 1

Copy to
SRAM

Copy to SRAM

!𝑿!,#

Textual Features

V
is

ua
l F

ea
tu

re
s

Update LSE
Eq. (4)

Copy to SRAM

Textual Features

L
SE

Copy to HBM

··
·

··
·

Copy to SRAM

Textual Features

𝑿!,#

Compute LSE
Eq. (5)

Send & 
Receive

LSE Loss

Figure 3: Multi-level tiling strategy. Top: for cross-GPU tiling, each GPU is assigned with multi-
ple rows. The computation and the column-wise communication are performed asynchronously to
reduce the cost. Bottom: for in-GPU tiling, the calculations in each GPU are further divided into
tiles and the row-wise calculation is distributed to multiple CUDA cores. The accumulative opera-
tions of each row are merged into one kernel for reducing I/O times between SRAM and HBM.

From the formula, it can be seen that the second term requires the similarities xi,j with O(b2)
memory in common implementations, whether stored in the forward process or computed directly
in the backward process. To tackle this, we apply the similar tile-based method as the forward
process to compute the gradient. Specifically, we first store l, which has only b elements during
forward propagation, and calculate the gradient w.r.t Ii by iterative accumulation in multiple tiles:

I ′
i ← I ′

i + exi,j−li · Tj , j = 1, . . . , nc,

∂LI

∂Ii
= −1

b
· Ti +

1

b
I ′
i,

(8)

where I ′
i is a temporary variable for accumulation. The detailed algorithm is shown in Appendix.

3.2 MULTI-LEVEL TILING

The scaling of batch size is usually accompanied by the scaling of the number of GPUs. In order to
fully utilize the parallelism between multiple GPUs while exploiting partially serial computation on
a single GPU to reduce the memory cost, we propose a multi-level tiling method that distributes the
above LSE calculation to coarse-grained cross-GPU tiles and fine-grained in-GPU tiles.

Cross-GPU Tile. As shown in Algorithm 1, in data parallel training with n GPUs, the i-th GPU
first processes a portion of images and texts to visual features Ii ∈ Rbs×c and textual features
T i ∈ Rbs×c, where bs = b/n is the batch size in one GPU. Then for the calculation of the contrastive
loss, we distribute computations of different rows to different GPUs and synchronize the columns
between GPUs step-by-step, considering the row-wise characteristic. Specifically, the i-th GPU is
responsible for calculating Xi,: and the corresponding li. For memory considerations, based on
the tiling strategy described in Section 3.1 where only one tile Xi,j is computed at a time, Xi,: is
further divided into Xi,j for n step to calculate li following Equation 4, where the local LSE li,j is
calculated by in-gpu tiling as described in the next part.

Moreover, since the computation of Xi,j while i ̸= j requires the textual feature T j stored in other
GPUs, additional communication overhead is inevitable, especially as the number of GPUs grows.
In order to reduce or even eliminate the communication overhead, we associate all GPUs with a
ring topology, based on the idea of overlapping communication time and computation time overlap
as much as possible. Concretely, starting with T i, each GPU process sends the current textual

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

features to the next process and receives the textual features from the previous process using the ring
topology while computing Equation 4. In this way, the communication time cost is negligible when
it is greater than the computation time overhead.

Algorithm 1 Forward Process of Multi-level Tile-Wise Global LSE Calculation

Require: Number of GPUs n, in-memory visual features Ii ∈ Rbs×c and textual features T i ∈
Rbs×c for each GPU.

1: for counter = 1 to n do
2: Update LSE:
3: Each GPU computes the local LSE vector via Algorithm 2 with in-memory features.
4: Each GPU updates the LSE vector via Equation 4.
5: Asynchronously Communication:
6: Each GPU sends the in-memory textual feature to the next GPU in the ring.
7: Each GPU receives the textual feature from the previous GPU in the ring.
8: end for
9: Return the final LSE vector li for each GPU .

In-GPU Tile. With the cross-GPU tiling technique, the memory complexity becomes O(b2s) for
directly storing Xi,j where bs = b/n. Since the number of GPU n is somehow limited, we further
introduce in-GPU tiling to reduce the O(b2s) memory cost to O(bs) for enabling further batch size
scaling. Specifically, we first split X̃ = Xi,j into tiles:

X̃ = [X̃i,j ], i = 1, . . . , ñr, j = 1, . . . , ñc, (9)

where ñr = ⌈b/tr⌉ and ñc = ⌈b/tc⌉ and tr and tc is the row-wise and column-wise size of a tile.
For implementation, we distribute rows to multiple CUDA cores to make full use of the parallel
computing power of the GPU, and serial process the row-wise tiles in each kernel by applying
Equation 5 and Equation 4 to X̃i,j , as shown in Algorithm 2.

The iterative computation requires multiple memory access for variable li. To avoid expensive I/O
from HBM to SRAM, we fuse the row-wise iterative calculation into one kernel. Specifically, li

and X̃i,j are allocated in SRAM. In this way, the image features are loaded to SRAM only once at
beginning, and l̃i is written to HBM only once in the end, as shown in Figure 3.

Algorithm 2 Forward Process of Tile-Wise Local LSE Calculation

Require: Visual features: Ĩ ∈ Rbs×c and textual features: T̃ ∈ Rbs×c, the row-wise and column-
wise size of a tile: tr and tc.

1: Divide Ĩ into Ĩi, where i = 1, 2, . . . , ñr.
2: Divide T̃ into T̃ j , where j = 1, 2, . . . , ñc.
3: parallel for each Ĩi do
4: Load Ĩi from HBM to on-chip SRAM.
5: Initialize l̃i = 0 ∈ Rtr .
6: for j = 1 to ñr do
7: Load T̃j from HBM to on-chip SRAM.
8: On chip, compute X̃i,j = Ĩi · T̃ j′ ∈ Rtr×tc .
9: On chip, calculate tile LSE l̃i,j based on Equation 5:

10: l̃i,j = m̃i,j + LSE(X̃i,j − m̃i,j), where m̃i,j = rowmax(X̃i,j).
11: On chip, update LSE l̃i based on Equation 4:
12: l̃i ← l̃i + log(1 + exp(l̃i,j − l̃i)).
13: end for
14: Write l̃i to HBM.
15: end parallel for
16: Return l̃.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Model
Loss (Peak) Memory Cost (GB)

32k 64k 128k 256k 1024k
8×A800 (≈ 8× 80GB)

CLIP 16.67 (46.40) 66.11 (77.94) ✗ ✗ ✗
OpenCLIP 2.27 (43.97) 8.63 (46.38) 33.64 (51.23) ✗ ✗
Inf-CL 0.18 (44.20) 0.36 (46.63) 0.72 (51.46) 1.45 (61.13) ✗
Inf-CL∗ 0.18 (42.40) 0.36 (42.49) 0.72 (42.69) 1.45 (43.07) 6.53 (45.40)

32×A800 (≈ 32×80GB)
CLIP 16.66 (42.85) 66.11 (75.52) ✗ ✗ ✗
OpenCLIP 0.71 (42.46) 2.45 (43.06) 8.98 (44.26) 34.35 (46.71) ✗
Inf-CL 0.05 (42.48) 0.09 (43.08) 0.18 (44.30) 0.35 (46.71) 1.44 (61.20)

Table 1: Training Memory Cost Across Different Hardware and Batch Sizes. Experiments
utilize Data Parallelism with Automatic Mixed Precision for efficient distributed training. The base-
lines include the Vanilla loss (CLIP) and Local loss (OpenCLIP). To minimize memory consump-
tion, Gradient Cache is adopted, with an accumulation batch size of 128. ∗ indicates the use of the
data offload strategy, which reduces memory usage by transferring only a small data batch from CPU
to GPU during each accumulation step. ✗ denotes cases where the baseline exceeds the hardware
memory limit for a given batch size, making training infeasible. Memory cost is evaluated using the
ViT-L/14 architecture and the AdamW optimizer.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset and Data Processing. We assess the effectiveness of our Inf-CL on Laion400M
dataset (Schuhmann et al., 2021) where we used 280M (out of 400M) samples for training due
to the unavailability of images in the remaining samples. Images undergo preprocessing using Ran-
domResizedCrop with a crop ratio of [0.75, 1.33] and a scale of [0.08, 1.0].

Training Hyperparameters. A modified AdaFactor optimizer (Shazeer & Stern, 2018) is employed
for training, following the settings of ViT-g (Zhai et al., 2022a). The optimizer is configured with a
learning rate of 1× 10−3, weight decay of 1× 10−4, and coefficients β1 = 0.9 and β2 = 0.95 (Zhai
et al., 2023). Training spans 8 epochs, using a cosine learning rate schedule with a linear warm-up
during the first 0.5 epoch.

Implementation Details. For distributed training, we employ Data Parallelism (Li et al., 2020)
with Automatic Mixed Precision (float16)(Micikevicius et al., 2017). To support larger batch sizes,
we adopt Gradient Cache (Gao et al., 2021) which decouples contrastive loss computation from the
model’s forward and backward passes. Consequently, the peak memory cost per iteration, Mpeak, is
calculated as:

Mpeak ≈Mdata +max(Mloss,Mbackbone), (10)

where Mdata is the memory for data, Mloss is for loss computation, and Mbackbone is for the model’s
forward and backward operations.

Baselines. We compare our method against two baselines: the vanilla loss from CLIP and the local
loss from OpenCLIP/DisCo-CLIP. The vanilla loss computes a b× b similarity matrix by gathering
both row and column features from all GPUs, while the local loss requires only column features to
calculate a b/n× b similarity matrix, where b and n are the batch size and the number of GPUs.

4.2 COST ANALYSIS

Our method, as detailed in Section 3.2, divides the calculation of contrastive loss into tiles and
distributes them across different GPUs and GPU kernels. To rigorously assess its memory efficiency,
we compare our approach with previous methods like CLIP and OpenCLIP by evaluating “Memory

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Budget
Maximum Batch Size (Loss Memory Cost) Improvement

CLIP OpenCLIP Inf-CL (Ours / Sota)
ViT-B/16

8×A800 68k (74.39 GB) 172k (59.95 GB) 800k (3.01 GB) 4.65 (800k/172k)
32×A800 68k (74.39 GB) 360k (66.29 GB) 3456k (3.27 GB) 9.60 (3456k/360k)

ViT-L/14
8×A800 64k (66.11 GB) 152k (47.23 GB) 448k (2.52 GB) 2.94 (448k/152k)

32×A800 64k (66.11 GB) 352k (64.13 GB) 2048k (2.89 GB) 5.82 (2048k/256k)
ViT-L/14 w/ data offload

8×A800 64k (66.11 GB) 184k (69.10 GB) 4096k (26.12 GB) 22.26 (4096k/184k)
32×A800 64k (66.11 GB) 368k (64.13 GB) 12288k (19.59 GB) 33.39 (12288k/368k)

Table 2: Maximum batch size for model training using different hardware and contrastive loss
methods. The training setting of this experiment is aligned with Table 1.

32k 64k 128k 256k
Batch Size

0

23

46

69

92

115

138

161

184

207

230

It
er

at
io

n 
Ti

m
e 

(s
)

25.1

56.3

OOM OOM24.9

48.9

97.9

OOM25.0

49.4

98.3

200.3

32k 64k 128k 256k
Batch Size

0

8

16

24

32

40

48

56

64

72

80

To
ta

l T
im

e 
(h

) 59.3

66.5

OOM OOM

59.0 58.0 58.1

OOM

59.3 58.4 58.2 59.3

CLIP OpenCLIP Inf-CL (Ours)

Figure 4: Training Speed of ViT-L/14 CLIP on 8×A800 for Varying Batch Sizes. The left figure
shows the time per iteration step, while the right displays the time per epoch. Loss calculation con-
tributes minimally to the total iteration time, making Inf-CL’s iteration time comparable to previous
methods. Furthermore, the iteration time of Inf-CL scales linearly with batch size, leading to a
stable training duration of approximately 59 hours per epoch.

Consumption”,“Max Supported Batch Size” and “Speed” across various model architectures and
hardware settings. The effective memory cost is determined by peak memory (Equation 10), which
is the maximum memory needed during an iteration.

Memory Consumption. To illustrate the memory efficiency of Inf-CL, we compared it to previous
methods using the same batch size. Table 1 shows that for loss calculation, Inf-CL requires signifi-
cantly less memory than its predecessors. Specifically, with a batch size of 128k on 8×A800, Inf-CL
only consumes 0.72 GB, whereas OpenCLIP requires 33.64 GB. However, while the memory cost
of loss calculation with Inf-CL is minimal, peak memory usage still increases rapidly with batch size
due to growing data memory, as discussed in “Max Supported Batch Size.” By integrating Inf-CL
with “data offload”, we can mitigate this memory increase, enabling us to train a ViT-L/14 model
with a batch size of 1024k on 8×A800.

Maximum Batch Size. We compare the maximum batch size of Inf-CL with those of previous ap-
proaches under various model architectures (ViT-B/16 or ViT-L/14) and training budgets (8×A800
or 32×A800). As shown in Table 2. Inf-CL significantly outperforms previous SOTA methods,
achieving improvements of 4.65× for ViT-B/16 on 8×A800, which is further increased to 9.60×
when using 32×A800. Notably, as we scale up the model size, the improvements decrease; for in-
stance, from 4.65 to 2.94 when changing from ViT-B/16 to ViT-L/14. To understand this trend, we
analyze peak memory usage. Since Inf-CL has negligible memory requirements, peak memory is
primarily driven by Mbackbone +Mdata. Mbackbone is constant, meaning the rapid growth in peak

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Method (Batch Size)
ImageNet MSCOCO R@1

Validation v2 ObjectNet OOD I→T T→I
Vanilla (64K) 74.74 65.30 46.31 66.13 25.71 44.31

OpenCLIP (64K) 74.86 65.22 46.29 66.75 25.98 44.02
Inf-CL (64K) 74.93 65.27 46.13 66.77 26.01 43.95
Inf-CL (256K) 75.12 65.12 46.44 67.15 25.90 44.61
Inf-CL (1024K) 73.58 63.87 44.55 64.60 24.53 41.58

Table 3: Performance Verification. The training strategies is consistent with Table 2. We choose
ViT-B/16 as the model architecture and adopt LiT strategy like Table 4. We evaluate zero-shot top-1
classification accuracy on several data sets, e.g., ImageNet-Validation Deng et al. (2009), ImageNet-
v2 (Recht et al., 2019), ObjectNet (Barbu et al., 2019) and ImageNet-OOD (Hendrycks et al., 2021).
We also evaluate zero-shot image-text top-1 retrieval accuracy on MSCOCO (Chen et al., 2015).

Cross-GPU In-GPU
Data Loss Backbone Peak

ImageNet
Memory Complexity Memory Memory Memory

(Vanilla) 1.96 O(b2) 66.21 8.26 69.24 74.82
(OpenCLIP) 1.96 O(b2/n) 16.96 8.26 20.79 74.86

✔ 1.96 O(b2/n2) 4.81 8.26 12.30 74.78
✔ ✔ 1.96 O(b/n2) 0.81 8.26 12.30 74.93

Table 4: Ablation Study of Multi-level Tiling Strategy. The training strategies is consistent with
Table 2, using the ViT-B/16 architecture. To reduce memory consumption and expedite experimen-
tation, we freeze the image encoder and load pretrained weights as done in LiT. The global batch
size is fixed at 64k with an accumulation batch size of 256 per GPU. These experiments are con-
ducted on 4×A800 (80G) GPUs. “Complexity” denotes the space complexity of loss calculation. b
denotes batch size, while n denotes the number of GPUs.

memory is mainly due to increased Mdata. Since ViT-L/14 has a larger Mbackbone, the remaining
memory can accommodate only a smaller batch size for Mdata. To address this issue, we implement
“data offload”, which allows us to load only a small batch of data onto the GPU for each accumula-
tion step, effectively stabilizing the data memory usage. Therefore, by combining data offload with
our Inf-CL, we can scale the batch size to over 10M on 32×A800.

Training Speed. We compare the training speed of our Inf-CL with previous methods. As shown
in Figure 4, using Inf-CL to train ViT-L/14 on 8×A800 has almost the same speed as previous
methods. Even when increasing batch size beyond the limits of previous methods, Inf-CL maintains
a linear increase in iteration time, with one epoch consistently taking about 59 hours. Combining
training speed results with memory cost results demonstrates that our Inf-CL has superior memory
efficiency, while only introducing a little additional time cost (extra analysis in Appendix A.2).

4.3 PERFORMANCE ANALYSIS

In this section, we investigate whether introducing Inf-CL negatively affects CLIP performance
and whether increasing batch size with Inf-CL enhances performance. Due to the limit of GPU
resources, we utilize the ViT-B/16 with Bert-Base (Devlin, 2018). We follow the training strategy
of LiT (Zhai et al., 2022b) to freeze the visual backbone and use the pre-trained weights instead.

Performance Verification. We evaluate CLIP models trained with different loss implementations,
with the results presented in Table 3. As shown, under the same batch size, our Inf-CL performs sim-
ilarly to previous methods, with performance differences falling within the error margin, confirming
that our design incurs no precision loss in the loss calculations. Furthermore, the results indicate
that increasing the batch size within a certain range yields performance enhancements, thereby un-
derscoring the significance of our method for helping scale the batch size. However, under our

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

experimental conditions, we currently observe that an excessively large batch size—previously un-
examined in the literatures—results in suboptimal performance. This may be attributed to factors
such as unoptimized hyperparameters, inadequate training iterations, or constraints related to data
size (for a comprehensive analysis, see Appendix A.3). Since our work mainly focus on how to
enable large batch size training, these factors warrant further investigation in future work.

Ablation Study. We ablate multi-level tiling in Table 4 and show that our designs incur no precision
loss in loss calculations. This allows arbitrary combinations to achieve nearly the same zero-shot
classification accuracy (about 74.8% on ImageNet for 64k batch size), while significantly reducing
memory costs. According to the Equation 10, their Mpeak is decided by Mbackbone + Mdata rather
than Mloss + Mdata as in prior methods. For complexity analysis, Cross-GPU tiling is O(b2/n2),
resulting in a memory cost that is 1/n of OpenCLIP (16.96/4.81 ≈ 4 in Table 4). Based on it,
introducing In-GPU tiling can further reduce memory cost and make the growth of memory cost
linear, i.e., O(b2/n2)→ O(b/n2).

5 RELATED WORK

Contrastive Learning: The core idea of contrastive learning is to learn better representations by
distinguishing between positive and negative pairs of samples (van den Oord et al., 2018; Chen et al.,
2020b). This approach demonstrates strong effectiveness across diverse tasks, as the nature of the
paired samples varies depending on the specific application. In image foundation models, such as
SimCLR (Chen et al., 2020a) and MoCo (He et al., 2020), positive pairs are created by augmenting
the same image in different ways. For cross-modal retrieval, as exemplified by CLIP (Radford et al.,
2021) and ALIGN (Jia et al., 2021), the positive pairs consist of aligned image and text samples.
Similarly, for dense text retrieval (Karpukhin et al., 2020; Wang et al., 2022; Zhang et al., 2022),
the positive pairs are composed of query and document pairs. Several works improve contrastive
learning performance by enhancing dataset quality, modifying the loss function, or refining negative
sample selection (Vasu et al., 2024; Zhai et al., 2023; Zhang et al., 2023). Moreover, several studies,
both empirical and theoretical, have demonstrated from various perspectives that larger batch sizes
contribute to learning better representations (Saunshi et al., 2019; Chen et al., 2022). Due to the
quadratic growth of memory usage with batch size in classical contrastive loss, most existing studies
have stopped scaling their batch sizes to 128k, even when leveraging hundreds of GPUs (Radford
et al., 2021; Jia et al., 2021; Yang et al., 2022).

Memory-efficient Training: As deep learning models continue to grow in size and complexity, the
demand for computational resources, particularly GPU memory, has increased significantly. Tech-
niques such as Gradient Checkpointing (Sohoni et al., 2022) recompute activations during back-
propagation to save memory at the expense of additional computation. Flash Attention (Dao et al.,
2022) reduces memory overhead by computing attention in blocks without storing large interme-
diate states. Ring Attention (Liu et al., 2023) distributes long sequence activations across multiple
devices, overlapping computation and communication to train sequences far longer than previous
methods. For contrastive learning, GradCache (Gao et al., 2021) and BASIC (Pham et al., 2021) in-
troduce a gradient caching technique that decouples backpropagation between contrastive loss and
the encoder, which reduces memory usage in the model by accumulating gradients per mini-batch.
OpenCLIP (Ilharco et al., 2021) and DisCo-CLIP (Chen et al., 2023) reducing memory consumption
by distributing the computation of contrastive loss across multiple GPUs.

6 CONCLUSION

This paper addresses the GPU memory bottleneck in scaling batch sizes for contrastive loss. To
overcome the quadratic memory consumption resulting from the full instantiation of the similarity
matrix, we proposed a tile-based computation strategy that partitions the calculation into smaller
blocks, thus avoiding full matrix materialization. Furthermore, we introduced a multi-level tiling
strategy that leverages ring-based communication and fused kernels to optimize synchronization
and minimize I/O overhead. Our experiments demonstrated that our method scales contrastive loss
batch sizes to unprecedented levels without compromising accuracy or training speed. This approach
marks a significant advancement in large-scale contrastive learning, shedding light on further devel-
opments in areas such as self-supervised learning and dense text retrieval.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh
Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the
limits of object recognition models. Advances in neural information processing systems, 32,
2019.

Changyou Chen, Jianyi Zhang, Yi Xu, Liqun Chen, Jiali Duan, Yiran Chen, Son Tran, Belinda Zeng,
and Trishul Chilimbi. Why do we need large batchsizes in contrastive learning? A gradient-bias
perspective. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/db174d373133dcc6bf83bc98e4b681f8-Abstract-Conference.html.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework
for contrastive learning of visual representations. CoRR, abs/2002.05709, 2020a. URL https:
//arxiv.org/abs/2002.05709.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big
self-supervised models are strong semi-supervised learners. Advances in neural information pro-
cessing systems, 33:22243–22255, 2020b.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv
preprint arXiv:1504.00325, 2015.

Yihao Chen, Xianbiao Qi, Jianan Wang, and Lei Zhang. Disco-clip: A distributed contrastive loss
for memory efficient clip training, 2023. URL https://arxiv.org/abs/2304.08480.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Luyu Gao, Yunyi Zhang, Jiawei Han, and Jamie Callan. Scaling deep contrastive learning batch size
under memory limited setup, 2021. URL https://arxiv.org/abs/2101.06983.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings, 2022. URL https://arxiv.org/abs/2104.08821.

Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15180–15190, 2023.

P Goyal. Accurate, large minibatch sg d: training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE computer society conference on computer vision and pattern recognition
(CVPR’06), pp. 1735–1742, 2006.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning, 2020. URL https://arxiv.org/abs/1911.
05722.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 15262–15271, 2021.

11

http://papers.nips.cc/paper_files/paper/2022/hash/db174d373133dcc6bf83bc98e4b681f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/db174d373133dcc6bf83bc98e4b681f8-Abstract-Conference.html
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2304.08480
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2101.06983
https://arxiv.org/abs/2104.08821
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1911.05722


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the general-
ization gap in large batch training of neural networks. Advances in neural information processing
systems, 30, 2017.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL https://doi.org/10.5281/
zenodo.5143773. If you use this software, please cite it as below.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pp. 4904–4916. PMLR, 2021. URL
http://proceedings.mlr.press/v139/jia21b.html.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. CoRR, abs/2001.08361, 2020. URL https://arxiv.org/abs/2001.08361.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen tau Yih. Dense passage retrieval for open-domain question answering, 2020. URL
https://arxiv.org/abs/2004.04906.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, et al. Pytorch distributed: Experiences on accelerating
data parallel training. arXiv preprint arXiv:2006.15704, 2020.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context, 2023. URL https://arxiv.org/abs/2310.01889.

Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei, Nan Duan, and Tianrui Li. Clip4clip: An
empirical study of clip for end to end video clip retrieval and captioning. Neurocomputing, 508:
293–304, 2022.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Hieu Pham, Zihang Dai, Golnaz Ghiasi, Kenji Kawaguchi, Hanxiao Liu, Adams Wei Yu, Jiahui Yu,
Yi-Ting Chen, Minh-Thang Luong, Yonghui Wu, et al. Combined scaling for open-vocabulary
image classification. arXiv preprint arXiv:2111.10050, 1(2):4, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International conference on machine learning, pp. 5389–5400. PMLR,
2019.

Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and Hrishikesh Khandeparkar.
A theoretical analysis of contrastive unsupervised representation learning. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 5628–5637. PMLR, 2019. URL http://proceedings.
mlr.press/v97/saunshi19a.html.

12

https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773
http://proceedings.mlr.press/v139/jia21b.html
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2103.00020
http://proceedings.mlr.press/v97/saunshi19a.html
http://proceedings.mlr.press/v97/saunshi19a.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114, 2021.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Nimit S. Sohoni, Christopher R. Aberger, Megan Leszczynski, Jian Zhang, and Christopher Ré.
Low-memory neural network training: A technical report, 2022. URL https://arxiv.org/
abs/1904.10631.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. CoRR, abs/1807.03748, 2018. URL http://arxiv.org/abs/1807.03748.

Pavan Kumar Anasosalu Vasu, Hadi Pouransari, Fartash Faghri, Raviteja Vemulapalli, and Oncel
Tuzel. Mobileclip: Fast image-text models through multi-modal reinforced training. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15963–
15974, 2024.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022.

Lilian Weng. Contrastive representation learning. lilianweng.github.io, May 2021. URL https:
//lilianweng.github.io/posts/2021-05-31-contrastive/.

An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, and Chang Zhou. Chi-
nese clip: Contrastive vision-language pretraining in chinese. arXiv preprint arXiv:2211.01335,
2022.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
12104–12113, 2022a.

Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander Kolesnikov,
and Lucas Beyer. Lit: Zero-shot transfer with locked-image text tuning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 18123–18133, 2022b.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 11975–11986, 2023.

Hang Zhang, Yeyun Gong, Yelong Shen, Jiancheng Lv, Nan Duan, and Weizhu Chen. Adversar-
ial retriever-ranker for dense text retrieval. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=MR7XubKUFB.

Hang Zhang, Yeyun Gong, Xingwei He, Dayiheng Liu, Daya Guo, Jiancheng Lv, and Jian Guo.
Noisy pair corrector for dense retrieval. arXiv preprint arXiv:2311.03798, 2023.

13

https://arxiv.org/abs/1904.10631
https://arxiv.org/abs/1904.10631
http://arxiv.org/abs/1807.03748
https://lilianweng.github.io/posts/2021-05-31-contrastive/
https://lilianweng.github.io/posts/2021-05-31-contrastive/
https://openreview.net/forum?id=MR7XubKUFB


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 BACKWARD PROCESS

Algorithm 3 Backward Process of Multi-level Tile-Wise Global LSE Calculation

Require: Number of GPUs n, saved intermediate variables from the forward pass: in-memory
visual features Ii ∈ Rbs×c and textual features T i ∈ Rbs×c for each GPU, global LSE vectors
li ∈ Rbs .

1: Initialize vector: dIi = 0 ∈ Rbs×c, dTcache = 0 ∈ Rbs×c on each GPUi.
2: for j = 1 to n do
3: Asynchronously Text Feature Communication:
4: Each GPU sends in-memory textual feature to the next GPU and receive the textual

feature from the previous GPU in the ring.
5: Backward Calculation:
6: Index of current text feature tile for each GPU: k = (i+ j − 1) mod n
7: Call Algorithm 4 with (Ii, T k, li) , obtaining gradients dIi

temp and dT k
temp.

8: Update gradients dIi += dIi
temp.

9: Update gradients dTcache += dT k
temp.

10: Asynchronously Gradient Communication:
11: Each GPU sends in-memory dTcache to the next GPU in the ring.
12: Each GPU receive the gradient feature from the previous GPU and write to dTcache.
13: end for
14: dT i = dTcache in each GPU.
15: Return the gradients dIi, dT i for each GPU.

Algorithm 4 Backward Process from of intra-GPU Tile-Wise LSE calculation

Require: Saved intermediate variables from the forward pass: visual features Ĩ ∈ Rb×c, textual
features T̃ ∈ Rb×c, the local LSE vector l̃ ∈ Rb.
The row-wise and column-wise size of a tile: tr and tc,

1: Divide Ĩ into Ĩi, where i = 1, 2, . . . , ñr.
2: Divide T̃ into T̃ j , where j = 1, 2, . . . , ñc.
3: Divide l̃ into l̃i, where i = 1, 2, . . . , ñr.
4: Initialize gradients vectors: dĨ ∈ Rtr×c and dT̃ ∈ Rtc×c.
5: for each Ĩi do
6: Load Ĩi and l̃i from HBM to on-chip SRAM.
7: Initialize dĨi = 0 ∈ Rtr×c.
8: for j = 1 to [b//tc] do
9: Load T̃ j from HBM to on-chip SRAM.

10: On chip, compute X̃i,j = Ĩi · T̃ j
′
∈ Rtr×tc .

11: On chip, compute dX̃i,j = exp(X̃i,j − l̃i) ∈ Rtr×tc .
12: Update gradients dĨi += dX̃i,j · T̃ j .
13: Load dT̃ j from HBM to on-chip SRAM.
14: dT̃ j += Ĩi · dX̃i,j .
15: Write updated dT̃ j back to HBM.
16: end for
17: Write updated dĨi back to HBM.
18: end for
19: return dĨ(i.e. ∂ l̃

∂Ĩ
), dT̃ (i.e. ∂ l̃

∂T̃
).

A.2 ANALYSIS OF TRAINING SPEED EFFICIENCY IN INF-CL

Although Inf-CL might be expected to exhibit slower performance because it breaks the loss cal-
culation to small tiles and serially process these tiles, it achieves comparable speed to previous

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

4 8 16 32 64 128 256 512 1024
Batch Size (k)

53.5

54.0

54.5

55.0

55.5

56.0

56.5

57.0
A

cc
ur

ac
y

63.5

64.0

64.5

65.0

65.5

66.0

66.5

67.0

CC12M Laion400M

Figure 5: Performance of ViT-B/32 across Varying Batch Sizes. Except batch size, other ex-
periment settings ar e consistent. ❶ Left: On CC12M, performance plateaus at a batch size of
approximately 32k. ❷ Right: On Laion400M, performance saturates around a batch size of 256k.

methods, as shown in Figure 4. This is primarily due to two factors: (1) Loss calculation represents
only a minor fraction of the total iteration time, especially for large models, thereby exerting min-
imal impact on the overall iteration time. (2) While Inf-CL has similar computational complexity
to standard contrastive loss, its tiling approach could introduce some speed overhead due to reduced
parallelism. However, Inf-CL fuses the operations of similarity matrix calculation and softmax,
which in regular contrastive loss require two separate communications between SRAM and HBM.
By merging these into a single communication, Inf-CL effectively reduces I/O time, mitigating the
cost of serial tile computation.

A.3 FACTORS INFLUENCING PERFORMANCE WHEN SCALING BATCH SIZE

While larger batch size is theoretically expected to enhance performance Chen et al. (2022), our
experimental results deviate from this expectation. To better understand this discrepancy, we analyze
the factors that impact performance when scaling up batch size.

Hyperparameters. Although larger batch sizes provide more diverse negative samples for con-
trastive learning, potentially improving the embedding space, careful tuning of hyperparameters is
necessary to ensure model convergence. Previous research indicates that when increasing batch
size, the learning rate should be scaled proportionally to maintain a consistent parameter update
norm throughout training (Goyal, 2017). Since a fixed learning rate is used across all experiments,
this may have contributed to the reduced performance observed with larger batch sizes. Moreover,
prior studies suggest that large batch sizes require longer training epochs to ensure sufficient pa-
rameter updates and avoid suboptimal convergence (Hoffer et al., 2017). Overall, the performance
gains from larger batch sizes are contingent on the careful tuning of multiple hyperparameters be-
yond just learning rate and epochs, highlighting the importance of comprehensive hyperparameter
optimization to fully exploit the benefits of scaling.

Data Scale. Increasing batch size improves the precision of gradient estimation for the representa-
tion distribution defined by the dataset Chen et al. (2022). Larger datasets more accurately capture
real-world distributions, and thus, employing a larger batch size enables contrastive loss to generate
more precise gradients, enhancing the model’s ability to learn discriminative representations. As
shown in Figure 5, our experiments on different data scales (e.g., CC12M and Laion400M) indi-
cate that the optimal batch size increases with dataset size. Specifically, performance on CC12M
saturates at a batch size of 32k, whereas Laion400M achieves saturation at a batch size of 256k.

In summary, while scaling up batch sizes is critical for enhancing contrastive learning, our findings
suggest that performance does not monotonically improve with batch size increases. As seen in
our previous experiments (Table 3), extremely large batch sizes (e.g., 1024k) can lead to a decline
in performance, indicating that factors such as hyperparameter tuning and dataset scale are among

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

the many considerations that influence model effectiveness. This highlights the need for a balanced
approach when increasing batch sizes, ensuring that optimal configurations are found to fully exploit
the benefits of contrastive learning.

16


	Introduction
	Preliminaries
	Distributed training system
	Vanilla Implementation of Contrastive Loss

	Method
	Tile-wise Contrastive Learning
	Multi-Level Tiling

	Experiments
	Experimental Settings
	Cost Analysis
	Performance Analysis

	Related Work
	Conclusion
	Appendix
	Backward Process
	Analysis of Training Speed Efficiency in Inf-CL
	Factors influencing performance when scaling batch size


