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ABSTRACT

Latent diffusion model(LDM) has achieved success in various tasks beyond im-
age generation due to its large-scale image-text training datasets and high-quality
generation capability. However, its application in image classification remains
unclear. Existing approaches directly transform LDM into discriminative models,
which involve using mismatched text-image pairs that LDM fail to present accu-
rate estimation, resulting in degraded performance. Other methods that extract vi-
sion knowledge are only designed for generative tasks. Additionally, domain gen-
eralization (DG) still faces challenges due to the scarcity of labeled cross-domain
data. Existing data-generation approaches suffer from limited performance, and
how to immigrate LDM to DG remains unknown. Therefore, we concern these
two issues and propose a framework DomainFusion, which leverages LDM in
both latent level and pixel level for DG classification. In latent level, we pro-
pose Gradient Score Distillation(GSD) which distills gradient priors from LDM
to guide the optimization of the DG model. We further theoretically proved it
can optimize the KL divergence between the predicted distributions of LDM and
the DG model. In pixel level, we propose an autoregressive generation method
to shuffle synthetic samples and a sampling strategy to optimize the semantic and
non-semantic factors for synthetic samples. Experimental results demonstrate that
DomainFusion surpasses data-generation methods a lot and achieves state-of-the-
art performance on multiple benchmark datasets.

1 INTRODUCTION

Latent diffusion models have shown particular effectiveness in generating high-quality images
through stable and scalable denoising objectives(Rombach et al., [2022)). Thanks to large-scale
image-text datasets(Schuhmann et al., [2022) and novel generative model architectures(Ho et al.,
2020), latent diffusion models have also been demonstrated to encapsulate transferable vision knowl-
edge, indicating their potential for other vision tasks. Consequently, recent research has focused
on utilizing these rich transferable visual features for various visual perception tasks(Zhang et al.,
2023)), achieving successful applications in text-to-3D generation(Poole et al.l 2022} [Wang et al.,
2023) and image editing(Hertz et al., 2023). However, as is shown in Figure they can not be ex-
tended to discriminative tasks. For image classification tasks, how to leverage diffusion models for
semantic understanding remains unclear. The main challenge lies in the unknown image categories,
as categories represent the fundamental semantic descriptions of images, making it difficult to for-
mulate appropriate text prompts for denoising and efficiently harness the multimodal understanding
capability of latent diffusion models.

Hence, our primary focus is on leveraging latent diffusion models for image classification tasks
especially in domain generalization(DG) scenario. DG is a particularly challenging image classifi-
cation task, as it necessitates models to maintain high classification accuracy on unseen target do-
mains. As shown in Figure|l] despite previous attempts such as diffusion classifiers(Li et al., 2023
Clark & Jaini, 2023)), which matches image with all possible labels and gives score vectors based
on the denosing loss, the effectiveness of such approaches is limited. As they directly transform
the latent diffusion model into discriminative model(discriminative model is used interchangeably
with image classification model throughout), matching the image with all category labels, which in-
cludes inaccurate estimations and leads to confusing results. We substantiate this claim in Figure ]
that latent diffusion can merely present accurate prediction on matched text-image pairs and fails
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Figure 1: Comparison of DomainFusion with Latent Diffusion(Rombach et al., [2022), DreamFu-
sion(Poole et al.,2022), and Diffusion Classifier(Li et al.,[2023). Latent diffusion and DreamFusion
are restricted in generative tasks. Diffusion Classifier performs poorly as a classifier due to directly
use latent diffusion as discriminate model. We substantiate this conclusion by visualizing the score
vector using cross-attention maps derived from DAAM(Tang et al., [2022). For example, an image
of a hammer contains no information about a battery and latent diffusion fails to understand such
pairs. In contrast, DomainFusion distills latent diffusion’s vision knowledge by gradient prior and
simultaneously utilizes latent diffusion’s generation capacity to synthesize novel samples. Details
are shown in Figure 3]

on mismatched scenarios, where we visualize the score vectors of these approaches using cross-
attention maps obtained by DAAM(Tang et al., 2022)). It can be observed that latent diffusion fails
to comprehend mismatched image-text pairs, resulting in noisy score estimations. Intuitively, this
limitation also holds true since, for example, as shown in Figure[T] an image of a hammer contains
no information about a battery, thus the inaccurate estimation cannot be used as classification score.

Hence, it is imperative to leverage the transferable vision knowledge of latent diffusion while alle-
viating mismatched text-image pairs. This necessitates the extraction of visual representations from
latent diffusion and distilling them into an additional network rather than directly using it as discrim-
inated model. Based on existing research, there are two approaches for extracting transferable vision
knowledge. The first approach involves replacing the encoder with a denoising U-Net to extract fea-
ture maps and cross-attention maps, followed by additional training of a downstream decoder(Zhao
et al., 2023} |Zhang et al., [2023). However, this approach assumes knowledge of the image cate-
gories, rendering it inapplicable to image classification tasks. The second approach, exemplified by
Score Distillation sampling(Poole et al., |2022; Wang et al.| 2023)), introduces a loss function based
on probability density distillation, utilizing a 2D latent diffusion model as a prior to optimize a pa-
rameterized 3D image generator. However, this new approach is limited to generative models and
cannot be employed for discriminative tasks. To address this, we propose a novel approach Gradient
Score Distillation(GSD), which for the first time distills vision knowledge from latent diffusion and
applies it to domain generalization.

Domain generalization(DG) has advanced significantly but is still hindered by limited labeled cross-
domain data(Wang et al.,2022). To address this, researchers have focused on generating diverse data
to augment the source domain(Zhou et al., 2020bja). However, these methods suffer from limited
performance and how to immigrate latent diffusion models to DG remains unknown.

Therefore, we concern the aforementioned two issues, including the difficulty in extracting vision
knowledge from latent diffusion for image classification, and the uncertainty of applying latent dif-
fusion in domain generalization to achieve high performance, and propose DomainFusion, the first
approach that leverages latent diffusion models for DG classification. In DomainFusion, we incorpo-
rate latent diffusion models in both latent-level and pixel-level, as shown in Figure[TJand Figure[3] In
latent level, we propose Gradient Score Distillation (GSD), which establishes a connection between
the parameter spaces of discriminative and latent diffusion, optimizing the former’s parameter space
using gradient prior derived from the latter. In pixel space, we adopt an autoregressive generation
approach to continuously shuffle a synthetic dataset. To ensure that the generated samples are better
suited for DG, we propose a sampling strategy. Specifically, we generate multiple candidate samples
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and optimize the combination of semantic and non-semantic factors through a sampling strategy to
synthesize the final new samples. Experimentally, our DomainFusion outperforms state-of-the-art
methods in multiple benchmark datasets using multiple backbones, confirming the effectiveness of
DomainFusion.

Our key contributions can be summarized as follows:

* To the best of our knowledge, we propose the first framework that leverages latent diffusion mod-
els in both latent level and pixel level for domain generalization, extracting the vision knowledge
in latent diffusion models to facilitate the high-level comprehension.

* We propose Gradient Score Distillation(GSD) which leverages gradient priors from the latent
diffusion model to guide the optimization process of the DG model. We presents theoretical
proof of its effectiveness as optimizing the KL divergence between the predicted distributions of
the latent diffusion model and the discriminative model, thereby providing supervised signals.

* We propose an autoregressive generation method to shuffle synthetic samples and a sampling
strategy to optimize the semantic and non-semantic factors for synthetic samples.

2 RELATED WORK

2.1 DOMAIN GENERALIZATION

Most domain generalization (DG) methods operate under the assumption of having access to a suf-
ficient amount of cross-domain data. The main focus of these methods is to eliminate domain-
specific biases and retain invariant features across multiple source domains, including learning
more generalized feature representations via domain-invariant representation learning(Krueger et al.,
20215 Rosenfeld et al.l 2020) and feature disentanglement(Wang et al.l |2021; |[Zhang et al., [2022),
optimization-based methods via meta-learning (Bui et al., 2021; [Zhang et al., 2021)and ensemble
learning(Li et al., 2022b; |Arpit et al.| 2022)). Despite their success, these methods are limited by the
scarcity of real-world cross-domain data, which hinders their practical applicability. As an alterna-
tive strategy, another line of research focuses on data augmentation to generate new domains and
diverse samples(Zhao et al.| 2021} [Zhou et al.,|2021} [Li et al., 2021} [2022a). Our method integrates
the advantages of both approaches, as we not only tackle the issue of data scarcity but also emphasize
how to assist the model in learning more effective domain-invariant feature representations.

2.2 DIFFUSION MODELS FOR PERCEPTION VISION TASKS

Diffusion models have emerged as the state-of-the-art in image generation tasks(Nichol et al., 2021}
Saharia et al., 2022; |Ramesh et al., |2022; Rombach et al., |2022). Moreover, they have proven
to be successful in various perception vision tasks, including image classification(Li et al., 2023}
Clark & Jaini, [2023), image segmentation(Tan et al., 2022), object detection(Chen et al., |2022),
monocular depth estimation(Zhao et al. |2023), and semantic correspondence(Zhang et al., [2023).
Significantly, a substantial amount of research efforts has been dedicated to extracting valuable
vision knowledge from diffusion models. In line with our objective of leveraging the diffusion model
for domain generalization in image classification tasks, we classify existing approaches into three
distinct groups based on their relevance to classification tasks and the methodologies of utilizing
latent diffusion. The first group involves directly converting latent diffusion models from generative
to discriminative tasks without training extra models, such as the aforementioned diffusion zero-shot
classifier (L1 et al.| |2023}; |Clark & Jaini, 2023). While this approach provides valuable insights, it
suffers from limited technical scalability, slow inference speed, and suboptimal performance. The
second group focuses on extracting feature maps and cross-attention maps from the denoiser to train
an extra decoder for downstream tasks(Zhang et al.| 2023} |Zhao et al.,|2023)). However, this approach
often requires prior knowledge of image categories, which are used as conditional inputs into the
denoising process. As a result, it is not suitable for high-level visual tasks like image classification.
The third group are based on Score Distillation Sampling(SDS)(Poole et al., 2022} [Wang et al.,
2023; Hertz et al .| 2023} |Kim et al., 2023), which demonstrate good scalability. However, to the best
of our knowledge, this approach is only applicable to generative models intending for generating
diffusion-like images, which means the critical prerequisite is ensuring that the trained model shares
the same image generation objectives with latent diffusion models. Hence, our primary focus lies
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in exploring leveraging high-level semantic knowledge from latent diffusion models in a more
natural manner to optimize discriminative models.

3 METHOD

In this section, we first introduce diffusion preliminaries briefly. Then we elaborate DomainFusion
from Gradient Score Distillation in section Besides, we give a brief comparison from Proxy A-
distance(PAD) perspective to show its effectiveness. and theoretically proved that GSD minimizes
the KL divergence between the predicted distributions of the latent diffusion and the discrimina-
tive model, thereby providing supervised signals. Then we elaborate autoregressive generation and
sampling method in section[3.3] and the overall loss extraction framework ins section 3.4}

3.1 DIFFUSION PRELIMINARIES

A Recap of Diffusion Model. Diffusion models are latent variable generative models defined
by a forward and reverse Markov process(Ho et al.l [2020). In the forward process {Qt}te[o L

Gaussian noise is progressively added into the data xo ~ ¢o(xXg). The forward process at
timestep ¢ is expressed as ¢ (x; | xo) = N (x4; %0, 071), where oy and of = 1 — o7 are
hyperparameters satisfying op ~ 0 and o7 ~ 1. In the reverse process {pt}te[O,T]’ Gaussian
noise is progressively removed by an optimal MSE denoiser(Sohl-Dickstein et al., 2015) €4 (x;, t)
from p (x7) = N(0,I) to reconstruct the clean data x(, which is typically given by transitions
Po (xe—1 | x¢) = N (x4—1;%¢ — €4 (x4;t) ,07I). The optimal MSE denoiser €, () is trained
with a weighting function w(t) that varies with the timestep ¢ by minimizing:

Lpitr (¢5 %) = Ey4(0,1),e~N(0,1) {w(t) ll€s (uxo + av€;t) — 6\\;} (1)

Diffusion Models as a Potential Generative Classifier. For image classification tasks, the fun-
damental requirement is to compute the log-likelihood over class labels {y;}. Unfortunately, dif-
fusion models do not produce exact log-likelihoods(i.e. directly computing log py (x | y = y;) is
intractable)(Ho et al.,|2020). However, recent research(Li et al., {2023} |Clark & Jaini, 2023) has pro-
vided compelling evidence that log ps ( | y = y;) can be estimated using Lpjg. This is attributed
to a profound interrelation between the log-likelihood over its variational lower bound (ELBO) and
Lpige- Specifically, the relationship can be articulated as follows:

logpy (xo | y) > ELBO = —E; ¢ |w(t) [[€4 (xi5y5t) — €H§] +C = —Lpig + C 2

where C is a constant independent of the class labels y. Therefore, —Lpir can be employed as a
proxy to estimate the log-likelihood over class labels log p,, (xo | y)(Li et al.| 2023 |Clark & Jaini,
2023)), thereby transforming diffusion models into a potential classifier.

3.2 LEVERAGING LATENT SPACE BY GRADIENT SCORE DISTILLATION

Existing research on leveraging semantic knowledge within latent diffusion models can be catego-
rized into three approaches. However, each approach has its limitations as analysed in Section
Our main focus is to explore a more natural and efficient way of utilizing the high-level semantic
knowledge from latent diffusion models to optimize discriminative models for image classification.
Therefore, we propose GSD, which utilizes gradient prior from latent diffusion to optimize the pa-
rameter space of discriminative model by backpropagation.

Given the discriminative network 6 to be trained and an image z with its class label yy (note that we
employ y throughout to represent both the numeric class label within the discriminative network 6
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Figure 3: DomainFusion can be divided into four components. In Recognition Part, we start with the
original source dataset and the synthetic dataset generated later for supervised training. In Latent-
level Guidance Part, each image x is fed into the DG Discriminative Network 6 and weighted by the
output confidence w.r.t. its label y. x is then added noise € and passed through the latent diffusion
U-Net ¢ along with y as text prompt, resulting in predicted noise €4 (x;;y;t). The discrepancy
between the predicted and real noise [€4 (x;;y;t) — €] is utilized to obtain Lssp, which updates the
parameter space of 6 by backpropagation. In Pixel-level Guidance part, DomainFusion decodes the
U-Net denosing result into multiple candidates. In Autoregressive Generation and Sampling Part,
the sampling strategy is utilized to optimize the combination of semantic and non-semantic factors
of candidates and ultimately sample one novel image to update x in Recognition Part.

and the textual class label within the latent diffusion model ¢), our initial step involves forwarding x
through 6 for image classification, and compute the element-wise product of y with the confidence
score corresponding to class yg to obtain a f-related image . We denote this ’pseudo-generative”
process as x = g(0) = pg (y | X0) d (yo) Xo. Subsequently, we feed x into the denoising process
of ¢), and we denote the loss generated from denoising as Lgsp. Note that Lgsp is mathematically
equivalent to Lpi in Equationm which yields:

Losp (5% = 9(6)) = Lo (6:%) = Eve [w(t) &g (aix + avest) — ]3] 3

We compute the gradient of Lgsp w.r.t. 6 while omitting the U-Net Jacobian term following the

SDS setting(Poole et al., 2022):

R ox
VoLasn(6,x = 9(0)) = Bu [w(0) € i 0) ~ ) 5| @
VoLasp is then used to update 6 through backward propagation. Through this approach we es-
tablish a pathway for gradient propagation from the latent diffusion models to the discriminative
models. In the subsequent analysis, we shall delve deeper into the properties of GSD concerning its
role in enhancing transferable semantic understanding.

Gradient Score Distillation facilitates high-level visual learning. To verify the effectiveness of
GSD, we compute the Proxy A-distance (PAD)(Ding et all 2022). PAD requires extracting image
features separately from the source and target domains, labeling them as 1 and 0, and subsequently
training a classifier to discriminate between these two domains. Given a test error of €, PAD is
defined as 2(1 — 2¢). A superior DG algorithm yields a lower PAD, indicating its ability to extract
domain-invariant features. Consistent with prior studies(Ding et al.,[2022; [Glorot et al 2011} [Chen
et al} 2012} [Ajakan et all} [2014), we employ DomainFusion with/without GSD to extract image
features from source and target domains, labeled as 1 and 0, and train a linear SVM for classification.
As is shown in Figure 4] we first quantify PAD between a single source domain and the target
domain, demonstrating that incorporating GSD consistently yields lower PAD values. Then we
measure the PAD between all source domains and target domain, revealing a larger margin between
the two versions, thus validating the effectiveness of GSD.

We now delve into a theoretical explanation of why GSD facilitates the learning of high-level se-
mantic knowledge in discriminative models. Given a x and label y, 6 produces the log-likelihood
po (y | x). Conversely, the latent diffusion model also inherently estimates the log-likelihood
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Figure 4: Proxy A-distance (PAD) on Office Home. x axis: PAD computed upon DomainFusion
without GSD; y axis: PAD computed upon DomainFusion with GSD. We employ the DG model to
extract features across diverse domains to train a linear domain classifier, and PAD is proportional
to its classification accuracy. A superior DG model yields a lower PAD, indicating its ability to
extract domain-invariant features. DomainFusion with GSD demonstrates lower PAD compared to
its non-GSD version in both cases: (a) PAD between single source domain and the target domain.
For example, {C},A denotes using the model to measure PAD between one source domain Clipart
and the target domain Art. (b) PAD between all source domains and the target domain.

D¢ (v | x). We compute the KL divergence between them and its gradient w.r.t. 6 by:

Vo Dxwr(pe (y | x) g (y | X)) = Ep, [Valogpe (y | X)] = Ep, [Valogps (y [x)] ()
Based on the conclusion derived from Equation we employ —Lgsp to estimate logpy (x | y):

VoDxr(po (y | x) lps (y | X)) = Ep, [Vologpe (y | X)] + Ep, [VeLesp] (6)

As a consequence of incorporating an impulse function § into the computation of Lgsp, the resulting
value of Lgsp becomes a fixed constant when calculating E,,, [VgLgsp]:

E,, [VoLasp] = /Voﬁcsn -po (y) dy = Vo Lagsp /po (y) dy = AV¢Lagsp (7)

Where A is a constant unrelated to 6. Despite the integral value should be 1 due to the presence
of softmax, certain constants were omitted during the derivation from Equation [3] to Equation [4]
Consequently, A is introduced here to rectify this omission. Since the computation of the second
term (B) is independent of that of the first term (A), we can minimize the KL divergence by:

min Vg Dkr,(pe (v | X) ||Ipe (v | X)) = min E,, [Vglogpg (v | x)] +min AVgLssp
(B)

Within our DomainFusion the framework (elaborated in Chapter [3.2), we employ explicit mini-
mization of the term (B) and simultaneously utilize the images involved in Lgsp computation for
supervised training, thereby concomitantly minimizing the term (A). Consequently, we effectively
minimize the KL divergence between the two distributions. Therefore, GSD can be expressed as
distilling high-level semantic knowledge from the latent diffusion models and utilizing it as a super-
visory signal, thereby facilitating the comprehension of high-level semantic features. This approach
introduces a new paradigm for leveraging visual representations from latent diffusion models.

(®)

(A)

3.3 LEVERAGING PIXEL SPACE BY AUTOREGRESSIVE GENERATION AND SAMPLING

Autoregressive Generation to augment source domain. Synthetic images have demonstrated their
potential in augmenting the source domain to facilitate models in learning more generalized feature
representations(Wang et al., [2022), thereby enhancing the model’s DG performance. Nevertheless,
the notion that larger synthetic datasets equate to superior performance does not hold true. Research
has indicated that when training exclusively on synthetic data without the inclusion of real data, there
is a notable decline in model performance(Bansal & Grover, |2023;|Azizi et al.,[2023)), which can be
attributed to domain shift. Therefore, it is necessary to leverage the efficient generation capability of
latent diffusion models while preventing the synthetic dataset from taking over the real dataset. To
address this, we maintains a synthetic dataset at a 1:1 ratio in size with the training data. Besides, we
propose an autoregressive approach that allows for dynamic updates to the latent diffusion model’s
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input. This approach continuously shuffles the diversity of synthesized dataset, thereby fostering
improved DG performance.

Sampling to optimize semantic and non-Semantic factor combination. To mitigate domain shift,
existing research has provided valuable insights that synthetic data for DG should possess seman-
tic factors similar and introduce different non-semantic factors(Dai et al.| 2023)(e.g., content and
style). Drawing from this intuition, we propose a sampling mechanism to optimize the combi-
nation of semantic factors and non-semantic factors for generated images. Specifically, given an
input image xo and N generated candidate samples {x;} ief,n] We decompose them into seman-

tic factors (content) and non-semantic factors (style), represented as {c;};c(o 7 and {si},c;y ny-

To select the most diverse non-semantic factor s*, we apply the KL divergence to measure their
distance w.r.t. sg by s* = argmax KL(u;, o) + KL(04,00), where p and o represent the
s

mean and variance components of style s respectively. Additionally, for selecting the most simi-

lar semantic factor, we employ both the cosine similarity and the ) classification confidence by

¢ = argmax Acos(fg(c;), fo(co)) + (1 — Npo(y|c;), where fy represents the feature map ex-
ci

tracted by 6 and A represents a predetermined constant. Subsequently, we utilize AdalN style trans-

fer(Huang & Belongie, [2017)) to sample the ultimate new sample x* by x* = o*c* 4 u*.

3.4 L0SS EXTRACTION AT BOTH LATENT AND PIXEL LEVELS

Finally, we arrive at the DomainFusion algorithm. The overall training architecture is:
L= Alﬁraw + A2£gcn + )\SL:GSD 9

where L,y and L4, denote the cross-entropy loss in the source dataset and the synthesized dataset
respectively, A1,A2 and A3 are predetermined hyper-parameters. By employing this method, we
effectively extract loss from both the latent level and pixel level of the latent diffusion model, thereby
achieving the first comprehensive solution for DG utilizing the latent diffusion model.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Settings and Datasets. Following DomainBed(Gulrajani & Lopez-Paz, 2020), we conducted a
series of experiments on five prominent real-world benchmark datasets: PACS(L1 et al.| |2017),
VLCS(Fang et al., |2013), OfficeHome(Venkateswara et al.l 2017), Terralncognita(Beery et al.,
2018)), and DomainNet(Peng et al., 2019). To ensure a fair and consistent comparison, we follow
DomainBed’s training and evaluation protocol. We provide full details in Appendix A.2.

Implementation Details. For the latent diffusion model, we employ the stable diffusion v1-4 model
card. The batch size is set to 16 and we employ the Adam optimizer(Kinga et al.,|2015) and cosine
learning rate schedule. We provide full details in Appendix A.2.

4.2 MAIN RESULTS

Comparison with domain generalization methods. We compare DomainFusion with baseline
methods and recent DG algorithms and present results in Table[I] In the first section, we evaluated
DomainFusion using the ResNet-50(He et al.|[2016) architecture as the backbone. The experimental
results demonstrate that DomainFusion exhibits a significant lead w.r.t. other generation-involved
methods by +1.8pp, +1.3pp, +4.1pp, +3.2pp, and +5.2pp in PACS, VLCS, Office Home, Terrainc,
and DomainNet, respectively. Moreover, DomainFusion also outperforms the current state-of-the-
art methods in all benchmark datasets, yielding accuracy improvements of +0.8pp, +0.2pp, +1.7pp,
+0.7pp, and +0.3pp in each dataset.

In the second section of Table E], we employ Regnet-Y-16GF(Radosavovic et al.l 2020) as the back-
bone and utilize the SWAG(Singh et al., |2022)) method to obtain a pre-trained model on the Ima-
geNet(Russakovsky et al.l 2015) dataset, aiming to investigate the maximum performance potential
of the DomainFusion algorithm. The experimental results convincingly demonstrate a significant
performance improvement exhibited by the DomainFusion algorithm compared to ERM across all
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Table 1: Comparison with DG methods.The DG accuracy on five domain generalization benchmarks
are presented with the best results highlighted in bold. The results denoted by } correspond to the
reported numbers from DomainBed(Gulrajani & Lopez-Paz, 2020). Results of other DG methods
including Fish(Shi et al.| 2021}, SelfReg(Kim et al., 2021), mDSDI(Bui et al., 2021), MIRO(Cha
et al., 2022)), Fishr(Rame et al., |2022)) are from corresponding paper. And results of Diffusion
Classifier(Li et al., [2023)) and DiffusionNet(Clark & Jaini, 2023) are implemented by us.

Algorithm

| PACS VLCS OfficeHome

Terralnc

DomainNet | Avg.

Diffusion-based image classification method

Diffusion Classifier 47.0 40.6 26.8 13.5 10.8 27.7
DiffusionNet 23.8 0.8 15.5 8.5 0.3 9.8
Using ResNet-50 backbone: Non-generation method
ERM' 85.5 71.5 66.5 46.1 40.9 63.3
MLDG' 84.9 77.2 66.8 47.7 41.2 63.6
CORAL' 86.2 78.8 68.7 47.6 41.5 64.5
MMD' 84.7 71.5 66.3 422 23.4 58.8
DANNT 83.6 78.6 65.9 46.7 38.3 62.6
MTL' 84.6 77.2 66.4 45.6 40.6 62.9
SagNet' 86.3 77.8 68.1 48.6 40.3 64.2
RSCT 85.2 77.1 65.5 46.6 38.9 62.7
Fish 85.5 77.8 68.6 45.1 42.7 63.9
SelfReg 85.6 77.8 67.9 47.0 42.8 64.2
mDSDI 86.2 79.0 69.2 48.1 42.8 65.1
MIRO 85.4 79.0 70.5 50.4 443 65.9
Fishr 85.5 77.8 68.6 474 41.7 64.2
Using ResNet-50 backbone: Generation-involved method
GroupDRO' 84.4 76.7 66.0 43.2 333 60.7
Mixup' 84.6 77.4 68.1 479 39.2 63.4
Mixstyle* 85.2 77.9 60.4 44.0 34.0 60.3
DomainFusion(ours) | 87.0 79.2 72.2 51.1 44.6 66.8
Using RegNetY-16GF backbone with SWAG pre-training
ERM 89.6 78.6 71.9 514 48.5 68.0
MIRO 97.4 79.9 80.4 58.9 53.8 74.1
DomainFusion(ours) | 96.6 80.0 83.4 60.6 55.9 75.3

datasets. Moreover, our proposed approach outperforms the current SOTA algorithm, MIRO(Cha
et al.l 2022), in all datasets except PACS, with performance gains of +0.1pp, +3pp, +1.7pp, and
+2.1pp in VLCS, OfficeHome, Terralnc, and DomainNet, respectively. Our algorithm’s effective-
ness has been substantiated through a wide range of experiments.

Comparison with other diffusion-based image classification methods. There are two existing
methods that employ latent diffusion models for image classification, we denote them as Diffusion
Classifier(Li et al., 2023)) and DiffusionNet (Clark & Jainil [2023) respectively. Therefore, we also
conduct experiments to compare DomainFusion with them. To ensure fairness, we constrain all
three approaches to use stable diffusion and employ the same latent diffusion model parameters,
including a fixed image size of 320%320 and unified text prompt template.The experimental results
are presented in Table[I] The findings indicate that both the Diffusion Classifier and DiffusionNet
do not exhibit high performance as DG image classifiers.

4.3 ABLATION STUDY

We conduct experiments on Office Home for ablation study based on RegNet-Y-16GF.

Effects of Different Components. As shown in Table [I, L., improves the average accuracy
by 4.9% by generating a more diverse set of samples to augment the source domain, resulting in a
significant improvement in DG performance. However, using L., alone still exhibits a considerable
performance gap compared to state-of-the-art methods. To address this discrepancy, Lgsp bridges
this gap by further enhancing the accuracy by 4.8% compared to use Lgcp solely.
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Table 2: Effects of Different Components in DomainFusion

Liaw Lgen Lasp | Art  Clipart Product Real | Avg.

v X X 693 613 81.6 825 | 737
v v X | 136 712 80.7  88.7 | 78.6
v v v | 812 739 885 90.1 | 834

Effects of the Sampling Strategy. We also provide ablation study on the effect of the sampling
strategy, and details can be seen in Appendix A.3.

Effects of the Candidate Number. Moreover, we provide ablation study on the impact of the
number of candidates. Details can be seen in Appendix A.3.

4.4 VISUALIZATION

Figure 5: Visualization of generated samples and GSD noise, with the left section being autoregres-
sively generated samples and the right section being corresponding GSD noise.

Visualization of generated samples. Figure [5] showcases the visualization results of the global
synthetic dataset at various iterations. As we employed an autoregressive generation approach, with
each row representing the iterative evolution of a specific image. In terms of visual effects, it is
apparent that as the synthesized dataset is updated, the image sequences retain a certain degree of
semantic similarity, while also introducing new non-semantic features. This serves as evidence of
the effectiveness of our method.

Visualization of GSD noise. Figures [3]illustrates the visualization of the GSD noise for all images.
We first calculate the difference between predicted denoising latent and latent with noise, and then
use the stable diffusion decoder to decode this difference. It is evident that these noise patterns
effectively capture the high-level semantic information in the images while reducing the influence
of irrelevant elements, such as the background. This finding demonstrates the strong generalization
capability of the latent diffusion model, as it can extract transferable feature representations, which
contribute to optimizing the DG semantic understanding network in our GSD, further confirming
the effectiveness of the GSD method.

5 CONCLUSION

In this paper , we propose the first framework which utilizes the latent diffusion model (LDM) in
both the latent level and pixel level for domain generalization (DG) classification. In latent level, we
propose Gradient Score Distillation (GSD) that extracts transferable knowledge as gradient priors
from the LDM to optimize the DG model. The effectiveness of GSD is theoretically proved as
optimizing the KL divergence between the predicted distributions of the LDM and the DG model.
In pixel level, we propose an autoregressive generation method to continuously shuffle synthetic
samples and a sampling strategy to optimize the combination of semantic and non-semantic factors
in synthetic samples. Experimental results demonstrate that our method achieves state-of-the-art
performance on DG classification.
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A APPENDIX

A.1 COMPARISON WITH SCORE DISTILLATION SAMPLING AND DIFFUSION CLASSIFIER

Comparison with Score Distillation Sampling. (1) GSD extends SDS paradigm to discriminative
models and perception tasks. SDS is inherently restricted to cases where the targeted model is a
generative model, thus limiting its applicability to tasks beyond generation. In contrast, Our GSD
employs diffusion-like images as intermediaries to establish a connection between the parameter
spaces of discriminative and latent diffusion models, facilitating the transfer of semantic knowledge
for discriminative tasks. (2) GSD provides clearer evidence of its effectiveness. Equation [§] yields
a compelling conclusion that GSD can be employed to optimize the KL divergence between the
prediction distributions of the latent diffusion model and the DG network. This implies that GSD
can provide supervision signals for the DG network similar to ground truth in supervised learning.

Comparison with Diffusion classifier. Empirically and experimentally, we find that the diffusion
classifier(Li et al., 2023} |Clark & Jaini,2023) that directly uses noise for classification does not yield
satisfactory results. The key reason behind this is that the diffusion classifier requires matching the
correct image with a fake category and predicting the probability of this fake match. For example,
using a picture of a dog and the text promt ’cat’, the diffusion classifier is expected to provide the
probability of the dog picture belonging to the cat category. However, the dog picture does not
contain any information about cats. Consequently, utilizing incorrectly matched image-text pairs
leads to noisy and inaccurate predictions. In contrast, our GSD approach merely utilizes correctly
matched image-text pairs, effectively eliminating noisy predictions. Figure|I]illustrates the results
of visualizing the diffusion classifier’s score vectors by cross-attention map in the UNet obtained
by DAAM(Tang et al., [2022). Images from Office Home are sequentially matched with a real label
prompt and fake label prompts to compute the cross-attention map. It can be observed that diffusion
fails to comprehend mismatched image-text pairs, resulting in unreliable predictions in such cases.

A.2 EXPERIMENTAL SETTINGS

Settings and Datasets. Following DomainBed, we conducted a series of experiments on five promi-
nent real-world benchmark datasets: PACS(4 domains, 9,991 samples, and 7 classes), VLCS(4 do-
mains, 10,729 samples, and 5 classes), OfficeHome(4 domains, 15,588 samples, and 65 classes),
Terralncognita(4 domains, 24,778 samples, and 10 classes), and DomainNet(6 domains, and
586,575 samples, and 345 classes). To ensure a fair and consistent comparison, we follow Do-
mainBed’s(Gulrajani & Lopez-Paz, 2020) established training and evaluation protocol. In this pro-
tocol, we designate one domain as the target, while the remaining domains serve as source domains.
Model selection is conducted using the training-domain validation approach, where 20% of the
source domain data is used for validation. The performance of domain generalization is evaluated
individually on each domain and then averaged across all domains.

Implementation Details. For the latent diffusion model, we employ the stable diffusion v1-4 model
card. Specifically, we utilize the image-to-image pipeline for image generation and loss extraction,
where the input image size is set to 320x320, which greatly boosts algorithm training speed and
reduces computational overhead, and other hyperparameters are set to their default values as spec-
ified by stable diffusion. For domain generalization, we utilize ResNet-50 pretrained on ImageNet
and RegNet-Y-16GF pretrained using SWAG as our backbone models. The batch size is set to 16,
except for DomainNet where it is reduced to 8 due to computational limitations. We employ the
Adam optimizer and cosine learning rate schedule during training.

A.3 ABLATION STUDY

We conduct experiments on Office Home for ablation study. All models are based on RegNet-Y-
16GF and trained for 120 epochs.

Effects of Different Components. As shown in Table[I} Lye, improves the average accuracy by
4.9% by generating a more diverse set of samples to augment the source domain, resulting in a sig-
nificant improvement in DG performance . However, using Lg., alone still exhibits a considerable
performance gap compared to state-of-the-art methods. To address this discrepancy, Lgsp bridges
this gap by further enhancing the accuracy by 4.8% compared to use Lgcp solely.
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Table 1: Effects of Different Components in DomainFusion

Liaw Lgen Lasp | Art  Clipart  Product Real | Avg.

v X X 1693 613 81.6 825 | 73.7
v v X 736 712 80.7 887 | 78.6
v v v 812 739 885 90.1 | 83.4

Table 2: Effects of the Sampling Strategy. Table 3: Effects of the Candidate Number.
w/o | Art  Clipart Product Real | Avg. candidate number | Art Clipart Product Real | Avg.
N=1 79.4 71.8 87.5 88.2 | 81.7
X |794 718 875 882 | 817 N=2 812 739 885  90.1 | 834
v | 812 739 88.5 90.1 | 834 N=5 804 727 87.8  89.3 | 826
Table 4: Time cost hours of different components.
Algorithm | Clipart Info Painting Quickdraw Real Sketch | Avg.
Diffusion Classifier 5.8 6.3 8.9 20.3 20.7 8.3 11.7
DomainFusion without GSD | 21.1 17.4 18.5 17.8 174 172 18.2
DomainFusion with GSD 282 252 26.0 254 252 252 | 259

Effects of the Sampling Strategy. Table [2| demonstrates the effect of the sampling strategy. The
inclusion of the sampling strategy led to a significant enhancement of 1.7% in accuracy compared
to the exclusion version, thereby indicating the effectiveness of the sampling strategy. The imple-
mentation of the sampling strategy allows for the optimization of both semantic and non-semantic
factors, resulting in the generation of samples that are better aligned with the requirements of DG.
Effects of the Candidate Number. Table |3| presents the impact of the number of candidates, de-
noted as IV, on the results. We considered three scenarios: N =1, N =2,and N =5, with N = 2
being the default setting for DomainFusion. In the implementation process, N is primarily adjusted
by the number of images generated for each prompt in the stable diffusion pipeline. It is noteworthy
that a larger value of N may yield a decline performance because too many candidates may lead to
visual clutter in the synthesized images. Therefore, setting N as 2 is deemed as a favorable choice.

A.4 COST ANALYSIS

We analyze the GPU time consumption of different components in DomainFusion on DomainNet,
along with the runtime of the Diffusion Classifier for comparison. It is worth noting that all the
reported times refer to the number of hours the algorithms consumed on 8* V100 GPUs. Domain-
Fusion was run for 120 epochs and completed both training and inference, while the Diffusion
Classifier only completed the inference phase. Despite the longer runtime of DomainFusion com-
pared to the Diffusion Classifier, it remains affordable while achieving a significant improvement in
accuracy. Note that when used for inference, our DomainFusion requires no extra time compared
with ERM.

A.5 MORE VISUALIZATION RESULTS

We present more visualization results of autoregressively generated samples and corresponding GSD
noise images in Figure|T]
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Figure 1: More visualization results of generated samples and GSD noise, with the left section being
autoregressively generated samples and the right section being corresponding GSD noise.
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