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Abstract

Maintaining mutual understanding is a key
component in human-human conversation to
avoid conversation breakdowns, in which re-
pair, particularly Other-Initiated Repair (OIR,
when one speaker signals trouble and prompts
the other to resolve), plays a vital role. How-
ever, Conversational Agents (CAs) still fail to
recognize user-initiated repair requests, leading
to breakdowns or disengagement. This work
proposes a multimodal approach to automati-
cally detect OIR requests in Dutch dialogues
by integrating linguistic and prosodic features
grounded in Conversation Analysis. The results
show that prosodic cues complement linguistic
features and significantly improve the results of
pre-trained text and audio embeddings, offer-
ing insights into how different features interact.
Future directions include incorporating visual
cues, exploring large language models (LLMs),
and applying the model in CA systems.

1 Introduction

Conversational agents (CAs), software systems that
interact with users via natural language in written
or spoken form, are increasingly used in multiple
domains such as commerce, healthcare, and edu-
cation (Allouch et al., 2021). While maintaining
smooth communication is crucial in these settings,
current state-of-the-art (SOTA) CAs still struggle
with handling conversational breakdowns. Unlike
humans, who rely on conversational repair to re-
solve issues like mishearing or misunderstanding
(Schegloff et al., 1977; Schegloff, 2000), CAs’ re-
pair capabilities remain limited and incomplete.
Schegloff (2000) categorized repair types based
on who initiates and who resolves the problem,
distinguishing between self- (by the speaker who
caused the issue) and other-initiated repair (by
the recipient who detects it), which is our focus in
this work. Current CAs handle repairs in a limited
fashion that mainly support agent-initiated repair

(e.g., the agent asks users to repeat what they said)
(Li et al., 2020; Cuadra et al., 2021; Ashktorab
et al., 2019) or rely on user self-correction when
they realize troubles and clarify their intent (e.g.,
saying “no, I mean...”) (Balaraman et al., 2023).
However, other-initiated self-repaired or in short
other-initiated repair (OIR), where the user sig-
nals a problem and prompts the agent to clarify or
correct itself, is rarely supported, while effective
communication requires bidirectional (Moore et al.,
2024). Supporting this, Gehle et al. (2014) found
that museum guide robots failing to resolve com-
munication issues quickly caused user disengage-
ment, and van Arkel et al. (2020) showed that basic
OIR mechanisms improve communicative success
while reducing computational and interaction costs
compared to relying on pragmatic reasoning.

Modeling OIR strategies on CAs that recognize
user-initiated repair first requires robust automatic
OIR request detection in human-human interac-
tion. However, prior work is narrow and mostly
text-based approaches, training on English corpora
and relying on lexical cues (H6hn, 2017; Purver
et al., 2018; Alloatti et al., 2024), which over-
look prosodic markers that reliably signal repair.
Prosodic cues tend to be more cross-linguistically
stable than surface forms (Dingemanse and En-
field, 2015; Benjamin, 2013; Walker and Benjamin,
2017), and can provide valuable insight into the
pragmatic functions of expressions like the inter-
jection “huh”. This highlights the limitations of
relying solely on textual patterns for OIR request
detection. Finally, understanding the OIR sequence
also requires examining the local sequential envi-
ronment of the surrounding turns, which we call a
"dialogue micro context" (Schegloff, 2000).

These gaps motivate our main research question:
What are the multimodal indicators of OIR re-
quests in human dialogue and how can we model
them? To address this, we analyze OIR sequences
in a Dutch task-oriented corpus, focusing on text



and audio patterns where one speaker initiates an
OIR request. Drawing on Conversation Analysis
literature, we introduce feature sets and a compu-
tational model to detect such requests. Our contri-
butions are in two folds: (1) a novel multimodal
model for OIR request detection that integrates
linguistic and prosodic features extracted automat-
ically based on the literature, advancing beyond
text- or audio-only approaches; (2) provide insights
into how linguistic and prosodic features interact
and contribute in OIR requests detection, grounded
in Conversation Analysis, and what causes model
misclassifications. The remainings of this paper
is structured as follows: Section 2 reviews SOTA
computational models for OIR request detection
and related dialogue understanding tasks. Section 3
provides the used OIR coding schema and typol-
ogy, and Section 4 details our approach, including
linguistic and prosodic feature design. Section 5
presents our experiment details and results, fol-
lowed by error analysis in Section 6.

2 Related Work

An early approach to automatic OIR detection was
proposed by Hohn (2017), with a pattern-based
chatbot handling user-initiated repair in text chats
between native and non-native German speakers.
Purver et al. (2018) extended this by training a
supervised classifier using turn-level features in
English, including lexical, syntactic, and seman-
tic parallelism between turns. More recently, Al-
loatti et al. (2024) introduced a hierarchical tag-
based system for annotating repair strategies in
Italian task-oriented dialogue, distinguishing be-
tween utterance-specific and context-dependent
functions.

Although direct research on OIR detection is
still limited, advances in related dialogue under-
standing tasks provide promising methods for our
work. Miah et al. (2024) combined pretrained
audio (Wav2Vec2) and text (RoBERTa) embed-
dings to detect dialogue breakdowns in health-
care calls. Similarly, Huang et al. (2023) used
BERT, Wav2Vec2.0, and Faster R-CNN for intent
classification, introducing multimodal fusion with
attention-based gating to balance modality con-
tributions and reduce noise. Saha et al. (2020)
proposed a multimodal, multi-task network jointly
modeling dialogue acts and emotions using atten-
tion mechanisms. Liu et al. (2023) achieved SOTA
in several tasks with a hierarchical model leverag-

ing special tokens and turn-level attention. More
recently, high-performing but more opaque and
resource-intensive approaches have emerged: Chen
et al. (2024) applied prompt-based learning with
intent templates to enhance cross-modal alignment
for intent detection, and Mohapatra et al. (2024)
showed that larger LLMs outperform smaller ones
on tasks like repair and anaphora resolution, albeit
with higher computational cost and latency.

Despite robust performance, recent largest mod-
els remain difficult to interpret due to their black-
box nature and multimodal fusion complexity (Jain
et al., 2024). To address this gap, we propose
a computational model for OIR request detec-
tion in Dutch that fuses pretrained text and au-
dio embeddings with linguistic and prosodic fea-
tures grounded in Conversation Analysis. The
model also integrates a multihead attention mecha-
nism to weigh and capture non-linear relationships
across modalities, allowing our model to keep the
strengths of multimodal deep learning while offer-
ing insight from linguistic and prosodic features
to inteprete their interaction and impact towards
model’s decision.

3 OIR Coding Schema and Typology

We follow Dingemanse and Enfield (2015)’s coding
schema, which structures OIR sequences into three
components: trouble source, OIR request, and re-
pair solution segments, in which OIR requests are
categorized into three types: open request (the least
specific, not giving clues of trouble), restricted
request (implied trouble source location), and re-
stricted offer (the most specific, proposing a can-
didate understanding). Following Rasenberg et al.
(2022)’s OIR annotation, which aligns OIR compo-
nent boundaries with Turn Construction Unit (TCU,
the smallest meaningful element of speech such as
a word, phrase or sentence, that can potentially
complete a speaker turn) boundaries in speech an-
notation, we use the term segment as the unit for
input data. An OIR request segment may comprise
one or multiple TCUs (as in Figure 1), serving as
our data input units.

There are two OIR sequence types: minimal
(OIR request initiated immediately after the turn
containing the trouble source segment), and com-
plex (OIR request delayed by a few turns), as illus-
trated in Figures 1 and 2.
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Figure 1: Visualization of a minimal OIR sequence

TROUBLE REPAIR
SOURCE o EORICICONIINUER " soLuTioON

Speaker A

REPAIR
FEEDBACK “INITIATION

Speaker B

turn, turn, turn, turn,  turng

Figure 2: Visualization of a complex OIR sequence
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Figure 3: Overview our multimodal modal architecture

Task Formulation. We formulate the OIR re-
quest detection as a binary classification problem.
Given a segment (x;), corresponding to one or sev-
eral TCUs within a speaker turn, the task is to
predict whether it is an OIR request or a regular
dialogue (RD) segment (i.e., not belonging to an
OIR sequence).

Architecture Overview. Figure 3 shows the
overview of our proposed approach. For a given
segment (x;), we extract the linguistic and prosodic
features respectively, then integrate text and audio
embeddings extracted from pretrained model. All
features are then projected to a shared dimension-
ality to ensure the consistency across modalities.
To capture the complex interactions between text
and audio embeddings with handcrafted features,
a multihead attention mechanism was employed

to weigh and capture non-linear relationships. Fi-
nally, the whole representation is obtained by con-
catenating the text embedding and the fused repre-
sentation from multihead attention. We propose a
multimodal approach to introduce the handcrafted
linguistic and prosodic features, automatically com-
puted based on literature review, into the pretrained
models’ embeddings to model the OIR request.

4.2 Pretrained Models

Language model. Our proposed approach uti-
lizes ROBERTa (Zhuang et al., 2021), a transformer-
based language model, to obtain text embedding
of the current given segment. As our corpus is
in Dutch, we use the pre-trained RobBERT (De-
lobelle et al., 2020) model, which is based on the
RoBERTza architecture, pre-trained with a Dutch
tokenizer, and 39 GB of training data. We use the
latest release of RobBERT-v2-base model which
pre-trained on Dutch corpus OSCAR 2023 version,
which outperforms other BERT-based language
models for several different Dutch language tasks.

Audio model. For audio representations, we uti-
lize Whisper (Radford et al., 2023), an encoder-
decoder Transformer-based model trained on
680,000 hours of multilingual and multitask speech
data, to extract audio embeddings from our dia-
logue segments. Whisper model stands out for its
robustness in handling diverse and complex lin-
guistic structures, a feature that is crucial when
dealing with Dutch, a language known for its in-
tricate syntax. Besides, Whisper was trained on
large datasets including Dutch and demonstrated
good performance in zero shot learning, making it
ideal serving as a naive baseline for task with small
corpus like ours.

4.3 Dialogue Micro Context

Schegloff (2000) demonstrated that the OIR se-
quence is systematically associated with multiple
organizational aspects of conversation, and un-
derstanding an OIR request requires examining
the local sequential environment, which we call
in this work the dialogue micro context (Sche-
gloff, 1987). Therefore, for each given target seg-
ment (z;), to capture the micro context, we iter-
atively concatenate the previous (z;_;) and fol-
lowing (z;4;) TCUs using special separator to-
ken of transformers (e.g. </s> for RoOBERTa-based
models) until reaching the maximum token limit
(excluding [CLS] and [EOS]), inspired by similar



ideas in (Wu et al., 2020; Kim and Vossen, 2021).
If the sequence exceeds the limit, we truncate the
most recently added TCUs. The final sequence
is enclosed with [CLS] and [EOS], as shown in
Figure 8.

4.4 Linguistic Feature Extraction

Figure 4 outlines our linguistic feature set for the
representation of the target segment, capturing lo-
cal properties such as part-of-speech (POS) tag-
ging patterns, question formats, transcribed non-
verbal actions (target segment features), and fea-
tures, which quantify repetition and coreference
across turns to reflect backward and forward rela-
tions around the OIR request (cross-segment fea-
ture to capture micro context). The detailed de-
scription is in the Appendix B.
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Figure 4: Visualization linguistic feature set

4.4.1 Target Segment Features

We automatically extracted the linguistic features
proposed by (Ngo et al., 2024) at the intra-segment
level to capture grammatical and pragmatic patterns
related to the OIR request. For instance, restricted
OIR requests often show a POS tag sequence pat-
tern of interrogative pronouns followed by verbs,
while OIR open requests and regular dialogue seg-
ments differ in key lemmas used of the same tag:
modal auxiliary verb kunnen (“can’) vs. primary
auxiliary verb zijn (“to be”’). Additional features in-
clude question mark usage and binary indicators for
non-verbal actions (e.g., laughing, sighing) (Sche-
gloff, 2000), are fully given in the Appendix B.

4.4.2 Cross-Segment Features

Grounded on the literature (Schegloff, 2000; Ngo
et al., 2024), we define inter-segment features that
capture the sequential dynamics of the OIR request,
including repetitions and the use of coreferences
referring to entities in prior turns containing the
trouble source segment. We also compute self and

other-repetition in the subsequent turn containing
the repair solution segment, to capture how the
trouble source speaker responds. These features
reflect the global dynamics of OIR sequences.

4.5 Prosodic Features Extraction

Prosody plays a crucial role in signaling OIR re-
quests. Previous studies in Conversation Analysis
show that pitch, loudness, and contour shape can
indicate whether a repair initiation is perceived
as "normal" or expresses "astonishment"(Selting,
1996), and that Dutch question types differ in pitch
height, final rises, and FO register (Haan et al.,
1997). Building upon these characteristics, we de-
sign a prosodic feature set that includes both local
features within the target segment, such as pitch,
intensity, pauses, duration, and word-level prosody,
and global features across segments of the OIR
sequence, such as latency between OIR sequence
segments, pitch slope transitions at boundaries, and
comparison to speaker-specific prosodic baselines.
The features are detailed in Figure 5 and in the
Appendix C.
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Figure 5: Visualization of prosodic feature set

4.5.1 Target Segment Features

We use Praat (Boersma, 2000) to extract prosodic
features at the segment level, including: pitch fea-
tures (e.g., min, max, mean, standard deviation,
range, number of peaks) which are computed from
voiced frames after smoothing and outlier removal,
with pitch floor/ceiling set between 60-500 Hz
and adapted to each speaker range (van Bezooi-
jen, 1995; Theelen, 2017; Verhoeven and Connell,
2024); first (mean and variability of pitch slope
change) and second derivatives (pitch acceleration)
of pitch contour, capturing pitch dynamics. Addi-
tional features are intensity (e.g., min, max, mean,



range, standard deviation), and voice quality mea-
sures (jitter, shimmer, and harmonics-to-noise ra-
tio). We also model pause-related features by de-
tecting silent pauses over 200 ms and categoriz-
ing them by duration and position in the utterance,
reflecting their conversational function associated
with repair possibilities (van Donzel and Beinum,
1996; Hoey, 2018). Inspired by findings prosody
of other-repetition in OIR request (Dingemanse
et al., 2015; Walker and Benjamin, 2017), we ex-
tract pitch and intensity features for repeated words
from the trouble source segment, and for the spe-
cific repair marker "wat" (what/which/any), as indi-
cators of OIR request type and speaker perspective
(Huhtaméki, 2015).

4.5.2 Cross-Segment Features

To model the speaker-specific prosodic variation
(van Bezooijen, 1995; Theelen, 2017; Verhoeven
and Connell, 2024), we normalize pitch and in-
tensity using z-scores, relative percentage change,
and position within the speakers’ range. These fea-
tures capture how far the current segment deviates
from the speaker’s typical behaviour across pre-
vious turns and the normalized range position of
the current segment within the speaker’s baseline.
Inspired by work on prosodic entrainment (Levitan
and Hirschberg, 2011), we also compute pitch and
intensity slope transitions across segment bound-
aries (e.g., TS—OIR, OIR—RS), both within and
across speakers, to assess prosodic alignment. We
normalized slopes to semitones per second for con-
sistency across speakers.

5 Experiments & Results

To answer the main research question mentioned
in Section 1, we design the experiments to answer
the following research sub-questions: i) RQ1: To
what extent do audio-based features complement
text-based features in identifying OIR requests?
ii) RQ2: Do our proposed linguistic and prosodic
features (see Figures 4 and 5) perform better than
pretrained embeddings? iii) RQ3: Which prosodic
and linguistic features contribute the most to OIR
request detection? iv) RQ4: How does the involve-
ment of dialogue micro context affect OIR request
detection performance?

5.1 Implementation Details

Dataset. Based on (Colman and Healey, 2011)’s
findings that repair occurs more frequently in task-
oriented dialogues, we selected a Dutch multi-

modal task-oriented corpus (Rasenberg et al., 2022;
Eijk et al., 2022), which contains 19 dyads col-
laborating on referential communication tasks in
a standing face-to-face setting. Participants al-
ternated roles to describe (Director) and identify
(Matcher) geometric objects ("Fribbles") displayed
on screens. The unconstrained design encouraged
natural modality use and OIR sequences. Rasen-
berg et al. (2022) annotated OIR sequences using
Dingemanse and Enfield, 2015’s schema, result-
ing in 10 open requests, 31 restricted requests, and
252 restricted offers. We balanced the dataset with
306 randomly selected regular dialogue segments,
stratified across all dyads. The high distribution
of restricted offers likely originates from the task
settings, where participants see all 16 candidate
objects, prompting them to offer a candidate of
understanding and ask for confirmation.

Training Details. We fine-tuned our models us-
ing 10-fold cross-validation, in which the optimal
learning rate was 2e-5. We employed AdamW op-
timizer with a weight decay of 0.01 and a learning
rate scheduler with 10% warmup steps. Training
ran for up to 20 epochs with 3-epoch early stopping
patience, and batch size 16.

Evaluation Metrics. We evaluated model perfor-
mance using binary classification metrics including
precision, recall, and macro F1-score.

5.2 Experiment Scenarios & Results Analysis

Model Modal & Features  Precision Recall F1-score

Textemb U&T 720+4.0 87.6+75 789+47
Audiogmb U&A 72.6+9.7 76.3+13.1 70.6+38.1
Multigmb M & T+A 79.1+54 822+38 821+09
TextLing U&L 822+36 804+6.1 80.4+38
Audiopyos U&P 81.7+42 774+54 T7.3+27
Multig ingpros M & L+P 81.7+76 822+15 81.8+34
Multioyrs M & T+A+L+P  93.2+28 96.1+26 94.6+2.3

U: Unimodal, M: Multimodal, T: Text, A: Audio, P: Prosodic
features, L: Linguistic features

Table 1: Overall results across modalities for OIR
request detection. The table groups models by research
question: RQ1 compares unimodal vs. multimodal
combinations of audio and text; RQ2 compares
handcrafted features with pretrained embeddings.

RQ1: Audio vs. Text Complementarity. To ad-
dress RQ1, we compare the performance of uni-
modal against multimodal models, including: i)
Single Textgm,y or Audiogy, vs. Multigyy; i)
Single Textyiyg or Audiopyes vs. Multipingpros-
We want here to see if adding the audio-based



features, either by pretrained embeddings or by
using handcrafted prosodic features, will im-
prove the performance of the text-based models.
The multimodal models include Multigy,y,, which
fuses pretrained text and audio embeddings, and
Multiy jngpros, Wwhich combines handcrafted linguis-
tic and prosodic features, using cross-attention fu-
sion as illustrated in Figure 3.

From Table 1, we observe that multimodal mod-
els consistently outperform unimodal ones across
all metrics. For both pretrained embeddings and
handcrafted features, text-based models outper-
form audio-based ones individually. However, in-
corporating audio improves performance in both
settings. Specifically, in the pretrained setting,
the multimodal model Multigy,, achieves an F1-
score of 82.1, improving over Textgmp by 3.2
percentage points (pp) and over Audiogyp by
11.5 pp. Similarly, in the handcrafted feature set-
ting, combining linguistic and prosodic features
Multiy ingpros yields an F1 of 81.8, outperform-
ing Textring by 1.4 pp and Audioprs by 4.5 pp.
Interestingly, the unimodal handcrafted models
Textying, Audiopyes show higher precision than re-
call, whereas Multiyingpros shows slightly higher
recall, suggesting a tendency to favor detection
over omission. This is potentially beneficial in in-
teractive systems where missing an OIR request
could be more disruptive than a false alarm. For
embedding-based models, recall exceeds precision
in all cases, but the multimodal model shows a no-
table gain in precision, indicating a better trade-off
between identifying true OIR requests and mini-
mizing false positives.

RQ2: Handcrafted Features vs. Pretrained Em-
beddings. To address RQ2, we compare the per-
formance of models using handcrafted features
against the models using embeddings from pre-
trained models. We thus compare: i) Text repre-
sentations: text embeddings (Textgmp) vs. hand-
crafted linguistic features (Textying); ii) Audio
representations: audio embeddings (Audiogmyp)
vs. handcrafted prosodic features (Audiopy,s); iii)
Combined approaches: multimodal models us-
ing pretrained embeddings (Multigmpp) vs. us-
ing handcrafted linguistic and prosodic features
(Multiyingpros) and vs. our proposed approach
leveraging both of them Multigyys.

We want here to see if the sets of handcrafted
features grounded by literature in Conversation
Analysis performed better or complement the pre-

trained models’ embeddings. Results in Table 1
demonstrate that handcrafted feature models are
comparable to embedding-based approaches. In
unimodal settings, Textyine achieves higher preci-
sion (+10 pp) with comparable F1-score (+1.5 pp)
to Textgmp, despite lower recall (-7.2 pp). Like-
wise, Audiopy,s outperforms Audiogmp across all
metrics (precision +9.1 pp, recall +1.1 pp, F1-score
+6.7 pp). For multimodal approaches, Multigmpy,
and Multiyingpros perform almost identically (F1-
score difference of just 0.3 pp), with handcrafted
features providing better balanced precision-recall
trade-offs. Furthermore, our proposed Multigys
model, combining pretrained embeddings with
handcrafted features from both modalities, sub-
stantially outperforms all other approaches, raising
F1-score by 12.5 pp, precision by 14.1 pp, and re-
call by 13.9 pp, which suggests that handcrafted
features effectively complement pretrained embed-
ding models, with more balanced trade-off between
False Positives (regular dialogues misclassified as
OIR requests) and False Negatives (OIR requests
misclassified as regular dialogue).

RQ3: Handcrafted Feature Importance Analy-
sis. Although the linguistic and prosodic features
could not solely outperform pretrained text and au-
dio embeddings, they are useful in interpreting the
model’s behaviours, especially to see if they are
aligned with the Conversation Analysis findings.
To answer RQ3, we used SHAP (SHapley Additive
exPlanations) analysis to analyse the contribution
and behaviours of linguistic and prosodic features
towards the model’s decision. Figure 6 illustrates
the top 20 features by SHAP value, which measures
how much each single feature pushed the model’s
prediction compared to the average prediction. The
pausing behaviours (positions and durations), in-
tensity measures (max, mean, and relative change),
and harmonic-to-noise ratio (HNR) appear particu-
larly important among prosodic features. For lin-
guistic features, the grammatical structure linking
to coreference used, some POS tags, and various
word type ratios rank highly. The most important
features include the number of long and medium
pauses, the relative position of the longest pause,
and the verb-followed-by-coref structure, all scor-
ing near 1.0 on the importance scale, which aligned
with the works in (Hoey, 2018; Ngo et al., 2024)
about pauses in OIR requests and the structure of
OIR request, respectively.

Figure 7 displays the synergy (Ittner et al., 2021)
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Figure 6: Visualization feature importance

between linguistic and prosodic features, which are
computed based on the SHAP interaction values.
It reflects how complementary a pair of linguistic
and prosodic features is in improving model perfor-
mance, in which high synergy means that combin-
ing both features adds more value than what each
of them contributes individually. These features do
not always need to co-vary, but their combination
brings useful information for the model. Coordi-
nating conjunction ratio (CCONJ ratio) shows the
strongest synergy (0.26) with harmonics-to-noise
ratio (HNR), while other speaker self-repetition
ratio has strong synergy (0.23) with maximum in-
tensity. This suggests that certain grammatical pat-
terns work closely with specific voice qualities,
particularly how conjunctions interact with voice
clarity and how self-repetition correlates with voice
intensity. The results indicate that conversation in-
volves a complex interplay between what we say
(linguistic elements) and how we say it (prosodic
elements), which is aligned with the Conversation
Analysis work.

Synergy Between Linguistic and Prosodic Features

ADP->NOUN 0.02
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VERB->coref 0.00 0.02 0.00 0.03
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Figure 7: Visualization feature interaction heatmap

RQ4: Dialogue Micro Context Analysis. To
address RQ4, we experimented 4 scenarios of con-
catenating micro context, including: (1) Pastcontext
- concatenated current input segment with the
TCUs in the prior turns and cross-segment hand-
crafted features (past-related, Figure 4, 5); (2)
Futurecntext - concatenated current input segment
with the TCUs in the subsequent turns and hand-
crafted cross-segment features (future-related, Fig-
ure 4, 5); (3) Currentcontext - NO context concate-
nation and used only current input segment fea-
tures (Figure 4, 5); (4) Multigy,s - the full context
scenario, where we concatenate current input seg-
ment with both the prior and subsequent TCUs
and use full handcrafted feature set. For (1) and
(4), we experimented with window_length of 2
and max (the micro context are concatennated as
much as possible until it reach maximum token
limit) based on results from corpus analysis; for
(2) only max was used, as repair solutions typically
occur immediately within maximum 2 turns in this
corpus. Table 2 highlights the impact of different
micro-context configurations, in which integrating
surrounding TCUs from prior, and subsequent seg-
ments combining with the whole handcrafted fea-
ture set leads to the best overall performance, as
also stated in Table 1. Notably, our this full context
setting with smaller window_length=2 achieves the
highest results across all metrics, while introduc-
ing to the maximum allowed token limits degrades
the performance, with a drop of approximately 6.3
pp of Fl-score, 9 pp of precision, and 4.1 pp of
recall. It suggests that while surrounding context
of input segment is helpful, overly long concate-
nation may introduce noise and irrelevant infor-
mation to model. Besides, integrating past or cur-
rent segments yields moderate performance, with
F1-scores ranging from approximately 80.2% to
83.6%, while future context alone results in the
lowest scores, indicating that the upcoming dia-
logue can offer informative cues but less relevant
than the prior and current input segments, which
aligned with the nature of OIR sequence.

Context Window length  Precision Recall F1-score
(1) Pastcontext 2 86.0+3.0 784+54 820+41
(1) Pastcontext max 86.6 + 5.2 81.0 £ 6.1 83.5+4.3
(2) Currentcongext - 84.6 £3.8 82.9+6.0 83.6 £4.4
(3) Futurecopgext max 84.00 £1.53 78.20£5.78 80.18 +2.52
(4) Multioyrs 2 93.2+28 96.1+26 94.6+23
(4) Multioyrs max 87.7+35 89.1+5.3 88.3+3.7

Table 2: Dialogue micro context concatenation results



6 Error Analysis

In order to better interprete the model’s perfor-
mance, we analyze the False Negative (Fn) in-
stances, which are the OIR requests that were
misclassified as regular dialogue segments, to see
whether there are common patterns in these in-
stances that our models find it hard to predict, il-
lustrated in Table 3. We compare the FN instances
across our proposed multimodal model with the 2
unimodal models using linguistic and prosodic fea-
tures. The results show that our model fails on only
around 3.8% of the test set, while the FN errors ac-
counted for around 15% and 24% on Textyi,g and
Audiopyos, respectively. For the Textyj,g model, it
seems to struggle in detecting samples with vague
references, especially in restricted offer type, even
when there are OIR syntactic forms like question
mark presented. In terms of Audiopy.g, even though
the important prosodic cues were presented, the
model seems to over-rely on pause structure and
pitch contour. Short declaratives with flat intona-
tion were often misclassified, suggesting the im-
pact of lacking syntactic form information in this
model. Finally, our proposed multimodal failed
with mostly short phrases and subtle prosodic sig-
nals, which are not strongly marked as an OIR
request. Considering the error across 3 types of
OIR requests, it seems that only Audiop;os strug-
gled with varied types of OIR requests; the other 2
models misclassified on restricted offer and open
request instances only. However, as this corpus is
imbalanced between the 3 types of OIR requests,
with the majority of restricted offers, it could be
the reason.

Modal __Gerror

Patterns OIR Request Type
Restricted Offer

cted Offer
ng and middle, but complex OIR  Restricted Offer

Table 3: Samples of False Negative (FN) instances from
unimodal (text/audio) and multimodal models, with
qualitative patterns.

7 Conclusion & Future Works

This work presents a new approach to model and
detect OIR requests in human-human conversation
that takes advantage of automatically extracted lin-
guistic and prosodic features and is based on stud-

ies of OIR sequences in Conversation Analysis.
Our results show that the participation of these
hand-crafted features significantly improves the
performance of pretrained embeddings. We also
show that the audio modality complements and
improves the performance of the textual modality,
either by using pre-trained embeddings or hand-
crafted linguistic and prosodic features.

In addition, our feature analysis revealed not
only the impact of each feature in the linguistic
and prosodic feature set individually, but also their
complementary contribution. While key prosodic
indicators include pause-related features, intensity,
and harmonic-to-noise ratio (HNR), influential lin-
guistic features involve grammatical patterns, spe-
cific POS tags, and lemma ratios. Furthermore,
synergy analysis shows that linguistic and prosodic
features do not act independently, such as coordi-
nating conjunction usage, which shows strong syn-
ergy with HNR, and the trouble source speaker’s
self-repetition contributes notably to the presence
of maximum intensity. These patterns highlight the
nature of the OIR sequence, where how something
is said modulates what is being said.

Additionally, our results highlight the crucial
role of dialogue micro-context in OIR request de-
tection. Models with integration of both prior and
subsequent turns significantly outperform those re-
lying only on the current target segment. However,
concatenating too much micro-context could lead
to noise and irrelevant information, which affects
the model’s performance. This result supports the
literature in Conversation Analysis that OIR se-
quences are inherently context-sensitive, and their
interpretation often depends on the surrounding
interactional structure.

Finally, error analysis revealed that while the
text-based model failed with vague references and
disfluencies, the audio-based model was prone to
misclassifying flat or subtle prosodic cues, which
raised the need for a multimodal model. The pro-
posed multimodal model mitigates these weak-
nesses, but it still struggles with short, minimally
marked OIR requests that lack both strong syntactic
and prosodic cues.

Building on these insights, future work will ex-
plore the integration of visual features to more ac-
curately model the embodied aspects of OIR se-
quences, as well as the development of multilingual
and cross-context corpora to assess the robustness
and generalizability of the detection approach.



Limitations

Dataset Limitations and Generalizability. Due
to the limited multimodal OIR-labeled corpora, our
study utilized the only available multimodal OIR-
labeled corpus, which is specific to Dutch language
and referential object matching tasks. This speci-
ficity could limit the generalizability of our model
across different OIR categories, languages, and
conversation settings. Future works should test
the model on more diverse datasets to validate its
robustness and establish broader applicability.

Adaptability in Real-time Processing. Despite
the computational efficiency of our approach using
handcrafted features compared to Large Language
Models, several limitations remain for real-time
adaptation. The feature extraction of some lin-
guistic and prosodic features, such as coreference
chains, requires additional computation with pre-
trained models, potentially introducing latency. Fu-
ture work should explore real-time feature extrac-
tion pipelines and incremental processing architec-
tures, while evaluating potential trade-offs between
model complexity and real-time performance to
make the system practical for CA systems.
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Sample Dialogue with OIR Sequence

B: Um, this actually looks a bit like a face. You have that cup and then you have
this kind of oval ball sticking out on the right,

B: And then you have a square which is a rectangular rod going straight up,

B: Then you have a triangular rod coming out on the left. Trouble Source
A: Something like a little V-shape? Repair Initiation
B: Um, yes, it mostly resembles a face, so if you have the bucket, then you have

like a ball that sticks out a bit on the right, and then that triangular rod comes out
onthe left, Repair Solution
A:Yes, yes, | think | get it,

B: Then you have like a ball that sticks out a bit on the right, and then that
triangular rod comes out on the left,

A: And are there two things on top?

B: Yes,

Current Target Segment x;

A: Something like a little V-shape? Repair Initiation

Dialogue Micro Context Concatenation
Step 1: Initial sequence with special separator tokens
</s> A: Something like a little V-shape? </s>
Step 2: Prepend previous TCU (i=1)

B: Then you have a triangular rod coming out on the left. </s> A: Something like a
little V-shape? </s>

Step 3: Append next TCU (i=1)
B: Then you have a triangular rod coming out on the left. </s> A: Something like a
little V-shape? </s> B: Um, yes, it mostly resembles a face, so if you have the

bucket, then you have like a ball that sticks out a bit on the right, and then that
triangular rod comes out on the left,

... continue until reach maximum number of tokens
Final sequence after concatenation with [CLS] and [EOS] tokens

[CLS].....B: Then you have a triangular rod coming out on the left. </s> A:
Something like a little V-shape? </s> B: Um, yes, it mostly resembles a face, so if
you have the bucket, then you have like a ball that sticks out a bit on the right,
and then that triangular rod comes out on the left, .....[EOS]

Figure 8: Dialogue micro context concatenation ap-
proach. Micro context refers to the immediate conver-
sational environment, including the prior turns and the
subsequent turns of the current target turn in dialogue
(Schegloff, 1987).
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Level Feature Group Feature Type(s) Description
S level POS tags sequence | POS tag bigrams, POS tag | Binary features for frequent POS
egment-leve ratios tag bigrams (e.g., PRON_Prs—VERB,
VERB—COREF); POS tags frequency ratios
computed per utterance.
Lemma contains_lemma  (e.g., nog, | Binary indicators for presence of high-

Question form

Non-verbal action

kunnen)
ends_with_question_mark

contains_laugh, contains_sigh,
etc.

frequency lemmas relevant to different
type of OIRs.

Binary feature indicating whether the ut-
terance ends with a question mark.

Binary features for transcribed non-verbal
actions like #laugh#, #sigh#, etc.

Cross-segment level
(prior turns related)

Repetition from pre-
vious turn

Coreference from
previous turn

other_repetition_ratio

coref_used_ratio

Ratio of tokens in the current utterance
that are repeated from the other speaker’s
previous turn relative to total utterance
length.

Ratio of coreference phrases (e.g., pro-
nouns or noun phrases referring to previ-
ous turn) relative to total utterance length.

Cross-segment level
(subsequent turns related)

Repair solution TSS
self-repetition

Repair solution TSS
other-repetition

other_speaker_self_rep_ratio

other_speaker_other_rep_ratio

Ratio of self-repetition in the turn follow-
ing the OIR.

Ratio of other-repetition in the turn fol-
lowing the OIR

Table 4: Summary of linguistic feature set used for modeling OIR request.

Level Feature Group Feature Type Description
Pitch features pitch_min, pitch_max, | Extracted from voiced frames; outliers removed;
mean, std, range, | peaks from smoothed contour (Savitzky-Golay).
num_peaks
Segment-level | pjcp dynamics slope, acceleration, | Captures pitch variation and shape within utterance.

Intensity features

Voice quality
Pause features

Speech timing

inflection_rate
min, max, mean, std, range

jitter, shimmer, hnr

num, durations,
short/med/long,
positional counts,

rel_longest
rate, duration

Computed from nonzero intensity frames; reflects
loudness.

Reflects vocal fold irregularity and breathiness.
Pause detection using adaptive thresholds; catego-
rized by duration and position.

Utterance length and estimated speech rate (e.g., syl-
lables/sec).

Cross-segment

Transition features
Baseline comparison

Latency

end_slope, start_slope,
transition
z_score,

range_pos
TS—O0IR, OIR—RS

rel_change,

Pitch slope difference across turn boundaries
(prev—cur, cur—next); in semitones/sec.
Comparison to speaker’s pitch/intensity baseline for
markedness detection.

Silence duration between trouble source and repair
turns.

Table 5: Summary of prosodic feature set used for modeling OIR request.
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