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Abstract001

Maintaining mutual understanding is a key002
component in human-human conversation to003
avoid conversation breakdowns, in which re-004
pair, particularly Other-Initiated Repair (OIR,005
when one speaker signals trouble and prompts006
the other to resolve), plays a vital role. How-007
ever, Conversational Agents (CAs) still fail to008
recognize user-initiated repair requests, leading009
to breakdowns or disengagement. This work010
proposes a multimodal approach to automati-011
cally detect OIR requests in Dutch dialogues012
by integrating linguistic and prosodic features013
grounded in Conversation Analysis. The results014
show that prosodic cues complement linguistic015
features and significantly improve the results of016
pre-trained text and audio embeddings, offer-017
ing insights into how different features interact.018
Future directions include incorporating visual019
cues, exploring large language models (LLMs),020
and applying the model in CA systems.021

1 Introduction022

Conversational agents (CAs), software systems that023

interact with users via natural language in written024

or spoken form, are increasingly used in multiple025

domains such as commerce, healthcare, and edu-026

cation (Allouch et al., 2021). While maintaining027

smooth communication is crucial in these settings,028

current state-of-the-art (SOTA) CAs still struggle029

with handling conversational breakdowns. Unlike030

humans, who rely on conversational repair to re-031

solve issues like mishearing or misunderstanding032

(Schegloff et al., 1977; Schegloff, 2000), CAs’ re-033

pair capabilities remain limited and incomplete.034

Schegloff (2000) categorized repair types based035

on who initiates and who resolves the problem,036

distinguishing between self- (by the speaker who037

caused the issue) and other-initiated repair (by038

the recipient who detects it), which is our focus in039

this work. Current CAs handle repairs in a limited040

fashion that mainly support agent-initiated repair041

(e.g., the agent asks users to repeat what they said) 042

(Li et al., 2020; Cuadra et al., 2021; Ashktorab 043

et al., 2019) or rely on user self-correction when 044

they realize troubles and clarify their intent (e.g., 045

saying “no, I mean. . . ”) (Balaraman et al., 2023). 046

However, other-initiated self-repaired or in short 047

other-initiated repair (OIR), where the user sig- 048

nals a problem and prompts the agent to clarify or 049

correct itself, is rarely supported, while effective 050

communication requires bidirectional (Moore et al., 051

2024). Supporting this, Gehle et al. (2014) found 052

that museum guide robots failing to resolve com- 053

munication issues quickly caused user disengage- 054

ment, and van Arkel et al. (2020) showed that basic 055

OIR mechanisms improve communicative success 056

while reducing computational and interaction costs 057

compared to relying on pragmatic reasoning. 058

Modeling OIR strategies on CAs that recognize 059

user-initiated repair first requires robust automatic 060

OIR request detection in human-human interac- 061

tion. However, prior work is narrow and mostly 062

text-based approaches, training on English corpora 063

and relying on lexical cues (Höhn, 2017; Purver 064

et al., 2018; Alloatti et al., 2024), which over- 065

look prosodic markers that reliably signal repair. 066

Prosodic cues tend to be more cross-linguistically 067

stable than surface forms (Dingemanse and En- 068

field, 2015; Benjamin, 2013; Walker and Benjamin, 069

2017), and can provide valuable insight into the 070

pragmatic functions of expressions like the inter- 071

jection “huh”. This highlights the limitations of 072

relying solely on textual patterns for OIR request 073

detection. Finally, understanding the OIR sequence 074

also requires examining the local sequential envi- 075

ronment of the surrounding turns, which we call a 076

"dialogue micro context" (Schegloff, 2000). 077

These gaps motivate our main research question: 078

What are the multimodal indicators of OIR re- 079

quests in human dialogue and how can we model 080

them? To address this, we analyze OIR sequences 081

in a Dutch task-oriented corpus, focusing on text 082
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and audio patterns where one speaker initiates an083

OIR request. Drawing on Conversation Analysis084

literature, we introduce feature sets and a compu-085

tational model to detect such requests. Our contri-086

butions are in two folds: (1) a novel multimodal087

model for OIR request detection that integrates088

linguistic and prosodic features extracted automat-089

ically based on the literature, advancing beyond090

text- or audio-only approaches; (2) provide insights091

into how linguistic and prosodic features interact092

and contribute in OIR requests detection, grounded093

in Conversation Analysis, and what causes model094

misclassifications. The remainings of this paper095

is structured as follows: Section 2 reviews SOTA096

computational models for OIR request detection097

and related dialogue understanding tasks. Section 3098

provides the used OIR coding schema and typol-099

ogy, and Section 4 details our approach, including100

linguistic and prosodic feature design. Section 5101

presents our experiment details and results, fol-102

lowed by error analysis in Section 6.103

2 Related Work104

An early approach to automatic OIR detection was105

proposed by Höhn (2017), with a pattern-based106

chatbot handling user-initiated repair in text chats107

between native and non-native German speakers.108

Purver et al. (2018) extended this by training a109

supervised classifier using turn-level features in110

English, including lexical, syntactic, and seman-111

tic parallelism between turns. More recently, Al-112

loatti et al. (2024) introduced a hierarchical tag-113

based system for annotating repair strategies in114

Italian task-oriented dialogue, distinguishing be-115

tween utterance-specific and context-dependent116

functions.117

Although direct research on OIR detection is118

still limited, advances in related dialogue under-119

standing tasks provide promising methods for our120

work. Miah et al. (2024) combined pretrained121

audio (Wav2Vec2) and text (RoBERTa) embed-122

dings to detect dialogue breakdowns in health-123

care calls. Similarly, Huang et al. (2023) used124

BERT, Wav2Vec2.0, and Faster R-CNN for intent125

classification, introducing multimodal fusion with126

attention-based gating to balance modality con-127

tributions and reduce noise. Saha et al. (2020)128

proposed a multimodal, multi-task network jointly129

modeling dialogue acts and emotions using atten-130

tion mechanisms. Liu et al. (2023) achieved SOTA131

in several tasks with a hierarchical model leverag-132

ing special tokens and turn-level attention. More 133

recently, high-performing but more opaque and 134

resource-intensive approaches have emerged: Chen 135

et al. (2024) applied prompt-based learning with 136

intent templates to enhance cross-modal alignment 137

for intent detection, and Mohapatra et al. (2024) 138

showed that larger LLMs outperform smaller ones 139

on tasks like repair and anaphora resolution, albeit 140

with higher computational cost and latency. 141

Despite robust performance, recent largest mod- 142

els remain difficult to interpret due to their black- 143

box nature and multimodal fusion complexity (Jain 144

et al., 2024). To address this gap, we propose 145

a computational model for OIR request detec- 146

tion in Dutch that fuses pretrained text and au- 147

dio embeddings with linguistic and prosodic fea- 148

tures grounded in Conversation Analysis. The 149

model also integrates a multihead attention mecha- 150

nism to weigh and capture non-linear relationships 151

across modalities, allowing our model to keep the 152

strengths of multimodal deep learning while offer- 153

ing insight from linguistic and prosodic features 154

to inteprete their interaction and impact towards 155

model’s decision. 156

3 OIR Coding Schema and Typology 157

We follow Dingemanse and Enfield (2015)’s coding 158

schema, which structures OIR sequences into three 159

components: trouble source, OIR request, and re- 160

pair solution segments, in which OIR requests are 161

categorized into three types: open request (the least 162

specific, not giving clues of trouble), restricted 163

request (implied trouble source location), and re- 164

stricted offer (the most specific, proposing a can- 165

didate understanding). Following Rasenberg et al. 166

(2022)’s OIR annotation, which aligns OIR compo- 167

nent boundaries with Turn Construction Unit (TCU, 168

the smallest meaningful element of speech such as 169

a word, phrase or sentence, that can potentially 170

complete a speaker turn) boundaries in speech an- 171

notation, we use the term segment as the unit for 172

input data. An OIR request segment may comprise 173

one or multiple TCUs (as in Figure 1), serving as 174

our data input units. 175

There are two OIR sequence types: minimal 176

(OIR request initiated immediately after the turn 177

containing the trouble source segment), and com- 178

plex (OIR request delayed by a few turns), as illus- 179

trated in Figures 1 and 2. 180
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Speaker A

Speaker B

turn
1

R E P A I R
I N I T I A T I O N

T R O U B L E
S O U R C E

R E P A I R
S O L U T I O N

turn2 turn
3

duration between trouble source and
repair initiation request

T C U 1 T C U 2 T C U 3

T C U 1 T C U 2

T C U 1

Figure 1: Visualization of a minimal OIR sequence

Speaker A

Speaker B

turn1

R E P A I R
I N I T I A T I O NF E E D B A C K

T O P I C  C O N T I N U E
T R O U B L E
S O U R C E

R E P A I R
S O L U T I O N

turn2 turn3 turn4 turn5

duration between trouble source
and repair initiation request

Figure 2: Visualization of a complex OIR sequence

4 Proposed Approach181

4.1 Overview182

Feature Extraction

Text Embedding

Handcrafted
Linguistic features

Audio Embedding

Handcrafted
Prosodic features

Cross-
attention

fusion
MLP

Projected text
embdding

Projected
linguistic features

Projected audio
embedding

Projected
prosodic features

Input Modalities

Text
“the new what?”

Speech

Feature Projection
(dimensionality uniform)

Repair
Initiation

or Regular
Dialogue

RoBERTa

Whisper

Figure 3: Overview our multimodal modal architecture

Task Formulation. We formulate the OIR re-183

quest detection as a binary classification problem.184

Given a segment (xi), corresponding to one or sev-185

eral TCUs within a speaker turn, the task is to186

predict whether it is an OIR request or a regular187

dialogue (RD) segment (i.e., not belonging to an188

OIR sequence).189

Architecture Overview. Figure 3 shows the190

overview of our proposed approach. For a given191

segment (xi), we extract the linguistic and prosodic192

features respectively, then integrate text and audio193

embeddings extracted from pretrained model. All194

features are then projected to a shared dimension-195

ality to ensure the consistency across modalities.196

To capture the complex interactions between text197

and audio embeddings with handcrafted features,198

a multihead attention mechanism was employed199

to weigh and capture non-linear relationships. Fi- 200

nally, the whole representation is obtained by con- 201

catenating the text embedding and the fused repre- 202

sentation from multihead attention. We propose a 203

multimodal approach to introduce the handcrafted 204

linguistic and prosodic features, automatically com- 205

puted based on literature review, into the pretrained 206

models’ embeddings to model the OIR request. 207

4.2 Pretrained Models 208

Language model. Our proposed approach uti- 209

lizes RoBERTa (Zhuang et al., 2021), a transformer- 210

based language model, to obtain text embedding 211

of the current given segment. As our corpus is 212

in Dutch, we use the pre-trained RobBERT (De- 213

lobelle et al., 2020) model, which is based on the 214

RoBERTa architecture, pre-trained with a Dutch 215

tokenizer, and 39 GB of training data. We use the 216

latest release of RobBERT-v2-base model which 217

pre-trained on Dutch corpus OSCAR 2023 version, 218

which outperforms other BERT-based language 219

models for several different Dutch language tasks. 220

Audio model. For audio representations, we uti- 221

lize Whisper (Radford et al., 2023), an encoder- 222

decoder Transformer-based model trained on 223

680,000 hours of multilingual and multitask speech 224

data, to extract audio embeddings from our dia- 225

logue segments. Whisper model stands out for its 226

robustness in handling diverse and complex lin- 227

guistic structures, a feature that is crucial when 228

dealing with Dutch, a language known for its in- 229

tricate syntax. Besides, Whisper was trained on 230

large datasets including Dutch and demonstrated 231

good performance in zero shot learning, making it 232

ideal serving as a naive baseline for task with small 233

corpus like ours. 234

4.3 Dialogue Micro Context 235

Schegloff (2000) demonstrated that the OIR se- 236

quence is systematically associated with multiple 237

organizational aspects of conversation, and un- 238

derstanding an OIR request requires examining 239

the local sequential environment, which we call 240

in this work the dialogue micro context (Sche- 241

gloff, 1987). Therefore, for each given target seg- 242

ment (xi), to capture the micro context, we iter- 243

atively concatenate the previous (xi−j) and fol- 244

lowing (xi+j) TCUs using special separator to- 245

ken of transformers (e.g. </s> for RoBERTa-based 246

models) until reaching the maximum token limit 247

(excluding [CLS] and [EOS]), inspired by similar 248
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ideas in (Wu et al., 2020; Kim and Vossen, 2021).249

If the sequence exceeds the limit, we truncate the250

most recently added TCUs. The final sequence251

is enclosed with [CLS] and [EOS], as shown in252

Figure 8.253

4.4 Linguistic Feature Extraction254

Figure 4 outlines our linguistic feature set for the255

representation of the target segment, capturing lo-256

cal properties such as part-of-speech (POS) tag-257

ging patterns, question formats, transcribed non-258

verbal actions (target segment features), and fea-259

tures, which quantify repetition and coreference260

across turns to reflect backward and forward rela-261

tions around the OIR request (cross-segment fea-262

ture to capture micro context). The detailed de-263

scription is in the Appendix B.264

Trouble source OIR request Repair solution

Previous turn Current turn Next turn

A: I went to the new cafe yesterday B: the new what? A: The new cafe

other-repetition ratio

coreference ratio

POS tags sequence

is question

contains non-verbal
action

common lemma
presence

TSS self-repetition ratio

TSS other-repetition ratio

Cross-segment features
(related to segment(s) in previous turn)

Cross-segment features
(related to segment(s) in next turn)

 Target segment features
(local features)

Figure 4: Visualization linguistic feature set

4.4.1 Target Segment Features265

We automatically extracted the linguistic features266

proposed by (Ngo et al., 2024) at the intra-segment267

level to capture grammatical and pragmatic patterns268

related to the OIR request. For instance, restricted269

OIR requests often show a POS tag sequence pat-270

tern of interrogative pronouns followed by verbs,271

while OIR open requests and regular dialogue seg-272

ments differ in key lemmas used of the same tag:273

modal auxiliary verb kunnen (“can”) vs. primary274

auxiliary verb zijn (“to be”). Additional features in-275

clude question mark usage and binary indicators for276

non-verbal actions (e.g., laughing, sighing) (Sche-277

gloff, 2000), are fully given in the Appendix B.278

4.4.2 Cross-Segment Features279

Grounded on the literature (Schegloff, 2000; Ngo280

et al., 2024), we define inter-segment features that281

capture the sequential dynamics of the OIR request,282

including repetitions and the use of coreferences283

referring to entities in prior turns containing the284

trouble source segment. We also compute self and285

other-repetition in the subsequent turn containing 286

the repair solution segment, to capture how the 287

trouble source speaker responds. These features 288

reflect the global dynamics of OIR sequences. 289

4.5 Prosodic Features Extraction 290

Prosody plays a crucial role in signaling OIR re- 291

quests. Previous studies in Conversation Analysis 292

show that pitch, loudness, and contour shape can 293

indicate whether a repair initiation is perceived 294

as "normal" or expresses "astonishment"(Selting, 295

1996), and that Dutch question types differ in pitch 296

height, final rises, and F0 register (Haan et al., 297

1997). Building upon these characteristics, we de- 298

sign a prosodic feature set that includes both local 299

features within the target segment, such as pitch, 300

intensity, pauses, duration, and word-level prosody, 301

and global features across segments of the OIR 302

sequence, such as latency between OIR sequence 303

segments, pitch slope transitions at boundaries, and 304

comparison to speaker-specific prosodic baselines. 305

The features are detailed in Figure 5 and in the 306

Appendix C. 307

Trouble source OIR request Repair solution

Previous turn Current turn Next turn

Cross-segment features

(related to segment(s) in previous turn)

Cross-segment features

(related to segment(s) in next turn)

 Target segment features

(local features)

A: I went to the new cafe yesterday B: the new what? A: The new cafe

Latency between TS

and OIR

Baseline prosody

comparison

Pitch features

Intensity features

Pause features

Speech rate

Latency between OIR

and repair solution

Baseline prosody

comparision

Duration

Specific word features

(pitch, intensity, duration)

Pitch slope transition

(previous turn boundary)

Pitch slope transition

(next turn boundary)

Figure 5: Visualization of prosodic feature set

4.5.1 Target Segment Features 308

We use Praat (Boersma, 2000) to extract prosodic 309

features at the segment level, including: pitch fea- 310

tures (e.g., min, max, mean, standard deviation, 311

range, number of peaks) which are computed from 312

voiced frames after smoothing and outlier removal, 313

with pitch floor/ceiling set between 60–500 Hz 314

and adapted to each speaker range (van Bezooi- 315

jen, 1995; Theelen, 2017; Verhoeven and Connell, 316

2024); first (mean and variability of pitch slope 317

change) and second derivatives (pitch acceleration) 318

of pitch contour, capturing pitch dynamics. Addi- 319

tional features are intensity (e.g., min, max, mean, 320

4



range, standard deviation), and voice quality mea-321

sures (jitter, shimmer, and harmonics-to-noise ra-322

tio). We also model pause-related features by de-323

tecting silent pauses over 200 ms and categoriz-324

ing them by duration and position in the utterance,325

reflecting their conversational function associated326

with repair possibilities (van Donzel and Beinum,327

1996; Hoey, 2018). Inspired by findings prosody328

of other-repetition in OIR request (Dingemanse329

et al., 2015; Walker and Benjamin, 2017), we ex-330

tract pitch and intensity features for repeated words331

from the trouble source segment, and for the spe-332

cific repair marker "wat" (what/which/any), as indi-333

cators of OIR request type and speaker perspective334

(Huhtamäki, 2015).335

4.5.2 Cross-Segment Features336

To model the speaker-specific prosodic variation337

(van Bezooijen, 1995; Theelen, 2017; Verhoeven338

and Connell, 2024), we normalize pitch and in-339

tensity using z-scores, relative percentage change,340

and position within the speakers’ range. These fea-341

tures capture how far the current segment deviates342

from the speaker’s typical behaviour across pre-343

vious turns and the normalized range position of344

the current segment within the speaker’s baseline.345

Inspired by work on prosodic entrainment (Levitan346

and Hirschberg, 2011), we also compute pitch and347

intensity slope transitions across segment bound-348

aries (e.g., TS→OIR, OIR→RS), both within and349

across speakers, to assess prosodic alignment. We350

normalized slopes to semitones per second for con-351

sistency across speakers.352

5 Experiments & Results353

To answer the main research question mentioned354

in Section 1, we design the experiments to answer355

the following research sub-questions: i) RQ1: To356

what extent do audio-based features complement357

text-based features in identifying OIR requests?358

ii) RQ2: Do our proposed linguistic and prosodic359

features (see Figures 4 and 5) perform better than360

pretrained embeddings? iii) RQ3: Which prosodic361

and linguistic features contribute the most to OIR362

request detection? iv) RQ4: How does the involve-363

ment of dialogue micro context affect OIR request364

detection performance?365

5.1 Implementation Details366

Dataset. Based on (Colman and Healey, 2011)’s367

findings that repair occurs more frequently in task-368

oriented dialogues, we selected a Dutch multi-369

modal task-oriented corpus (Rasenberg et al., 2022; 370

Eijk et al., 2022), which contains 19 dyads col- 371

laborating on referential communication tasks in 372

a standing face-to-face setting. Participants al- 373

ternated roles to describe (Director) and identify 374

(Matcher) geometric objects ("Fribbles") displayed 375

on screens. The unconstrained design encouraged 376

natural modality use and OIR sequences. Rasen- 377

berg et al. (2022) annotated OIR sequences using 378

Dingemanse and Enfield, 2015’s schema, result- 379

ing in 10 open requests, 31 restricted requests, and 380

252 restricted offers. We balanced the dataset with 381

306 randomly selected regular dialogue segments, 382

stratified across all dyads. The high distribution 383

of restricted offers likely originates from the task 384

settings, where participants see all 16 candidate 385

objects, prompting them to offer a candidate of 386

understanding and ask for confirmation. 387

Training Details. We fine-tuned our models us- 388

ing 10-fold cross-validation, in which the optimal 389

learning rate was 2e-5. We employed AdamW op- 390

timizer with a weight decay of 0.01 and a learning 391

rate scheduler with 10% warmup steps. Training 392

ran for up to 20 epochs with 3-epoch early stopping 393

patience, and batch size 16. 394

Evaluation Metrics. We evaluated model perfor- 395

mance using binary classification metrics including 396

precision, recall, and macro F1-score. 397

5.2 Experiment Scenarios & Results Analysis 398

Model Modal & Features Precision Recall F1-score
TextEmb U & T 72.0± 4.0 87.6± 7.5 78.9± 4.7
AudioEmb U & A 72.6± 9.7 76.3± 13.1 70.6± 8.1
MultiEmb M & T+A 79.1± 5.4 82.2± 3.8 82.1± 0.9

TextLing U & L 82.2± 3.6 80.4± 6.1 80.4± 3.8
AudioPros U & P 81.7± 4.2 77.4± 5.4 77.3± 2.7
MultiLingPros M & L+P 81.7± 7.6 82.2± 1.5 81.8± 3.4

MultiOurs M & T+A+L+P 93.2± 2.8 96.1± 2.6 94.6± 2.3

U: Unimodal, M: Multimodal, T: Text, A: Audio, P: Prosodic
features, L: Linguistic features

Table 1: Overall results across modalities for OIR
request detection. The table groups models by research
question: RQ1 compares unimodal vs. multimodal
combinations of audio and text; RQ2 compares
handcrafted features with pretrained embeddings.

RQ1: Audio vs. Text Complementarity. To ad- 399

dress RQ1, we compare the performance of uni- 400

modal against multimodal models, including: i) 401

Single TextEmb or AudioEmb vs. MultiEmb; ii) 402

Single TextLing or AudioPros vs. MultiLingPros. 403

We want here to see if adding the audio-based 404
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features, either by pretrained embeddings or by405

using handcrafted prosodic features, will im-406

prove the performance of the text-based models.407

The multimodal models include MultiEmb, which408

fuses pretrained text and audio embeddings, and409

MultiLingPros, which combines handcrafted linguis-410

tic and prosodic features, using cross-attention fu-411

sion as illustrated in Figure 3.412

From Table 1, we observe that multimodal mod-413

els consistently outperform unimodal ones across414

all metrics. For both pretrained embeddings and415

handcrafted features, text-based models outper-416

form audio-based ones individually. However, in-417

corporating audio improves performance in both418

settings. Specifically, in the pretrained setting,419

the multimodal model MultiEmb achieves an F1-420

score of 82.1, improving over TextEmb by 3.2421

percentage points (pp) and over AudioEmb by422

11.5 pp. Similarly, in the handcrafted feature set-423

ting, combining linguistic and prosodic features424

MultiLingPros yields an F1 of 81.8, outperform-425

ing TextLing by 1.4 pp and AudioPros by 4.5 pp.426

Interestingly, the unimodal handcrafted models427

TextLing, AudioPros show higher precision than re-428

call, whereas MultiLingPros shows slightly higher429

recall, suggesting a tendency to favor detection430

over omission. This is potentially beneficial in in-431

teractive systems where missing an OIR request432

could be more disruptive than a false alarm. For433

embedding-based models, recall exceeds precision434

in all cases, but the multimodal model shows a no-435

table gain in precision, indicating a better trade-off436

between identifying true OIR requests and mini-437

mizing false positives.438

RQ2: Handcrafted Features vs. Pretrained Em-439

beddings. To address RQ2, we compare the per-440

formance of models using handcrafted features441

against the models using embeddings from pre-442

trained models. We thus compare: i) Text repre-443

sentations: text embeddings (TextEmb) vs. hand-444

crafted linguistic features (TextLing); ii) Audio445

representations: audio embeddings (AudioEmb)446

vs. handcrafted prosodic features (AudioPros); iii)447

Combined approaches: multimodal models us-448

ing pretrained embeddings (MultiEmb) vs. us-449

ing handcrafted linguistic and prosodic features450

(MultiLingPros) and vs. our proposed approach451

leveraging both of them MultiOurs.452

We want here to see if the sets of handcrafted453

features grounded by literature in Conversation454

Analysis performed better or complement the pre-455

trained models’ embeddings. Results in Table 1 456

demonstrate that handcrafted feature models are 457

comparable to embedding-based approaches. In 458

unimodal settings, TextLing achieves higher preci- 459

sion (+10 pp) with comparable F1-score (+1.5 pp) 460

to TextEmb, despite lower recall (-7.2 pp). Like- 461

wise, AudioPros outperforms AudioEmb across all 462

metrics (precision +9.1 pp, recall +1.1 pp, F1-score 463

+6.7 pp). For multimodal approaches, MultiEmb 464

and MultiLingPros perform almost identically (F1- 465

score difference of just 0.3 pp), with handcrafted 466

features providing better balanced precision-recall 467

trade-offs. Furthermore, our proposed MultiOurs 468

model, combining pretrained embeddings with 469

handcrafted features from both modalities, sub- 470

stantially outperforms all other approaches, raising 471

F1-score by 12.5 pp, precision by 14.1 pp, and re- 472

call by 13.9 pp, which suggests that handcrafted 473

features effectively complement pretrained embed- 474

ding models, with more balanced trade-off between 475

False Positives (regular dialogues misclassified as 476

OIR requests) and False Negatives (OIR requests 477

misclassified as regular dialogue). 478

RQ3: Handcrafted Feature Importance Analy- 479

sis. Although the linguistic and prosodic features 480

could not solely outperform pretrained text and au- 481

dio embeddings, they are useful in interpreting the 482

model’s behaviours, especially to see if they are 483

aligned with the Conversation Analysis findings. 484

To answer RQ3, we used SHAP (SHapley Additive 485

exPlanations) analysis to analyse the contribution 486

and behaviours of linguistic and prosodic features 487

towards the model’s decision. Figure 6 illustrates 488

the top 20 features by SHAP value, which measures 489

how much each single feature pushed the model’s 490

prediction compared to the average prediction. The 491

pausing behaviours (positions and durations), in- 492

tensity measures (max, mean, and relative change), 493

and harmonic-to-noise ratio (HNR) appear particu- 494

larly important among prosodic features. For lin- 495

guistic features, the grammatical structure linking 496

to coreference used, some POS tags, and various 497

word type ratios rank highly. The most important 498

features include the number of long and medium 499

pauses, the relative position of the longest pause, 500

and the verb-followed-by-coref structure, all scor- 501

ing near 1.0 on the importance scale, which aligned 502

with the works in (Hoey, 2018; Ngo et al., 2024) 503

about pauses in OIR requests and the structure of 504

OIR request, respectively. 505

Figure 7 displays the synergy (Ittner et al., 2021) 506
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between linguistic and prosodic features, which are507

computed based on the SHAP interaction values.508

It reflects how complementary a pair of linguistic509

and prosodic features is in improving model perfor-510

mance, in which high synergy means that combin-511

ing both features adds more value than what each512

of them contributes individually. These features do513

not always need to co-vary, but their combination514

brings useful information for the model. Coordi-515

nating conjunction ratio (CCONJ ratio) shows the516

strongest synergy (0.26) with harmonics-to-noise517

ratio (HNR), while other speaker self-repetition518

ratio has strong synergy (0.23) with maximum in-519

tensity. This suggests that certain grammatical pat-520

terns work closely with specific voice qualities,521

particularly how conjunctions interact with voice522

clarity and how self-repetition correlates with voice523

intensity. The results indicate that conversation in-524

volves a complex interplay between what we say525

(linguistic elements) and how we say it (prosodic526

elements), which is aligned with the Conversation527

Analysis work.528
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Figure 7: Visualization feature interaction heatmap

RQ4: Dialogue Micro Context Analysis. To 529

address RQ4, we experimented 4 scenarios of con- 530

catenating micro context, including: (1) PastContext 531

- concatenated current input segment with the 532

TCUs in the prior turns and cross-segment hand- 533

crafted features (past-related, Figure 4, 5); (2) 534

FutureContext - concatenated current input segment 535

with the TCUs in the subsequent turns and hand- 536

crafted cross-segment features (future-related, Fig- 537

ure 4, 5); (3) CurrentContext - no context concate- 538

nation and used only current input segment fea- 539

tures (Figure 4, 5); (4) MultiOurs - the full context 540

scenario, where we concatenate current input seg- 541

ment with both the prior and subsequent TCUs 542

and use full handcrafted feature set. For (1) and 543

(4), we experimented with window_length of 2 544

and max (the micro context are concatennated as 545

much as possible until it reach maximum token 546

limit) based on results from corpus analysis; for 547

(2) only max was used, as repair solutions typically 548

occur immediately within maximum 2 turns in this 549

corpus. Table 2 highlights the impact of different 550

micro-context configurations, in which integrating 551

surrounding TCUs from prior, and subsequent seg- 552

ments combining with the whole handcrafted fea- 553

ture set leads to the best overall performance, as 554

also stated in Table 1. Notably, our this full context 555

setting with smaller window_length=2 achieves the 556

highest results across all metrics, while introduc- 557

ing to the maximum allowed token limits degrades 558

the performance, with a drop of approximately 6.3 559

pp of F1-score, 9 pp of precision, and 4.1 pp of 560

recall. It suggests that while surrounding context 561

of input segment is helpful, overly long concate- 562

nation may introduce noise and irrelevant infor- 563

mation to model. Besides, integrating past or cur- 564

rent segments yields moderate performance, with 565

F1-scores ranging from approximately 80.2% to 566

83.6%, while future context alone results in the 567

lowest scores, indicating that the upcoming dia- 568

logue can offer informative cues but less relevant 569

than the prior and current input segments, which 570

aligned with the nature of OIR sequence. 571

Context Window length Precision Recall F1-score
(1) PastContext 2 86.0± 3.0 78.4± 5.4 82.0± 4.1
(1) PastContext max 86.6± 5.2 81.0± 6.1 83.5± 4.3
(2) CurrentContext - 84.6± 3.8 82.9± 6.0 83.6± 4.4
(3) FutureContext max 84.00± 1.53 78.20± 5.78 80.18± 2.52

(4) MultiOurs 2 93.2± 2.8 96.1± 2.6 94.6± 2.3
(4) MultiOurs max 87.7± 3.5 89.1± 5.3 88.3± 3.7

Table 2: Dialogue micro context concatenation results
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6 Error Analysis572

In order to better interprete the model’s perfor-573

mance, we analyze the False Negative (Fn) in-574

stances, which are the OIR requests that were575

misclassified as regular dialogue segments, to see576

whether there are common patterns in these in-577

stances that our models find it hard to predict, il-578

lustrated in Table 3. We compare the FN instances579

across our proposed multimodal model with the 2580

unimodal models using linguistic and prosodic fea-581

tures. The results show that our model fails on only582

around 3.8% of the test set, while the FN errors ac-583

counted for around 15% and 24% on TextLing and584

AudioPros, respectively. For the TextLing model, it585

seems to struggle in detecting samples with vague586

references, especially in restricted offer type, even587

when there are OIR syntactic forms like question588

mark presented. In terms of AudioPros, even though589

the important prosodic cues were presented, the590

model seems to over-rely on pause structure and591

pitch contour. Short declaratives with flat intona-592

tion were often misclassified, suggesting the im-593

pact of lacking syntactic form information in this594

model. Finally, our proposed multimodal failed595

with mostly short phrases and subtle prosodic sig-596

nals, which are not strongly marked as an OIR597

request. Considering the error across 3 types of598

OIR requests, it seems that only AudioPros strug-599

gled with varied types of OIR requests; the other 2600

models misclassified on restricted offer and open601

request instances only. However, as this corpus is602

imbalanced between the 3 types of OIR requests,603

with the majority of restricted offers, it could be604

the reason.605

Modal %error Samples Patterns OIR Request Type

TextLing

(or a) triangle Vague, elliptical reference Restricted Offer
15% yes uh yes on the right side

right? or ascending yes
Disfluencies, vague interrogative Restricted Offer

yes the one with the protru-
sion

Referential expression, lacks direct marker Restricted Offer

AudioPros

with a sunshade Short declarative, flat prosody Restricted Offer
24% uh but the platform sits that

cuts the
Flat intonation, mostly short pauses in the beginning Restricted Offer

Is it vertical? Question intonation, has few short pauses Restricted Offer
ah and is his arm uh round
but also a bit with angles?

High pitch, question intonation, pauses in beginning and middle, but complex OIR Restricted Offer

but what did you say at the
beginning?

Rising intonation, wide pitch range, high pitch Restricted Request

MultiOurs

with a sunshade Short, declarative structure Restricted Offer
3.8% oh who so Short declarative, high but flat pitch, no rising intonation Restricted Offer

sorry again? Clear OIR but subtle prosodic signal Open Request

Table 3: Samples of False Negative (FN) instances from
unimodal (text/audio) and multimodal models, with
qualitative patterns.

7 Conclusion & Future Works606

This work presents a new approach to model and607

detect OIR requests in human-human conversation608

that takes advantage of automatically extracted lin-609

guistic and prosodic features and is based on stud-610

ies of OIR sequences in Conversation Analysis. 611

Our results show that the participation of these 612

hand-crafted features significantly improves the 613

performance of pretrained embeddings. We also 614

show that the audio modality complements and 615

improves the performance of the textual modality, 616

either by using pre-trained embeddings or hand- 617

crafted linguistic and prosodic features. 618

In addition, our feature analysis revealed not 619

only the impact of each feature in the linguistic 620

and prosodic feature set individually, but also their 621

complementary contribution. While key prosodic 622

indicators include pause-related features, intensity, 623

and harmonic-to-noise ratio (HNR), influential lin- 624

guistic features involve grammatical patterns, spe- 625

cific POS tags, and lemma ratios. Furthermore, 626

synergy analysis shows that linguistic and prosodic 627

features do not act independently, such as coordi- 628

nating conjunction usage, which shows strong syn- 629

ergy with HNR, and the trouble source speaker’s 630

self-repetition contributes notably to the presence 631

of maximum intensity. These patterns highlight the 632

nature of the OIR sequence, where how something 633

is said modulates what is being said. 634

Additionally, our results highlight the crucial 635

role of dialogue micro-context in OIR request de- 636

tection. Models with integration of both prior and 637

subsequent turns significantly outperform those re- 638

lying only on the current target segment. However, 639

concatenating too much micro-context could lead 640

to noise and irrelevant information, which affects 641

the model’s performance. This result supports the 642

literature in Conversation Analysis that OIR se- 643

quences are inherently context-sensitive, and their 644

interpretation often depends on the surrounding 645

interactional structure. 646

Finally, error analysis revealed that while the 647

text-based model failed with vague references and 648

disfluencies, the audio-based model was prone to 649

misclassifying flat or subtle prosodic cues, which 650

raised the need for a multimodal model. The pro- 651

posed multimodal model mitigates these weak- 652

nesses, but it still struggles with short, minimally 653

marked OIR requests that lack both strong syntactic 654

and prosodic cues. 655

Building on these insights, future work will ex- 656

plore the integration of visual features to more ac- 657

curately model the embodied aspects of OIR se- 658

quences, as well as the development of multilingual 659

and cross-context corpora to assess the robustness 660

and generalizability of the detection approach. 661
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Limitations662

Dataset Limitations and Generalizability. Due663

to the limited multimodal OIR-labeled corpora, our664

study utilized the only available multimodal OIR-665

labeled corpus, which is specific to Dutch language666

and referential object matching tasks. This speci-667

ficity could limit the generalizability of our model668

across different OIR categories, languages, and669

conversation settings. Future works should test670

the model on more diverse datasets to validate its671

robustness and establish broader applicability.672

Adaptability in Real-time Processing. Despite673

the computational efficiency of our approach using674

handcrafted features compared to Large Language675

Models, several limitations remain for real-time676

adaptation. The feature extraction of some lin-677

guistic and prosodic features, such as coreference678

chains, requires additional computation with pre-679

trained models, potentially introducing latency. Fu-680

ture work should explore real-time feature extrac-681

tion pipelines and incremental processing architec-682

tures, while evaluating potential trade-offs between683

model complexity and real-time performance to684

make the system practical for CA systems.685
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A Dialogue Micro Context901

B Detailed Linguistic Features902

C Detailed Prosodic Features903

B: Um, this actually looks a bit like a face. You have that cup and then you have
this kind of oval ball sticking out on the right,

B: And then you have a square which is a rectangular rod going straight up, 

B: Then you have a triangular rod coming out on the left.

A: Something like a little V-shape?

B: Um, yes, it mostly resembles a face, so if you have the bucket, then you have
like a ball that sticks out a bit on the right, and then that triangular rod comes out
on the left, 

A: Yes, yes, I think I get it, 

B: Then you have like a ball that sticks out a bit on the right, and then that
triangular rod comes out on the left, 

A: And are there two things on top? 

B: Yes, 

Trouble Source

Repair Initiation

Repair Solution

A: Something like a little V-shape?

Sample Dialogue with OIR Sequence

xCurrent Target Segment 
t

Repair Initiation

Dialogue Micro Context Concatenation

Step 1: Initial sequence with special separator tokens

</s> A: Something like a little V-shape? </s>

Step 2: Prepend previous TCU (i=1)

B: Then you have a triangular rod coming out on the left. </s> A: Something like a
little V-shape? </s>

Step 3: Append next TCU (i=1)

B: Then you have a triangular rod coming out on the left. </s> A: Something like a
little V-shape? </s> B: Um, yes, it mostly resembles a face, so if you have the
bucket, then you have like a ball that sticks out a bit on the right, and then that
triangular rod comes out on the left, 

... continue until reach maximum number of tokens

Final sequence after concatenation with [CLS] and [EOS] tokens

[CLS].....B: Then you have a triangular rod coming out on the left. </s> A:
Something like a little V-shape? </s> B: Um, yes, it mostly resembles a face, so if
you have the bucket, then you have like a ball that sticks out a bit on the right,
and then that triangular rod comes out on the left, .....[EOS]

Figure 8: Dialogue micro context concatenation ap-
proach. Micro context refers to the immediate conver-
sational environment, including the prior turns and the
subsequent turns of the current target turn in dialogue
(Schegloff, 1987).
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Level Feature Group Feature Type(s) Description

Segment-level
POS tags sequence POS tag bigrams, POS tag

ratios
Binary features for frequent POS
tag bigrams (e.g., PRON_Prs→VERB,
VERB→COREF); POS tags frequency ratios
computed per utterance.

Lemma contains_lemma (e.g., nog,
kunnen)

Binary indicators for presence of high-
frequency lemmas relevant to different
type of OIRs.

Question form ends_with_question_mark Binary feature indicating whether the ut-
terance ends with a question mark.

Non-verbal action contains_laugh, contains_sigh,
etc.

Binary features for transcribed non-verbal
actions like #laugh#, #sigh#, etc.

Cross-segment level
(prior turns related)

Repetition from pre-
vious turn

other_repetition_ratio Ratio of tokens in the current utterance
that are repeated from the other speaker’s
previous turn relative to total utterance
length.

Coreference from
previous turn

coref_used_ratio Ratio of coreference phrases (e.g., pro-
nouns or noun phrases referring to previ-
ous turn) relative to total utterance length.

Cross-segment level
(subsequent turns related)

Repair solution TSS
self-repetition

other_speaker_self_rep_ratio Ratio of self-repetition in the turn follow-
ing the OIR.

Repair solution TSS
other-repetition

other_speaker_other_rep_ratio Ratio of other-repetition in the turn fol-
lowing the OIR

Table 4: Summary of linguistic feature set used for modeling OIR request.

Level Feature Group Feature Type Description

Segment-level

Pitch features pitch_min, pitch_max,
mean, std, range,
num_peaks

Extracted from voiced frames; outliers removed;
peaks from smoothed contour (Savitzky-Golay).

Pitch dynamics slope, acceleration,
inflection_rate

Captures pitch variation and shape within utterance.

Intensity features min, max, mean, std, range Computed from nonzero intensity frames; reflects
loudness.

Voice quality jitter, shimmer, hnr Reflects vocal fold irregularity and breathiness.
Pause features num, durations,

short/med/long,
positional counts,
rel_longest

Pause detection using adaptive thresholds; catego-
rized by duration and position.

Speech timing rate, duration Utterance length and estimated speech rate (e.g., syl-
lables/sec).

Cross-segment
Transition features end_slope, start_slope,

transition
Pitch slope difference across turn boundaries
(prev→cur, cur→next); in semitones/sec.

Baseline comparison z_score, rel_change,
range_pos

Comparison to speaker’s pitch/intensity baseline for
markedness detection.

Latency TS→OIR, OIR→RS Silence duration between trouble source and repair
turns.

Table 5: Summary of prosodic feature set used for modeling OIR request.
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