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Abstract

Large language models (LLMs) still face chal-
lenges in complex reasoning within multi-agent
debate (MAD) systems due to high compu-
tational costs in fully-connected structures.
While existing methods use static sparse topolo-
gies to reduce computation, they neglect seman-
tic relationships and dynamic opinion evolu-
tion. To solve this challenge, we propose AS-
MAD, an adaptive sparse topology framework
that synergizes sociophysical opinion dynamics
with LLMs through two innovations: (1) proba-
bilistic semantic-guided attention gates for dy-
namic opinion visibility control; (2) a hybrid
paradigm combining adaptive trust-boundary
regulation and opinion synchronization. Exper-
iments show ASMAD reduces token costs to
around 1/3 across GSM8K and MMLU bench-
marks while maintaining competitive accuracy
with 4-bit quantized 7-9B size models.

1 Introduction

In recent years, the rapid development of large
language models (LLM) has greatly promoted the
progress of several natural language processing
(NLP) tasks (Touvron et al., 2023; Zhao et al., 2023;
Naveed et al., 2023; Jiang et al., 2024; Achiam
et al., 2023; GLM et al., 2024; Guo et al., 2025).
However, performance of LLM in reasoning and
logical reasoning tasks is still limited (Zhu et al.,
2022; Gou et al., 2023).

To address complex reasoning challenges, var-
ious approaches has been developed, including
Chain-of-Thought (CoT) (Wei et al., 2022), self-
consistency (SC) mechanisms (Wang et al., 2022)
with self-correction strategies (Liang et al., 2023).
Recent advances in multi-agent debate (MAD) sys-
tems have demonstrated superior performance in
complex reasoning tasks (Liang et al., 2023). In-
spired by the human discussion mechanism (Hill
et al., 2015; Liang et al., 2023), MAD systems
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Figure 1: Adaptive topology of ASMAD (Top) and com-
parison of accuracy and token consumption (Bottom).
The results show that we achieve better cost-acc trade.

employ multiple LLM agents to communicate and
iteratively argue with each other in a structured de-
bate. However, MAD systems face computation
cost problem due to fully-connected communica-
tion topology, where every agent interacts with all
peers, which incurs quadratic computational com-
plexity that becomes prohibitively expensive for
real-world applications (Du et al., 2023).

Existing attempts to address this efficiency chal-
lenge focus on either static sparse topologies (e.g.,
ring or star structures of Sparse MAD (S-MAD)
(Li et al., 2024)) that reduce token costs through
predetermined connection patterns (Du et al., 2023;
Sun et al., 2023) or group discussion methods like
Group Debate (GD) (Liu et al., 2024) or Selective
Sparse MAD (S?-MAD) (Zeng et al., 2025) that



adopts a hierarchical structure by clustering agents
into smaller debate groups to exchange interme-
diate results. However, existing approaches face
two fundamental limitations: (1) Task-semantic
blindness: fixed topologies cannot adapt to prob-
lem difficulty, potentially pruning critical debate
pathways; (2) Coarse adaptation granularity: fixed
grouping patterns cannot capture nuanced opinion
evolution dynamics.

To address these limitations, we propose a adap-
tive sparse topology framework (ASMAD) that syn-
ergies sociophysical opinion dynamics with mod-
ern LLM architectures as shown in Figure 1. Our
key insight stems from two observations: First,
human consensus formation naturally evolves com-
munication networks through confidence-bound
adaptation, suggesting that artificial debate systems
should similarly adjust interaction patterns based
on semantic convergence states. Second, seman-
tic similarity between textual opinions provides a
more reliable signal for trust boundary calculation
than numerical difference metrics.

Building upon this foundation, we propose a
dual-regulation debate mechanism that hybridizes
two classical models: The Hegselmann-Krause
(HK) model (Rainer and Krause, 2002) inspired
adaptive trust boundary allows agents to dynami-
cally adjust their openness to divergent views based
on real-time semantic proximity, while the Def-
fuant model (Deffuant et al., 2000) derived syn-
chronization protocol coordinates opinion aggrega-
tion through gradient descent in the semantic space.
The system’s core innovation lies in visibility con-
trol module, which implements selective opinion
exposure through attention-based gates.

We evaluate ASMAD across GSM8K (Cobbe
et al., 2021) and MMLU (Hendrycks et al., 2021)
benchmarks' using 4-bit quantized versions of
LLaMA-8B (Touvron et al., 2023), ChatGLM-9B
(GLM et al., 2024) and Deepseek-7B (Guo et al.,
2025). Experiments show ASMAD reduces token
costs up to 65.8% while maintaining competitive
accuracies. Figure 1 shows ASMAD gets better
cost-accuracy trade-off.

In summary, our work contributes as following:

* We developed dynamic visibility control
mechanisms for agent opinions in MAD with
lower cost and better consensus.

* We extended classical opinion dynamics mod-
els to LLM-based MAD systems through a

'MIT License

tunable debate paradigm integrating Deffuant
model’s adaptive trust-boundary regulation
with HK model’s synchronized opinion ag-
gregation.

* We introduced a methodology replacing con-
ventional numerical handcrafted metrics with
SentenceTransformer-based semantic vectors
and similarity matrices. It might be a potential
workaround for LLM multi-agent systems to
effectively handle unstructured textual opin-
ions.

2 Related Works

Topology in MAD Due to the diversity of hu-
man discussion strategies (Liang et al., 2023; Chan
et al., 2023; Du et al., 2023), researchers adjust the
visibility of interactions between agents and their
historical records as well as among the agents them-
selves, by employing different multi-agent topolo-
gies, ultimately reducing token cost or enabling
operation in resource-constrained environments (Li
et al., 2024; Liu et al., 2024).

Regarding historical records, Du et al. (2023)
process information from a centralized topology
by summarizing agent outputs at the end of each
round, whereas Sun et al. (2023) introduces a for-
getting mechanism in which agents can only see
the outputs from the previous round. In addition,
Zhang et al. (2023) proposes a debate—reflection
mechanism in which agents can only review their
own past outputs during reflection.

Several studies focus on the topology of inter-
agent information exchange. For instance, S-MAD
(Lietal., 2024) employs a sparse topology, limiting
information exchange to adjacent agents. GroupDe-
bate (GD) (Liu et al., 2024) adopts a hierarchical
structure by clustering agents into smaller debate
groups to exchange intermediate results. Further-
more, S2-MAD (Zeng et al., 2025) utilizes a sparse
topology based on grouping and a decision mech-
anism: agents initially generate independent opin-
ions within groups, and only engage in information
exchange within and between groups if a decision
mechanism identifies differences in opinions.

Opinion Dynamics In the study of opinion dy-
namics, the Deffuant model and Hegselmann-
Krause (HK) dynamics (Deffuant et al., 2000;
Rainer and Krause, 2002) serve as foundational
consensus models where a group of agents strive
to reach the same objective. The Deffuant model
posits that agents update their opinions based on a



bounded confidence mechanism: two agents adjust
their opinions only when their difference falls be-
low a predefined threshold (Deffuant et al., 2000,
2002; Lorenz, 2007). This model has been exten-
sively applied to investigate opinion convergence
and polarization phenomena in social networks
(Zhang et al., 2017; Marconi and Cecconi, 2020;
Zarei et al., 2023).

The Hegselmann-Krause (HK) dynamics as-
sumes that agents interact exclusively with peers
whose opinions lie within their confidence bounds
(Rainer and Krause, 2002; Etesami and Basar,
2015). In its synchronous variant, agents simultane-
ously update opinions by averaging those of neigh-
bors within their confidence interval (Rainer and
Krause, 2002; Etesami et al., 2013; Etesami and
Bagar, 2015), whereas the asynchronous version up-
dates one agent at a time (Rainer and Krause, 2002;
Touri and Langbort, 2014; Etesami and Basar,
2015). These consensus models provide critical
frameworks for understanding opinion formation
and evolution in social systems, particularly in an-
alyzing how local interactions drive collective be-
haviors.

3 Methodology

3.1 Dynamic Opinion Exchange Framework

Multi-agent debate (MAD) with large language
models presents unique challenges that traditional
frameworks struggle to address. This work re-
frames the MAD process through the theoretical
lens of opinion dynamics, treating each LLM as an
agent with bounded rationality, whose willingness
to incorporate external viewpoints varies dynami-
cally based on semantic proximity and confidence
levels. Drawing from both HK and Deffuant mod-
els, we implement: Simultaneous Updates: All
agents update their states based on visible infor-
mation, Probabilistic Interaction: Probabilities
and strength of pairwise interaction determined by
adaptive weights.

Unlike classical opinion dynamics that operate
in numerical spaces, our framework extends into
rich semantic embeddings where agent states com-
prise both reasoning processes and discrete conclu-
sions. We introduce the agent state as st = (1}, cf),
where r! € R? represents the semantic embedding
of agent ¢’s reasoning at time ¢, and ¢} denotes its
conclusion. This richer state space enables more
nuanced modeling of debate dynamics while pre-
serving the mathematical tractability of opinion

evolution.

3.2 Adaptive Debate Protocol

As detailed in Figure 2, the proposed protocol
orchestrates multi-agent debate through distinct
phases that progressively refine agent opinions
while maintaining diversity and efficiency.

Independent Initialization Each agent indepen-
dently generates its initial response to the given
problem without access to other agents’ outputs.
Formally, at ¢ = 0, agent 7 produces state 5? =
(19, cY), where r) represents its reasoning embed-
ding and c? its initial conclusion. This indepen-
dence in initialization is crucial for establishing

diverse starting points in the solution space.

Confidence Boundary Determination Follow-
ing initialization, we adopt the bounded confidence
mechanism from classical opinion dynamics mod-
els (Deffuant et al., 2000; Rainer and Krause, 2002).
A confidence radius R(t) = Ry + A (%) deter-
mines whether agents can consider opinions from
each other, where Ry is the initial radius and A
controls its temporal evolution. Two agents ¢ and j
can potentially interact only if their semantic dis-
tance falls within this radius: Et = 1(d(st, ]) <
R(t)), where d(s},s}) denotes the distance be-
tween agents’ state and I(-) is the indicator func-
tion. This bounded confidence mechanism helps
prevent premature convergence while allowing the
interaction scope to gradually expand as the debate
progresses.

Weighted Opinion Exchange For agent pairs
within confidence bounds, we compute influence
weights based on both semantic similarity and an-
swer conclusion consistency (See A.3). The overall
influence weight incorporates this similarity mea-
sure along with agent-specific attributes:

wi; = Po + b1 (;) (14 ~0?) - mm(sl,sj) (1)

where [y is the base confidence level, 5y is the
growth rate corresponding to debate progress, -y is
the stability influence factor, 0! denotes the agent’s
stability score and sim(s?, s ]) is the similarity score
betweem agents’ state.

These weights serve both topology and influ-
ence strength in regulating inter-agent interactions.
Visibility of agent j’s response to ¢ is sampled ac-
cording to the weight w (w if 7 to j), acting as
the probability. Such adaptlve dlrectlonal topology
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Figure 2: The process pipeline of ASMAD. Following S2-MAD (Zeng et al., 2025), we adopts three stages in total.
In the first stage, all agents gives the initial response. In the second stage, with proposed sparse topology generation
mechanism, the agents are organized to debete with each other. In the last stage, the final decision is obtained via

majority voting.

effectively reduces communication token overhead
while preserving essential information flow paths.

Construction of agent prompts with varies
with degrees of interaction strength, as practical
workaround of opinion dynamics model in MAD
scenarios. LLMs are prompted with one of: Criti-
cal, Reference and Background categories accord-
ing to w if satisfied various thresholds (detailed in
A.l).

Consensus Formation The consensus formation
emerges through iterative debate rounds where
agents continuously refine their positions through
structured interactions:

st = fum(sh, {(w;, s)1i € N7 ()

where N/ represents the set of visible agents to i at
time ¢, and fipm denotes the language model’s rea-
soning process. After sufficient rounds of debate,
the final conclusion is determined through majority
voting.

3.3 Framework Pipeline

The Adaptive Sparse Multi-Agent Debate (AS-
MAD) framework employs a structured three-stage
pipeline as illustrated in Figure 2. Our methodol-
ogy introduces dynamic opinion exchange mecha-
nisms and adaptive topology generation to balance
communication efficiency with debate effective-
ness.

Stage 1: Independent Initialization The debate
process begins with all agents independently gener-
ating initial responses to the given problem. Each

agent i formulates its reasoning ! and conclusion
c? without knowledge of other agents’ perspec-
tives, establishing diverse starting points across the
solution space. As shown in the left panel of Fig-
ure 2, agents generate varied responses to questions
like closing an expansionary gap, with conclusions
spanning multiple possible answers.

Stage 2: Adaptive Sparse Debate The core of
our approach lies in this intermediate stage, which
orchestrates inter-agent interactions through three
key steps:

1. Similarity Calculation: We compute semantic
similarities between agent states using em-
bedding distances and conclusion consistency,
establishing a foundation for meaningful in-
teractions.

2. Sparse Topology Generation: Based on the
confidence boundary mechanism, we deter-
mine which agents can potentially interact.
The confidence radius R(t) = Ry + A (%)
expands over time, gradually increasing the
scope of potential interactions as the debate
progresses.

3. Probabilistic Interaction: For eligible agent

pairs, we calculate influence weights w! ; in-
corporating similarity measures, confidence
levels, and stability scores. These weights de-
termine both the probability of interaction and
the influence strength when agents exchange

opinions.



The right panel of Figure 2 details this mecha-
nism, showing how confidence neighbors are de-
termined, weights are calculated based on multiple
factors, and how agents update their responses ac-
cording to the Deffuant model. Importantly, the
interaction prompt varies in intensity (Critical, Ref-
erence, or Background) based on the calculated
weights, creating a natural gradient of influence in
the form of text.

Stage 3: Consensus Formation In the final
stage, after multiple rounds of adaptive debate,
the framework aggregates individual conclusions
through a majority voting mechanism. This demo-
cratic approach ensures that the final decision
emerges from the collective wisdom of the agent
ensemble rather than any single perspective. As
depicted in the lower section of Figure 2, the vot-
ing process consolidates the diverse agent opinions
into a single consensus answer (Final Decision: B).

4 Experiments

4.1 Tasks and Datasets

We mainly evaluate our framework on two bench-
mark datasets: GSM8K (Cobbe et al., 2021) and
MMLU (Hendrycks et al., 2021),that either require
multi-step reasoning or admit multiple valid solu-
tion paths while maintaining unambiguous answers.
GSMSK presents grade school math word prob-
lems requiring step-by-step numerical reasoning.
MMLU covers multiple-choice questions across
various domains, where the challenge lies not only
in answer format but in the diversity of valid rea-
soning approaches. We sampled 100 tasks from
each dataset for agents to debate for 5 rounds as
benchmark.

4.2 Model Configuration

To thoroughly evaluate the dynamic aspects and
diversity benefits of our framework, we construct a
heterogeneous agent population using three differ-
ent LLM architectures: LLaMA-3.1-8B-Instruct
(Touvron et al., 2023), ChatGLM-4-9B-chat-
abliterated (GLM et al., 2024) and Deepseek-
math-7b-Instruct (Guo et al., 2025). Each model
type contributes 2 agents, resulting in a debate
group of 6 participants. This configuration en-
sures sufficient diversity in reasoning approaches
while maintaining manageable computational re-
quirements. For practical deployment considera-
tions, all deployed models leverage 4-bit block-
wise quantization with mixed precision (Q4_K_M),

Token Cost Cost

Task Method ACC (k/task) Saving

ASMAD(6,5) 73% 18.64 -64.2%
MAD(6,5) 49% 52.15 0
S-MAD.,(6,5) 61% 26.42 -49.3%

MMLU S-MAD,(6,5) 54% 27.77 -46.8%
GD(6,6) 53% 32.17 -38.3%

S2MAD(6,6)  46% 25.36 -51.4%

ASMAD(6,5) 80% 21.94 -65.8%
MAD(6,5) 88% 64.08 0

S-MAD.,(6,5) 83% 26.42 -58.8%

GSMBK S-MAD,(6,5) 70% 27.77 -56.7%

GD(6,6) 90 % 32.17 -49.8%

S2MAD(6,6)  70% 25.36 -60.4%

Table 1: Performance of ASMAD and baselines across
three tasks. Token cost is calculated as average of each
topic debated. ASMAD significantly reduces token cost
with comparable or improved accuracy. S-MAD with
different structure is denoted as s(Star) and o(Ring).

enabling simultaneous execution of all 3 models on
a single NVIDIA GeForce RTX 3090 GPU.

4.3 Baseline and Evaluation Protocol

The primary baseline for comparison is MAD, a
most straightforward fully-connected debate proto-
col without visibility control or prompt structuring.
This baseline maintains complete information ex-
change between all agents throughout the debate
process. We also take S-MAD, GD and S>-MAD
as comparable baselines with their best-claimed
configurations.

Key evaluation metrics include: (1) Solution ac-
curacy across different problem types; (2) Com-
putational efficiency measured by token consump-
tion. We further detailed ablation study and hyper-
parameters search of ASMAD in Appendix.4.5 and
Appendix.C.

4.4 Main Results

Table 1 presents experimental results comparing
ASMAD with the baseline MAD method. On
MMLU, ASMAD demonstrates superior perfor-
mance improvement while simultaneously reduc-
ing token consumption by 64.2%. Figure 3 and 4
shows ASMAD accelerates consensus with higher
mean value and lower standard variance in similar-
ity. On GSM8K, ASMAD delivers a remarkable
65.8% reduction in token cost with a slightly mod-
erate accuracy drop. The performance gap may
be attributed to similarity-based approach, which
can be less effective than static topology methods
when handling numerical answer discrepancies in
mathematical reasoning tasks. It’s worth noting
that for GD(6,6) and S2MAD(6,6) configurations,
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Figure 3: Similarity of agents vary toward consensus with increasing debate rounds where ASMAD provides better
consensus rate (demonstrated in mean value and standard variance of similarity among agents) and speed

we implemented the best configuration claimed
by the original authors (2 intra-group rounds + 1
inter-group round, repeated twice), which naturally
introduces an additional round (6 vs 5) compared
to other methods. This efficiency gain suggests
that ASMAD mechanisms can effectively enhance
reasoning capabilities, even among performance-
limited quantized models.

To further assess the generalizability of AS-
MAD, we conducted additional experiments on
the Graduate-level Physics Questions and An-
swers (GPQA) dataset and analyzed results in Ap-
pendix B.

4.5 Ablation study

Table 2 presents ablation study examining the con-
tribution of each key module in ASMAD. The
results clearly demonstrate that each component
plays a crucial role in the overall performance
of our approach with no single component be-
ing redundant. The complete ASMAD framework
achieves the best accuracy-efficiency trade-off com-
pared to any of its reduced variants. Results are
collected through MMLU dataset.

Removing the trust radius mechanism leads to a
significant drop in accuracy while only marginally
reducing token costs. This confirms that trust ra-
dius effectively helps maintain a balance between
exploration and exploitation during the adaptive
debate process.

The balancing parameter A, which calibrates the
relative importance between semantic similarity
and answer similarity, proves essential for ensuring
comprehensive evaluation of agent contributions.
Its removal results in a substantial accuracy degra-

Ablation Module ACC T(zll:tl;s(li()m
ASMAD 73 % 18.64
w/o trust radius 60% 17.95
w/o balancing parameter 62% 18.63
w/o weight clip 50% 12.62
w/o outlier filter 58% 14.83

Table 2: Ablation of key modules of ASMAD.

dation, highlighting the importance of considering
both the reasoning process and the final answer
when building consensus. It is more important in
handling LLMs trained with different tune of re-
sponse, even if ‘temperature parameters of them
are configured identical.

When weight clipping used in Appendix. A.2 is
eliminated, we observe the most dramatic decline
in accuracy, despite achieving the lowest token con-
sumption. This suggests that while weight clipping
may increase computational costs, it is fundamental
for preventing premature convergence and main-
taining solution quality.

The outlier filtering component also demon-
strates its value, as its removal causes considerable
accuracy reduction with only modest token savings.
This confirms that identifying and mitigating the
impact of extreme viewpoints contributes signifi-
cantly to the robustness of the debate framework.

4.6 Performance with Larger Models

While our primary investigation focused on
resource-constrained environments using quantized
7B-9B parameter models, we conducted additional
experiments to evaluate whether ASMAD’s ad-



Token Cost Cost
Method ACC (k/task) Saving
ASMAD(6,5) 95% 37.16 -46.63 %
MAD(6,5) 90% 69.63 0.00%
S-MAD.(6,5) 93% 45.71 -34.35%
S-MAD,(6,5) 93% 46.96 -32.55%
GD(6,6) 93% 51.23 -26.43%
S?MAD(6,6) 93% 46.96 -32.56%

Table 3: Accuracy and token cost comparison using
larger models on MMLU

vantages persist when applied to larger language
models. This exploration addresses an important
question: does the adaptive sparse debate mecha-
nism remain effective across model scales, or are
its benefits limited to smaller, computationally re-
stricted settings? For these experiments, we de-
ployed a heterogeneous online ensemble consisting
of three advanced models: DeepSeek-R1-Distill-
Qwen-7B (DeepSeek-Al et al., 2025a), Doubao-
1.5-thinking-pro (Seed et al., 2025), and DeepSeek-
V3 (DeepSeek-Al et al., 2025b).

Table 3 presents the experimental results compar-
ing ASMAD with baseline methods on the MMLU
dataset. The findings are particularly notewor-
thy as they demonstrate that ASMAD’s advan-
tages become even more pronounced with larger
models. ASMAD achieved the highest accuracy
(95%) among all methods, outperforming the fully-
connected MAD approach by 5 percentage points
and other sparse debate methods by 2 percentage
points.

Equally important, ASMAD maintained its sub-
stantial efficiency advantage with larger models,
reducing token consumption by 46.63% compared
to MAD. This reduction is especially significant
considering that larger models typically generate
longer outputs and incur higher computational
costs per token. The token savings with ASMAD
(37.16k tokens per task) compared to MAD (69.63k
tokens per task) translate to substantial practical
benefits in deployment scenarios.

When comparing ASMAD with other sparse
debate methods, we observe a consistent pattern
where ASMAD delivers superior accuracy while
maintaining comparable or better efficiency. For
instance, both star and ring topologies in S-MAD
achieve 93% accuracy but consume more tokens
than ASMAD (45.71k and 46.96k vs. 37.16k).
Similarly, GD and S?MAD reach 93% accuracy
but with higher token costs (51.23k and 46.96k
respectively).

4.7 Discussion and Key Findings

The experiments across different model scales and
tasks provide comprehensive insights into the effec-
tiveness and efficiency of our proposed ASMAD
framework. This section synthesizes these findings
to highlight the key advantages of ASMAD and
its potential implications for multi-agent debate
systems.

Balanced Performance Across Tasks Our re-
sults demonstrate that ASMAD achieves a remark-
able balance between accuracy and computational
efficiency across different task types. On MMLU,
ASMAD delivered the highest accuracy (73%)
among all methods while reducing token consump-
tion by 64.2% compared to MAD. On GSMS8K,
while GD achieved the highest accuracy (90%), AS-
MAD (80%) maintained competitive performance
with the largest token savings (65.8%). This pat-
tern suggests that ASMAD’s opinion dynamics ap-
proach is particularly effective for reasoning tasks
with diverse solution paths, as in MMLU, while re-
maining competitive on more structured problems
like GSM8K.

Scaling Benefits with Model Capability A par-
ticularly noteworthy finding is how ASMAD’s ad-
vantages amplify when deployed with larger mod-
els. As shown in Table 3, ASMAD achieved 95%
accuracy on MMLU with larger models while main-
taining a substantial 46.63% token reduction com-
pared to MAD. This indicates that as model ca-
pabilities increase, ASMAD becomes even more
effective at leveraging their enhanced reasoning
while controlling computational costs. The consis-
tent pattern across both resource-constrained and
larger model settings validates ASMAD’s design
principles as fundamentally sound.

Efficiency-Effectiveness Trade-off Throughout
our experiments, we observed a consistent pattern
where other sparse debate methods typically sacri-
fice either accuracy or efficiency compared to AS-
MAD. S-MAD topologies achieve moderate token
savings but with lower accuracy, while methods
like GD may match or exceed ASMAD’s accuracy
but with significantly higher token costs. ASMAD
consistently delivers the most favorable trade-off,
suggesting that its dynamic, adaptive approach to
debate structure outperforms static topologies.

Component Importance The ablation studies in
Table 2 reveal that each component of ASMAD



contributes significantly to its overall performance.
The trust radius mechanism, balancing parameter,
weight clipping, and outlier filtering all play crucial
roles in maintaining ASMAD’s accuracy. These
findings highlight the importance of carefully bal-
ancing exploration and exploitation in multi-agent
debates—allowing agents to consider diverse per-
spectives while preventing undue influence from
outliers or premature convergence.

Practical Implications The significant token
savings demonstrated by ASMAD (64.2% for
MMLU and 65.8% for GSM8K with 7B-9B mod-
els; 46.63% with larger models) translate to sub-
stantial practical benefits. These include reduced
computational costs, lower energy consumption,
faster response times, and the ability to deploy ef-
fective multi-agent debate systems on more con-
strained hardware. Importantly, these benefits
come with minimal or even positive impacts on ac-
curacy, challenging the conventional wisdom that
efficiency gains typically come at a performance
cost.

In conclusion, ASMAD represents a substantial
advancement in the design of multi-agent debate
frameworks, offering a more principled approach
to managing agent interactions through the lens
of opinion dynamics. Its ability to maintain per-
formance advantages across different tasks and
model scales, combined with its significant ef-
ficiency improvements, positions ASMAD as a
valuable approach for deploying multi-agent de-
bate systems in a wide range of practical scenar-
ios—from resource-constrained environments to
high-performance computing settings.

5 Conclusion

This work introduces ASMAD, a novel framework
that synergizes sociophysical opinion dynamics
with MAD systems through two key innovations:
(1) probabilistic semantic-guided attention gates
that dynamically regulate opinion visibility based
on textual reasoning similarity, and (2) a hybrid
paradigm integrating adaptive trust-boundary reg-
ulation with opinion synchronization mechanisms.
ASMAD enables efficient consensus formation
through structured sparse interactions while pre-
serving reasoning quality. Our experiments across
multiple benchmarks demonstrate ASMAD’s abil-
ity to significantly reduce token costs (by approx-
imately 64-66% on MMLU and GSM8K) while
maintaining or even improving accuracy compared

to fully-connected MAD systems. The framework
shows particularly strong performance with larger
models, achieving 95% accuracy on MMLU with
a 46.63% token reduction. These results estab-
lish that semantic-aware topology adaptation can
simultaneously optimize reasoning quality and effi-
ciency, making multi-agent debate more practical
for real-world applications across different model
scales.

Limitations

Our work, while demonstrating promising re-
sults, has several limitations worth acknowledg-
ing. While ASMAD demonstrates promising re-
sults, several avenues remain for future research.
The primary limitation of our current approach is
its sensitivity to hyperparameters, including confi-
dence radius, growth rates, and similarity thresh-
olds. The effectiveness of the adaptive debate pro-
tocol depends significantly on careful tuning of
these parameters for specific tasks and agent con-
figurations. To address this challenge, we plan
to explore reinforcement learning approaches to
dynamically tune these parameters based on de-
bate context and agent behavior, potentially opti-
mizing the diversity-consensus trade-off without
manual intervention. Our initial validation with
moderate-sized agent groups (6 agents) shows sig-
nificant promise, though the dynamics and efficacy
of our framework in larger debate clusters repre-
sents an intriguing direction for future investiga-
tion. The interplay between maintaining diverse
perspectives and achieving efficient consensus at
scale could yield valuable insights for multi-agent
collaboration systems. Another promising direc-
tion is extending our semantic-guided approach to
more diverse reasoning tasks, particularly those re-
quiring specialized domain knowledge. While our
current implementation shows strong performance
on general reasoning tasks (MMLU) and mathe-
matical problems (GSM8K), adapting the semantic
similarity metrics for domain-specific applications
could further enhance performance across special-
ized fields. We also acknowledge that adaptive
consensus mechanisms could potentially amplify
existing model biases or create information filtering
effects. The selective information exchange mecha-
nism, though efficient, requires careful implementa-
tion to avoid creating echo chambers where agents
reinforce each other’s misconceptions. Addition-
ally, the framework’s ability to generate more con-



vincing outputs through structured debate could
be misused to produce more persuasive misinfor-
mation. Future work should explore techniques to
detect and mitigate these effects while preserving
ASMAD’s efficiency advantages.

Ethical Considerations

In this research, Claude 3.5 Sonnet and Deepseek-
R1 models are used as copilot, partially engaging
in writing (sentence-level generations and grammar
checking) and coding (fuzzing test and code-style
polishing).
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A Implementation Details

A.1 Structured Information Exchange

The computed weights determine not only the influ-
ence strength but also how information is presented
to each agent. We implement a three-tier prompt
structure:

[Critical] if wfj > 0.40
[Reference] if wfj >025 (3
[Background] if wfj > 0.10

o
Pl =

This structured presentation helps agents prioritize
information based on computed influence weights,
while maintaining the natural language interaction
paradigm of LLMs.

A.2 Self-confidence Evolution

The self-confidence of each agent evolves accord-
ing to:

. t .
wly =ctp(f -+ 6 (7, ) (1 200 st ),

Wmin wmax)
where:

* 5p: base confidence level

* [31: growth rate

* ~: stability influence factor
* o!: agent’s stability score

A3

We introduce a novel similarity measure that com-
bines reasoning process similarity and answer
agreement:

Hybrid Similarity Computation

sim(7, j) = A-cos(ri, ) +(1=X)-I(c; = ¢j) (4)
where:

* cos(r;, r;j): cosine similarity between reason-
ing embeddings

* I(¢; = ¢;): indicator function for answer
agreement

* \: balancing parameter
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Token Cost Cost

Method ACC (k/task) Saving
ASMAD(6,5) 33% 30.38 -50.49%
MAD(6,5) 35% 61.37 0

S-MAD.(6,5) 39% 35.36 -42.38%
S-MAD,(6,5) 32% 36.00 -41.34%
GD(6,6) 35% 34.16 -44.34%
S?MAD(6,6) 30% 27.43 -55.31%

Table 4: Experiment carried out on GPQA-Main dataset.
A.4 Stability Mechanism

The stability score for agent ¢ at round ¢ is:

t

‘ Zk:? Hci?;ﬁc?_l

oj=1— —"——
t—1

This score influences both self-confidence and

inter-agent weights through the mechanisms de-

scribed above.

6))

A.5 Row Normalization

To ensure balanced influence distribution, we apply
row normalization to the weight matrix:

t
wj;

ij = t
Dk Wi,
This normalized weight matrix W governs the

information flow and influence dynamics in each
round of debate.

Wl =

(6)

A.6 Consensus formation

ASMAD enables agents to arrive at consensus
faster. Figure 3 and Figure 4 show the dynamics of
agent opinions through metrics of similarity.

B Extended Experiment on GPQA

To further assess the generalizability of AS-
MAD, we conducted additional experiments on
the Graduate-level Physics Questions and Answers
(GPQA) dataset, which poses significantly differ-
ent challenges compared to MMLU and GSMS8K.
Table 4 presents the results of these experiments.

The results reveal an interesting deviation from
the patterns observed with MMLU and GSMS8K.
While ASMAD maintained its substantial effi-
ciency advantage (50.49% token reduction com-
pared to MAD), it achieved slightly lower accu-
racy (33%) compared to MAD (35%) and S-MAD,
(39%). This performance gap, though modest, war-
rants careful analysis to understand the domain-
specific challenges of GPQA.
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The GPQA dataset presents unique character-
istics that likely influenced these results. Unlike
MMLU and GSMS8K, GPQA contains graduate-
level physics questions that require specialized do-
main knowledge with strong interdependencies be-
tween reasoning steps. Physics problem-solving
often involves multiple interconnected equations
and principles that must be applied in a specific
sequence, creating high dependency paths where
early errors can significantly impact final answers.
These problems also frequently involve complex
symbolic manipulation and specialized notation
that may challenge the semantic similarity metrics
used in ASMAD for determining agent confidence
and influence weights.

Several factors likely contributed to the observed
performance pattern. ASMAD’s confidence ra-
dius and influence weights depend on semantic
similarity measures between agent reasoning. For
highly specialized domains like physics, these mea-
sures may struggle to distinguish correct from
incorrect reasoning paths when both use similar
domain-specific terminology. The star topology of
S-MAD,, which performed best on GPQA, central-
izes information flow through a hub agent, poten-
tially advantageous when knowledge is unevenly
distributed among agents. Additionally, the over-
all lower accuracy across all methods (30-39%
compared to 70-95% on other datasets) suggests
that GPQA presents inherent challenges for cur-
rent LLM-based systems regardless of debate struc-
ture. In highly technical domains, early consensus
formation based on similarity can sometimes rein-
force plausible-sounding but ultimately incorrect
approaches.

These findings do not indicate fundamental flaws
in ASMAD’s design but rather highlight opportu-
nities for domain-specific adaptations. For highly
specialized technical domains like physics, future
improvements might include domain-specific simi-
larity metrics that better capture the correctness of
physics reasoning, adjustments to the confidence
radius mechanism that account for the unique un-
certainty characteristics of physics problems, and
specialized agent roles based on demonstrated do-
main expertise. The GPQA results provide valu-
able insights into the boundary conditions of our
approach, suggesting that while ASMAD excels
at general reasoning tasks, highly specialized tech-
nical domains may benefit from domain-adapted
variants.
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Figure 4: Similarity of agents vary toward consensus with increasing debate rounds where ASMAD provides better
consensus rate (demonstrated in mean value and standard variance of similarity among agents) and speed

Tinit\ it 0.5 0.6 07 08 0.9 1 1.1
0 63% 63% 63% 63% 63% 63% 63%
0.1 63% 63% 63% 67% 60% 60% 60%
0.2 0% 70% 73% 65% 60% 60% 60%
0.3 0% 70% 70% 65% 60% 60% 60%
0.4 0% 70% 70% 65% 60% 60% 60%
0.5 0% 70% 70% 65% 60% 60% 63%

0.6 0% 0% 0% 65% 60% 63% 60% Wmin Wmae Round1l Round2 Round3 Round4 RoundS5
: 0.1 67% 0% 33% 33% 20%
0.7 70% 0% 70% 65% 60% 63% 60% 02 e 37% o o sl
0.8 70% 70% 70% 68% 60% 63% 60% 03 67% 37% 539 50% 43%
0.9 70% 70% 70% 67% 60% 60% 63% 0.4 67% 40% 57% 50% 37%
0 0.5 67% 43% 57% 53% 50%
Table 5: Searching init and final configurations of g'g 2;;7/‘7 gZ’ g;Z’ 2;”;” Z;Z”
. . 0 0 0 0 0
trust-boundary of ASMAD. Trust-boundary dynami- 0.8 67% 3% 539 60% 50%
cally changes from 7;,,;; t0 7 f;nq; according to debate 0.9 67% 47% 57% 63% 50%
progress 0.2 67% 63% 63% 60% 60%
’ 0.3 67% 63% 63% 60% 60%
0.4 67% 63% 67% 60% 57%
MACC Round1l Round2 Round3 Round4 Round35 o1 0.5 67% 63% 63% 60% 60%
0 69% 69% 65% 63% 62% : 0.6 67% 63% 63% 60% 60%
0.1 70% 71% 68% 67% 66% 0.7 67% 63% 63% 60% 60%
0.2 70% 68% 70% 70% 72% 08  67% 63% 63% 60% 63%
0.3 70% 68% 68% 68% 69% 0.9 67% 63% 63% 7% 7%
0.4 66% 64% 65% 62% 62% 03 67% 60% 33% 57% 33%
0.4 67% 60% 57% 53% 57%
05 e 6% R en oo 0o an o h o
0'7 69; 68[; 68(; 67; 68; 02 06 67% 60% 57% 57% 57%
o 0 (g 0 ‘0 (o
o8 6o P it cor it 0.7 67% 60% 60% 60% 60%
. o o o o o 0.8 67% 60% 60% 60% 60%
0.9 69% 65% 65% 64% 64% 0.9 67% 60% 60% 60% 60%
1 69% 65% 65% 64% 64% 0.4 67% 60% 63% 63% 63%
0.5 67% 60% 67% 67% 70%
Table 6: Searching balancing parameter A of ASMAD. 03 06 67% 60% 70% 70% 70%
0.7 67% 60% 63% 63% 60%
0.8 67% 60% 60% 63% 63%
C Hyper-parameter Search 0o c1a 0% 60 Pt Pt
. 0.5 67% 67% 67% 67% 63%
As shown in Table 5, Table 7 and Table 6, we per- 04 o6 &% 67% 67% 67% 67%
formed linear search for hyper-parameters defined ) ) )
in Section 3.2 of ASMAD Table 7: Searching range of weight clip of ASMAD.
This search ends at w,,;, = 0.4 to ensure Wy, <
D Prompt Wmaq as reasonable clipping.

As shown in Table 8 and Table 9, we use identical
prompt configuration with baseline methods (Zeng
et al., 2025; Liu et al., 2024) to preserve fairness in
experiment.
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Table 8: Prompts in Each Stage. List of prompts used in each task.

Type

Task

Prompt

System

All

Welcome to the debate! You are a seasoned debater with expertise in
succinctly and persuasively expressing your viewpoints. You will be
assigned to debate groups, where you will engage in discussions with
fellow participants. The outcomes of each group’s deliberations will
be shared among all members. It is crucial for you to leverage this
information effectively in order to critically analyze the question at hand
and ultimately arrive at the correct answer. Best of luck!

Starting

GSMS8K Can you solve the following math problem? <Problem> Explain your

reasoning. < Output Format >.

MMLU Can you answer the following question? <Problem>: A), B), C), D)

Explain your answer. <Output Format>.

GPQA

Can you answer the following question? <Problem>: A), B), C), D)
Explain your answer. <Output Format>.

Intra-group
Debate

All

These are the recent unique opinions from other agents that differ with
yours: <other agent responses> Using the opinions carefully as additional
advice, can you provide an updated answer? Examine your solution and
that other agents step by step. <Output Format> .

Summary

All

These are the recent/updated and unique opinions from all agents: <all
agent responses> Summarize these opinions carefully and completly
in no more than 80 words. Aggregate and put your final answers in
parentheses at the end of your response.

Inter-group
Debate

All

These are the recent unique opinions from all groups: one group re-
sponses: <group summary>. Using the reasoning from all groups as
additional advice, can you give an updated answer? Examine your solu-
tion and that all groups step by step. <Output Format>.

Table 9: Output Format Requirements in Each Dataset.

Task Output Format Requirements

GSMS8K Your final answer should be a single numerical number, in the Form \boxed{ {answer} },
at the end of your response.

MMLU Put your final choice in parentheses at the end of your response.

GPQA Put your final answer in the Form \ The correct answer is (insert answer here).
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