
ASMAD: Adaptive Sparse Communication Topology Multi-Agent Debate
Framework with Opinion Dynamics

Anonymous ACL submission

Abstract001

Large language models (LLMs) still face chal-002
lenges in complex reasoning within multi-agent003
debate (MAD) systems due to high compu-004
tational costs in fully-connected structures.005
While existing methods use static sparse topolo-006
gies to reduce computation, they neglect seman-007
tic relationships and dynamic opinion evolu-008
tion. To solve this challenge, we propose AS-009
MAD, an adaptive sparse topology framework010
that synergizes sociophysical opinion dynamics011
with LLMs through two innovations: (1) proba-012
bilistic semantic-guided attention gates for dy-013
namic opinion visibility control; (2) a hybrid014
paradigm combining adaptive trust-boundary015
regulation and opinion synchronization. Exper-016
iments show ASMAD reduces token costs to017
around 1/3 across GSM8K and MMLU bench-018
marks while maintaining competitive accuracy019
with 4-bit quantized 7-9B size models.020

1 Introduction021

In recent years, the rapid development of large022

language models (LLM) has greatly promoted the023

progress of several natural language processing024

(NLP) tasks (Touvron et al., 2023; Zhao et al., 2023;025

Naveed et al., 2023; Jiang et al., 2024; Achiam026

et al., 2023; GLM et al., 2024; Guo et al., 2025).027

However, performance of LLM in reasoning and028

logical reasoning tasks is still limited (Zhu et al.,029

2022; Gou et al., 2023).030

To address complex reasoning challenges, var-031

ious approaches has been developed, including032

Chain-of-Thought (CoT) (Wei et al., 2022), self-033

consistency (SC) mechanisms (Wang et al., 2022)034

with self-correction strategies (Liang et al., 2023).035

Recent advances in multi-agent debate (MAD) sys-036

tems have demonstrated superior performance in037

complex reasoning tasks (Liang et al., 2023). In-038

spired by the human discussion mechanism (Hill039

et al., 2015; Liang et al., 2023), MAD systems040
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Figure 1: Adaptive topology of ASMAD (Top) and com-
parison of accuracy and token consumption (Bottom).
The results show that we achieve better cost-acc trade.

employ multiple LLM agents to communicate and 041

iteratively argue with each other in a structured de- 042

bate. However, MAD systems face computation 043

cost problem due to fully-connected communica- 044

tion topology, where every agent interacts with all 045

peers, which incurs quadratic computational com- 046

plexity that becomes prohibitively expensive for 047

real-world applications (Du et al., 2023). 048

Existing attempts to address this efficiency chal- 049

lenge focus on either static sparse topologies (e.g., 050

ring or star structures of Sparse MAD (S-MAD) 051

(Li et al., 2024)) that reduce token costs through 052

predetermined connection patterns (Du et al., 2023; 053

Sun et al., 2023) or group discussion methods like 054

Group Debate (GD) (Liu et al., 2024) or Selective 055

Sparse MAD (S2-MAD) (Zeng et al., 2025) that 056
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adopts a hierarchical structure by clustering agents057

into smaller debate groups to exchange interme-058

diate results. However, existing approaches face059

two fundamental limitations: (1) Task-semantic060

blindness: fixed topologies cannot adapt to prob-061

lem difficulty, potentially pruning critical debate062

pathways; (2) Coarse adaptation granularity: fixed063

grouping patterns cannot capture nuanced opinion064

evolution dynamics.065

To address these limitations, we propose a adap-066

tive sparse topology framework (ASMAD) that syn-067

ergies sociophysical opinion dynamics with mod-068

ern LLM architectures as shown in Figure 1. Our069

key insight stems from two observations: First,070

human consensus formation naturally evolves com-071

munication networks through confidence-bound072

adaptation, suggesting that artificial debate systems073

should similarly adjust interaction patterns based074

on semantic convergence states. Second, seman-075

tic similarity between textual opinions provides a076

more reliable signal for trust boundary calculation077

than numerical difference metrics.078

Building upon this foundation, we propose a079

dual-regulation debate mechanism that hybridizes080

two classical models: The Hegselmann-Krause081

(HK) model (Rainer and Krause, 2002) inspired082

adaptive trust boundary allows agents to dynami-083

cally adjust their openness to divergent views based084

on real-time semantic proximity, while the Def-085

fuant model (Deffuant et al., 2000) derived syn-086

chronization protocol coordinates opinion aggrega-087

tion through gradient descent in the semantic space.088

The system’s core innovation lies in visibility con-089

trol module, which implements selective opinion090

exposure through attention-based gates.091

We evaluate ASMAD across GSM8K (Cobbe092

et al., 2021) and MMLU (Hendrycks et al., 2021)093

benchmarks1 using 4-bit quantized versions of094

LLaMA-8B (Touvron et al., 2023), ChatGLM-9B095

(GLM et al., 2024) and Deepseek-7B (Guo et al.,096

2025). Experiments show ASMAD reduces token097

costs up to 65.8% while maintaining competitive098

accuracies. Figure 1 shows ASMAD gets better099

cost-accuracy trade-off.100

In summary, our work contributes as following:101

• We developed dynamic visibility control102

mechanisms for agent opinions in MAD with103

lower cost and better consensus.104

• We extended classical opinion dynamics mod-105

els to LLM-based MAD systems through a106

1MIT License

tunable debate paradigm integrating Deffuant 107

model’s adaptive trust-boundary regulation 108

with HK model’s synchronized opinion ag- 109

gregation. 110

• We introduced a methodology replacing con- 111

ventional numerical handcrafted metrics with 112

SentenceTransformer-based semantic vectors 113

and similarity matrices. It might be a potential 114

workaround for LLM multi-agent systems to 115

effectively handle unstructured textual opin- 116

ions. 117

2 Related Works 118

Topology in MAD Due to the diversity of hu- 119

man discussion strategies (Liang et al., 2023; Chan 120

et al., 2023; Du et al., 2023), researchers adjust the 121

visibility of interactions between agents and their 122

historical records as well as among the agents them- 123

selves, by employing different multi-agent topolo- 124

gies, ultimately reducing token cost or enabling 125

operation in resource-constrained environments (Li 126

et al., 2024; Liu et al., 2024). 127

Regarding historical records, Du et al. (2023) 128

process information from a centralized topology 129

by summarizing agent outputs at the end of each 130

round, whereas Sun et al. (2023) introduces a for- 131

getting mechanism in which agents can only see 132

the outputs from the previous round. In addition, 133

Zhang et al. (2023) proposes a debate–reflection 134

mechanism in which agents can only review their 135

own past outputs during reflection. 136

Several studies focus on the topology of inter- 137

agent information exchange. For instance, S-MAD 138

(Li et al., 2024) employs a sparse topology, limiting 139

information exchange to adjacent agents. GroupDe- 140

bate (GD) (Liu et al., 2024) adopts a hierarchical 141

structure by clustering agents into smaller debate 142

groups to exchange intermediate results. Further- 143

more, S2-MAD (Zeng et al., 2025) utilizes a sparse 144

topology based on grouping and a decision mech- 145

anism: agents initially generate independent opin- 146

ions within groups, and only engage in information 147

exchange within and between groups if a decision 148

mechanism identifies differences in opinions. 149

Opinion Dynamics In the study of opinion dy- 150

namics, the Deffuant model and Hegselmann- 151

Krause (HK) dynamics (Deffuant et al., 2000; 152

Rainer and Krause, 2002) serve as foundational 153

consensus models where a group of agents strive 154

to reach the same objective. The Deffuant model 155

posits that agents update their opinions based on a 156
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bounded confidence mechanism: two agents adjust157

their opinions only when their difference falls be-158

low a predefined threshold (Deffuant et al., 2000,159

2002; Lorenz, 2007). This model has been exten-160

sively applied to investigate opinion convergence161

and polarization phenomena in social networks162

(Zhang et al., 2017; Marconi and Cecconi, 2020;163

Zarei et al., 2023).164

The Hegselmann-Krause (HK) dynamics as-165

sumes that agents interact exclusively with peers166

whose opinions lie within their confidence bounds167

(Rainer and Krause, 2002; Etesami and Başar,168

2015). In its synchronous variant, agents simultane-169

ously update opinions by averaging those of neigh-170

bors within their confidence interval (Rainer and171

Krause, 2002; Etesami et al., 2013; Etesami and172

Başar, 2015), whereas the asynchronous version up-173

dates one agent at a time (Rainer and Krause, 2002;174

Touri and Langbort, 2014; Etesami and Başar,175

2015). These consensus models provide critical176

frameworks for understanding opinion formation177

and evolution in social systems, particularly in an-178

alyzing how local interactions drive collective be-179

haviors.180

3 Methodology181

3.1 Dynamic Opinion Exchange Framework182

Multi-agent debate (MAD) with large language183

models presents unique challenges that traditional184

frameworks struggle to address. This work re-185

frames the MAD process through the theoretical186

lens of opinion dynamics, treating each LLM as an187

agent with bounded rationality, whose willingness188

to incorporate external viewpoints varies dynami-189

cally based on semantic proximity and confidence190

levels. Drawing from both HK and Deffuant mod-191

els, we implement: Simultaneous Updates: All192

agents update their states based on visible infor-193

mation, Probabilistic Interaction: Probabilities194

and strength of pairwise interaction determined by195

adaptive weights.196

Unlike classical opinion dynamics that operate197

in numerical spaces, our framework extends into198

rich semantic embeddings where agent states com-199

prise both reasoning processes and discrete conclu-200

sions. We introduce the agent state as sti = (rti , c
t
i),201

where rti ∈ Rd represents the semantic embedding202

of agent i’s reasoning at time t, and cti denotes its203

conclusion. This richer state space enables more204

nuanced modeling of debate dynamics while pre-205

serving the mathematical tractability of opinion206

evolution. 207

3.2 Adaptive Debate Protocol 208

As detailed in Figure 2, the proposed protocol 209

orchestrates multi-agent debate through distinct 210

phases that progressively refine agent opinions 211

while maintaining diversity and efficiency. 212

Independent Initialization Each agent indepen- 213

dently generates its initial response to the given 214

problem without access to other agents’ outputs. 215

Formally, at t = 0, agent i produces state s0i = 216

(r0i , c
0
i ), where r0i represents its reasoning embed- 217

ding and c0i its initial conclusion. This indepen- 218

dence in initialization is crucial for establishing 219

diverse starting points in the solution space. 220

Confidence Boundary Determination Follow- 221

ing initialization, we adopt the bounded confidence 222

mechanism from classical opinion dynamics mod- 223

els (Deffuant et al., 2000; Rainer and Krause, 2002). 224

A confidence radius R(t) = R0 + λ
(
t
T

)
deter- 225

mines whether agents can consider opinions from 226

each other, where R0 is the initial radius and λ 227

controls its temporal evolution. Two agents i and j 228

can potentially interact only if their semantic dis- 229

tance falls within this radius: Et
ij = I(d(sti, stj) ≤ 230

R(t)), where d(sti, s
t
j) denotes the distance be- 231

tween agents’ state and I(·) is the indicator func- 232

tion. This bounded confidence mechanism helps 233

prevent premature convergence while allowing the 234

interaction scope to gradually expand as the debate 235

progresses. 236

Weighted Opinion Exchange For agent pairs 237

within confidence bounds, we compute influence 238

weights based on both semantic similarity and an- 239

swer conclusion consistency (See A.3). The overall 240

influence weight incorporates this similarity mea- 241

sure along with agent-specific attributes: 242

wt
ij = β0 + β1

(
t

T

)
(1 + γσt

i) · sim(sti, s
t
j), (1) 243

where β0 is the base confidence level, β1 is the 244

growth rate corresponding to debate progress, γ is 245

the stability influence factor, σt
i denotes the agent’s 246

stability score and sim(sti, s
t
j) is the similarity score 247

betweem agents’ state. 248

These weights serve both topology and influ- 249

ence strength in regulating inter-agent interactions. 250

Visibility of agent j’s response to i is sampled ac- 251

cording to the weight wt
ij (wt

ji if i to j), acting as 252

the probability. Such adaptive directional topology 253
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Initial question prompt: Can you answer the following question? 
To close an expansionary gap: 
A) demand curve to the right. B) demand curve to the left. 
C) supply curve to the right. D) supply curve to the left.

Stage 1: Initial response round

An expansionary gap 
occurs ... Answer is D.

Stage 3: Majority Voting

The demand should be 
reduced … Answer is B.

Stage 2: Adaptive Sparse Debate 

…

To meet the existing 
demand ... Answer is A.

Step 1: Similarity Calculation 

Final Decision: B

Step 2: Sparse Topology Generation

Step 3: Probabilistic Interaction

Sparse Topology Generation Mechanism with 
Opinion Dynamics at Round 

Step 1: Confidence Boundary Determination 

Step 2: Opinion Exchange Weight Calculation

Step 3: Consensus Formation

Radius Update: HK-model

Confidence Level
Stability Score
Debate Rate

Prompt:
[Info level: Critical/…] 
Other agent’s answer: …

Response Update: Deffuant

Confidence Neighbor Set:

Figure 2: The process pipeline of ASMAD. Following S2-MAD (Zeng et al., 2025), we adopts three stages in total.
In the first stage, all agents gives the initial response. In the second stage, with proposed sparse topology generation
mechanism, the agents are organized to debete with each other. In the last stage, the final decision is obtained via
majority voting.

effectively reduces communication token overhead254

while preserving essential information flow paths.255

Construction of agent prompts with varies256

with degrees of interaction strength, as practical257

workaround of opinion dynamics model in MAD258

scenarios. LLMs are prompted with one of: Criti-259

cal, Reference and Background categories accord-260

ing to w if satisfied various thresholds (detailed in261

A.1).262

Consensus Formation The consensus formation263

emerges through iterative debate rounds where264

agents continuously refine their positions through265

structured interactions:266

st+1
i = fLLM(sti, {(wt

ij , s
t
j)|j ∈ N t

i }) (2)267

where N t
i represents the set of visible agents to i at268

time t, and fLLM denotes the language model’s rea-269

soning process. After sufficient rounds of debate,270

the final conclusion is determined through majority271

voting.272

3.3 Framework Pipeline273

The Adaptive Sparse Multi-Agent Debate (AS-274

MAD) framework employs a structured three-stage275

pipeline as illustrated in Figure 2. Our methodol-276

ogy introduces dynamic opinion exchange mecha-277

nisms and adaptive topology generation to balance278

communication efficiency with debate effective-279

ness.280

Stage 1: Independent Initialization The debate281

process begins with all agents independently gener-282

ating initial responses to the given problem. Each283

agent i formulates its reasoning r0i and conclusion 284

c0i without knowledge of other agents’ perspec- 285

tives, establishing diverse starting points across the 286

solution space. As shown in the left panel of Fig- 287

ure 2, agents generate varied responses to questions 288

like closing an expansionary gap, with conclusions 289

spanning multiple possible answers. 290

Stage 2: Adaptive Sparse Debate The core of 291

our approach lies in this intermediate stage, which 292

orchestrates inter-agent interactions through three 293

key steps: 294

1. Similarity Calculation: We compute semantic 295

similarities between agent states using em- 296

bedding distances and conclusion consistency, 297

establishing a foundation for meaningful in- 298

teractions. 299

2. Sparse Topology Generation: Based on the 300

confidence boundary mechanism, we deter- 301

mine which agents can potentially interact. 302

The confidence radius R(t) = R0 + λ
(
t
T

)
303

expands over time, gradually increasing the 304

scope of potential interactions as the debate 305

progresses. 306

3. Probabilistic Interaction: For eligible agent 307

pairs, we calculate influence weights wt
ij in- 308

corporating similarity measures, confidence 309

levels, and stability scores. These weights de- 310

termine both the probability of interaction and 311

the influence strength when agents exchange 312

opinions. 313

4



The right panel of Figure 2 details this mecha-314

nism, showing how confidence neighbors are de-315

termined, weights are calculated based on multiple316

factors, and how agents update their responses ac-317

cording to the Deffuant model. Importantly, the318

interaction prompt varies in intensity (Critical, Ref-319

erence, or Background) based on the calculated320

weights, creating a natural gradient of influence in321

the form of text.322

Stage 3: Consensus Formation In the final323

stage, after multiple rounds of adaptive debate,324

the framework aggregates individual conclusions325

through a majority voting mechanism. This demo-326

cratic approach ensures that the final decision327

emerges from the collective wisdom of the agent328

ensemble rather than any single perspective. As329

depicted in the lower section of Figure 2, the vot-330

ing process consolidates the diverse agent opinions331

into a single consensus answer (Final Decision: B).332

4 Experiments333

4.1 Tasks and Datasets334

We mainly evaluate our framework on two bench-335

mark datasets: GSM8K (Cobbe et al., 2021) and336

MMLU (Hendrycks et al., 2021),that either require337

multi-step reasoning or admit multiple valid solu-338

tion paths while maintaining unambiguous answers.339

GSM8K presents grade school math word prob-340

lems requiring step-by-step numerical reasoning.341

MMLU covers multiple-choice questions across342

various domains, where the challenge lies not only343

in answer format but in the diversity of valid rea-344

soning approaches. We sampled 100 tasks from345

each dataset for agents to debate for 5 rounds as346

benchmark.347

4.2 Model Configuration348

To thoroughly evaluate the dynamic aspects and349

diversity benefits of our framework, we construct a350

heterogeneous agent population using three differ-351

ent LLM architectures: LLaMA-3.1-8B-Instruct352

(Touvron et al., 2023), ChatGLM-4-9B-chat-353

abliterated (GLM et al., 2024) and Deepseek-354

math-7b-Instruct (Guo et al., 2025). Each model355

type contributes 2 agents, resulting in a debate356

group of 6 participants. This configuration en-357

sures sufficient diversity in reasoning approaches358

while maintaining manageable computational re-359

quirements. For practical deployment considera-360

tions, all deployed models leverage 4-bit block-361

wise quantization with mixed precision (Q4_K_M),362

Task Method ACC Token Cost
(k/task)

Cost
Saving

MMLU

ASMAD(6,5) 73% 18.64 -64.2%
MAD(6,5) 49% 52.15 0
S-MAD∗(6,5) 61% 26.42 -49.3%
S-MADo(6,5) 54% 27.77 -46.8%
GD(6,6) 53% 32.17 -38.3%
S2MAD(6,6) 46% 25.36 -51.4%

GSM8K

ASMAD(6,5) 80% 21.94 -65.8%
MAD(6,5) 88% 64.08 0
S-MAD∗(6,5) 83% 26.42 -58.8%
S-MADo(6,5) 70% 27.77 -56.7%
GD(6,6) 90% 32.17 -49.8%
S2MAD(6,6) 70% 25.36 -60.4%

Table 1: Performance of ASMAD and baselines across
three tasks. Token cost is calculated as average of each
topic debated. ASMAD significantly reduces token cost
with comparable or improved accuracy. S-MAD with
different structure is denoted as s(Star) and o(Ring).

enabling simultaneous execution of all 3 models on 363

a single NVIDIA GeForce RTX 3090 GPU. 364

4.3 Baseline and Evaluation Protocol 365

The primary baseline for comparison is MAD, a 366

most straightforward fully-connected debate proto- 367

col without visibility control or prompt structuring. 368

This baseline maintains complete information ex- 369

change between all agents throughout the debate 370

process. We also take S-MAD, GD and S2-MAD 371

as comparable baselines with their best-claimed 372

configurations. 373

Key evaluation metrics include: (1) Solution ac- 374

curacy across different problem types; (2) Com- 375

putational efficiency measured by token consump- 376

tion. We further detailed ablation study and hyper- 377

parameters search of ASMAD in Appendix.4.5 and 378

Appendix.C. 379

4.4 Main Results 380

Table 1 presents experimental results comparing 381

ASMAD with the baseline MAD method. On 382

MMLU, ASMAD demonstrates superior perfor- 383

mance improvement while simultaneously reduc- 384

ing token consumption by 64.2%. Figure 3 and 4 385

shows ASMAD accelerates consensus with higher 386

mean value and lower standard variance in similar- 387

ity. On GSM8K, ASMAD delivers a remarkable 388

65.8% reduction in token cost with a slightly mod- 389

erate accuracy drop. The performance gap may 390

be attributed to similarity-based approach, which 391

can be less effective than static topology methods 392

when handling numerical answer discrepancies in 393

mathematical reasoning tasks. It’s worth noting 394

that for GD(6,6) and S2MAD(6,6) configurations, 395
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Figure 3: Similarity of agents vary toward consensus with increasing debate rounds where ASMAD provides better
consensus rate (demonstrated in mean value and standard variance of similarity among agents) and speed

we implemented the best configuration claimed396

by the original authors (2 intra-group rounds + 1397

inter-group round, repeated twice), which naturally398

introduces an additional round (6 vs 5) compared399

to other methods. This efficiency gain suggests400

that ASMAD mechanisms can effectively enhance401

reasoning capabilities, even among performance-402

limited quantized models.403

To further assess the generalizability of AS-404

MAD, we conducted additional experiments on405

the Graduate-level Physics Questions and An-406

swers (GPQA) dataset and analyzed results in Ap-407

pendix B.408

4.5 Ablation study409

Table 2 presents ablation study examining the con-410

tribution of each key module in ASMAD. The411

results clearly demonstrate that each component412

plays a crucial role in the overall performance413

of our approach with no single component be-414

ing redundant. The complete ASMAD framework415

achieves the best accuracy-efficiency trade-off com-416

pared to any of its reduced variants. Results are417

collected through MMLU dataset.418

Removing the trust radius mechanism leads to a419

significant drop in accuracy while only marginally420

reducing token costs. This confirms that trust ra-421

dius effectively helps maintain a balance between422

exploration and exploitation during the adaptive423

debate process.424

The balancing parameter λ, which calibrates the425

relative importance between semantic similarity426

and answer similarity, proves essential for ensuring427

comprehensive evaluation of agent contributions.428

Its removal results in a substantial accuracy degra-429

Ablation Module ACC Token Cost
(k/task)

ASMAD 73% 18.64
w/o trust radius 60% 17.95
w/o balancing parameter 62% 18.63
w/o weight clip 50% 12.62
w/o outlier filter 58% 14.83

Table 2: Ablation of key modules of ASMAD.

dation, highlighting the importance of considering 430

both the reasoning process and the final answer 431

when building consensus. It is more important in 432

handling LLMs trained with different tune of re- 433

sponse, even if ‘temperature‘ parameters of them 434

are configured identical. 435

When weight clipping used in Appendix. A.2 is 436

eliminated, we observe the most dramatic decline 437

in accuracy, despite achieving the lowest token con- 438

sumption. This suggests that while weight clipping 439

may increase computational costs, it is fundamental 440

for preventing premature convergence and main- 441

taining solution quality. 442

The outlier filtering component also demon- 443

strates its value, as its removal causes considerable 444

accuracy reduction with only modest token savings. 445

This confirms that identifying and mitigating the 446

impact of extreme viewpoints contributes signifi- 447

cantly to the robustness of the debate framework. 448

449

4.6 Performance with Larger Models 450

While our primary investigation focused on 451

resource-constrained environments using quantized 452

7B-9B parameter models, we conducted additional 453

experiments to evaluate whether ASMAD’s ad- 454
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Method ACC Token Cost
(k/task)

Cost
Saving

ASMAD(6,5) 95% 37.16 -46.63%
MAD(6,5) 90% 69.63 0.00%
S-MAD∗(6,5) 93% 45.71 -34.35%
S-MADo(6,5) 93% 46.96 -32.55%
GD(6,6) 93% 51.23 -26.43%
S2MAD(6,6) 93% 46.96 -32.56%

Table 3: Accuracy and token cost comparison using
larger models on MMLU

vantages persist when applied to larger language455

models. This exploration addresses an important456

question: does the adaptive sparse debate mecha-457

nism remain effective across model scales, or are458

its benefits limited to smaller, computationally re-459

stricted settings? For these experiments, we de-460

ployed a heterogeneous online ensemble consisting461

of three advanced models: DeepSeek-R1-Distill-462

Qwen-7B (DeepSeek-AI et al., 2025a), Doubao-463

1.5-thinking-pro (Seed et al., 2025), and DeepSeek-464

V3 (DeepSeek-AI et al., 2025b).465

Table 3 presents the experimental results compar-466

ing ASMAD with baseline methods on the MMLU467

dataset. The findings are particularly notewor-468

thy as they demonstrate that ASMAD’s advan-469

tages become even more pronounced with larger470

models. ASMAD achieved the highest accuracy471

(95%) among all methods, outperforming the fully-472

connected MAD approach by 5 percentage points473

and other sparse debate methods by 2 percentage474

points.475

Equally important, ASMAD maintained its sub-476

stantial efficiency advantage with larger models,477

reducing token consumption by 46.63% compared478

to MAD. This reduction is especially significant479

considering that larger models typically generate480

longer outputs and incur higher computational481

costs per token. The token savings with ASMAD482

(37.16k tokens per task) compared to MAD (69.63k483

tokens per task) translate to substantial practical484

benefits in deployment scenarios.485

When comparing ASMAD with other sparse486

debate methods, we observe a consistent pattern487

where ASMAD delivers superior accuracy while488

maintaining comparable or better efficiency. For489

instance, both star and ring topologies in S-MAD490

achieve 93% accuracy but consume more tokens491

than ASMAD (45.71k and 46.96k vs. 37.16k).492

Similarly, GD and S2MAD reach 93% accuracy493

but with higher token costs (51.23k and 46.96k494

respectively).495

4.7 Discussion and Key Findings 496

The experiments across different model scales and 497

tasks provide comprehensive insights into the effec- 498

tiveness and efficiency of our proposed ASMAD 499

framework. This section synthesizes these findings 500

to highlight the key advantages of ASMAD and 501

its potential implications for multi-agent debate 502

systems. 503

Balanced Performance Across Tasks Our re- 504

sults demonstrate that ASMAD achieves a remark- 505

able balance between accuracy and computational 506

efficiency across different task types. On MMLU, 507

ASMAD delivered the highest accuracy (73%) 508

among all methods while reducing token consump- 509

tion by 64.2% compared to MAD. On GSM8K, 510

while GD achieved the highest accuracy (90%), AS- 511

MAD (80%) maintained competitive performance 512

with the largest token savings (65.8%). This pat- 513

tern suggests that ASMAD’s opinion dynamics ap- 514

proach is particularly effective for reasoning tasks 515

with diverse solution paths, as in MMLU, while re- 516

maining competitive on more structured problems 517

like GSM8K. 518

Scaling Benefits with Model Capability A par- 519

ticularly noteworthy finding is how ASMAD’s ad- 520

vantages amplify when deployed with larger mod- 521

els. As shown in Table 3, ASMAD achieved 95% 522

accuracy on MMLU with larger models while main- 523

taining a substantial 46.63% token reduction com- 524

pared to MAD. This indicates that as model ca- 525

pabilities increase, ASMAD becomes even more 526

effective at leveraging their enhanced reasoning 527

while controlling computational costs. The consis- 528

tent pattern across both resource-constrained and 529

larger model settings validates ASMAD’s design 530

principles as fundamentally sound. 531

Efficiency-Effectiveness Trade-off Throughout 532

our experiments, we observed a consistent pattern 533

where other sparse debate methods typically sacri- 534

fice either accuracy or efficiency compared to AS- 535

MAD. S-MAD topologies achieve moderate token 536

savings but with lower accuracy, while methods 537

like GD may match or exceed ASMAD’s accuracy 538

but with significantly higher token costs. ASMAD 539

consistently delivers the most favorable trade-off, 540

suggesting that its dynamic, adaptive approach to 541

debate structure outperforms static topologies. 542

Component Importance The ablation studies in 543

Table 2 reveal that each component of ASMAD 544

7



contributes significantly to its overall performance.545

The trust radius mechanism, balancing parameter,546

weight clipping, and outlier filtering all play crucial547

roles in maintaining ASMAD’s accuracy. These548

findings highlight the importance of carefully bal-549

ancing exploration and exploitation in multi-agent550

debates—allowing agents to consider diverse per-551

spectives while preventing undue influence from552

outliers or premature convergence.553

Practical Implications The significant token554

savings demonstrated by ASMAD (64.2% for555

MMLU and 65.8% for GSM8K with 7B-9B mod-556

els; 46.63% with larger models) translate to sub-557

stantial practical benefits. These include reduced558

computational costs, lower energy consumption,559

faster response times, and the ability to deploy ef-560

fective multi-agent debate systems on more con-561

strained hardware. Importantly, these benefits562

come with minimal or even positive impacts on ac-563

curacy, challenging the conventional wisdom that564

efficiency gains typically come at a performance565

cost.566

In conclusion, ASMAD represents a substantial567

advancement in the design of multi-agent debate568

frameworks, offering a more principled approach569

to managing agent interactions through the lens570

of opinion dynamics. Its ability to maintain per-571

formance advantages across different tasks and572

model scales, combined with its significant ef-573

ficiency improvements, positions ASMAD as a574

valuable approach for deploying multi-agent de-575

bate systems in a wide range of practical scenar-576

ios—from resource-constrained environments to577

high-performance computing settings.578

5 Conclusion579

This work introduces ASMAD, a novel framework580

that synergizes sociophysical opinion dynamics581

with MAD systems through two key innovations:582

(1) probabilistic semantic-guided attention gates583

that dynamically regulate opinion visibility based584

on textual reasoning similarity, and (2) a hybrid585

paradigm integrating adaptive trust-boundary reg-586

ulation with opinion synchronization mechanisms.587

ASMAD enables efficient consensus formation588

through structured sparse interactions while pre-589

serving reasoning quality. Our experiments across590

multiple benchmarks demonstrate ASMAD’s abil-591

ity to significantly reduce token costs (by approx-592

imately 64-66% on MMLU and GSM8K) while593

maintaining or even improving accuracy compared594

to fully-connected MAD systems. The framework 595

shows particularly strong performance with larger 596

models, achieving 95% accuracy on MMLU with 597

a 46.63% token reduction. These results estab- 598

lish that semantic-aware topology adaptation can 599

simultaneously optimize reasoning quality and effi- 600

ciency, making multi-agent debate more practical 601

for real-world applications across different model 602

scales. 603

Limitations 604

Our work, while demonstrating promising re- 605

sults, has several limitations worth acknowledg- 606

ing. While ASMAD demonstrates promising re- 607

sults, several avenues remain for future research. 608

The primary limitation of our current approach is 609

its sensitivity to hyperparameters, including confi- 610

dence radius, growth rates, and similarity thresh- 611

olds. The effectiveness of the adaptive debate pro- 612

tocol depends significantly on careful tuning of 613

these parameters for specific tasks and agent con- 614

figurations. To address this challenge, we plan 615

to explore reinforcement learning approaches to 616

dynamically tune these parameters based on de- 617

bate context and agent behavior, potentially opti- 618

mizing the diversity-consensus trade-off without 619

manual intervention. Our initial validation with 620

moderate-sized agent groups (6 agents) shows sig- 621

nificant promise, though the dynamics and efficacy 622

of our framework in larger debate clusters repre- 623

sents an intriguing direction for future investiga- 624

tion. The interplay between maintaining diverse 625

perspectives and achieving efficient consensus at 626

scale could yield valuable insights for multi-agent 627

collaboration systems. Another promising direc- 628

tion is extending our semantic-guided approach to 629

more diverse reasoning tasks, particularly those re- 630

quiring specialized domain knowledge. While our 631

current implementation shows strong performance 632

on general reasoning tasks (MMLU) and mathe- 633

matical problems (GSM8K), adapting the semantic 634

similarity metrics for domain-specific applications 635

could further enhance performance across special- 636

ized fields. We also acknowledge that adaptive 637

consensus mechanisms could potentially amplify 638

existing model biases or create information filtering 639

effects. The selective information exchange mecha- 640

nism, though efficient, requires careful implementa- 641

tion to avoid creating echo chambers where agents 642

reinforce each other’s misconceptions. Addition- 643

ally, the framework’s ability to generate more con- 644

8



vincing outputs through structured debate could645

be misused to produce more persuasive misinfor-646

mation. Future work should explore techniques to647

detect and mitigate these effects while preserving648

ASMAD’s efficiency advantages.649

Ethical Considerations650

In this research, Claude 3.5 Sonnet and Deepseek-651

R1 models are used as copilot, partially engaging652

in writing (sentence-level generations and grammar653

checking) and coding (fuzzing test and code-style654

polishing).655
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A Implementation Details 815

A.1 Structured Information Exchange 816

The computed weights determine not only the influ- 817

ence strength but also how information is presented 818

to each agent. We implement a three-tier prompt 819

structure: 820

P t
ij =


[Critical] if wt

ij > 0.40

[Reference] if wt
ij > 0.25

[Background] if wt
ij > 0.10

(3) 821

This structured presentation helps agents prioritize 822

information based on computed influence weights, 823

while maintaining the natural language interaction 824

paradigm of LLMs. 825

A.2 Self-confidence Evolution 826

The self-confidence of each agent evolves accord-
ing to:

wt
ij =clip(β0 + β1

(
t

T

)
(1 + γσt

i) · sim(sti, s
t
j),

wmin, wmax)

where: 827

• β0: base confidence level 828

• β1: growth rate 829

• γ: stability influence factor 830

• σt
i : agent’s stability score 831

A.3 Hybrid Similarity Computation 832

We introduce a novel similarity measure that com- 833

bines reasoning process similarity and answer 834

agreement: 835

sim(i, j) = λ·cos(ri, rj)+(1−λ)·I(ci = cj) (4) 836

where: 837

• cos(ri, rj): cosine similarity between reason- 838

ing embeddings 839

• I(ci = cj): indicator function for answer 840

agreement 841

• λ: balancing parameter 842
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Method ACC Token Cost
(k/task)

Cost
Saving

ASMAD(6,5) 33% 30.38 -50.49%
MAD(6,5) 35% 61.37 0
S-MAD∗(6,5) 39% 35.36 -42.38%
S-MADo(6,5) 32% 36.00 -41.34%
GD(6,6) 35% 34.16 -44.34%
S2MAD(6,6) 30% 27.43 -55.31%

Table 4: Experiment carried out on GPQA-Main dataset.

A.4 Stability Mechanism843

The stability score for agent i at round t is:844

σt
i = 1−

∑t
k=2 Icki ̸=ck−1

i

t− 1
(5)845

This score influences both self-confidence and846

inter-agent weights through the mechanisms de-847

scribed above.848

A.5 Row Normalization849

To ensure balanced influence distribution, we apply850

row normalization to the weight matrix:851

ŵt
ij =

wt
ij∑

k w
t
ik

(6)852

This normalized weight matrix Ŵ t governs the853

information flow and influence dynamics in each854

round of debate.855

A.6 Consensus formation856

ASMAD enables agents to arrive at consensus857

faster. Figure 3 and Figure 4 show the dynamics of858

agent opinions through metrics of similarity.859

B Extended Experiment on GPQA860

To further assess the generalizability of AS-861

MAD, we conducted additional experiments on862

the Graduate-level Physics Questions and Answers863

(GPQA) dataset, which poses significantly differ-864

ent challenges compared to MMLU and GSM8K.865

Table 4 presents the results of these experiments.866

The results reveal an interesting deviation from867

the patterns observed with MMLU and GSM8K.868

While ASMAD maintained its substantial effi-869

ciency advantage (50.49% token reduction com-870

pared to MAD), it achieved slightly lower accu-871

racy (33%) compared to MAD (35%) and S-MAD∗872

(39%). This performance gap, though modest, war-873

rants careful analysis to understand the domain-874

specific challenges of GPQA.875

The GPQA dataset presents unique character- 876

istics that likely influenced these results. Unlike 877

MMLU and GSM8K, GPQA contains graduate- 878

level physics questions that require specialized do- 879

main knowledge with strong interdependencies be- 880

tween reasoning steps. Physics problem-solving 881

often involves multiple interconnected equations 882

and principles that must be applied in a specific 883

sequence, creating high dependency paths where 884

early errors can significantly impact final answers. 885

These problems also frequently involve complex 886

symbolic manipulation and specialized notation 887

that may challenge the semantic similarity metrics 888

used in ASMAD for determining agent confidence 889

and influence weights. 890

Several factors likely contributed to the observed 891

performance pattern. ASMAD’s confidence ra- 892

dius and influence weights depend on semantic 893

similarity measures between agent reasoning. For 894

highly specialized domains like physics, these mea- 895

sures may struggle to distinguish correct from 896

incorrect reasoning paths when both use similar 897

domain-specific terminology. The star topology of 898

S-MAD∗, which performed best on GPQA, central- 899

izes information flow through a hub agent, poten- 900

tially advantageous when knowledge is unevenly 901

distributed among agents. Additionally, the over- 902

all lower accuracy across all methods (30-39% 903

compared to 70-95% on other datasets) suggests 904

that GPQA presents inherent challenges for cur- 905

rent LLM-based systems regardless of debate struc- 906

ture. In highly technical domains, early consensus 907

formation based on similarity can sometimes rein- 908

force plausible-sounding but ultimately incorrect 909

approaches. 910

These findings do not indicate fundamental flaws 911

in ASMAD’s design but rather highlight opportu- 912

nities for domain-specific adaptations. For highly 913

specialized technical domains like physics, future 914

improvements might include domain-specific simi- 915

larity metrics that better capture the correctness of 916

physics reasoning, adjustments to the confidence 917

radius mechanism that account for the unique un- 918

certainty characteristics of physics problems, and 919

specialized agent roles based on demonstrated do- 920

main expertise. The GPQA results provide valu- 921

able insights into the boundary conditions of our 922

approach, suggesting that while ASMAD excels 923

at general reasoning tasks, highly specialized tech- 924

nical domains may benefit from domain-adapted 925

variants. 926
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Figure 4: Similarity of agents vary toward consensus with increasing debate rounds where ASMAD provides better
consensus rate (demonstrated in mean value and standard variance of similarity among agents) and speed

rinit\rfinal 0.5 0.6 0.7 0.8 0.9 1 1.1
0 63% 63% 63% 63% 63% 63% 63%

0.1 63% 63% 63% 67% 60% 60% 60%
0.2 70% 70% 73% 65% 60% 60% 60%
0.3 70% 70% 70% 65% 60% 60% 60%
0.4 70% 70% 70% 65% 60% 60% 60%
0.5 70% 70% 70% 65% 60% 60% 63%
0.6 70% 70% 70% 65% 60% 63% 60%
0.7 70% 70% 70% 65% 60% 63% 60%
0.8 70% 70% 70% 68% 60% 63% 60%
0.9 70% 70% 70% 67% 60% 60% 63%

Table 5: Searching init and final configurations of
trust-boundary of ASMAD. Trust-boundary dynami-
cally changes from rinit to rfinal according to debate
progress.

λ\ACC Round 1 Round 2 Round 3 Round 4 Round 5
0 69% 69% 65% 63% 62%

0.1 70% 71% 68% 67% 66%
0.2 70% 68% 70% 70% 72%
0.3 70% 68% 68% 68% 69%
0.4 66% 64% 65% 62% 62%
0.5 67% 65% 66% 66% 66%
0.6 67% 65% 65% 65% 65%
0.7 69% 68% 68% 67% 68%
0.8 69% 68% 67% 66% 67%
0.9 69% 65% 65% 64% 64%
1 69% 65% 65% 64% 64%

Table 6: Searching balancing parameter λ of ASMAD.

C Hyper-parameter Search927

As shown in Table 5, Table 7 and Table 6, we per-928

formed linear search for hyper-parameters defined929

in Section 3.2 of ASMAD.930

D Prompt931

As shown in Table 8 and Table 9, we use identical932

prompt configuration with baseline methods (Zeng933

et al., 2025; Liu et al., 2024) to preserve fairness in934

experiment.935

wmin wmax Round 1 Round 2 Round 3 Round 4 Round 5

0

0.1 67% 0% 33% 33% 20%
0.2 67% 37% 53% 57% 47%
0.3 67% 37% 53% 50% 43%
0.4 67% 40% 57% 50% 37%
0.5 67% 43% 57% 53% 50%
0.6 67% 43% 57% 57% 57%
0.7 67% 43% 57% 63% 53%
0.8 67% 43% 53% 60% 50%
0.9 67% 47% 57% 63% 50%

0.1

0.2 67% 63% 63% 60% 60%
0.3 67% 63% 63% 60% 60%
0.4 67% 63% 67% 60% 57%
0.5 67% 63% 63% 60% 60%
0.6 67% 63% 63% 60% 60%
0.7 67% 63% 63% 60% 60%
0.8 67% 63% 63% 60% 63%
0.9 67% 63% 63% 57% 57%

0.2

0.3 67% 60% 53% 57% 53%
0.4 67% 60% 57% 53% 57%
0.5 67% 60% 57% 57% 60%
0.6 67% 60% 57% 57% 57%
0.7 67% 60% 60% 60% 60%
0.8 67% 60% 60% 60% 60%
0.9 67% 60% 60% 60% 60%

0.3

0.4 67% 60% 63% 63% 63%
0.5 67% 60% 67% 67% 70%
0.6 67% 60% 70% 70% 70%
0.7 67% 60% 63% 63% 60%
0.8 67% 60% 60% 63% 63%
0.9 67% 60% 60% 63% 67%

0.4 0.5 67% 67% 67% 67% 63%
0.6 67% 67% 67% 67% 67%

Table 7: Searching range of weight clip of ASMAD.
This search ends at wmin = 0.4 to ensure wmin ≤
wmax as reasonable clipping.
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Table 8: Prompts in Each Stage. List of prompts used in each task.

Type Task Prompt
System All Welcome to the debate! You are a seasoned debater with expertise in

succinctly and persuasively expressing your viewpoints. You will be
assigned to debate groups, where you will engage in discussions with
fellow participants. The outcomes of each group’s deliberations will
be shared among all members. It is crucial for you to leverage this
information effectively in order to critically analyze the question at hand
and ultimately arrive at the correct answer. Best of luck!

Starting
GSM8K Can you solve the following math problem? <Problem> Explain your

reasoning. < Output Format >.
MMLU Can you answer the following question? <Problem>: A) , B) , C) , D)

Explain your answer. <Output Format>.
GPQA Can you answer the following question? <Problem>: A) , B) , C) , D)

Explain your answer. <Output Format>.
Intra-group
Debate

All These are the recent unique opinions from other agents that differ with
yours: <other agent responses> Using the opinions carefully as additional
advice, can you provide an updated answer? Examine your solution and
that other agents step by step. <Output Format> .

Summary All These are the recent/updated and unique opinions from all agents: <all
agent responses> Summarize these opinions carefully and completly
in no more than 80 words. Aggregate and put your final answers in
parentheses at the end of your response.

Inter-group
Debate

All These are the recent unique opinions from all groups: one group re-
sponses: <group summary>. Using the reasoning from all groups as
additional advice, can you give an updated answer? Examine your solu-
tion and that all groups step by step. <Output Format>.

Table 9: Output Format Requirements in Each Dataset.

Task Output Format Requirements
GSM8K Your final answer should be a single numerical number, in the Form \boxed{{answer}},

at the end of your response.
MMLU Put your final choice in parentheses at the end of your response.
GPQA Put your final answer in the Form \ The correct answer is (insert answer here).
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