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Abstract

High-content imaging using the Cell Painting assay is a cornerstone of modern drug
discovery, generating multi-channel images where each channel reveals distinct
cellular components. Existing Vision Transformers (ViTs) struggle with this
data, as their global self-attention mechanisms are computationally expensive and
become hard-coded to a specific number of channels, limiting flexibility. To address
this, we introduce ChannelSFormer, a channel-agnostic Transformer architecture.
ChannelSFormer decomposes the standard self-attention into two distinct steps:
spatial-wise attention, which learns spatial relationship within each channel, and
channel-wise attention, which learns relationships across channels. We also use
per-channel class (CLS) token for each channel, which are duplicated from a
single CLS token, to better capture per-channel information. ChannelSFormer
eliminates the need for fixed channel embeddings, making the model adaptable to
varying channels. Evaluation on the JUMP-CP dataset shows that ChannelSFormer
surpasses SOTA methods by 4.12% - 7.58% in accuracy and is 27% - 281% faster.

1 Introduction

High-content imaging using the Cell Painting assay is a cornerstone of modern drug discovery
[1–3]. This technique generates images with multiple channels, typically five or more, where
each channel uses a specific fluorescent dye to reveal a distinct cellular component, such as the
nucleus, mitochondria, or cytoskeleton. Because each channel provides a unique layer of biological
information, the resulting data is highly heterogeneous among channels [4]. This creates a significant
industrial challenge, as research pipelines often evolve through experiments that use varying numbers
of channels or involve the introduction of novel fluorescent markers. Consequently, there calls for a
flexible, channel-agnostic vision model.

The rise of Vision Transformers (ViTs) [5] offers a promising foundation for analyzing these complex
cell images, yet their existing application introduces its own set of challenges. Given the heteroge-
neous nature of channels, the standard ViTs on cell images tokenize each channel independently [6–9].
Existing methods then typically employ a single, global self-attention mechanism that processes the
concatenated tokens from all channels. To distinguish between tokens originating from different chan-
nels within this shared computational space, a learnable channel embedding is added to each token
[6, 10]. Although this enables correct modeling of cross-channel interactions, it introduces a critical
limitation: the model becomes channel-specific, hard-coded to the initial channel configuration and
unable to adapt to new experimental setups with different channels.

Furthermore, this reliance on a single global attention mechanism creates a computational bottle-
neck. By concatenating tokens from all channels, the input sequence length becomes dramatically
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inflated—for example, a 224×224 image with eight channels contains eight times more tokens than a
natural RGB image of the same resolution. This exacerbates the quadratic computational complexity
inherent to the self-attention mechanism, leading to their slow speed [6].

To address these limitations, we introduce ChannelSFormer, a novel Transformer architecture which
decomposes of the standard, monolithic self-attention into two subsequent attentions: a channel-wise
attention that learns interactions across different channels, and a spatial-wise attention that learns
interactions across spatial locations within each channel. This decoupled design directly tackles
the aforementioned limitations by treating channels as a distinct dimension, thereby eliminating the
need for fixed channel embeddings and alleviating the quadratic scaling bottleneck. We also use
per-channel class (CLS) tokens for different channels, which are duplicated from a single CLS token,
to allow it lean channel specific information and maintain a channel agnostic model. This not only
improve the performance but also allow the model to output per-channel feature tokens along with a
global image-wise feature token, allowing more flexibility for the downstream tasks. We evaluated
the proposed method on the public Jump-CP [11] dataset and shows that it surpass SOTA methods by
4.12% to 7.58% in accuracy and is 27% to 281% faster.

2 Related work

The success of ViTs [5] on standard RGB images has inspired their variant on handling multi-
channel cell images. DepthwiseViT [8] draws inspiration from depthwise convolutions, processing
each channel separately before aggregating features into a new representation for the main ViT
backbone. ChannelViT [6] tokenizes each channel with a shared linear projection and adds a learnable
channel embedding to preserve channel-specific information within a global attention mechanism.
Similarly, ChAda-ViT [9] padded images to the same number of channels and used a global attention
cross various channels. CA-MAE [7] also utilize the global attention but did not use the channel
embedding and thus is channel agnostic. To combat redundancy and improve robustness, some
methods employ sophisticated channel sampling techniques. ChannelViT [6] introduces Hierarchical
Channel Sampling (HCS) as a regularization method, and DiChaViT [10] proposes Diverse Channel
Sampling (DCS) to actively select less similar channels during training. However, a shared limitation
persists, as most architectures depend on a global self-attention mechanism that necessitates learnable
channel embeddings, thus preventing true channel agnosticism; even when these embeddings are
removed for flexibility, as in CA-MAE [7], performance degrades significantly as the global attention
struggles to differentiate channel-specific features, as we show in the result section.

3 Method
We present ChannelSFormer, a Vision Transformer architecture designed to be efficient, effective,
and agnostic to the number of input channels in multi-channel microscopy images.

Overall architecture. As illustrated in Fig. 1, the input to our model is a multi-channel image
X ∈ RC×H×W , where C is the number of channels, and H , W are the height, width. Each channel
is processed independently by a shared patch embedding layer, which divides the channel into a
sequence of N flattened 2D patches, each of size P × P . These patches are then mapped to a D
dimensional embedding space. A standard learnable position embedding is added to the patch tokens
for each channel to retain positional information. These tokens along with the class (CLS) tokens,
are fed into a series of L ChannelSFormer encoders, which features our spatial-channel attention
mechanism. The final image token is obtained by aggregating the per-channel CLS tokens through
a multi-head latent query attention mechanism. This approach allows the model to output both
channel-specific and global image-wise representations.

Per-channel CLS token. A unique aspect of ChannelSFormer is the class (CLS) token. Instead of a
single CLS token, we duplicate it for each of the C channels, creating a set of per-channel CLS tokens
{CLS1, . . . ,CLSC}. The per-channel CLS tokens are the same before the first ChannelSFormer
encoder. Then each per-channel CLS tokens goes through the spatial-channel attention on different
tokens, they become different and learn channel specific information.

Spatial-channel attention. Inspired by [12], each ChannelSFormer encoder is the same as the
standard ViT encoder but decompose the the multi-head self attention (MSA) into two MHAs along
the spatial and channel dimensions respectively. Given the input sequence of patch embeddings
z(l−1) ∈ RC×(N+1)×D from the previous layer, we first apply the spatial-wise attention, which
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Figure 1: Left: The overall architecture of ChannelSFormer. Each channel of an input image is
independently processed by a shared patch embedding layer, and position embeddings are added. The
resulting tokens, along with per-channel class (CLS) tokens for each channel which are duplicated
from a signle CLS token, are fed into a series of L ChannelSFormer encoders. Finally, the per-
channel CLS tokens are aggregated via an attention mechanism to produce an image-level feature
representation. Right: Architecture of the ChannelSFormer encoder. Instead of a single global
attention block, our design first applies spatial-wise attention independently within each channel. It
then performs channel-wise attention independently for each spatial location to exchange information
across channels. Residual connections and layer normalization are omitted for clarity.

conducts self-attention independently within each channel. This operation is performed in parallel
for each channel c ∈ {1, . . . , C}, ensuring it is channel-independent. The formulation is:

z′c = SAttn(LN (z(l−1))c) + z(l−1)
c SAttn(xc) = SM

(
(xcWQ)(xcWK)T /

√
D
)
(xcWV ) (1)

where SM represents the softmax function, z(l−1)
c ∈ R(N+1)×D represents the tokens for a single

channel c, subindex c represents channel index, LN denotes Layer Normalization and the weight
matrices WQ,WK ,WV ∈ RD×D are shared across all channels. The outputs for each channel
are concatenated into z′ ∈ RC×(N+1)×D. Next, to enable information flow across channels, we
apply channel-wise attention. The intermediate representation z′ is reshaped so that attention is
computed across C channel dimensions for each spatial location s ∈ {1, . . . , N + 1}. This models
the interaction of different channels for each specific patch region. Formally,

z′′s = CAttn(LN (z′)s) + z′s CAttn(xs) = SM
(
(xsW

′
Q)(xsW

′
K)T /

√
D
)
(xsW

′
V ) (2)

where subindex s represents spatial index and the weight matrices W ′
Q,W

′
K ,W ′

V ∈ RD×D are
shared across all spatial locations. Finally, the output from the attention modules is passed through
the MLP block to produce the final output for the layer: z(l) = MLP(LN (z′′)) + z′′. By decoupling
a global attention into two attention mechanisms, ChannelSFormer remains fully agnostic to the
number of channels while reducing computational complexity.

4 Experiments

To evaluate ChannelSFormer, we conducted experiments on the JUMP-Cell Painting (JUMP-CP)
dataset [11, 13], a large-scale public collection of cell images used for phenotypic profiling. We
focused on classifying the compound treatment applied to the cells. We also use ImageNet-1k [14]
for ablation analysis. Our evaluations were based on the Top-1 accuracy.

Comparison with the SOTA method. We evaluated our models on the JUMP-CP classification
task, comparing their accuracy against a SOTA ChannelViT [6] baseline. As shown in Tab. 1,
ChannelSFormer consistently and significantly outperforms the ChannelViT baseline across both
"Tiny" and "Small" scales. Notably, ChannelSFormer-Tiny achieves a massive 7.58% improvement
over its ChannelViT-Tiny counterpart with a just a slight increase in parameters (7M vs. 5M).
ChannelSFormer-Tiny also outperforms ChannelViT-Small by 3.96% with just one third the number
of parameters (7M vs. 22M), supporting use of our architectural design for efficient handling of
multi-channel Cell Painting images.
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Table 1: Comparison of the top-1 accu-
racy on the Jump-CP dataset.
Model #Params Acc. (%)

ChannelViT-Tiny 5M 69.48
ChannelSFormer-Tiny 7M 77.06

ChannelViT-Small 22M 73.10
ChannelSFormer-Small 29M 77.22

Table 2: Throughput comparison between ChannelViT
and ChannelSFormer.

Model Throughput (img/s)

Patch size 16 Patch size 8

ChannelViT-Tiny 187.71 13.23
ChannelSFormer-Tiny 248.11 50.46

ChannelViT-Small 84.10 6.59
ChannelSFormer-Small 106.70 22.07

Speed analysis. ChannelSFormer is not only accurate but also fast. ChannelSFormer is 27% to 32%
faster than the ChannelViT with a patch size of 16 on 8 channel 224x224 images. When using a patch
size of 8, the number of tokens quadruples and ChannelSFormer is nearly three times faster. This
efficiency boost is achieved by the decomposition of global self-attention into channel and spatial
components. This alleviates the quadratic complexity of MHA and makes it ideal for token-heavy,
multi-channel Cell Painting images.
Ablation on the channel embedding. As shown in Tab. 3, removing the channel embedding in the
ChannelViT, similar to [7], leads to a substantial performance drop of 8.51% on JUMP-CP. This
is because ChannelViT’s global self-attention mechanism relies heavily on these embeddings to
distinguish between tokens originating from different channels. In contrast, the reliance on channel
embeddings is greatly reduced in ChannelSFormer, as shown by the diminished impact of removing
channel embeddings. This trend holds true on the ImageNet dataset as well.
Ablation on the per-channel CLS token. Compared with an "averaged CLS token" baseline (as used
in TimeSFormer [12] in the video domain, where a single averaged CLS token is caclculated from all
frames/channels), our per-channel CLS token achieves a significant (3.17%) boost in accuracy on
the JUMP-CP dataset. Interestingly, use per-channel CLS token dropped accuracy by 1.31% on the
ImageNet-1k. This contrasting behavior may be explained by fundamental differences between Cell
Painting and natural images. The RGB channel of natural images often contain correlated information,
where an averaged representation can be robust. Conversely, the channels in Cell Painting images
carry heterogeneous information, where averaging leads to a loss of channel-specific details, thus
degrading performance. This finding strongly supports the use of a channel-differentiated architecture
for Cell Painting image analysis.
Ablation on the channel-wise attention. Finally, the critical importance of our channel-wise attention
is confirmed by the "Spatial attention only" experiment, where we conduct channel independent
attention and use an attention in the last layer to aggregate channel information, which utilized by
CellCLIP [15]. Tab. 3 shows that the performance of this model plummets to 44.44%, indicating that
interaction among channels should not be ignored.

Table 3: Results of the ablation studies on the Jump-CP and ImageNet-1k datasets.
Model Jump-CP Acc. (%) ImageNet Acc. (%)

ChannelSFormer-Tiny 77.06 74.26
w. channel embedding 78.31 74.26
w/o per-channel CLS token (TimeSFormer [12]) 73.89 75.57

ChannelViT-Tiny 69.48 74.31
w/o channel embedding (CA-MAE [7]) 60.97 74.03

Spatial attention only (CellCLIP [15]) 44.44 /

5 Conclusion

In this work, we introduce ChannelSFormer, a novel Vision Transformer architecture designed
for multi-channel Cell Painting images. By decoupling the self-attention mechanism into separate
channel-wise and spatial-wise attention, our model effectively processes heterogeneous information
from different fluorescent dyes while remaining flexible on channels. The utilization of per-channel
CLS token not only improves the performance but also allows more flexibility on downstream tasks.
Our experiments demonstrate that ChannelSFormer not only achieves state-of-the-art accuracy on the
JUMP-CP dataset but also offers significant improvements in computational efficiency. This work
represents a significant step towards more flexible and scalable models for high-content imaging
analysis, paving the way for more efficient pipelines in drug discovery and biological research.
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Training hyper-parameters All models on the JUMP-CP dataset are trained from scratch for 100
epochs using the AdamW optimizer, a cosine learning rate schedule with 10 epoch of warmup, the
initial learning rate was set to 5e-4 with a batch size of 256. Random resize cropping, horizontal and
vertical flipping, are applied during training.

Multi-head latent query attention mechanism The attention we used at the end of the network
is the multi-head latent query attention, it aggregates the per-channel class tokens at the end of the
network CLSL into a image-wise token zimg:

zimg = SM(
qKT (CLSL)√

D
V (CLSL)) (3)

where q is a single learnable token, similar to the class token, d is the dimension of tokens and
K(·), V (·) are learnable linear functions. Unlike the self attention mechanism, this attention only has
one query and thus has linear time complexity.
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