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ABSTRACT

Deep learning methods for electronic-structure Hamiltonian prediction have of-
fered significant computational efficiency advantages over traditional density
functional theory (DFT), yet the diversity of atomic types, structural patterns, and
the high-dimensional complexity of Hamiltonians pose substantial challenges to
the generalization performance. In this work, we contribute on both the method-
ology and dataset sides to advance universal deep learning paradigm for Hamil-
tonian prediction. On the method side, we propose NextHAM, a neural E(3)-
symmetry and expressive correction method for efficient and generalizable mate-
rials electronic-structure Hamiltonian prediction. First, we introduce the zeroth-
step Hamiltonians, which can be efficiently constructed by the initial charge den-
sity of DFT, as informative input descriptors that enable the model to effectively
capture prior knowledge of electronic structures. Second, we present a neural
Transformer architecture with strict E(3)-symmetry and high non-linear expres-
siveness for Hamiltonian prediction. Third, we propose a novel training objective
to ensure the accuracy performance of Hamiltonians in both real space and recip-
rocal space, preventing error amplification and the occurrence of “ghost states”
caused by the large condition number of the overlap matrix. On the dataset side,
we curate a broad-coverage large benchmark, namely Materials-HAM-SOC,
comprising 17, 000 material structures spanning more than 60 elements from six
rows of the periodic table and explicitly incorporating spin–orbit coupling (SOC)
effects, providing high-quality data resources for training and evaluation. Com-
prehensive experimental results demonstrate that NextHAM achieves excellent
accuracy in predicting Hamiltonians and band structures, with spin-off-diagonal
blocks reaching the accuracy of sub-µeV scale. These results establish NextHAM
as a universal and highly accurate deep learning model for electronic-structure
prediction, delivering DFT-level precision with dramatically improved computa-
tional efficiency.

1 INTRODUCTION

Understanding the electronic structure is fundamental to unraveling how electrons govern the prop-
erties of condensed matter systems. This knowledge is essential for predicting a wide range of
material characteristics, such as electrical conductivity, magnetism, optical behavior, and chemi-
cal activity, which are vital for technologies spanning from electronics to sustainable energy and
advanced catalysis. At the heart of these calculations is the challenge of determining the system’s
Hamiltonian matrix, whose eigenvalues and eigenstates yield important quantities like energy levels,
band structures, and electronic wavefunctions. Traditionally, Density Functional Theory (DFT) (Ho-
henberg & Kohn, 1964; Kohn & Sham, 1965) has been the standard approach for these problems.
However, as shown in Fig. 1 (a), DFT relies heavily on the self-consistent (SC) procedure, which de-
mands repeated (denoted as T turns), computationally intensive diagonalizations of large matrices,
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Figure 1: Comparison of paradigms for electronic-structure Hamiltonian calculation, highlighting
the fundamental differences between our method and both classical DFT methods and existing deep
learning approaches.

each scaling as O(N3) with system size N , making simulations of large or complex materials ex-
tremely resource-consuming. Recently, deep learning has emerged as a powerful tool in the physical
sciences (Zhang et al., 2025). As shown in Fig. 1 (b), modern deep neural network methods (Gong
et al., 2023; Yu et al., 2023b; Zhang et al., 2024; Wang et al., 2024c; Li et al., 2025; Yin et al., 2025)
can predict Hamiltonians, i.e., the core physical quantities in electronic structure calculations, di-
rectly from atomic configurations in an efficient way, circumventing the computationally expensive
SC loop and dramatically accelerating computations. This paradigm shift lowers the computational
barriers associated with electronic structure calculations, unlocking the simulation and design of
unprecedentedly large-scale materials systems, driving new innovation in materials discovery and
engineering. Please refer to Appendix A for background introduction.

However, deep learning methods still face substantial challenges in achieving accurate and general-
izable Hamiltonian prediction, primarily due to the extremely complex and fundamentally difficult
nature of the input–output mapping that the neural network must learn, making it difficult to general-
ize across diverse material systems. Consequently, it has become common practice to constrain the
scope, such as limiting the range of supported elements, neglecting spin–orbit coupling (SOC) ef-
fects, or reducing the number of orbitals considered, as thoroughly discussed in Appendix C. While
such strategies help alleviate modeling burdens, they also restrict the applicability of these meth-
ods to the full diversity and complexity of real-world materials. What’s more, large open-source
materials datasets for the training and evaluation of general Hamiltonian learning models are also
rare.

To solve these challenges, in this work, we make contributions on both methodology and benchmark
toward advancing universal deep learning for electronic-structure Hamiltonian prediction of mate-
rials. On the method side, as shown in Fig. 1 (c), we propose NextHAM, a neural E(3)-symmetry
and expressive correction framework for efficient and accurate Hamiltonian prediction:

First, we dive deeply into the traditional DFT computational process outlined in Appendix A and
introduce a physical quantity that helps mitigate the complexity of the input–output mapping en-
countered by deep learning models for Hamiltonian prediction. This quantity is the zeroth-step
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Hamiltonian H(0), which is efficiently constructed from the initial electron density ρ(0)(r), given by
the sum of the charge densities of isolated atoms, without the requirement of matrix diagonalization.
As H(0) efficiently encodes essential information about the system’s electronic structure, we inno-
vatively incorporate it as one of the input features to the neural network. Unlike existing methods
that rely on randomly initialized atom and edge embeddings, which lack physical prior knowledge
and may suffer from issues of sparsity as analyzed in Appendix M, H(0) provides richer physical
context by embedding the intrinsic characteristics of diverse elements into a unified representation
space, thereby enabling robust generalization across chemically complex material systems. More-
over, inspired by the delta-learning paradigm (Bowman et al., 2022), we predict the correction term
∆H = H(T ) −H(0) rather than directly predicting the entire H(T ), reducing both the dimensional-
ity and numerical range of the regression target, and enabling the model to focus on capturing only
the essential differences rather than reconstructing the entire Hamiltonian from scratch.

Second, we present a network architecture that strictly adheres to E(3)-symmetry while maintaining
high non-linear expressiveness for Hamiltonian prediction by extending the TraceGrad (Yin et al.,
2025) method to Transformer framework, thereby providing ample capacity for flexible and accurate
modeling of atomic systems for Hamiltonian prediction across a wide range of elements in the
periodic table. Furthermore, we introduce model ensemble techniques to enhance the capacity of
the framework for handling complex scenarios in Hamiltonian prediction.

Third, we propose a joint optimization framework that simultaneously refines both real-space (R-
space) and reciprocal-space (k-space) Hamiltonians. Most existing methods regress only the real-
space Hamiltonian, but the large condition number of the overlap matrix can amplify errors in pre-
dicted eigenvalues and eigenfunctions, leading to suboptimal physical fidelity. Although recent work
(Li et al., 2025) has explored strategies to mitigate this error amplification, their attempts are tailored
to finite molecular systems, and also overlook the inherent gauge freedom in Hamiltonian represen-
tations (Wang et al., 2024c). In contrast, our method explicitly targets the decoupling of energy
subspaces in k-space for infinite periodic systems to eliminate spurious “ghost states” and strictly
preserve the band topology. Furthermore, we resolve the gauge ambiguity by analytically determin-
ing the optimal gauge parameter within our joint optimization framework, thereby stabilizing the
optimization landscape and ensuring unique, physically consistent predictions.

On the dataset side, we curate a diverse-collection large benchmark dataset, Materials-HAM-SOC,
containing 17, 000 material structures generated using DFT softwares. The dataset spans more than
60 elements from the first six rows of the periodic table and explicitly incorporates spin–orbit cou-
pling (SOC) effects. To ensure the accuracy of the DFT calculations, we employ high-quality pseu-
dopotentials that include as many valence electrons as possible, enabling our model to handle phys-
ically complex and highly challenging systems. We adopt high-quality atomic orbital basis sets, up
to 4s2p2d1f orbitals for each element, to ensure fine-grained description of electronic structures.
This dataset establishes a challenging yet comprehensive benchmark for evaluating generalization
across chemically and structurally diverse systems.

Extensive experiments on the Materials-HAM-SOC dataset demonstrate that NextHAM achieves a
prediction error of 1.417 meV across full Hamiltonian matrices in R-space, with spin-off-diagonal
(SOC) blocks suppressed to the sub-µeV scale. Moreover, the band structures derived from k-space
Hamiltonian exhibit excellent agreement with first-principles DFT. Furthermore, our method offers
a substantial computational advantage over traditional DFT. These results establish a new paradigm
for electronic-structure calculations, combining high accuracy, broad generalization capability, and
significant computational efficiency. Besides general tasks, our method also achieves state-of-the-
art performance in more specialized scenarios from the databases of DeepH Series Li et al. (2022);
Gong et al. (2023). These breakthroughs open new avenues for practical applications, including
rapid screening of candidate materials, modeling of nano-structures, and simulation of large-scale
quantum devices.

2 METHOD

As shown in Fig. 2, to effectively handle wider chemical and structural variability of materials, we
develop a unified Hamiltonian prediction framework along three aspects:
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Figure 2: Illustration of the proposed NextHAM framework.

2.1 INPUT DESCRIPTORS

As shown at the lower part of Fig. 2, we use the displacement vector-based descriptors between
atoms that lie within the cutoff distance, together with the zeroth-step Hamiltonian (calculated as
detailed in Appendix A), as the input features for the neural network. Introducing the zeroth-step
Hamiltonian as the input features for the neural network is one of the core innovations of our frame-
work. The zeroth-step Hamiltonian H(0), derived from the initial charge density ρ(0)(r), obtained
as the sum of neutral atomic charges, reflects the information of different elements in the system,
including the strength of the electron-ion interactions (pseudopotential) and a preliminary estimate
of the electron-electron interactions. These components directly influence the system’s electronic
structure. By embedding H(0) as the inputs, our method encodes the characteristics of different ele-
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ments into a unified representation space, bringing a powerful capability to generalize across diverse
material systems.

The zeroth-step Hamiltonian H(0) can be decomposed into on-site sub-matrices, which represent
the Hamiltonian blocks corresponding to each atom and its own orbitals, and off-site sub-matrices,
which capture the interactions between different atoms. These two types of sub-matrices can natu-
rally serve as the initial descriptors for nodes and edges, respectively, in the graph neural network,
as detailed in Appendix E.

What’s more, as detailed in Appendix A, computing the zeroth-step Hamiltonian requires no matrix
diagonalization, so its cost scales with the number of non-zero matrix elements: it is approximately
O(N2) for small systems with N atoms and asymptotically approaches O(N) for sufficiently large
systems as the neighbor count saturates for each atom. This matches the scaling behavior of the
message passing mechanism of graph neural networks, ensuring that incorporating the zeroth-step
Hamiltonian as a new input descriptor does not worsen the O-asymptotics.

2.2 NEURAL NETWORK ARCHITECTURE

Accurate Hamiltonian prediction requires the neural network to strictly adhere to the symmetries of
the E(3) group. While translation symmetry can be easily implemented using relative coordinates,
maintaining O(3)-equivariance while also achieving significant expressive power presents a chal-
lenging and fundamental problem. To provide the necessary background on the directly relevant
basic concepts, we refer the reader to Appendix B-D.

We present a Transformer architecture that not only maintains strict E(3)-symmetry but also achieves
strong non-linear expressiveness, as shown in Fig. 2. Our E(3)-symmetry graph attention mechanism
is developed from Equiformer (Liao & Smidt, 2023). While Equiformer was designed for regression
tasks where the target quantity is essentially a node-level atomic property (e.g., force fields), our
Hamiltonian target is fundamentally an edge-level property defined on atomic pairs. This distinction
necessitates stronger modeling of edge features and motivates the development of our attention
mechanism. First, we explicitly maintain and update edge features across multiple layers, rather
than generating them only temporarily from node features on demand (Liao & Smidt, 2023). In this
way, the computation of attention weights incorporates both the node features and the persistently
maintained edge features. Second, motivated by the decay behavior of Hamiltonian matrix elements
with respect to interatomic distance, we explicitly incorporate interatomic distances by introducing
distance embeddings as additional signals in the computation of attention weights, enabling the
model to better exploit distance information for inference. Third, the attention weights between
nodes are directly applied to update edge features via multiplicative operations, and are subsequently
refined through equivariant transformations. Together, these developments substantially enhance the
capacity of the model to represent edge features, from which the Hamiltonian is regressed.

As analyzed in Section C, the TraceGrad mechanism (Yin et al., 2025) can maintain strong non-
linear expressiveness while preserving strict E(3)-symmetry 1. We extend TraceGrad into the Trans-
former framework for electronic-structure Hamiltonian prediction. As shown in the middle of Fig.
2, for an atomic pair (a, b), the O(3)-equivariant edge feature f

′(edge)
ab is fed into the TraceGrad

module to produce the non-linear O(3)-invariant feature z(edge)
ab , which is subsequently passed to

the O(3)-invariant decoder and trained under the supervision of the O(3)-invariant trace quantity
T = tr(∆H · ∆H†). The learned non-linear expressiveness in z(edge)

ab is subsequently delivered

into the equivariant feature by o(edge)
ab = f

′(edge)
ab +

∂ z
(edge)
ab

∂ f
′ (edge)
ab

, where o(edge)
ab represents the non-linearity-

enhanced O(3)-equivariant edge feature, which, together with the node feature, are fed into the
subsequent encoding modules of the Transformer followed by the O(3)-equivariant decoder and a
Wigner–Eckart converter (Gong et al., 2023) to regress the correction term ∆H = H(T ) − H(0).
This residual formulation defines the learning task as a delta-learning problem, reducing both the
dimensionality and numerical range of the regression target.

1Although the original paper of TraceGrad emphasizes its SO(3)-equivariance, it is straightforward to prove
that it also preserves E(3)-symmetry, including translation-invariance and O(3)-equivariance in this context.
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To enhance model capacity and better capture the complex dependence of Hamiltonian matrix el-
ements on diverse inter-atomic distances, we employ an ensemble learning strategy. Specifically,
sub-models are trained to predict Hamiltonian sub-matrices corresponding to different distance in-
tervals between atoms. Although each sub-model specializes in a specific range in the output stage,
the input to each sub-model is the entire system, including the zeroth-step Hamiltonian and the dis-
placement vectors for all atomic pairs, thereby effectively extracting global information. The final
prediction is obtained by aggregating the outputs from all these sub-models.

2.3 TRAINING LOSS FUNCTIONS

The objective of training the neural network is to make the predicted Hamiltonian, denoted as
Ĥ = H(0) + ∆̂H, approximate the ground truth ∆Hgt as closely as possible. As illustrated in
Fig. 2, to ensure that the predicted Hamiltonian can accurately derive down-stream physical quan-
tities (such as band structures), we design a joint optimization strategy in both real space (R-space)
and reciprocal space (k-space) for the neural network. Crucially, as detailed in Appendix G, our
entire loss formulation is designed to rigorously resolve the gauge ambiguity Wang et al. (2024c),
ensuring the uniqueness and physical consistency of the regression targets.

In R-space, the Hamiltonian and the corresponding trace quantity are jointly supervised. As out-
lined in Section 2.2, the trace quantity is used to supervise the non-linear O(3)-invariant features,
which contribute to constructing the non-linear O(3)-equivariant features required for predicting the
Hamiltonian. The R-space training loss function is defined as:

loss(R) = ER

[
λR

(
(1− λC) · lossH(R) + γ(lossH , lossT , λC) · lossT (R)

)]
(1)

where ER[·] denotes the empirical expectation, λC , λR are hyper-parameters; R denotes the lat-
tice vector connecting the reference unit cell and a neighboring unit cell; lossH(R) and lossT (R)
denote the prediction losses of the Hamiltonian and the trace quantity in R-space, respectively; and
γ(lossH , lossT , λC) is a scaling factor designed to balance their relative contributions for stable
training. The detailed forms of these terms are provided in Appendix G.

As analyzed in Appendix F, due to the error amplification mechanism associated with the ill-
conditioned overlap matrix, even small numerical errors in R-space can be magnified in k-space,
leading to deviations in downstream physical quantities. To mitigate this, we introduce k-space
loss functions. Specifically, the spectrum is partitioned into a low-energy subspace P , which gov-
erns most physical properties, and a high-energy complement Q. While downstream phenomena
are predominantly determined by P , an inaccurately predicted Hamiltonian may introduce spurious
couplings between P and Q. This can result in unphysical abrupt changes in band structures, which
are referred to as “ghost states” (see Fig. 10 in Appendix L). Therefore, it is essential not only to
emphasize accuracy in P but also to maintain reasonable fidelity inQ so that the erroneous PQ cou-
plings can be identified and suppressed. To this end, we incorporate differentiated weights for P and
Q in the loss design, together with an explicit PQ penalty that eliminates unphysical cross-subspace
couplings and suppresses ghost states.

The loss function in reciprocal space is defined as:

loss(k) = Ek[λP · lossP (k) + λQ · lossQ(k) + λPQ · lossPQ(k)] (2)

where λP , λQ, and λPQ are tunable hyper-parameters that adjust the relative importance of the
three loss terms, which respectively measure the errors in the P subspace, the Q subspace, and the
combined PQ joint subspace. The detailed formulations of these terms are provided in Appendix G.

The overall loss function combines the losses from both R-space and k-space:

lossall = loss(R) + loss(k) (3)

This consistent treatment of real-space and reciprocal space Hamiltonians provides a robust founda-
tion for high-fidelity band structure predictions and, in particular, effectively eliminates ghost states.

3 DATASET

As broad-coverage open-source Hamiltonian datasets that use fine-grained orbital descriptions and
include spin-orbit coupling (SOC) effects across a wide range of crystals are still rare, we construct
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one ourselves and contribute it to the community. Specifically, our dataset, called Materials-HAM-
SOC, contains 17,000 material structures sampled from the Materials Project (Jain et al., 2013),
with ground-truth Hamiltonians and band structures generated using the DFT software ABACUS (Li
et al., 2016; Lin et al., 2023) and PYATB (Jin et al., 2023). It spans more than 60 distinct elements
from the first six rows of the periodic table and explicitly incorporates SOC effects. For these
structures, a high-quality atomic orbital basis set (Lin et al., 2021), up to 4s2p2d1f orbitals for
each element, is employed, providing a fine-grained representation of their electronic structure.
The dataset contains all quantities required by our method, including atomic structures, zeroth-step
Hamiltonians, self-consistent Hamiltonians, and overlap matrices. The dataset is partitioned into
12,000 structures for training, 2,000 for validation, and 3,000 for testing. For details of the dataset
construction and comprehensive statistical summaries, please refer to Section H.

4 EMPIRICAL STUDY

4.1 STATISTICAL RESULTS

We perform empirical studies on the Materials-HAM-SOC dataset. The implementation details of
the network architecture and training configurations are provided in Appendix I.

First, to evaluate the role of H(0) as an initial approximation at the output stage, we measure its
discrepancy from the ground truth Hamiltonian Hgt = H(T ). This quantifies how much H(0)

reduces the effective size and complexity of the regression target space for subsequent corrections.
Second, we examine the final prediction accuracy by comparing H(0) + ∆̂H with H(T ), thereby
measuring the contribution of the learned correction ∆̂H in closing the residual gap between H(0)

and H(T ). These two comparisons together disentangle the effectiveness of the prior H(0) and the
neural correction on achieving high-fidelity Hamiltonian predictions.

While mean absolute error (MAE) is a straightforward error metric, Hamiltonian prediction presents
a unique gauge freedom: adding a global shift µS, where µ is an arbitrary scalar and S is the overlap
matrix, leaves all down-stream physical quantities unchanged (Wang et al., 2024c). This necessitates
a gauge-invariant error metric for fair evaluation. To remove this gauge freedom, we adopt the Gauge
MAE (Wang et al., 2024c) to our context:

Gauge MAE(H(0),H(T )) = min
µ

MAE
(
H(0), H(T ) + µS

)
,

Gauge MAE(H(0) + ∆̂H,H(T )) = min
µ

MAE
(
H(0) + ∆̂H, H(T ) + µS

)
,

(4)

where µ is determined by solving µ∗ = argminµ Gauge MAE.

The experimental results for the above metrics are reported in Table 1. In addition, we also
report Gauge MAE(0,H(T )) for comparison. Comparing between Gauge MAE(0,H(T )) and
Gauge MAE(H(0),H(T )) quantifies the actual reduction in the effective output space achieved by
introducing H(0) at the output stage.

As shown in Table 1, the zeroth-step Hamiltonian H(0) closely matches the self-consistent Hamil-
tonian H(T ) in the spin-flip submatrices (↑↓ and ↓↑). Similarly, the imaginary parts of the spin-
conserving submatrices (↑↑ and ↓↓) also exhibit excellent agreement. In these components, the
deviation between H(0) and H(T ) is negligible, with errors reaching sub-µeV level. Achieving
SOC predictions with an accuracy of µeV level holds significant value, as small differences in SOC
energy can greatly impact the electronic structure of materials (Jing et al., 2025).

Furthermore, the Gauge MAE(H(0),H(T )) for the real part of the ↑↑ block is reduced by 96%
compared to Gauge MAE(0,H(T )), yielding a much narrower numerical range for regression. This
substantial reduction eases optimization by allowing the network to concentrate on physically mean-
ingful residual corrections rather than reconstructing the entire Hamiltonian, thereby improving pre-
diction accuracy across diverse atomic configurations. In systems with time-reversal symmetry and
real-valued atomic orbitals, which constitute the majority of practical cases, the real parts of the
↑↑ and ↓↓ blocks are identical. This symmetry implies that the correction network only needs to
predict the real part of the ↑↑ block in ∆H, substantially reducing the number of matrix elements
to be learned. Finally, with the neural network correction applied, the errors for the ↑↑ and ↓↓
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Table 1: Comparison of Gauge MAE values computed in real space (R-space) on the testing set of
Materials-HAM-SOC. Values are reported for four spin-resolved regions (↑↑, ↑↓, ↓↑, ↓↓) with sep-
arate real and imaginary components, and for the entire matrix (Overall), where real and imaginary
components are combined into a single metric. Metrics are averaged over non-zero elements only;
entries set to zero due to the truncation distance are masked out. All values are in meV.

Region
Gauge MAE(0,H(T )) Gauge MAE(H(0),H(T )) Gauge MAE(H(0) + ∆̂H,H(T ))

Real Imag Real Imag Real Imag

↑↑ 149.145 0.293 5.213 < 0.001 2.834 < 0.001

↑↓ 0.301 0.299 < 0.001 < 0.001 < 0.001 < 0.001

↓↑ 0.301 0.299 < 0.001 < 0.001 < 0.001 < 0.001

↓↓ 149.145 0.293 5.213 < 0.001 2.834 < 0.001

Overall 74.914 2.606 1.417

blocks are substantially reduced, achieving a superior prediction accuracy: the overall Gauge MAE
is 1.417 meV, closely matching the ground-truth labels obtained from DFT calculations.

Figure 3: Element-wise analysis of prediction errors. For each chemical element, we collect all of
the testing structures containing that element and compute the Gauge MAE values for each subset.

In Fig. 3, we report a fine-grained evaluation of prediction accuracy by partitioning the test set into
subsets defined by chemical elements. For each element, we gather all crystal structures that contain
it and compute the mean error within this subset. The resulting per-element statistics are visualized
on the periodic table, providing a clear view of how the model generalizes across chemically diverse
systems. The analysis shows that for most of the elements, the prediction errors are below 1.5 meV,
confirming the robustness of our approach across a broad spectrum of the periodic table.

For a more detailed analysis of the contributions of different components in our framework, we con-
duct fine-grained ablation studies, which are detailed in Appendix L. These studies show that the
physics-informed input descriptor H(0), the correction-based regression target design, the Trace-
Grad mechanism, the ensemble strategy, and the jointR- and k-space training objective each provide
significant reductions in errors. The combination of all these components leads to the best overall
performance, with notable improvements in both band structure prediction and the suppression of
unphysical artifacts such as ghost states. We also compare our method with DeepH-E3 (Gong et al.,
2023) and the original work of TraceGrad (Yin et al., 2025), demonstrating the significant superiority
of our method. For details, please refer to Appendix M.

8



Published as a conference paper at ICLR 2026

4.2 CASE STUDY ON OUT-OF-DISTRIBUTION GENERALIZATION

As shown in Figure 7, our model is trained on a dataset that does not include structures containing
the element Neon (Ne). However, in the testing set, a Ne-containing structure is included. Despite
Ne being unseen during training, the model is able to generalize well to this new element, with test-
ing error remaining very small, i.e., 0.1 meV for the R-space MAE, as reported in Figure 3. This
demonstrates the model’s ability to extrapolate knowledge learned from other elements to predict
properties for unseen elements. This out-of-distribution generalization capability is a direct result of
our approach using the zeroth-step Hamiltonian as a descriptor. Unlike traditional methods that rely
on randomly initialized embeddings for each element, which cannot generalize to unseen elements
not included in the training set, our model embeds physical information about the system’s electronic
structure into a unified representation space using the zeroth-step Hamiltonian. This helps the model
capture the relationships between different elements’ electronic structures, enabling it to generalize
more effectively to out-of-distribution elements. This case study demonstrates the theoretical po-
tential of our method’s generalizability to unseen elements. In future work, we will conduct further
element-level out-of-distribution evaluations to more rigorously quantify this ability.

Figure 4: Panels a and b show the band-structure comparison among Ablation@Loss-k, the Full
Method, and the Ground Truth DFT results. The setting Ablation@Loss-k drops the k-space loss
from the Full Method. Panels c and d display the comparison of the real and imaginary parts of the
optical conductivity along the x direction computed from the three Hamiltonians.

4.3 CASE STUDY ON K-SPACE LOSS FUNCTION

We present a representative case study regarding the effectiveness of the k-space loss function in
the main text, with more cases available in Figure 10 of Appendix L. As shown in Fig. 4, in panel
(a), the model is trained using only the H(R)-based loss defined in Eq. (1), ablating the k-space
loss. In this case, the predicted band structure closely matches the DFT reference near the Fermi
level for most k-points. However, several isolated points exhibit abrupt discontinuities and deviate
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significantly from the ground-truth bands, which is a typical manifestation of ghost states. Notably,
the MAE of the H(R) matrix elements is only 0.53 meV. These sharp spectral anomalies show that
even small MAE errors in real space (H(R)) can trigger ghost states in the resulting band structure.

This issue arises from the intrinsic numerical instability of the generalized eigenvalue problem,
where the non-orthogonality of the orbital basis leads to pronounced error amplification. As we
analyze in Appendix F, the sensitivity of both eigenvalues and eigenfunctions is enlarged by the
factor κ(S(k))

∥S(k)∥2
, implying that even small perturbations in the predicted H(R) can cause significant

deviations in the computed band energies, manifesting as ghost states in the spectrum.

In Fig. 4(b), we present the result from our Full Method, which includes the k-space loss. The pre-
dicted bands now align closely with the ground-truth results, and ghost states are nearly eliminated.
The MAE of the real-space Hamiltonian H(R) remains at 0.49meV, similar to the case where
only loss(R) was used, while the k-space loss loss(k) is reduced by more than 50%, substantially
enhancing the overall quality of the predicted band structure.

Beyond band energies, the fidelity of the Hamiltonian is also reflected in wave-function-related
physical observables. To further assess the influence of different loss functions on the wave-function
accuracy, we compute the optical conductivity corresponding to the predictions in Figs. 4(a) and
(b). The real and imaginary parts of the conductivity along the x direction, compared with the
ground-truth results, are presented in Figs. 4(c) and (d). As demonstrated in these comparisons,
the Hamiltonian trained with our Full Method yields substantially improved agreement with the
reference conductivity. This result indicates that incorporating loss(k) not only suppresses ghost
states under comparable H(R) MAE, but also enhances the prediction of physical observables that
depend sensitively on the wave-function quality.

5 CONCLUSION

We advance universal Hamiltonian deep learning through both a new method and a new dataset.
We propose NextHAM, a unified deep learning framework designed for accurate and generalizable
prediction of electronic-structure Hamiltonians across the periodic table. First, we leverage zeroth-
step Hamiltonians constructed from initial charge densities as informative input features, facilitat-
ing the model to capture the intrinsic characteristics of electronic structures. Second, we present a
Transformer-based neural architecture that enforces strictE(3)-equivariance while maintaining high
expressive capacity, enabling accurate modeling of spatial symmetries in material systems. Third,
we design a novel training objective that jointly optimizes the Hamiltonian prediction in both real
space and reciprocal space, ensuring consistency with downstream physical quantities such as band
structures. We also release Materials-HAM-SOC, a diverse-collection benchmark of 17,000 DFT-
calculated material structures spanning six rows of the periodic table, with explicit spin–orbit cou-
pling and high-resolution orbital representations, providing high-quality resources for training and
evaluation. Empirically, NextHAM attains DFT-level accuracy for Hamiltonians and band structures
while bringing substantial speedups over conventional DFT workflows, providing powerful tools to
efficient simulation and design of new materials.
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A ELECTRONIC STRUCTURE CALCULATIONS: FROM DENSITY FUNCTIONAL
THEORY TO DEEP LEARNING METHODS

Density Functional Theory (DFT) (Hohenberg & Kohn, 1964; Kohn & Sham, 1965) has established
itself as a foundational tool in modern electronic structure theory, with wide-ranging applications in
condensed matter physics, quantum chemistry, and materials science. First developed in the 1960s
by Hohenberg, Kohn, and Sham, DFT reformulates the many-electron problem by replacing the
complex many-body wavefunction with the electron density ρ(r) as the central variable. This shift
dramatically simplifies the computational treatment of quantum systems while retaining the essen-
tial physics, making it feasible to study realistic systems under accepted computational cost. Over
the years, DFT has become indispensable for tasks such as computing band structures and orbital
energies, performing structural optimizations, and predicting a variety of electronic, magnetic, and
optical properties. Its broad applicability and computational efficiency have cemented its role as a
key methodology across multiple scientific domains.

At the heart of density functional theory (DFT) lies the Kohn–Sham (KS) equation (Kohn & Sham,
1965), which reformulates the many-body electronic problem into a tractable set of single-particle
equations:

Ĥψi(r) = ϵiψi(r), with Ĥ = − ℏ2

2m
∇2 + Vext(r) + VHXC[ρ](r), (5)

where Ĥ is the effective single-particle Hamiltonian. The potential includes the external potential
Vext(r), and the Hartree–exchange–correlation (HXC) potential VHXC[ρ](r) = VH[ρ](r)+VXC[ρ](r),
which is a functional of the electron density ρ(r). The density itself is obtained from the KS orbitals
via:

ρ(r) =

M∑
m=1

|ψm(r)|2, (6)

where M is the number of occupied single-particle states.

To numerically solve Eq. (5), a basis set is introduced. Atomic orbitals (Lin et al., 2023) are a
widely adopted choice due to their localized nature and computational efficiency—they typically
require fewer basis functions to reach a given level of accuracy compared to plane-wave or other
delocalized bases. The atomic basis functions are products of a radial function and a spherical
harmonic, that is,

ϕκζlm(r) = fκζl(r) Ỹlm(r̃), (7)

where κ denotes the element type, lm denotes the angular momentum and the magnetic quantum
number. Usually, real spherical harmonic functions are used. The radial functions are typically
tabulated numerically on a fine radial mesh, and hence these basis functions are referred to as NAOs.
the radial functions fκζl(r) are expanded in terms of spherical Bessel functions and truncated beyond
a cutoff distance rc

fκζl(r) =


∑
q

cκζlqjl(qr), r < rc,

0, r ≥ rc.
(8)

The KS eigenfunctions are expanded in terms of these atomic orbitals:

ψnk(r) =
1√
Nk

∑
R

∑
µ

Cnα,ke
ik·Rϕu(r− τi −R), (9)

where ϕu(r − τi − R) are the uth atomic orbitals centered on the ith atom in the unit cell R, and
α = {u, i} is the composite index for the NAOs. Cnα,k are the coefficients of orbitals α of band n
at k point, and Nk is the number of unit cells in the Born–von–Kármán supercell under the periodic
boundary conditions, equivalent to the number of k points in the first Brillouin zone (BZ).

Given the expansion of the KS states in terms of atomic orbitals in Eq. (9), the KS Eq. (5) becomes
ageneralized eigenvalue problem,

H(k)Ck = EkS(k)Ck, (10)
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where H(k), S(k), and Ck are the Hamiltonian matrix, overlap matrix and eigenvectors at a given
k point, respectively. Ek is a diagonal matrix whose entries are the KS eigenenergies, ϵnk denotes
the energy eigenvalue of the n-th KS eigenstate. To obtain the Hamiltonian matrix H(k), we first
calculate the Hamiltonian in real space as

Hαβ(R) =

〈
ϕα0

∣∣∣∣− ℏ2

2m
∇2 + Vext + VHXC[ρ]

∣∣∣∣ϕβR〉
, (11)

where α, β are atomic orbital indices within one unit cell, and ϕα0
def
= ϕu(r− τi), ϕβR

def
= ϕv(r−

τj −R). The Hamiltonian matrix at a given k point can be obtained via a Fourier transform,

Hαβ(k) =
∑
R

eik·RHαβ(R). (12)

Similarly, the overlap matrix at a given k point is obtained as

Sαβ(k) =
∑
R

eik·RSαβ(R), (13)

where
Sαβ(R) = ⟨ϕα0|ϕβR⟩. (14)

The overall computational procedure follows an iterative self-consistent (SC) loop:

1. Initial Guess: Start with an initial electron density ρ(0)(r). Initialize the number of itera-
tions t to 0.

2. Potential Construction: Compute the effective potential V (t)
HXC[ρ](r) by ρ(t)(r).

3. Hamiltonian Assembly: Construct the Hamiltonian matrix H(t) using the current potential
using Eq. (11).

4. Eigenproblem Solution: Perform a Fourier transformation and solve the generalized
eigenvalue problem in Eq. (10) to obtain the KS eigenfunctions ψnk(r) and eigenvalues
ϵnk.

5. Density Update: Compute the updated density ρ(t)(r) from the new orbitals using Eq. (6).
6. Convergence Check: Update t→ t+1, repeat steps 2–6 until the input and output densities

agree within a chosen convergence threshold.

This procedure can be summarized schematically as:

ρ(0)(r) → V
(0)

HXC[ρ](r) → H(0) → ψ
(0)
nk (r) → ρ(1)(r) → · · · → ρ(T )(r) → V

(T )
HXC [ρ](r) → H(T ).

Once self-consistency is reached at iteration T , the final Hamiltonian matrix H(T ) can be used to
compute down-stream physical quantities such as total energy, band structure, orbital energies, and
derived electronic, magnetic, or transport properties.

Despite the remarkable success of Kohn–Sham DFT in advancing fields such as materials science,
energy, and biomedicine over recent decades (Nagy, 1998; Jones, 2015), it still faces significant
computational challenges, especially when applied to large atomic systems under limited computa-
tional resources. The primary bottlenecks arise from two aspects. First, the matrix diagonalization
in Eq. (10) scales as O(N3), where N is the number of atoms in the system. Second, the iterative
nature of the SC procedure requires T rounds of self-consistent updates, which further amplifies the
overall computational cost. This becomes particularly problematic when a high level of convergence
accuracy is needed or when dealing with complex systems, often making it difficult to complete the
calculations within reasonable time or resource constraints.

To address this challenge, recent approaches (Schütt et al., 2019; Unke et al., 2021; Li et al., 2022;
Gong et al., 2023; Yu et al., 2023b; Li et al., 2025; Luo et al., 2025; Yin et al., 2025) have adopted the
deep graph learning paradigm to predict the self-consistent Hamiltonians. These methods bypass the
iterative and computationally intensive matrix diagonalization steps in traditional DFT algorithms
by directly predicting the final converged Hamiltonian matrix H(T )

αβ in a single forward pass. As
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shown in Eq. (11), the Hamiltonian matrix is inherently sparse: only pairs of atoms within a cutoff
radius contribute non-zero elements. Therefore, the total number of Hamiltonian matrix elements
that need to be computed scales with the number of local atomic pairs in the system, leading to a
complexity of O(NE), where N is the total number of atoms and E denotes the average number
of neighboring atoms within the cutoff radius per atom. Since the atomic orbital basis functions
have finite spatial support, matrix elements vanish beyond a certain inter-atomic distance. In small
systems where all atoms lie within each other’s cutoff radius, E ∼ N , and the total number of non-
zero elements scales as O(N2). However, in sufficiently large systems, E saturates to a constant
determined by local geometry, making the number of non-zero Hamiltonian elements scale linearly
as O(N). Moreover, since most physical properties, such as transport, optical, and topological
properties, depend only on the energy bands near the Fermi level, it is unnecessary to solve for the
eigenfunctions of all occupied states once the Hamiltonian is known. Since the Hamiltonian matrix
is sparse and only a limited number of bands near the Fermi level are needed, these eigenstates
can be efficiently computed using methods like the shift-invert approach available in the ARPACK
package (Lehoucq et al., 1998), with a computational complexity of O(N) for large systems.

These deep-learning approaches have exploited the sparsity of the Hamiltonian, yielding a compu-
tational cost that scales approximately linearly with the number of non-zero matrix elements and
enabling efficient, scalable prediction of quantum properties in large atomic systems. As a result,
they offer a significant efficiency advantage over traditional DFT methods with computational com-
plexity of O(TN3). This efficiency makes them particularly promising for predicting electronic
structures of complex atomic systems under limited computational resources, potentially accelerat-
ing down-stream application areas like materials simulation and design.

B OVERVIEW OF BASIC CONCEPTS IN GROUP THEORY

This section reviews several fundamental concepts from group theory that form the basis of the sym-
metry principles employed in this work. Readers interested in a more comprehensive introduction
may consult the monograph of Dresselhaus et al. (2007).

Definition B.1. Group. A setG endowed with a binary operation · is called a group if the following
axioms hold:

1. Closure: For any f, g ∈ G, the product f · g remains in G.

2. Associativity: For all f, g, h ∈ G, the equality (f · g) · h = f · (g · h) holds.

3. Identity: There exists an element e ∈ G such that e · f = f · e = f for every f ∈ G.

4. Inverse: Each f ∈ G has an inverse f−1 ∈ G satisfying f · f−1 = f−1 · f = e.

Definition B.2. Group Representation. A representation of a group G on a tensor space T (V ) is
a homomorphism

ρ : G→ GL(T (V )),

mapping each group element to an invertible linear operator acting on T (V ). The mapping preserves
the group structure, i.e.,

ρ(g1g2) = ρ(g1)ρ(g2), ρ(e) = I.

Definition B.3. Irreducible Representation. Let ρ : G → GL(V ) be a representation on a vector
space V . It is called irreducible if no nontrivial subspace W ⊂ V exists such that ρ(g)W ⊆ W for
all g ∈ G. If such a proper invariant subspace exists, the representation is said to be reducible.

Definition B.4. Equivariant Map. Let ρV : G → GL(T (V )) and ρW : G → GL(T (W )) be
representations of group G. A function f : T (V ) → T (W ) is equivariant if

f(ρV (g) v) = ρW (g) f(v), ∀g ∈ G, v ∈ T (V ).

Definition B.5. Invariant Map. Given a representation ρV : G → GL(T (V )), a function f :
T (V ) → T (W ) is invariant under group G if

f(ρV (g) v) = f(v), ∀g ∈ G, v ∈ T (V ).
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Definition B.6. The Group SO(3). The special orthogonal group SO(3) consists of all real 3 × 3
rotation matrices:

SO(3) = {R ∈ R3×3 | R⊤R = I, det(R) = 1}.
Elements of SO(3) represent rotations in three-dimensional Euclidean space.

Definition B.7. Representations of SO(3). A representation of SO(3) is a homomorphism

ρ : SO(3) → GL(V ).

The irreducible representations of SO(3) are labeled by a non-negative integer l, which corresponds
to the angular momentum quantum number in quantum mechanics.

Definition B.8. Wigner-D Matrices. A standard family of irreducible representations of SO(3) is
provided by the Wigner–D matrices:

Dl
m′m(R) = ⟨l,m′|R|l,m⟩,

where |l,m⟩ denotes the eigenstate of angular momentum with quantum number l and magnetic
index m. These matrices specify how angular momentum states transform under a rotation R.

Definition B.9. The Group O(3). The orthogonal group O(3) consists of all real 3× 3 orthogonal
matrices, including both proper rotations and reflections:

O(3) =
{
R ∈ R3×3 | R⊤R = I

}
.

Elements of O(3) represent all possible orthogonal transformations in three-dimensional Euclidean
space, including both rotations (with determinant 1) and reflections (with determinant -1).

Definition B.10. Irreducible Representations of the O(3) Group. The orthogonal group O(3)
contains both proper rotations (det = +1), forming the subgroup SO(3), and improper rotations
(det = −1), including reflections and spatial inversion. An irreducible representation of O(3) is a
homomorphism

Γ : O(3) → GL(V ).

Irreducible representations of O(3) are obtained by extending the irreducible representations of O(3).
For each angular-momentum degree l, there exist exactly two inequivalent irreducible representa-
tions of O(3):

Γ(l,+), Γ(l,−),

corresponding respectively to even and odd parity under spatial inversion.

For any group element R ∈ O(3), their actions are defined by

Γ(l,±)(R) = π±(R)D(l)(R),

where D(l)(R) is the Wigner–D matrix giving the degree-l irreducible representation of O(3), and
the parity factor π±(R) is

π±(R) =


+1, det(R) = +1,

+1 for Γ(l,+), det(R) = −1,

−1 for Γ(l,−), det(R) = −1.

Thus, Γ(l,+) is even and Γ(l,−) is odd under inversion. These two parity-extended forms exhaust all
irreducible representations of O(3).

Definition B.11. The Euclidean Group E(3). The Euclidean group E(3) is the group of all rigid
motions in three-dimensional space. It consists of all compositions of a rotation or reflection and a
translation:

E(3) = {(R, t) | R ∈ O(3), t ∈ R3}.
The action of a group element (R, t) on a point x ∈ R3 is given by

(R, t) · x = Rx+ t.
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Definition B.12. Direct-Product State. For vector spaces V1 and V2, their tensor product space
V1 ⊗ V2 consists of bilinear combinations of vectors from both spaces. A basis of V1 ⊗ V2 can be
written as {|i⟩ ⊗ |j⟩}, and a general element takes the form

|v⟩ =
∑
i,j

cij |i⟩ ⊗ |j⟩.

This construction increases dimensionality multiplicatively:
dim(V1 ⊗ V2) = dim(V1) dim(V2).

A group action on the tensor-product state acts on each factor:
g · (|v1⟩ ⊗ |v2⟩) = (g · |v1⟩)⊗ (g · |v2⟩).

Definition B.13. Direct-Sum State. For vector spaces V1 and V2, the direct-sum space V1 ⊕ V2
consists of ordered pairs (|v1⟩, |v2⟩). A general vector takes the form

|v⟩ = |v1⟩ ⊕ |v2⟩,
and the dimensionality increases additively:

dim(V1 ⊕ V2) = dim(V1) + dim(V2).

The group acts independently on each component:
g · (|v1⟩ ⊕ |v2⟩) = (g · |v1⟩)⊕ (g · |v2⟩).

Definition B.14. Physical Quantity as a Direct Product of Angular-Momentum Degrees. Let lp
and lq be two angular-momentum degrees of freedom, with corresponding O(3) irreducible repre-
sentations Γ(lp,±p) and Γ(lq,±q). A tensor

Q lp⊗lq ∈ R(2lp+1)×(2lq+1)

that is formed as the direct-product quantity of these two degrees transforms under any R ∈ O(3)
as

Q lp⊗lq (R) = Γ(lp,±p)(R)Q lp⊗lq Γ(lq,±q)(R)†.

This transformation rule expresses that the tensor carries a product representation of the two angular-
momentum degrees, each transforming according to its respective O(3) irrep with the appropriate
parity.
Definition B.15. Clebsch-Gordan Decomposition for O(3). Given two angular-momentum de-
grees lp and lq , the tensor Qlp⊗lq introduced in Definition B.14 can be decomposed as:

CGDecomp(Qlp⊗lq ) =

lp+lq⊕
l=|lp−lq|

q l,

with components:
qlm =

∑
mp,mq

C l, lp, lq
m,mp,mq

Qlp⊗lq
mp,mq

,

where C l, lp, lq
m,mp,mq are the Clebsch-Gordan coefficients.

Definition B.16. Parametric Clebsch-Gordan Decomposition for O(3). To introduce learnable
parameters while preserving O(3)-equivariance, the above decomposition can be extended to a para-
metric form. Specifically, the decomposition can be written as:

CGDecomp(Qlp⊗lq ;W ) =

lp+lq⊕
l=|lp−lq|

q̃ l,

where
q̃ l
m =W l

∑
mp,mq

C l, lp, lq
m,mp,mq

Qlp⊗lq
mp,mq

,

and W = {wl}
lp+lq
l=|lp−lq| is a set of scalar (or channel-wise) weights that act on each irreducible

component. Since each wl acts as a scalar on the entire (2l + 1)-dimensional subspace labeled by l
and does not mix the magnetic indices m, the map

Q lp⊗lq 7→ {q̃ l}l
remains O(3)-equivariant. The non-parametric Clebsch-Gordan decomposition is recovered as the
special case where wl = 1 for all l.
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C RELATED WORK

The foundation of deep learning-based electronic-structure Hamiltonian prediction involves con-
structing neural networks that respect E(3)-symmetry, which inherently includes equivariance to the
O(3) group, covering 3D rotations and inversions. O(3)-equivariant graph neural networks typically
construct and update features using group-theoretic operators that preserve equivariance, such as
linear combinations of tensors, direct sums, tensor products, Clebsch-Gordan decompositions, and
tensor contractions (Thomas et al., 2018; Schütt et al., 2018; Gasteiger et al., 2021; Batzner et al.,
2022; Batatia et al., 2022; Geiger & Smidt, 2022; Wang et al., 2024a).

However, since traditional non-linear activation functions, when applied directly to O(3)-equivariant
features, may break equivariance, a central research topic is to reconcile strong non-linear expres-
siveness with strict O(3)-equivariance. An early attempt to address this problem was the use of gated
activation functions (Weiler et al., 2018), which first apply non-linear activations to O(3)-invariant
features and then use them as coefficients to scale the O(3)-equivariant features. Representative
works adopting this mechanism include Allegro (Musaelian et al., 2023) for force and energy pre-
diction, as well as DeepH-E3 (Gong et al., 2023) and QHNet (Yu et al., 2023b) for Hamiltonian
prediction. To further enhance non-linear expressiveness of O(3)-networks, Zitnick et al. (2022) and
Passaro & Zitnick (2023) proposed eSCN (equivariant Spherical Channel Networks), which applies
non-linear operations to the coefficients obtained from the spherical decomposition of features. This
approach has been widely used in Hamiltonian prediction (Wang et al., 2024b;c) tasks. Neverthe-
less, eSCN methods project features onto discrete basis functions through inner-product operations,
which may degrade strict SO(3)-equivariance to a discrete sub-group. Furthermore, they use SO(2)
convolutions in place of SO(3) convolutions, which could result in a loss of strict inversion equiv-
ariance. These trade-offs may influence the physical consistency of the results. As introduced in
detail in Appendix D, Yin et al. (2025) proposed the TraceGrad method, which effectively unifies
strict O(3)-equivariance, with strong non-linear expressiveness for Hamiltonian prediction; however,
the backbone network it adopted is a simple graph neural network and has not yet evolved into a
non-linear equivariant Transformer framework.

Despite these progresses, deep learning methods for Hamiltonian prediction still face substantial
challenges on generalization performance, which can be summarized as follows. First, crystalline
materials commonly found in nature can be composed of over 65 different elements from the first six
rows of the periodic table, leading to an exceptionally large and heterogeneous input space for deep
neural network models. Existing deep learning methods for Hamiltonian prediction typically em-
ploy learnable embeddings to represent nodes (atoms) and edges (atom pairs). These embeddings
are randomly initialized and learned directly from the dataset, without incorporating any explicit
physical priors. As a result, they struggle to capture the fundamental physical relationships between
different atoms and across different material systems, which are crucial for generalization. Second,
as illustrated in Figure 1, the regression target, namely the self-consistent electronic-structure Hamil-
tonian, is inherently high-dimensional and complex, especially when considering SOC effects. For
instance, a system containing several tens of atoms may involve nearly several thousands of non-
zero Hamiltonian matrix elements that need to be accurately predicted. Most of the existing methods
attempt to directly predict the entire self-consistent Hamiltonian matrix, namely H(T ) as formulated
in Appendix A, placing a heavy burden on the model due to the vast size of the output space, often
resulting in optimization difficulties during training and limited generalization to unseen systems.
In addition, most existing methods treat the real-space Hamiltonian as the sole regression target,
which can lead to sub-optimal physical fidelity in down-stream applications, particularly in captur-
ing low-energy band structures accurately. Although Li et al. (2025) designed a method for molec-
ular systems to reduce the regression space of Hamiltonians and introduced a basis transformation
of the Hamiltonian matrix in the wavefunction loss function to improve the prediction accuracy of
downstream physical quantities, their approach is limited to molecular systems and is not applicable
to periodic crystalline materials, which have different mathematical formulations and physical prop-
erties. For example, in the case of periodic crystalline materials, the predicted electronic-structure
Hamiltonian may involve erroneous couplings between high-energy and low-energy subspaces in
the k-space, which can affect the accuracy of downstream physical quantity predictions. These is-
sues require entirely new considerations. Moreover, their formulation does not explicitly account
for the inherent gauge freedom in Hamiltonian representations. Physically, adding a global shift µS
to the Hamiltonian matrix, where µ is an arbitrary scalar and S is the overlap matrix, leaves down-
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stream physical quantities unchanged. This property necessitates a gauge-invariant error metric for
rigorous evaluation. However, as their approach currently lacks a mechanism to handle this gauge
ambiguity, it may potentially lead to optimization instability and physically inconsistent predictions
in crystal systems.

As a result, constructing a unified model that generalizes across diverse crystal prototypes remains
challenging, and many existing approaches explicitly constrain their scope. For example, Li et al.
(2022), Gong et al. (2023), and Xia et al. (2025) each train and evaluate their methods within a
single material system (e.g., MoS2, Bi2Se3, or a-HfO2), without assessing cross-material general-
ization. More recently, DeepH-2 (Wang et al., 2024c) broadened coverage to systems involving
elements primarily from the first four rows of the periodic table; however, they reduced the orbital
basis by omitting f -orbitals. While such choices help reduce computational and modeling com-
plexity, they may limit broad applicability to the full diversity of real-world materials. Zhong et al.
(2024) developed a Hamiltonian prediction model aimed at a broader range of element types, while
also highlighting the challenge of achieving consistently high accuracy across diverse crystal sys-
tems. What’s more, except for very few exceptions such as DeepH-E3 (Gong et al., 2023), most
existing prediction models neglect the spin-orbit coupling (SOC) effect. Furthermore, open-source
datasets with a broad and diverse collection of materials dedicated to training and validating uni-
versal Hamiltonian models across the periodic table remain scarce. Although the QH9 (Yu et al.,
2023a) dataset is a well-known open-source Hamiltonian dataset, it consists of molecular systems
rather than periodic material systems, and includes only structures composed of C, H, O, N, and F el-
ements. To solve these challenges, this work presents an advanced unified deep learning framework
together with a large benchmark dataset for Hamiltonian prediction, targeting broader generalization
across richer classes of materials.

D OVERVIEW OF THE TRACEGRAD PARADIGM

The TraceGrad (Yin et al., 2025) mechanism addresses a key challenge in conventional neural ar-
chitectures, which struggle to preserve O(3)-equivariance when applying non-linear transformations
to higher-degree tensor features . It offers a principled solution to achieving strong non-linear ex-
pressiveness while strictly maintaining O(3)-equivariance. As our neural network builds upon this
foundational idea, we first review the motivation and core mechanism of TraceGrad in this appendix.
This background will help readers better understand the extensions and architectural developments
presented in Section 2.2, where we adapt and generalize TraceGrad into a high-capacity Transformer
framework tailored for Hamiltonian learning.

D.1 THE EQUIVARIANCE-EXPRESSIVENESS DILEMMA

In O(3)-equivariant neural networks, intermediate features at the k-th layer are represented in the
direct-sum form of irreducible components, i.e.,

f (k) =
⊕

l∈L(k)

f (k)l, f (k)l ∈ R2l+1,

and they must satisfy the transformation rule:

f (k)l(R) = Γ(l,±)(R) f (k)l.

The main difficulty is to construct a non-linear operator gnonlin(·) that provides genuine nonlinear
expressive power while still preserving strict O(3)-equivariance. The equivariance condition requires
that the output after a non-linear update satisfies:

f (k+1)l(R) = Γ(l,±)(R) f (k+1)l, R ∈ O(3),

where
f (k+1)l = gnonlin

(
f (k)l

)
.

However, applying standard element-wise nonlinear activation functions such as SiLU or Softmax to
f (k)l with l ≥ 1 breaks the required equivariance condition. On the other hand, avoiding non-linear
operations, significantly limits the expressive power of the model, restricting its fitting and gen-
eralization performance. Reconciling these two requirements preserving strict equivariance while
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allowing strong nonlinear expressiveness therefore poses a fundamental challenge. This challenge
is precisely what the TraceGrad method is designed to overcome.

This challenge is precisely what the TraceGrad method is designed to overcome. The TraceGrad
approach addresses this by proposing a unified representation learning framework that integrates
O(3)-equivariant and O(3)-invariant physical quantities and neural representations. It constructs
O(3)-invariant trace quantities as supervision signals to learn high-quality non-linear O(3)-invariant
features. These features are then leveraged to induce non-linear O(3)-equivariant representations
through a gradient operator, effectively achieving a strict unification of O(3)-equivariance and non-
linear expressiveness.

D.2 CONSTRUCTING O(3)-INVARIANT TRAINING LABELS

For an Hamiltonian block H, TraceGrad defines an O(3)-invariant trace quantity:

T = tr
(
H · (H)†

)
,

which satisfies the equivariance condition:

T(R) = T, ∀R ∈ O(3).

These invariant quantities are directly derived from the equivariant targets and serve as additional
supervision for learning O(3)-invariant neural representations, without the need for extra labeling
efforts.

D.3 BUILDING NON-LINEAR O(3)-INVARIANT FEATURES FROM EQUIVARIANT FEATURES

Given an O(3)-equivariant feature f (k) =
⊕

l∈L(k) f (k)l, TraceGrad first forms tensor products
f (k)li ⊗ f (k)lj and applies an extended, parametric Clebsch-Gordan decomposition to extract the
degree-0 component:

u(k)c = CGDecompext
(
f (k) ⊗ f (k); W

)∣∣∣
0
=

∑
li,lj∈L(k), li=lj

W c
ij · CGDecomp

(
f (k)li ⊗ f (k)lj

)∣∣∣
0
,

whereW = {W c
ij} are learnable scalar (or channel-wise) weights, and

∣∣∣
0

indicates that we only take
the scalar (l = 0) component of the Clebsch-Gordan decomposition. Collecting all channels gives
an invariant vector u(k) = [u

(k)
1 , . . . , u

(k)
C ]. As each degree-0 component is O(3)-invariant, u(k) is

O(3)-invariant.

An arbitrary differentiable non-linear neural network snonlin is then applied:

z(k) = snonlin

(
u(k)

)
,

yielding O(3)-invariant features z(k) with non-linear expressiveness, since invariance is preserved
under any non-linear function of invariant inputs.

D.4 INDUCING NON-LINEAR O(3)-EQUIVARIANT FEATURES VIA GRADIENTS

TraceGrad uses the gradient of the invariant scalar with respect to the equivariant feature to yield
an O(3)-equivariant and non-linearly enriched representation. For a single scalar channel z(k)c , the
gradient is defined as:

v(k)
c =

∂z
(k)
c

∂f (k)
.

Mathematically, v(k)
c is O(3)-equivariant, meaning that for any rotation R ∈ O(3),

v(k)
c (R) = Γ(R)v(k)

c ,

where Γ(R) is the representation matrix. Summing over all channels, we obtain an O(3)-equivariant
feature, now enriched with the non-linear expressive power of z(k):

v(k) =

C∑
c=1

v(k)
c .
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In practice, TraceGrad combines the original equivariant feature and its gradient-induced counterpart
in a residual fashion:

f (k+1) = f (k) + v(k).

Since f (k) and v(k) are O(3)-equivariant, the new feature f (k+1) also remains O(3)-equivariant:

f (k+1)(R) = Γ(R) f (k+1).

Thus, by applying the gradient operation in this residual fashion, we ensure that both the original
and the updated features maintain O(3)-equivariance throughout the layers. The model stacks K
such modules to build a deep encoder of O(3)-equivariant non-linear representations.

D.5 JOINT DECODING AND TRAINING OBJECTIVE

TraceGrad uses two decoding branches: (i) an O(3)-equivariant decoder that maps the final equiv-
ariant features f (K) to the target Hamiltonian block H; and (ii) an O(3)-invariant decoder that maps
the collection of invariant features {z(k)}Kk=1 to the trace quantities T = tr(H · (H)†).

The two branches are trained jointly with a coupled loss function that balances the error on both
the equivariant block predictions and the invariant trace predictions. A adaptive factor adjusts the
relative importance of each loss component, ensuring an effective balance during training without
backpropagating gradients through the scalar factor.

E DETAILS ON THE CONSTRUCTION OF INITIAL NODE AND EDGE FEATURES

E.1 INITIAL NODE FEATURES

To construct the initial node features, we extract the on-site Hamiltonian block H
(0)
aa for each atom

a from the full zeroth-step Hamiltonian H(0). This block encodes the local electronic environment
of atom a (where 1 ≤ a ≤ N ). To convert this block into a vector-form representation compati-
ble with the input form of equivariant neural networks, we apply the inverse transformation of the
Wigner–Eckart layer (Gong et al., 2023), which transforms the SOC Hamiltonian block into a di-
rect sum of vector-form representations aligned with the symmetry of E(3). The transformation is
applied to H

(0)
aa as follows:

f (node-init)
a = Inv Wigner Eckart

(
H(0)

aa

)
. (15)

E.2 INITIAL EDGE FEATURES

To construct the initial edge features, we first extract the Hamiltonian block H
(0)
ab corresponding to

the interaction between atoms a and b from the zeroth-step Hamiltonian H(0). We then apply the
inverse transformation of the Wigner–Eckart layer (Gong et al., 2023) to convert H(0)

ab into direct-
sum state:

h
(0)
ab = Inv Wigner Eckart

(
H

(0)
ab

)
. (16)

Next, we apply a spherical harmonics transformation to the normalized displacement vector rab =
(rb − ra) to encode the directional information between atoms a and b. The spherical harmonics
function is defined as Yab = Y m

l

(
rab

|rab|

)
, where ra and rb represent the position vectors of atoms

a and b, respectively.

Next, we introduce a parameterized Clebsch-Gordan decomposition (as defined in Definition B.16 of
Appendix B), which is applied to the tensor product of the combined edge features and the spherical
harmonics functions. The resulting edge feature is computed as:

f
(edge-init)
ab = CG Decomp

((
f (node-init)
a ⊕ h

(0)
ab ⊕ f

(node-init)
b

)
⊗Yab;W

)
, (17)
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where W are the weights derived from a Gaussian expansion of the displacement vector magnitude
|rab|. This weights are defined as:

W = GaussianBasis(|rab|) = exp

(
− (|rab| − dk)

2

2σ2
k

)
, 1 ≤ k ≤ K, (18)

where dk (for 1 ≤ k ≤ K) corresponds to a set of reference distances, and σk controls the width
of the Gaussian function. These weights modulate the Clebsch-Gordan decomposition, enabling the
incorporation of distance information between atoms a and b.

Eq. (17) integrates the initial node features, the interaction captured by the zeroth-step Hamilto-
nian, and the directional and distance information from the displacement vector into a unified edge
descriptor, i.e., f (edge-init)

ab . The use of tensor products and parameterized Clebsch-Gordan decompo-
sition allows us to efficiently combine these various types of information in a form that is compatible
with the input form of equivariant neural networks. This enables the model to effectively capture
both local atomic environments and interatomic interactions in an expressive, physically informed
manner.

F INTRODUCTION OF RECIPROCAL SPACE ELECTRONIC-STRUCTURE
HAMILTONIANS INTO DEEP LEARNING PARADIGM

The self-consistent Hamiltonian H(T ), obtained through the procedure described in Section A, is
inherently defined in real space. Its matrix elements H(T )

αβ are constructed over localized atomic
orbital basis functions centered at atoms, and are truncated beyond a spatial cutoff. While real-
space representations are efficient for representing local interactions, many physical phenomena
such as band structures, effective low-energy models, and quasiparticle dynamics are most naturally
described in reciprocal space.

To obtain a reciprocal-space Hamiltonian, we perform a Fourier transformation of the real-space
matrix elements. For a periodic system with lattice vectors {R}, the Bloch Hamiltonian H(k) at
wavevector k is defined as:

Hαβ(k) =
∑
R

eik·RHαβ(R), (19)

where i is the imaginary unit (i2 = −1), and Hαβ(R) denotes the real-space Hamiltonian matrix
element between orbital α in a reference unit cell and orbital β in a cell displaced by lattice vector
R. These elements are directly taken from the converged real-space Hamiltonian H(T ) defined over
the localized atomic orbital basis, with each pair of orbitals uniquely associated with a displacement
vector R. For simplicity, we omit the superscript (T ) in Eq. (19), with the understanding that all
real-space matrix elements originate from H(T ).

Diagonalizing H(k) at each wavevector k in the Brillouin zone yields the system’s electronic band
structure:

H(k)ψnk = εnkS(k)ψnk, (20)

Let Ĥ(k) ∈ Cn×n denote a Hermitian matrix that approximatesH(k). It can also be solved through
a generalized eigenvalue equation to obtain the eigenvalues and wave functions.

Ĥ(k)ψ̂nk = ε̂nkS(k)ψ̂nk, (21)

where εnk and ε̂nk are diagonal matrices of eigenvalues, and ψnk and ψ̂nk are the corresponding
eigenvectors. Define ∆H(k) = H(k) − Ĥ(k). Assume a spectral gap δ separates the generalized
eigenvalues ofH(k) and Ĥ(k). κ(·) denotes the condition number of a given matrix, ∥·∥2 represents
the spectral norm, ∥∆H(k)∥1,1 =

∑
i,j |∆Hij(k)|. Then, the difference in eigenvalues and the

angle θ between the eigenspace of H(k) and Ĥ(k) satisfy:

1. Eigenvalue Differences: ∣∣εnk − ε̂nk| ≤
κ(S(k))

∥S(k)∥2
∥∆H(k)∥1,1,
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2. Eigenspace Angle:

sin θ ≤ κ(S(k))

∥S(k)∥2
∥∆H(k)∥1,1

δ
,

where θ is the angle between the eigenspaces corresponding to εnk and ε̂nk. The theorem (Golub
& Van Loan, 2013) highlights that due to the non-orthogonality of the orbital basis set, the errors in
band energies and wave functions can be amplified by the condition number factor κ(S(k))

∥S(k)∥2
. As a

result, even a small error may cause the band eigenvalues and wave functions to deviate significantly
from the true results, manifesting as the appearance of ghost states in the band structure.

To mitigate the amplification of perturbations in the predicted results caused by the condition num-
ber, a feasible approach is to perform a basis transformation for the Hamiltonian matrix H(k) by
introducing projection operators U(k) formed from the complete set of eigenstates ψnk, thereby
transforming H(k) into a diagonal representation. From a physical perspective, the low-energy
subspace near the Fermi level governs essential material properties such as optical, thermal and
transport behaviors. Accordingly, the projected Hamiltonian H(k) can be decomposed into three
parts of the projection space:

• Low-energy subspace H̃PP (k): P(k) are spanned by NP eigenvectors {ψnk} with ener-
gies below the cutoff energy, the H(k) are projected into P(k) space.

• High-energy subspace H̃QQ(k): Q(k) are spanned by the remaining NQ eigenvectors
above the cutoff energy, the H(k) are projected into Q(k) space.

• Coupling subspace H̃PQ(k): the off-diagonal coupling between P and Q, encoded in the
cross blocks of the full Hamiltonian.

Let P(k) ∈ CN×NP and Q(k) ∈ CN×NQ be the matrices whose columns are orthonormal eigen-
vectors spanning the low- and high-energy subspaces, stacking the bases as

U(k) =
[
P(k) Q(k)

]
∈ CN×(NP+NQ),

and assuming NP + NQ = N (U(k)†S(k)U(k) = 1), the Hamiltonian in the (P,Q) basis is
obtained by a single similarity transform:

H̃(k) = U(k)† H(k)U(k) =

[
H̃PP (k) H̃PQ(k)

H̃QP (k) H̃QQ(k)

]
.

For the ground-truth Hamiltonian, when transformed by its own eigenbasis U(k), the cross block
vanishes, i.e., H̃PQ(k) = 0. In contrast, when a predicted Hamiltonian is projected onto the sub-
spaces defined by the ground-truth eigenbasis, the mismatch between the predicted and exact eigen-
vectors may produce spurious non-zero entries, H̃PQ(k) ̸= 0. These unphysical couplings manifest
as artifacts such as ghost states, and thus provide a meaningful signal for penalization during train-
ing.

Because the eigenvalues of H(k) directly define the band structure, reciprocal-space supervision
provides a natural training signal. We therefore assign distinct loss terms to the three components.
The low-energy block H̃PP (k) governs the states near the Fermi level and thus dominates observ-
able physics; accurate supervision on this block is crucial. The high-energy block H̃QQ(k) does
not directly determine low-energy phenomena, but maintaining its fidelity is important: otherwise
errors in Q may propagate indirectly through erroneous PQ couplings. Finally, the cross block
H̃PQ(k) should ideally vanish; we enforce this by adding an explicit penalty on ∥H̃PQ(k)∥, which
suppresses unphysical couplings between P and Q, thereby eliminating ghost states and restoring
the intended decoupling of subspaces.

G DETAILS ON TRAINING LOSS FUNCTIONS

We elaborate on the details of Eq. (1) in the following equation:
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loss(R) = ER[λR

(
(1− λC) · lossH(R) + γ(lossH , lossT , λC) · lossT (R)

)
],

lossH(R) =MSE
(
Ĥ(R),Hgt(R, µ)

)
,

lossT (R) =MAE
(
T̂(R),Tgt(R, µ)

)
,

γ(lossH , lossT , λC) = λC ·No Grad

(
lossH(R)

lossT (R)

)
.

(22)

where λR is a hyper-parameter, R denotes the lattice vector connecting the reference unit cell and
a neighboring unit cell. Ĥ(R) and T̂(R) denote the predicted Hamiltonian and its corresponding
trace quantity in real space, respectively. Here, we compute Ĥ(R) as:

Ĥ(R) = H(0)(R) + ∆̂H(R),

where ∆̂H(R) is the predicted correction term of the Hamiltonian.

The ground truth Hamiltonians are denoted as Hgt(R) = H(T )(R). However, rather than directly
using these ground truth values to supervise Ĥ(R), we construct augmented supervision targets by
introducing an additional term:

Hgt(R, µ) = Hgt(R) + µ · S(R), (23)

where µ is a scalar coefficient, S(R) denotes the real-space overlap matrix, and H(0)(R) denotes
the real-space zeroth-step Hamiltonian matrix. Following the gauge-error formulation of Wang et al.
(2024c), adding a shift term µ·S(R) to the Hamiltonian leaves all down-stream physical observables
unchanged. In practice, µ is chosen as the solution that minimizes the overall loss, as established in
Wang et al. (2024c). This removes the gauge freedom inherent in the Hamiltonian representation,
facilitating more stable and efficient convergence of the neural network.

The corresponding trace quantity used as the supervision signal is computed as:

Tgt(R, µ) = tr
(
∆Hgt(R, µ) ·∆Hgt(R, µ)†

)
= tr

(
(Hgt(R, µ)−H(0)(R)) · (∆Hgt(R, µ)−H(0)(R))†

)
,

(24)

where H(0)(R) denotes the real-space zeroth-step Hamiltonian matrix.

Inspired by Yin et al. (2025), the scaling factor γ(lossH , lossT , λC) in Eq. (22) is designed to har-
monize the contributions from the two loss terms, ensuring stable optimization. Here, λC is a hyper-
parameter that controls the overall strength of the balancing mechanism. The term No Grad(·) en-
sures that gradients are dropped during the computation of this coefficient, preventing interference
with the back-propagation of lossT (R). By applying this balancing strategy, better numerical stabil-
ity and balanced learning performance across both the Hamiltonian and trace quantity supervision
branches can be achieved.

We elaborate on the details of Eq. (2) as follows. Let Ĥ(k) denote the predicted full Hamilto-
nian in reciprocal space, obtained from the Fourier transform of Ĥ(R) using Eq. (19). Simi-
larly, let Hgt(k, µ) denote the ground-truth Hamiltonian in reciprocal space, obtained from the
Fourier transform of Hgt(R, µ). Both Hamiltonians are projected by the ground-truth eigenbasis
U(k) = [P(k), Q(k) ], yielding block-partitioned forms:

H̃(k) = U(k)† Ĥ(k)U(k) =
[
H̃PP (k) H̃PQ(k)

H̃QP (k) H̃QQ(k)

]
,

H̃gt(k, µ) = U(k)† Hgt(k, µ)U(k) =

[
H̃gt

PP (k, µ) H̃gt
PQ(k, µ)

H̃gt
QP (k, µ) H̃gt

QQ(k, µ)

]
.

For the exact Hamiltonian, the off-diagonal block ideally vanishes, i.e., H̃gt
PQ(k, µ) = 0, whereas

for the predicted Hamiltonian, spurious non-zero entries generally appear in H̃PQ(k), manifesting
as unphysical ghost states.
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The loss is then defined block-wise:

loss(k) = Ek

[
λP ·MSE

(
H̃PP (k), H̃

gt
PP (k, µ)

)
+ λQ ·MSE

(
H̃QQ(k), H̃

gt
QQ(k, µ)

)
+ λPQ ·MSE

(
H̃PQ(k), H̃

gt
PQ(k, µ)

)]
,

(25)

where λP , λQ, λPQ are tunable hyper-parameters controlling the relative importance of the three
terms.

The overall loss function combines the losses from both R-space and k-space:

lossall =loss(R) + loss(k)

=ER[λR

(
(1− λC) · lossH(R) + γ(lossH , lossT , λC) · lossT (R)

)
]

+ Ek[λP · lossP(k) + λQ · lossQ(k) + λPQ · lossPQ(k)]

(26)

where the value of µ is determined by ∂lossall

∂µ = 0. It can be solved analytically by:

∂
( λR

NR

∑
R,αβ

[∣∣∣(Ĥ(R)−Hgt(R)
)
αβ

∣∣∣2 + µ2
∣∣∣S(R)αβ

∣∣∣2
− 2µRe

(
[Ĥ(R)−Hgt(R)]∗αβS(R)αβ

)]
+
λP
NP

∑
k,αβ

[∣∣∣(H̃PP (k)− H̃gt
PP (k)

)
αβ

∣∣∣2 + µ2δαβ

− 2µRe
(
[H̃PP (k)− H̃gt

PP (k)]
∗
αβδαβ

)]
+
λQ
NQ

∑
k,αβ

[∣∣∣(H̃QQ(k)− H̃gt
QQ(k)

)
αβ

∣∣∣2 + µ2δαβ

− 2µRe
(
[H̃QQ(k)− H̃gt

QQ(k)]
∗
αβδαβ

)]
+
λPQ

NPQ

∑
k,αβ

[∣∣∣(H̃PQ(k)− H̃gt
PQ(k)

)
αβ

∣∣∣2])/(∂µ) = 0

(27)

which obtains:

µ =
∆1

∆2
,

∆1 =
λR
NR

∑
R,αβ

Re
(
[Ĥ(R)−Hgt(R)]∗αβS(R)αβ

)
+
λP
NP

∑
k,α

[H̃PP (k)− H̃gt
PP (k)]αα

+
λQ
NQ

∑
k,α

[H̃QQ(k)− H̃gt
QQ(k)]αα

∆2 =
λR
NR

∑
R,αβ

S(R)∗αβS(R)αβ +
∑
k,α

λP
NP

+
∑
k,α

λQ
NQ

(28)

where ∗ denotes the complex conjugate operation, NR, NP , NQ, and NPQ denote the total number
of Hamiltonian matrix elements corresponding to real space, P space, Q space, and their coupling
space respectively. H̃gt

PP (k) and H̃gt
QQ(k) are computed from the ground-truth Hamiltonian Hgt(k)

by:

U(k)† Hgt(k)U(k) =

[
H̃gt

PP (k) 0

0 H̃gt
QQ(k)

]
.
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It is important to clarify that, in the analytical derivation of µ in Eq.(27), the real-space contribution
can be written in simplified form as:

λR·lossH(R) =
λR

NR

∑
R,αβ

[∣∣∣(Ĥ(R)−Hgt(R)
)
αβ

∣∣∣2+µ2
∣∣∣S(R)αβ

∣∣∣2−2µRe
(
[Ĥ(R)−Hgt(R)]∗αβS(R)αβ

)]
rather than explicitly retaining the trace supervision term lossT (R) like:

λR ·
(
(1− λC) · lossH(R) + γ(lossH , lossT , λC) · lossT (R)

)
.

This simplification is purely at the algebraic and notational level and does not imply that lossT (R)

is omitted. In fact, the balancing factor γ(lossH , lossT , λC) = λC ·No Grad
(

lossH(R)
lossT (R)

)
guarantees

that this weighted combination of lossH(R) and lossT (R) is numerically equivalent to lossH(R), in
which a fixed fraction of the contribution has been substituted by lossT (R) in a stable and adaptive
manner. In other words, lossT serves as a surrogate for a controlled fraction of lossH , while after
normalization the effective value of the entire term remains consistent with lossH(R). Therefore, in
the derivation of µ, it is sufficient and mathematically consistent to retain only lossH(R), while the
beneficial regularization effect of lossT is still fully incorporated through the design of γ(·).

H DATASET DETAILS

To construct Materials-HAM-SOC, the first-principles calculations are performed using the Atomic-
Orbital Based Ab-initio Computation at USTC (ABACUS)(Li et al., 2016; Lin et al., 2023) package.
The Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional (Perdew et al., 1996) and the
optimized norm-conserving Vanderbilt (ONCV) fully relativistic pseudopotentials (Hamann, 2013)
from the PseudoDojo library (van Setten et al., 2018) are used. Table 2 summarizes the valence
electron configurations used in the pseudopotentials and the corresponding numerical atomic orbital
(NAO) basis for each element. In self-consistent calculations, the energy cutoff for wave functions
is set to 120 Ry and the charge density was converged to a threshold of 1×10−6. The Γ-centered
Monkhorst-Pack 6× 6× 6 k-point mesh is employed for self-consistent calculations.

The crystal structures were obtained from the Materials Project database, from which a total of ap-
proximately 17,000 nonmagnetic compounds were randomly selected. Among them, 12,000 struc-
tures were used for training, 2,000 for validation, and 3,000 for testing. The statistical distributions
of atomic species and atomic counts in the training, validation, and test sets are illustrated in Fig-
ures 5 and 6. Furthermore, the occurrence frequencies of different elements across the three subsets
are presented in Figures 7a–7c.

We visualize representative crystal structures in Fig. 8, highlighting the diversity and broad coverage
of our curated dataset Materials-HAM-SOC. These samples span a wide range of chemistries,
crystal symmetries, and atomic complexities, illustrating the richness of the dataset and its suitability
for training universal Hamiltonian prediction models.

Table 2: The valence electron configurations for pseudopotentials and corresponding NAOs of the
elements used in this study.

Element Number Element Name Valence Electrons NAOs Cutoff Radius
001 H 1s1 2s1p 7 a.u.
002 He 1s2 2s1p 7 a.u.
003 Li 1s22s1 4s1p 7 a.u.
004 Be 1s22s2 4s1p 7 a.u.
005 B 2s22p1 2s2p1d 7 a.u.
006 C 2s22p2 2s2p1d 7 a.u.
007 N 2s22p3 2s2p1d 7 a.u.
008 O 2s22p4 2s2p1d 7 a.u.
009 F 2s22p5 2s2p1d 7 a.u.
010 Ne 2s22p6 2s2p1d 7 a.u.
011 Na 2s22p63s1 4s2p1d 7 a.u.
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Element Number Element Name Valence Electrons NAOs Cutoff Radius
012 Mg 2s22p63s2 4s2p1d 7 a.u.
013 Al 3s23p1 2s2p1d 7 a.u.
014 Si 3s23p2 2s2p1d 7 a.u.
015 P 3s23p3 2s2p1d 7 a.u.
016 S 3s23p4 2s2p1d 7 a.u.
017 Cl 3s23p5 2s2p1d 7 a.u.
018 Ar 3s23p6 2s2p1d 7 a.u.
019 K 3s23p64s1 4s2p1d 7 a.u.
020 Ca 3s23p64s2 4s2p1d 7 a.u.
021 Sc 3s23p64s23d1 4s2p2d1f 7 a.u.
022 Ti 3s23p64s23d2 4s2p2d1f 7 a.u.
023 V 3s23p64s23d3 4s2p2d1f 7 a.u.
024 Cr 3s23p64s23d4 4s2p2d1f 7 a.u.
025 Mn 3s23p64s23d5 4s2p2d1f 7 a.u.
026 Fe 3s23p64s23d6 4s2p2d1f 7 a.u.
027 Co 3s23p64s23d7 4s2p2d1f 7 a.u.
028 Ni 3s23p64s23d8 4s2p2d1f 7 a.u.
029 Cu 3s23p64s23d9 4s2p2d1f 7 a.u.
030 Zn 3s23p64s23d10 4s2p2d1f 7 a.u.
031 Ga 3d104s24p1 2s2p2d1f 8 a.u.
032 Ge 3d104s24p2 2s2p2d1f 8 a.u.
033 As 4s24p3 2s2p1d 7 a.u.
034 Se 4s24p4 2s2p1d 7 a.u.
035 Br 4s24p5 2s2p1d 8 a.u.
036 Kr 4s24p6 2s2p1d 8 a.u.
037 Rb 4s24p65s1 4s2p1d 9 a.u.
038 Sr 4s24p65s2 4s2p1d 8 a.u.
039 Y 4s24p65s24d1 4s2p2d1f 8 a.u.
040 Zr 4s24p65s24d2 4s2p2d1f 7 a.u.
041 Nb 4s24p65s24d3 4s2p2d1f 7 a.u.
042 Mo 4s24p65s24d4 4s2p2d1f 7 a.u.
043 Tc 4s24p65s24d5 4s2p2d1f 7 a.u.
044 Ru 4s24p65s24d6 4s2p2d1f 7 a.u.
045 Rh 4s24p65s24d7 4s2p2d1f 7 a.u.
046 Pd 4s24p64d10 2s2p2d1f 7 a.u.
047 Ag 4s24p65s24d9 4s2p2d1f 7 a.u.
048 Cd 4s24p65s24d10 4s2p2d1f 7 a.u.
049 In 4d105s25p1 2s2p2d1f 7 a.u.
050 Sn 4d105s25p2 2s2p2d1f 7 a.u.
051 Sb 4d105s25p3 2s2p2d1f 7 a.u.
052 Te 4d105s25p4 2s2p2d1f 7 a.u.
053 I 5s25p5 2s2p1d 7 a.u.
054 Xe 5s25p6 2s2p1d 7 a.u.
055 Cs 5s25p66s1 4s2p1d 8 a.u.
056 Ba 5s25p65d16s1 4s2p2d1f 8 a.u.
072 Hf 5s25p66s25d2 4s2p2d2f 7 a.u.
073 Ta 5s25p66s25d3 4s2p2d2f 7 a.u.
074 W 5s25p66s25d4 4s2p2d2f 7 a.u.
075 Re 5s25p66s25d5 4s2p2d1f 7 a.u.
076 Os 5s25p66s25d6 4s2p2d1f 7 a.u.
077 Ir 5s25p66s25d7 4s2p2d1f 7 a.u.
078 Pt 5s25p66s25d8 4s2p2d1f 7 a.u.
079 Au 5s25p66s25d9 4s2p2d1f 7 a.u.
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Element Number Element Name Valence Electrons NAOs Cutoff Radius
080 Hg 5s25p66s25d10 4s2p2d1f 7 a.u.
081 Tl 5d106s26p1 2s2p2d1f 7 a.u.
082 Pb 5d106s26p2 2s2p2d1f 7 a.u.
083 Bi 5d106s26p3 2s2p2d1f 7 a.u.

I IMPLEMENTATION DETAILS

Our NextHAM framework is implemented based on PyTorch 2.2.0, E3NN 0.5.6, and CUDA 12.1.
The training was conducted on a GPU cluster equipped with NVIDIA A800 GPUs, each with 80
GiB memory.

For the input of the neural network, we adopt a distance of 8.0 Å to define the neighboring range in
the atomic graph. The angular relations between atoms are represented using spherical harmonics
with degrees 0 ≤ l ≤ 5, while the interatomic distances are encoded through a Gaussian basis
expansion (Gong et al., 2023) with a preset base number of 64. The Transformer network consists
of 4 stacked basic blocks. Each block contains an E(3)-symmetry layer normalization module, an
E(3)-symmetry feed-forward module, an E(3)-symmetry multi-head graph attention module, and a
TraceGrad module. For the first three blocks, the internal node features f (node)

a and edge features
(f (edge)
ab , f ′(edge)

ab , and o(edge)
ab ) are represented in a direct-sum state with a total of 392 channels. In the

final block, we apply tensor product and decomposition to f ′(edge)
ab and o(edge)

ab to lift the representation
to higher angular momentum degrees, constructing tensor representations that correspond to the
atomic orbital basis sets up to 4s2p2d1f . For the TraceGrad module, the constructed O(3)-invariant
feature z(edge)

ab has a dimension of 256. On the output side, to map the network outputs from the
direct-sum E(3)-symmetric tensors into Hamiltonian matrices, we employ the conversion modules
provided by Gong et al. (2023), thereby ensuring the exact symmetry of the predicted results with
SU(2) symmetry. We employ an ensemble of four sub-models to predict the electronic-structure
Hamiltonian. The first sub-model is responsible for predicting the Hamiltonian submatrices formed
by atomic pairs with interatomic distances in the range [0, 1.0 Å), where the case of distance equal
to zero corresponds to the on-site Hamiltonian (i.e., the Hamiltonian formed by an atom with itself).
The second sub-model handles atomic pairs with distances in the range [1.0 Å, 2.0 Å), the third sub-
model covers the range [2.0 Å, 4.0 Å), and the fourth sub-model addresses the range [4.0 Å, 6.0 Å).
For atomic pairs with distances greater than 6.0 Å, we found that their self-consistent Hamiltonian
is almost identical to the zeroth-step Hamiltonian numerically. Therefore, for these distant atoms,
we bypass the neural network correction step and use the zeroth-step Hamiltonian as the final result.

In the training stage, each card is assigned to one of the sub-models. In our training strategy, elec-
tronic states ≤ 10 eV above the Fermi level are included in the low-energy subspace P , while the
remaining states are divided to the high-energy subspace Q. We train the model for a total of 100
epochs on the training set and evaluate the checkpoint that achieves the best performance on the val-
idation set for testing. The hyper-parameters for loss functions are set as λC = 0.2, λR = 0.99955,
λP = 0.0002, λQ = 0.0001, and λPQ = 0.00015, determined according to the performance on the
validation set. We adopt the Adam optimizer with an initial learning rate of 5 × 10−4. A warm-up
phase of 5 epochs linearly increases the learning rate from 1× 10−6 to the base value, followed by
cosine decay to a minimum learning rate of 1× 10−5 by the end of training. To mitigate stochastic
variations, we fix the random seed to 1 throughout model training and inference.

J BAND STRUCTURE RESULTS

We examine the accuracy and physical reliability of the band structures predicted by our method, by
comparing the results obtained from three different Hamiltonians on representative testing samples
spanning diverse elements and structures, as illustrated in Fig. 9. The red curves correspond to
the ground-truth bands derived from the self-consistent Hamiltonian Hgt = H(T ); the blue curves
correspond to the bands obtained from the zeroth-step Hamiltonian H(0); and the orange curves
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Figure 5: Bar charts of elemental species distributions in the training, validation, and test sets.
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Figure 6: Bar charts of atomic count distributions in the training, validation, and test sets.

represent the bands obtained from the predicted Hamiltonian of our full method, Ĥ = H(0) + ∆̂H.
The results show that the zeroth-step Hamiltonian H(0) provides only a rough sketch of the band
structure: it approximately captures the overall positions and qualitative trends of the bands, but
suffers from noticeable deviations in curvature and energy levels. In contrast, after applying neural
corrections, the predicted Hamiltonian Ĥ yields band structures that align almost perfectly with
the DFT ground truth, showing no significant deviations. This striking agreement demonstrates the
practical value of our method for materials science and technology, where obtaining accurate band
structures is a central problem.

K EFFICIENCY COMPARISON BETWEEN OUR METHOD AND DFT

We evaluate the efficiency of NextHAM against the conventional DFT workflow on the same Linux
server equipped with Intel(R) Xeon(R) Silver 4114 CPUs@2.20 GHz and NVIDIA A800 (80 GiB)
GPUs. All DFT computations are executed on the CPU, while the neural inference of NextHAM
is evaluated on both CPU and GPU. On the CPU, both DFT and NextHAM are run with four CPU
cores in parallel. On the GPU, we use four A800 cards: each card executes one neural-network
sub-model, and the outputs are aggregated on a single card. The testing batch size is fixed to 1 (no
batching). We report the minimum, mean, and maximum wall-clock times across all testing samples.
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(a) Training set

(b) Validation set

(c) Testing set

Figure 7: Statistical charts of element occurrence frequencies in the training, validation, and test
sets.
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Figure 8: Representative crystal structures sampled from the Materials-HAM-SOC dataset. The ex-
amples cover diverse chemical compositions, structural patterns, and atomic configurations, demon-
strating the dataset’s broad coverage across the periodic table. Such diversity ensures that the bench-
mark provides a comprehensive foundation for training and evaluating universal Hamiltonian pre-
diction models.

Table 3 summarizes the runtime results:

For DFT, the entry H(0)@CPU (stage 1) includes reading the structural inputs from disk and con-
structing the zeroth-step Hamiltonian H(0) from scratch. This stage performs no diagonalization.
The entry SC@CPU (stage 2) measures the self-consistent (SC) loop that starts from H(0) and iter-
ates to the converged H(T ) with repeated matrix diagonalizations. Writing the final results to disk
is also included in this stage. The entry Total: H(0)@CPU + SC@CPU is the total runtime for the
DFT workflow, i.e., the sum of the two stages.
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Figure 9: Comparison of band structures obtained from Hamiltonians of representative testing sam-
ples. For each subfigure, the left and right panels show different comparisons. In both panels, the
red solid curves correspond to the ground-truth bands derived from the self-consistent Hamiltonian
Hgt = H(T ). In the left panel, the black dashed curves represent the bands from the zeroth-step
Hamiltonian H(0). In the right panel, the blue dashed curves represent the bands from the predicted
Hamiltonian of our full method, Ĥ = H(0) + ∆̂H.

For NextHAM, the stage 1, i.e., H(0)@CPU has the same meaning as in DFT: the cost of construct-
ing H(0) from the initial electron density. The stage 2, i.e., NN@CPU or NN@GPU, covers the
full inference workflow after H(0) is available: loading H(0) into the model’s input tensors, running
the neural-network forward pass to predict ∆H, post-processing the outputs into a DFT-compatible
Hamiltonian format, and writing the results to disk. The rows Total: H(0)@CPU + NN@CPU and
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Table 3: Runtime on the testing set of Materials-HAM-SOC (min/max/mean seconds per sample).
All stage timings include the data I/O associated with that stage. Note that the total times are
computed per sample as the sum of the corresponding stages; therefore their min/max need not
equal the sum of the per-stage minima/maxima.

Method Stage Min (s) Max (s) Mean (s)

DFT
H(0)@CPU 3.14 742.43 55.46
SC@CPU 16.01 28397.45 2251.64
Total: H(0)@CPU + SC@CPU 21.86 28617.18 2307.11

NextHAM

H(0)@CPU 3.14 742.43 55.46
NN@CPU 5.15 26.92 12.62
NN@GPU 1.16 8.95 3.01
Total: H(0)@CPU + NN@CPU 12.69 755.84 68.08
Total: H(0)@CPU + NN@GPU 4.84 744.66 58.47

Total: H(0)@CPU + NN@GPU report end-to-end runtimes of NextHAM with neural inference on
CPU or GPU, respectively.

From Table 3, we could observe that, NextHAM is substantially faster than the conventional DFT
pipeline. Using GPU inference, the mean wall-clock time drops from 2307.11 s (DFT total) to
58.47 s (97.4% time reduction). Even with CPU inference, the mean time is 68.08 s (97.0% time
reduction). In the worst case, the total runtime decreases from 28617.18 s to 744.66 s with GPU
inference (97.3% time reduction), and to 755.84 s with CPU inference (97.3% speedup).

Within the DFT workflow, the self-consistent (SC) stage constitutes the overwhelming majority
of the runtime, accounting for 97.6% of the mean total (2251.64 s out of 2307.11 s) and 99.2%
of the observed maximum (28397.45 s out of 28617.18 s). This observation is consistent with its
algorithmic structure: each SC iteration entails dense matrix diagonalizations with computational
complexity O(N3), leading to an overall cost of O(TN3), where N denotes the atom number in a
cell and T denotes the number of SC iterations. Since T may be very large and is strongly problem
dependent, with no reliable a priori bound on convergence, wall-clock times are both substantial
and difficult to predict, and the worst-case runtime can be prohibitive. By contrast, NextHAM
avoids the iterative SC loop entirely. As discussed in previous sections, constructing H(0) scales
with the number of non-zero Hamiltonian elements and is O(N2) for small systems, crossing over
toward O(N) for sufficiently large ones; the neural inference follows the same scaling and produces
a result in a single forward pass. This one-shot computation makes the runtime more predictable
and markedly lower in both mean and worst-case scenarios. Moreover, neural inference benefits
strongly from hardware parallelism: switching from CPU to GPU significantly reduces the mean
inference time.

It is worth noting that our testing set does not contain very large systems, and the number of non-zero
Hamiltonian entries typically scales asN2 (many atoms fall within each other’s cutoff). Even in this
less favorable sparsity regime, NextHAM already delivers the large speedups reported in Table 3.
For substantially larger systems, the neighbor count of each atom saturates and the total number of
non-zero elements grows only as O(N), so both H(0) construction and neural inference become
near-linear, while DFT remains O(TN3) with an a priori unknown iteration count T . Hence the
efficiency advantage of NextHAM over DFT should increase further at scale as the system becomes
larger. We point out that in our current CPU implementation the construction of H(0) accounts for
a large portion of the runtime. Fortunately, this step requires no matrix diagonalization and can
be carried out in a highly parallel fashion. In future work, we plan to exploit GPU-based parallel
algorithms for H(0) preparation, which is expected to dramatically reduce this overhead and further
amplify the efficiency advantage of NextHAM. We leave these works as future work plans.

Overall, the combination of favorable scaling, single-pass prediction (no SC iterations), and effi-
cient GPU parallelization enables NextHAM to deliver large speedups across the board, opening a
practical path to high-throughput materials simulations.
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Table 4: Comparison of Gauge MAE computed in real space (R-space) for different ablation terms
and the full method on the testing set of Materials-HAM-SOC. Metrics are averaged over non-zero
elements only; entries set to zero due to the truncation distance are masked out. All values are in
meV.

Method Gauge MAE (meV)
Ablation@Input 1.720
Ablation@Output 2.974
Ablation@TraceGrad 1.789
Ablation@Ensemble 1.862
Ablation@Loss-k 1.615
Ablation@Loss-PQ 1.496
Full Method 1.417

L ABLATION STUDIES

We conduct fine-grained ablation studies for our framework by comparing the following settings.
All ablation variants are implemented by removing a single component from the Full Method of
NextHAM, while keeping all other settings identical, so as to validate the effect of each component:

• Ablation@Input: In this ablation term, we replace the zeroth-step Hamiltonians in our input
descriptors with conventional atom (node) and atomic-pair (edge) embeddings. Specifically, for an
atom a of chemical element Za, we maintain a learnable 32-dimensional embedding vector ea =
eZa

∈ R32, randomly initialized and updated during network training. The embedding of an atomic
pair (a, b) is the concatenation of the two element embeddings, eab = [eZa ; eZb

] ∈ R64.

• Ablation@Output: In this ablation term, the residual learning scheme, in which the network pre-
dicts the correction term ∆H = H(T ) −H(0), is removed. Instead, the neural network is trained to
directly regress the full self-consistent Hamiltonian H(T ), following the setting commonly adopted
in existing deep learning approaches for Hamiltonian prediction. This ablation allows us to examine
the effectiveness of using ∆H as the output target in reducing the complexity of the regression space
and improving generalization.

• Ablation@TraceGrad: In this ablation term, we remove the TraceGrad mechanism. Concretely,
the supervision from the trace quantity is omitted in the loss function, and the gradient-based mech-
anism that delivers non-linearity from O(3)-invariant features z(edge)

ab to induce O(3)-equivariant fea-

tures via ∂ z
(edge)
ab

∂ f ′(edge)
ab

is also discarded.

• Ablation@Ensemble: In this ablation term, we remove the ensemble mechanism based on dis-
tance ranges. Instead of training multiple sub-models specialized for different interatomic distance
intervals and aggregating their outputs, a single neural network is used to predict all Hamiltonian
correction terms across all distance ranges.

• Ablation@Loss-k: In this ablation term, we remove the k-space loss terms and train the neural
network using only the real-space loss, as is commonly used in most of the existing deep learning
approaches for Hamiltonian prediction. This setting allows us to assess the contribution of the k-
space supervision in improving the physical fidelity of the predicted Hamiltonians and the resulting
band structures, particularly in eliminating ghost states.

• Ablation@Loss-PQ: This variant retains the k-space supervision on the intra-subspace blocks (P
and Q) but removes the cross-subspace coupling penalty, i.e., we set λPQ = 0. This ablation isolates
the role of the PQ term.

• Full Method of NextHAM.

We train all of the ablation terms under the same number of epochs, optimizer, and scheduler as
the full method (see Appendix I), then evaluate them on the testing set. The R-space errors are
summarized in Table 4. Beyond R-space, because k-space is directly tied to downstream quan-
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tities (e.g., band structures), we visualize band predictions for Ablation@Loss-k (R-space only),
Ablation@Loss-PQ (setting λPQ = 0) versus the Full Method in Fig. 10.

From Table 4, the Full Method achieves the lowest Gauge MAE. The Full Method re-
duces the error by 17.6%, 52.3%, 20.7%, 23.8%, 12.2%, and 5.2% compared with Abla-
tion@Input, Ablation@Output, Ablation@TraceGrad, Ablation@Ensemble, Ablation@Loss-
k, and Ablation@Loss-PQ, respectively. As shown in Fig. 10, Ablation@Loss-k, which removes
the k-space supervision and relies solely on real-space loss, produces band structures with frequent
ghost states: in many cases, while most k-points are predicted reasonably well, some k-points ex-
hibit abrupt and severe deviations from the ground truth—hallmarks of non-physical artifacts. This
phenomenon mainly arises from the error amplification effect analyzed in Appendix F, where the
large condition number of the overlap matrix can magnify small real-space errors into significant k-
space deviations. Importantly, such sparse but catastrophic failures cannot be effectively captured by
real-space loss alone. Ablation@Loss-PQ, which augments the training with k-space supervision
on the intra-subspace blocks (P and Q), demonstrates better performance than Ablation@Loss-k,
but still fails to completely suppress ghost states. The reason is that unphysical couplings between
the low-energy subspace P and the high-energy subspace Q remain unpenalized, and these cou-
plings are precisely what give rise to unphysical artifacts in the band structures. In contrast, the Full
Method introduces an important penalty on the PQ cross block, which has clear physical signifi-
cance: for the exact Hamiltonian, P and Q are strictly decoupled, and any spurious PQ couplings
in the predicted Hamiltonian are the direct source of ghost states. By explicitly enforcing this de-
coupling, the PQ loss term addresses the root cause of the artifacts. As a result, the full method
produces band structures in excellent agreement with first-principles DFT and free of ghost states.
This comparison clearly demonstrates the necessity of our k-space loss design, in particular the PQ
penalty, for ensuring the physical reliability of predicted band structures.

These results collectively indicate that injecting the physically informed zeroth-step Hamiltonian
as an input prior improves generalization, and predicting ∆H = H(T ) − H(0) reduces the effec-
tive regression space and eases optimization. They further confirm the effectiveness of the Trace-
Grad mechanism: supervising with the trace quantity and propagating non-linearity from invariant
to equivariant features enhances representation quality. Notably, this observation aligns with the
findings of Yin et al. (2025) on simpler GNN backbones, and our results demonstrate that Trace-
Grad remains effective within a Transformer-based framework. Moreover, the ensemble strategy,
which partitions the regression space by interatomic distance and aggregates multiple specialized
sub-models, yields measurable capacity gains over a single monolithic predictor, highlighting the
benefit of distance-dependent specialization. In addition, k-space supervision provides complemen-
tary guidance that enhances physical fidelity, while explicitly penalizing the cross-subspace coupling
(PQ) significantly suppresses band structure errors and eliminates unphysical artifacts. In summary,
all validated components contribute both individually and synergistically to the overall performance
of our method.

M COMPARISON WITH RELATED WORK

In the field of electronic-structure Hamiltonian prediction for periodic material systems, one of the
most representative methods is DeepH-E3 (Gong et al., 2023). As a pioneering effort, DeepH-E3 has
played a crucial role in introducing equivariant networks to the calculation of electronic structures
of materials. We aim to perform a clear comparison with it to demonstrate the innovations and
advantages of our approach compared with DeepH-E3.

First, DeepH-E3 uses randomly initialized element (node) and element pair (edge) embeddings
trained from scratch as input descriptors. However, the sparse nature of these embeddings poses
a problem. Since elements are not uniformly distributed in nature, many element pairs appear in-
frequently, resulting in poorly trained embeddings that struggle with generalization. What’s more,
this leads to the need to maintain an embedding cost of O(M) and O(M2) for nodes and edges,
respectively, whereM is the number of elements included in the dataset. As the number of elements
increases, this cost grows rapidly, leading to significant memory overhead.

In contrast, our approach addresses these issues by replacing the node and edge embeddings with
the zeroth-step Hamiltonian H(0), which eliminates the space complexity and sparsity problems.
H(0) captures crucial information about the system’s electronic structure, embedding the funda-
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(a)

(b)

(c)

(d)

(e)

mental characteristics of different elements into a unified representation space, thereby offering a
richer physical context. This enables robust generalization across a wide range of material sys-
tems, making our approach better suited for constructing a truly universal model. What’s more, the
space complexity of our input descriptor is independent of the number of distinct elements in the
dataset, thus avoiding the exponential cost of embeddings. This use of an easily accessible DFT
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(m)

(n)

(o)

Figure 10: Comparison of band structure performance on representative testing samples. For each
subfigure: in all panels, the red solid curves correspond to the ground-truth bands derived from the
ground-truth self-consistent Hamiltonians. In the left panel, the black dashed curves represent the
band structure results of the ablation term Ablation@Loss-k, which exhibit ghost states, i.e., abrupt
and severe deviations from the ground truth at certain k-points. In the middle panel, the green dashed
curves correspond to the results of Ablation@Loss-PQ, where such artifacts are mitigated but not
fully removed. In the right panel, the blue dashed curves denote the predictions of our full method,
which successfully eliminates ghost states and achieves excellent agreement with the ground truth.
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Table 5: Comparison of R-space errors for DeepH-E3 and our method on the testing set of Materials-
HAM-SOC. All values are in meV.

Method Gauge MAE
DeepH-E3 12.605
Our Method 1.417

initial state tensor as a descriptor highlights an emerging direction in AI for Science: embedding
physically grounded information directly into machine learning models, which enhances predictive
power and provides a general principle that can be broadly applied across scientific ML tasks beyond
electronic-structure prediction.

Second, the architecture of DeepH-E3 is relatively simple and lacks sufficient expressive power for
building a universal model, which is reflected in two aspects. First, it uses a non-attentive struc-
ture, with feature fusion performed through simple average pooling. This may not be well-suited
to handle highly complex, diverse structures. Second, it only employs the gating mechanism as
the non-linear activation function, without fully exploring the non-linear expressiveness. In con-
trast, our approach builds upon the TraceGrad paradigm with advanced framework to effectively
induce non-linearity from invariant quantities and representations, and develops an E(3)-symmetry
Transformer architecture with high non-linear expressiveness. This architecture is capable of dy-
namically weighting features to adapt to different elements and geometric configurations, making it
more suitable for building universal large-scale models.

In addition, our network adopts a delta-learning approach, predicting ∆H = H(T ) −H(0) instead
of the Hamiltonian itself. This significantly reduces the complexity of the regression target, making
it easier for the network to finely fit and generalize complex systems, especially those with heavy
atoms and a large number of orbitals. In contrast, DeepH-E3 directly predicts the entire Hamiltonian,
which becomes challenging when dealing with more complex scenarios.

Third, DeepH-E3 only uses the R-space loss function for training, while we propose a joint loss func-
tion combining both R-space and k-space. As shown in Section 4.3 and Appendix L, the inclusion of
k-space loss improves the physical reliability of downstream quantities, such as band structure, and
prevents ghost states, which appear as abrupt discontinuities at isolated k-points, caused by the am-
plification of small R-space errors in k-space (Appendix F). By addressing these issues, our method
is better suited for handling a wide range of materials and elements, making it more adaptable and
reliable across various scientific applications.

We apply DeepH-E3 to our Materials-HAM-SOC dataset, and follow the same training-validation-
testing pipeline on our dataset as described in Appendix H. In the feature layers near the output layer
and the output itself, we construct tensor representations that correspond to our dataset’s atomic
orbital basis sets, which extend to 4s2p2d1f, while leaving the rest of the DeepH-E3 unchanged.
These modifications make the comparison more relevant and fair. Unfortunately, even with these
adjustments, DeepH-E3 achieves a high R-space error on our testing set, failing to converge to a
reasonable error range, as shown in Table 5. In contrast, our method achieves a low error value.
This result confirms that DeepH-E3 is not suited for the task of universal electronic structure Hamil-
tonian prediction, as we have previously analyzed. The research in the DeepH-E3 paper focuses
on specialized scenarios, where the training and testing sets consist of perturbations from molecular
dynamics simulations of the same material. In contrast, our task involves predicting the Hamiltonian
across a broad range of materials, which requires a more generalizable approach that DeepH-E3’s
specialized design cannot handle effectively.

Furthermore, to compare the performance in specialized scenarios, we conduct experiments on the
Monolayer Graphene (MG) and Monolayer MoS2 (MM) datasets, which are released by the DeepH
series (Li et al., 2022; Gong et al., 2023), as introduced in Table 6.

For both datasets, we use the same training, validation, and testing sets as those used in DeepH-
E3. To ensure fairness, we retrain our method under identical conditions, without pre-training, and
measure errors using the classic MAE (Mean Absolute Error) metric, in alignment with DeepH-
E3. In addition to DeepH-E3, we also compare our method with the original TraceGrad work (Yin
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Table 6: Overview of the Monolayer Graphene (MG) and Monolayer MoS2 (MM) datasets. m:
number of samples in the current dataset; a: number of atoms per unit cell in the current dataset.

Statistic Types MG MM

Training
m 270 300
a 72 75

Validation
m 90 100
a 72 75

Testing
m 90 100
a 72 75

Table 7: Comparison of MAE values among DeepH-E3, the original TraceGrad work, and
NextHAMcut-down. All values are in meV.

Dataset MAE
DeepH-E3 Original TraceGrad NextHAMcut-down

MG 0.251 0.175 0.102
MM 0.406 0.285 0.163

et al., 2025), which extends the DeepH-E3 backbone network by constructing non-linear equivariant
representations from invariant ones.

The version of our method used in these experiments is a cut-down version, denoted as
NextHAMcut-down. Since the datasets do not provide the H(0) (zeroth-step Hamiltonian) label, we
modify NextHAM by removing the components related to H(0). Specifically, we do not use H(0)

as an input descriptor. Instead, we use randomly initialized node and edge embeddings, which are
trained jointly with the network, similar to those used in DeepH-E3, to represent the elements and
their pairwise interactions. The output directly predicts H(T ) rather than ∆H = H(T ) − H(0),
and because the datasets do not include wavefunction-related data, we retain only the R-space loss
function during training, omitting the k-space loss function. What remains is the E(3)-equivariant
graph Transformer network architecture developed upon the TraceGrad paradigm. The comparisons
are presented in Table 7, from which the results of DeepH-E3 and the original TraceGrad work are
from Yin et al. (2025).

These results show that our method, even after cutting out some modules, still dramatically outper-
forms both DeepH-E3 and the TraceGrad work in prediction accuracy for these material systems.
While the original TraceGrad work explores effective methods for constructing non-linear equivari-
ant features, it remains a simple graph network based on average pooling. In contrast, our approach
extends the TraceGrad paradigm as a more advanced E(3)-symmetry Transformer architecture that
can dynamically weight and adapt non-linear equivariant features, which is more expressive than
the simple graph network. In addition to demonstrating strong generalization across a variety of
materials in previous sections, these results show that our method excels in specialized systems as
well, making it a powerful tool for both broad and focused applications in computational materials
science.

STATEMENTS REGARDING THE USAGE OF LLMS

No large language models were used for this work.
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