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ABSTRACT

Predicting intervention effects is important in various scientific fields, including
biomedicine. Classical methods depend on fully specified causal graphs and exten-
sive observational data, while recent invariance-based approaches typically assume
access to the state of perturbed features. These assumptions may not hold in practi-
cal settings with unknown causal relationships, partial and limited interventional
data, and the need to consider novel, untested interventions/perturbations. We
propose a novel framework for causal effect estimation under such conditions that
uses interventional embeddings to capture perturbation-specific information. Lever-
aging ideas from causality and robust learning, we propose a predictor that targets
a form of interventional regime-specific risk-optimality but that does so using trans-
formations of available data and hence does not require access to interventional
data from the target regime. We put forward an end-to-end attention-based model
that jointly learns embedding transformations and similarity-based weighting, en-
abling scalable prediction of causal effects even when no features are observed
under intervention. Experiments on synthetic and real-world datasets show that
our framework generalizes effectively to unseen interventions, hence addressing a
critical challenge in prediction of causal effects in complex, real-world settings.

1 INTRODUCTION

In many scientific domains it is important to be able to predict the effect of interventions on a
system. For example, in the biomedical domain – which provides the main motivation and applied
focus of this paper – scientists may be interested in predicting the effect of interventions such as
gene knockouts on quantitative biological phenotypes (for instance the growth rate of a cell). Such
problems amount to prediction of a response ye under an intervention/perturbation e. In some problem
settings features xe obtained under environment e are available (we refer to a setting brought about
by intervention/perturbation on a system as a causal environment or regime). Then, the problem
amounts to a particular kind of regression task, albeit one with a potentially challenging distribution
shift brought about by the interventions/perturbations. In other settings, features themselves may
not available at all (e.g. due to measurements being expensive or infeasible, or pertaining to latent
variables that are not accessible) but only information on the nature of the intervention or the
mechanisms it targets.

In this paper we put forward a family of learning schemes targeted at problems of this kind, covering
both the case where features are available and the case where no features are directly available but
only information on the nature of the intervention.

Our general approach is to work at the level of an implicit causal system (that we define below),
which, under certain invariance assumptions, leads to learning schemes involving weighted losses
under nonlinear embeddings. In contrast to existing approaches based on causal invariance (Peters
et al., 2016; Arjovsky et al., 2019) or distributionally-robust learning (Duchi & Namkoong, 2021;
Ben-Tal et al., 2013; Duchi et al., 2021) in which typically a single predictor is estimated for all
regimes, we seek to learn prediction functions that are in a sense automatically fine-tuned for each
causal regime. That is, we target a form of risk-optimality under specific interventional environments.
We put forward a formulation of this general set-up that we show leads to practically applicable
empirical analogues and algorithms, including an attention-based approach in which all relevant
quantities are learned within a single, end-to-end framework.
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2 BACKGROUND AND PRIOR WORK

Prediction in interventional regimes. We consider an unknown, potentially complex, causal
system S which includes a set of p+ 1 variables (x1, . . . , xp, y), where we call y ∈ Y the response
and x = (x1, . . . , xp) ∈ X the features. In general, the system S may also contain additional latent
variables not included in x or y. An external intervention on the system S may lead to a change in
the joint distribution of features and responses.

Suppose p(x, y) is the joint distribution of features and response, then a risk-optimal prediction
function f∗ satisfies:

f∗ = argmin
f∈F

Ep[L(y, f(x)],

where L is a loss function, F a space of functions and the expectation is w.r.t. the true joint
distribution.

Let pe(x, y) be the corresponding joint distribution under an intervention or perturbation e. In general,
since the intervened distribution pe may differ from the base distribution p, a regression model trained
on data drawn from p will not necessarily perform well in environment e. In other words, f∗ as
defined above may not be effective in target interventional regimes. This can be viewed as an instance
of a distribution shift, in this case brought about by an intervention on the system S.

Distributionally robust learning One approach to problems of this kind is to learn a function
f̃ : X→Y that is robust in some sense to the potential distribution shifts. A family of approaches
that has been studied in distributionally robust optimization (DRO) involves choosing a function
that optimizes performance for a worst-case distribution defined relative to a reference or training
distribution, e.g. in a “ball” with respect to a specified divergence measure (Duchi & Namkoong,
2021; Ben-Tal et al., 2013; Duchi et al., 2021). This is an attractive and very general approach,
since it requires no particular assumption beyond specification of the divergence measure and related
hyper-parameters. However for causal problems, DRO may be overly conservative (Shen et al., 2023).
This is due to the fact that causal perturbations may result in large changes in terms of divergence
measures, hence requiring very strong regularization via a DRO-type approach.

Causal invariance-based approaches An alternative approach is to exploit causal invariance, i.e.
the notion that the model predicting y from its true causal drivers is invariant across causal regimes
(Peters et al., 2016). This perspective is both theoretically compelling and practically applicable,
since it leads to optimization strategies aimed at finding prediction functions that are invariant across
causal environments, possibly coupled with a representation learning step. We refer the reader to
(Peters et al., 2016; Arjovsky et al., 2019) for a detailed discussion. However, in practice an invariant
function may not be risk-optimal for any particular regime, e.g. as there may be non-causal predictors
that are effective in a particular regime but which, since they are non-causal, are not invariant across
regimes (Rothenhäusler et al., 2021).

3 METHODS

Our goal is to obtain prediction functions specific to causal regimes v in which the target response is
unseen. We consider both the case in which (i) features are available for learning and inference and
(ii) the more general setting in which the features themselves are not available either for training or
test environments but only embeddings capturing information about the nature of the interventions
are available.

In this paper, we pursue an environment-specific approach, conceptually rooted in a notion of
risk-optimal prediction with respect to interventional regimes. To fix ideas, consider the predictor:

f∗e = argmin
f∈F

Epe [L(y, f(x)], (1)

where the expectation is w.r.t. the intervened distribution pe. Note that this function is specific
to the particular regime e and is not constrained to use only features that are direct causes of y.
Conceptually we pursue risk-optimal prediction in this sense under a set of assumptions that we argue
are appropriate for a class of scientific problems involving defined interventions on specified systems.
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Figure 1: Given training data from two environments (red and blue) our aim is to predict the target variable in
an unseen test enviroment (gray). We minimize the expected risk in the unseen test by employing Theorem 3.1
and minimizing a weighted sum of risks of training environments. Projecting this down to the original space
yields a non-linear model for each environment - including the unseen test environment.

3.1 PROBLEM STATEMENT

We consider a dataset D =
(
(xe, ye)

)
e∈E , where each pair (xe, ye) is collected under a interven-

tion/perturbation (indexed by e) on a causal system S. We view each intervention as a distinct
environment e ∈ E corresponding to an experimental condition on the system S. We assume no prior
knowledge of the causal structure or SEMs of the system S.

We consider both the case in which (i) features xe are available for learning and inference and (ii) the
more general setting in which features are not available either for training or test environments. In
the latter case, we assume access to embeddings ue specific to the regimes e, that encode information
about the perturbation performed in environment e, such as drug chemistry (Nilforoshan et al., 2023)
or gene-level information (Theodoris et al., 2023; Cui et al., 2024). Our goal is to leverage available
information to learn models that can predict responses under new interventions v ∈ E ′ that are new
in the sense of being entirely absent from the training set of interventions, i.e. such that E ′ ∩ E=∅.
Thus, in general, we target learning of regime-specific functions fv , i.e. the prediction function can
depend on the test regime. As we discuss below, this is made possible under certain assumptions that
we argue are reasonable for interventions on defined systems in scientific applications.

In this Section, we outline the key assumptions needed for our approach and sketch specific methods
developed under these assumptions. In order to develop the ideas, we will need to consider aspects
of the underlying system that will not be accessible in practice; we generally denote these aspects
with a star (∗) in the below. We start with a consideration of the nature of the causal system assumed
to underlie the data and responses, going on to look in turn at the case of observed features and
unobserved features.

3.2 GENERALIZED INTERVENTIONS AND THE IMPLICIT CAUSAL SYSTEM ASSUMPTION

In practice, in real-world systems we rarely have access to a true causal graph or explicit structural
causal models defining the system S, but rather only to (limited) data obtained from measurements
on the system under experimental environments e ∈ E . In scientific settings, experiments on S are
enacted through some form of perturbation to the system. Such perturbations admit – at least in
principle – description in terms of physical/chemical/biological events or processes. For example,
in biology, different kinds of perturbations (e.g. genetic or chemical) operate through biochemi-
cal/biophysical mechanisms that, while potentially very complex, allow in-principle mechanistic
description.

We denote by ψ∗
e such a defined perturbation underlying causal environment e (the special case

of “no action” would normally be described as “observational”, although the precise meaning and
interpretation depends on context). That is, ψ∗

e is the information needed to specify the physical
action on the system in regime e. This is a very general notion and includes for example impacts on
multiple variables or even latents.

This framing is intended to reflect real-world scientific experiments with the system S representing
the broad experimental context (e.g. in biology a cell type on which experiments will be performed)
and the action ψ∗

e the additional information specific to an experimental condition e (e.g. the fact of
knocking out a specific gene). This leads to our first assumption:

3
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Assumption 1: Implicit Causal System (ICS): For each experimental environment e ∈ E ∪ E ′,
there exists a corresponding action ψ∗

e such that the features xe can be modelled as generated by an
implicit mapping g∗ describing how the causal system S responds to the perturbation:

∀e ∈ E ∪ E ′, ∃ψ∗
e : xe = g∗(ψ∗

e , S; θ
∗
g),

where g∗ is an unknown function, parameterized by θ∗g , that captures the causal system’s response
to an action. The feature xe is, in general, a random variable (RV), with any relevant parameters or
noise terms included in g∗, θ∗g , ψ

∗
e .

The ICS assumption mirrors the setup of structural causal models in that given full knowledge of the
SCM and the intervention, the features can be generated. But ICS is implicit in the sense that the
focus is on the existence of a mapping g∗ rather than details of how the effects are brought about.
That is, the ICS assumption itself is model agnostic and amounts to a requirement that the data are
brought about by (in principle defined) actions on a defined system S.

The assumption is natural for scientific experiments; since ψ∗
e is a correct physical description of the

action and S is a complete description of the causal system, it is reasonable to assume existence of a
mapping g∗ as above.

3.3 INVARIANT EMBEDDING TRANSFORMATION FOR INTERVENTIONAL GENERALIZATION

The correct description of ψ∗
e is a conceptual entity and in practice would not usually be directly

accessible. Rather, we assume access to embeddings ue, which contain relevant information about
the intervention in question. This is motivated by rapid developments in neural embeddings for
a wide variety of scientific settings, including, of particular relevance to our motivating domain
of biomedicine, gene and chemical embeddings (Theodoris et al., 2023; Cui et al., 2024). Such
embeddings are typically trained on large amounts of data related to the scientific setting and aim
to distil key information concerning specific entities in latent embeddings. This leads to our second
assumption:

Assumption 2: Invariant Embedding Transformation (IET): For each experimental environment
e ∈ E ∪ E ′, the action ψ∗

e , representing details of how the system is perturbed, can in principle be
recovered from the embedding ue through a transformation function c∗ that is itself invariant across
all experimental environments:

∃c∗, θ∗c : ∀e ∈ E ∪ E ′, ψ∗
e = c∗(ue, S; θ∗c ).

IET states that the action can in principle be recovered from the embedding via an unknown function
c∗ as well as possibly information from the underlying causal system S. The transformation, while
unknown and potentially complex, is, under IET, invariant across the environments. Below, we exploit
this invariance to propose practical learning schemes in the realistic setting in which the various true
functions are entirely unknown. We emphasize that we do not seek to learn the transformation c∗
itself. Rather, in the sequel we leverage IET to develop learning schemes that do not require direct
access to, or estimation of, ψ∗

e or c∗.

3.4 LATENT CAUSAL SYSTEM

The ICS assumption is very general. Next we consider a specific instance of an ICS, in which the
causal system is governed by latent linear structural equations, i.e. a form of structural causal model
(SCM) in a latent space. We make use of some results for linear SCMs presented in (Shen et al.,
2023); to aid in exposition we broadly follow their notation in the below. Adapting a model presented
in (Shen et al., 2023) for the case of a latent embedding, we posit the following latent causal system
(LCS) as the generative process for a causal environment e:(

h∗(xe)
ye

)
= B⋆

(
h∗(xe)
ye

)
+ ε+ δ∗e (2)

where h∗ : Rp→Rq is an (unknown) embedding function, B⋆ are the true causal coefficients (in
the latent space), ϵ ∈ Rq+1 is a zero-mean RV (with potentially dependent components to account
for additional latent dependencies) and δ∗e ∈ Rq+1 is an unobserved mean shift representing the
additive intervention for environment e. The RV ϵ is assumed i.i.d. for each environment. Setting
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e = 0 specifies a reference, observational environment; without loss of generality we assume the
data are centred with E[δ∗0 ] = 0. Throughout we assume that ye has no direct causal effect on any
component of h∗(xe), i.e. that the effects are causally downstream of the feature embeddings, and
that (δe)q+1 = 0 meaning that there is not direct intervention on the target variable.

We are interested in prediction on a test distribution generated according to:(
h∗(xv)
yv

)
= B⋆

(
h∗(xv)
yv

)
+ ε+ δ∗v (3)

where the novel interventions δ∗v∈Rq+1 may be different from any of interventions {δ∗e}e∈E seen in
training.

The interventional terms δ∗e (δ∗v in the test case) are theoretical quantities that are not observed directly.
These variables capture the effect of a given intervention on each component of the latent space. In
the special case of h∗ being the identity, we have δ∗e ∈ Rp+1, i.e. the components of the variable
correspond to mean shifts of each of the variables brought about by the experimental treatment. For
a system whose observed variables x are driven by underlying causal factors, the true embedding
function h∗ can be viewed as an idealized simplification that maps the data into a space in which the
causal action can be simply described by an additive term.

Assuming an LCS, the terms δ∗e (δ∗v in the test case) capture the true effect of the respective intervention
on the system. These terms are thus equivalent to the ψ∗

e ’s in the more general ICS framework, of
which LCS is a special case.

3.5 TEST RISK WHEN FEATURES ARE AVAILABLE

We consider prediction of test response yv via a linear predictor in the latent space. Ideally, in regime
v we would like to set model parameters so as to minimize Eq. (1) under a suitable loss function.
However, since we do not have access to the test distribution, this type of risk-optimality cannot
be achieved directly via standard empirical risk. Instead, we now seek to express risk in a target
environment v in terms of quantities that can be estimated from the available data.

For a target environment v we make the following assumption:

Assumption 3: Latent Expressivity Condition (LEC): For embedding h∗, training environments E
and test environment v, we assume:

∃α ∈ R|Eh∗ | : E[h∗(xv)] =
∑

e∈Eh∗

αeE[h∗(xe)], (4)

where Eh∗ ⊆ E is a subset of training environments and α = (αe)e∈Eh∗ .

The LEC assumes that the training embeddings are sufficiently expressive in the sense that the target
embedding can be given as a linear combination of these embeddings. Note that the assumption is
only required to hold at the level of the latent space defined by the unknown, idealized embedding h∗
and for complete feature vectors xe.

Under LEC the following theorem allows us to express target risk (relative to the reference environ-
ment e = 0) as a weighted sum of corresponding training risks.

Theorem 3.1 (Test Risk under LEC). Assume LEC (Eq. 4) and also that ∀e, e′ ∈ Eh∗ , e ̸= e′ :
δ∗eδ

∗
e′
T = 0.Then, the risk under a novel intervention v can be written as:

E[(yv − b⊤h∗(xv))2] =
∑

e∈Eh∗

(αe)
2E[(ye − b⊤h∗(xe))2]− k(b, α), (5)

where α = (αe)e∈Eh∗ and k(b, α) = (−1 +
∑

e∈Eh∗ (αe)
2)E[(y0 − b⊤h∗(x0))2].

In words, the expected risk in an unseen test environment can be computed by correctly reweighting
the expected risks in the training enviroments. The LEC is arguably a reasonable assumption provided
the training environments are sufficiently diverse. The condition is required to hold at the latent

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

level and only w.r.t. a subset of training environments. The additional assumption concerning near-
orthogonality of latent mean effects concerns the true unobserved quantities E[δ∗e ] in the LCS. These
are theoretical quantities that reflect the direct effect of an intervention on the latent system variables
and hence, loosely speaking, the assumption amounts to requiring that a subset of interventions target
different latent mechanisms1.

In practice, we are often content with predicting the mean perturbation effect for which we can
formulate a similar result. See Appendix B for the proofs.
Corollary 3.2 (Test Error of Mean Prediction). Assume the prerequisites of Theorem 3.1 Then,
the error of predicting the mean perturbation effect from the mean latent representation in a novel
environment v can be written as:

(E[yv]− b⊤E[h∗(xv)])2 =
∑

e∈Eh∗

(αe)
2(E[ye]− b⊤E[h∗(xe)])2. (6)

If features are available and the embedding h∗ is known, learning can be performed via an empirical
analogue of Eq. (5) (see following section for practically-applicable algorithms). A special case
arises when h∗ is the identity. Then, the features themselves enter into a linear predictor and the
LEC assumption is at the level of the features themselves. This leads to our first algorithm, described
in detail in Section 4.1, which seeks to express the test features as a linear combination of the
training features and then use the resulting weights to give a weighted loss for empirical optimization.
However, we first consider the more general case of unobserved features.

3.6 TEST RISK WHEN FEATURES ARE UNAVAILABLE

We now turn attention to the challenging case in which features are not available but we have only
interventional embeddings ue. We first observe that under ICS and IET, we can in general write the
feature embeddings h∗(xe) as a function of only the interventional embeddings ue. From ICS we
have that h∗(xe) = h∗(g∗(ψ∗

e , S; θ
∗
g)) (notation is as in the statement of ICS above, namely g∗ is a

unknown function with parameter θ∗g , S is the causal system and ψ∗
e a physically correct description

of the causal action in environment e). From IET we have that ψ∗
e = c∗(ue, S; θ∗c ), for an unknown

function c∗ with unknown parameter θ∗c . Hence we have:

h∗(xe)
ICS
= h∗(g∗(ψ∗

e , S; θ
∗
g))

IET
= h∗(g∗(c∗(ue, S; θ∗c ), S; θ

∗
g)) = h(ue) (7)

where in the last line the function h combines h∗, g∗, c∗ with an implicit parameter that collects
together θ∗g , θ

∗
c and additional information in S. Importantly, under ICS and IET the latter function,

although potentially complex, is invariant across environments.

Now, we revisit the test risk (Eq. 5) under a novel intervention v, and rewrite using Equation (7):

E[(yv − b⊤h∗(xv))2] =
∑

e∈Eh∗

(αe)
2E[(ye − b⊤h(ue))2]− k(b, α)

This expression allows environment-specific optimization to be performed via a weighted combination
of training losses. Furthermore, all quantities, other than the weights αe, are now defined only in
terms of interventional embeddings and training responses, without needing access to the (train or
test) features themselves nor to the true LCS embedding h∗.

To set weights in a practical manner, we observe that under the LEC valid αe’s must satisfy
E[h∗(xv)] =

∑
e∈Eh∗ αeE[h∗(xe)]. This expression cannot be directly leveraged since we do

not have access to the features, nor to the function h∗. However, using Eq. (7) we have:

E[h(uv)] =
∑

e∈Eh∗

αeE[h(ue)] =⇒ E[h∗(xv)] =
∑

e∈Eh∗

αeE[h∗(xe)]. (8)

In other words, weights satisfying an embedding reconstruction condition defined in terms of the
embedding h and observed interventional information ue also satisfy the LEC. Furthermore, while
the embedding h is unknown, it is invariant over environments.

1This is arguably reasonable for interventions on scientific systems. For example, genetic interventions
that are specific in the sense of affecting only the claimed target genes would satisfy the condition for any
representation that encodes the respective genes into different latent variables.

6
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This motivates an attention-based algorithm for the unseen features case (detailed in the sequel) in
which an embedding h and associated attention weights A are learned so as to satisfy an empirical
analogue of Eq. (8) (i.e. attention operates between environments with ue’s treated as tokens). The
foregoing expressions then justify using the resulting attention weights directly in a weighted loss
function for the regression step. Importantly, as seen above, this can be done entirely in terms of
embeddings h of the observed information ue, uv, rather than xe, xv or µ∗

e, µ
∗
v, none of which are

directly observed. Thus, the foregoing results permit us to define empirical analogues that in turn
allow development of practically applicable algorithms, which we detail below.

4 LEARNING SCHEMES

We now put forward practically applicable learning schemes based on the arguments above. We
consider in turn the setting in which features are themselves available and then the more challenging
case in which features themselves are not available for learning or inference.

4.1 CASE I: FEATURES AVAILABLE

In this case, we assume access to the xe’s and consider, for simplicity, the special case in which h∗ is
the identity, such that we can work directly in the feature space (we consider unknown h∗ under Case
II below). From LEC, we see that suitable weights should allow test features to be reconstructed
from the training features. To estimate the weights for a test environment v, we solve the following
ridge-regularized minimization:

α̂ = argmin
α∈R|E|

∥xv −Xα∥22 + λ∥α∥22, (9)

where X = [xe]e∈E ∈ Rp×|E| are the training set features and α̂ ∈ R|E| are estimated αe’s. The
closed-form solution to Eq. (9) is α̂ = (X⊤X+ λI)−1X⊤xv , where λ is a regularization parameter.
Alternatively, we can estimate a sparse weight vector α̂ via the Lasso problem:

α̂ = argmin
α

1

2
∥xv −Xα∥22 + λ∥α∥1. (10)

Since the ℓ1 norm is non-differentiable, we use the Iterative Shrinkage-Thresholding Algorithm
(ISTA), which first computes the gradient of the data reconstruction term (first term in Eq. (10)), then
apply a proximal operator with a soft-thresholding function to apply the sparsity constraint (Beck &
Teboulle, 2009; Daubechies et al., 2004). Algorithm 2 describes the procedure.

With estimated weights α̂ in hand, we obtain an environment-specific predictor by minimizing the
corresponding weighted empirical risk. For the case of an identity embedding h∗ (i.e. working
directly in the feature space), Algorithm 1 summarizes several variants of the general approach,
including combinations of weight estimation strategies. For completeness, we include also test
feature estimation from embeddings. This is applicable when training features are available, but for
test regimes v only interventional information uv but no features are available (the function ϕ is a
generic regression model). The strategy in each case is to estimate the weights (using one of the
approaches discussed above) and then minimize a weighted empirical risk with weights depending
on the test intervention. In this way, the output ŷv is optimized for the test intervention, rather than
a worst-case distribution over plausible shifts. Note that we present a version of the algorithm that
we use for biological examples below in which we do not include the reference environment in the
loss term; this is due to the fact that in these examples interventions of interest induce relatively large
changes in the system, hence dominating the loss term.

4.2 CASE II: FEATURES UNAVAILABLE

We now turn to the more challenging case in which no features are available for either training or
test interventional regimes. We put forward an attention-based scheme for jointly learning both
embedding and weights.

This approach relies on the availability of informative embeddings concerning the interventions
themselves. For example, for a genetic intervention involving knockout of a specific gene A (call
this environment a), we would require an embedding ua which captures key information about the
gene. We assume below access to such (pre-trained) embeddings (ue)e∈E∪E′ . In the biomedical

7
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Algorithm 1 Risk-Optimal Prediction for Test Interventions

1: Input: Training embeddings U = [ue]e∈E , responses Y = [ye]e∈E , test embedding uv
2: Output: Predicted response ŷv for test intervention v

3: Infer Latent Representation of Covariates: ĥ(xe) = ϕ(ue; θ̂ϕ).
4: Estimate α̂ from uv(as in Section 4)
5: Estimate Risk-Optimal Parameter: b̂opt

v = argminb
∑

e∈E(α̂e)
2E[(ye − b⊤ĥ(xe))2].

6: Predict Response for Test Intervention: ŷv = (b̂opt
v )⊤xv.

7: Return: ŷv

domain, there has been a wealth of recent work in which large datasets and resources are used to train
relevant embeddings, including embeddings capturing information concerning genes and chemical
compounds. Note that we overload the term “embedding” to refer both to the input information ue
and a learnable transformation h which we will use to map the ue’s into a latent space suitable for our
purposes. While h will be learned from data in an end-to-end fashion, the ue’s are treated as known
inputs.

We saw previously that under our assumptions prediction in a new environment could be carried
out based only on available interventional information ue, specifically via optimization of a certain
weighted objective, with weights satisfying an equation again defined only in terms of ue’s (Eq.
(8)). These results lead directly to an attention-based framework in which an embedding h of the
interventional information ue is learned together with the weights (αe)Eh

needed for the expected
risk. For details see Appendix A.

Since the true latent additive interventions δ∗e remain unobserved, we cannot explicitly enforce
interventional orthogonality. However, minimizing the weighted risk implicitly encourages learning
of a representation h(·) in which this is approximately satisfied, as such a representation allows for
risk-minimization under the proposed weighting scheme.

5 RESULTS

This section is structured into two main parts. In the first part, we investigate the robustness to
perturbation strength on a synthetic dataset and how this is reflected in real-world datasets. In the
second part, we then compare the performance in predicting the covariate on real-world bio-medical
datasets - both in the scenario where features are available and where they are not.

Robustness to Perturbation strength We investigate the robustness to out-of-distribution samples
on a synthetic and two real-world datasets K562(Replogle et al., 2022) and yeast(Kemmeren et al.,
2014). The synthetic dataset is randomly generated in such a way that we can control the magnitude
of δ∗e (Equation (2)). The larger the magnitude of δ∗e is, the further away samples Xv and yv are from
the training distribution. We describe the synthetic data generator in detail in Appendix C.1. K562
and yeast are real-world gene knockout experiments comprising ∼ 1500 perturbations. The target
is a specific gene in the case of K562 and the cell growth rate in the case of yeast. We compare the
performance of our approach to the following regression approaches: Ordinary Least Squares with an
optional Ridge penalty (OLS and OLS-Ridge), Anchor Regression (Rothenhäusler et al., 2021), and
Invariant Risk Minimization (IRM)(Arjovsky et al., 2019).

Figure 2 shows the MSE as perturbation magnitude increases. On the synthetic dataset, all algorithms
yield an increased MSE with increasing perturbation magnitude. However, our proposed algorithms
always yield a lower MSE. More specifically, the synthetic setup includes non-causal environment-
specific variables, which are predictors of the response. Invariance baselines like anchor regression
and IRM suppress this signal, whereas our methods use them through the test environment-specific
weights. For real-world datasets, we rank the samples where leave-one-out OLS performs the worst,
indicating large distributional shifts. Similarly, our algorithms show better robustness to increasingly
out-of-distribution (OOD) test samples.

Empirical evaulation In this section, we empirically evaluate our proposed framework, inspecting
both cases, i.e. where features are available and where they are not. The latter setting is particularly
demanding as it requires leveraging information solely from interventional embeddings to predict

8
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Figure 2: Robustness to out-of-distribution test samples. The three subplots show the MSE on the y-axis and
the perturbation magnitude on the x-axis. For the synthetic dataset, this can be set directly. For the real-world
datasets, we take a subset of test samples that are increasingly out-of-distribution. OOD increases left → right.

outcomes, mirroring real-world situations where direct measurements of system states are costly,
infeasible, or pertain to latent variables. We demonstrate the effectiveness of our approach using the
aforementioned yeast, K562 datasets as well as JUMP cell painting compounds dataset (Chan-
drasekaran et al., 2023). compounds is based on a large-scale collection of cellular images capturing
morphological changes in response to various chemical perturbations. It comprises around ∼ 100k
perturbations using chemical compounds and ∼ 700 scalar, morphological readouts. Our aim is
to predict these readouts from nothing more than the perturbations themselves. To this end, we
embed each of the pertubations using the chemical foundation model ChemBERTa (Chithrananda
et al., 2020). We set up a similar regime for the K562 dataset where we use an embedding of the
gene perturbation using scGPT (Cui et al., 2023) rather than the covariates. This approach is called
K562 scGPT. The results can be found in Table 1. For further experimental details see Section C.

Method yeast K562 K562 scGPT compounds

Ours
Ridge 0.0212± 0.016 0.1306 ± 0.119 0.2257 ± 0.030 0.2747± 0.048
Lasso 0.0158± 0.007 0.1288 ± 0.118 0.2301± 0.040 0.2706 ± 0.047
Attention 0.0103 ± 0.003 0.1337± 0.121 0.2032 ± 0.031 0.2604 ± 0.048

Baselines

OLS 0.0464± 0.018 0.4062± 0.049 0.3171± 0.051 0.4141± 0.157
OLS Ridge 0.0141 ± 0.004 0.1394± 0.105 0.2729± 0.044 0.2737± 0.046
Anchor 0.0130 ± 0.003 0.1317 ± 0.114 0.3171± 0.051 0.4388± 0.190
IRM 0.0186± 0.005 0.1423± 0.117 0.3238± 0.042 0.3125± 0.059

Table 1: Average MSE (± std) across datasets. For K562 scGPT and compounds no covariates are available,
rather scGPT and ChemBERTa are used as representations of the perturbation. For yeast and K562, covariates
X are available. On yeast and K562, both Anchor Regression and Invariant Risk Minimization performed
poorly owing to the underdeterminacy of the problem when given all covariates. For these two datasets and
algorithms, we reduced the number of input covariates to the 600 highest varying covariates.

6 DISCUSSION

In this work, we presented a novel framework for causal prediction under unseen interventions, which
also performs well empirically. However, it is not without limitations. First, the linear implications on
the latent representation h(xe) due to the assumption of a linear causal system (Eq. 2) is not explicitly
modelled in our current implementation. Similarly, in the attention-based variant, the learned weights
α are not explicitly constrained to adhere to the theoretical reconstruction properties derived from
our framework. Future work could explore incorporating additional loss terms to encourage these
behaviors, potentially leading to more robust and interpretable models. Second, the computational
demands of our approach, particularly the attention mechanism, pose a challenge for very large
datasets. The memory footprint for predicting p test samples scales as Θ(p · n) for α and bopt,
where n is the number of training samples. The attention version exhibits even greater complexity,
with a scaling of Θ(n2). While stochastic techniques can mitigate this issue by considering only a
subset of the training data, this approximation may compromise predictive performance. Finally,
the embedding-based approach relies on high-quality, informative embeddings, directly impacting
performance. Fortunately, rapid advancements and ongoing research in foundation models suggest
that future improvements in embedding techniques will likely enhance our framework’s capabilities.
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7 REPRODUCIBILITY

The datasesets used are publicly available. Further details on where to find them, postprocessing
conducted for these results, and other details can be found in Appendix Section C. The code used
in the experiments can be found in the supplemental material. The algorithms used are detailed in
Section C.

8 USE OF LARGE LANGUAGE MODELS

We employed Large Language Models (LLMs) solely for assistance in writing and editing the
manuscript. LLMs were not used in any capacity for the idea, theory, or proofs. Specifically, LLMs
were not used for tasks such as generating experimental designs, analyzing data, or formulating
hypotheses.
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A AN END-TO-END ATTENTION FRAMEWORK

As noted above, we assume access to information ue ∈ U concerning each training and test inter-
ventional regime. We train a transformation ĥ : U → Rq as a feedforward neural network; this is
intended to map the information ue into a suitable latent space. Collect the interventional information
ĥ(ue), ĥ(uv) into matrices He ∈ R|E|×q and Hv ∈ R|E′|×q (i.e. the transformed embeddings are
collected as rows of the respective matrices). We use a standard attention mechanism to compute
weights:

Â = softmax

(
HQH

⊤
K√
q

+M

)
. (11)

where M is a masking matrix (see below) and:

HQ = HvWQ, HK = HeWK , (12)

WQ,WK ∈ Rq×q, HK ∈ R|E|×q, HQ ∈ R|E′|×q (13)

Thus, the matrix Â is of size |E ′| × |E|, with each row holding attention weights between train
interventions e ∈ E and a query intervention v ∈ E ′. Accordingly, and in line with the previous
notation, we denote each row of Â as α̂v .

During training we set Hv = He and express each train environment e′ as a combination of others
e ̸= e′. We then set the diagonal entries of the masking matrix M to −∞ for e = e′ to prevent
self-attention, while all other entries remain zero (although it may seem counterintuitive to apply
cross-attention between train environments, we find it works well in practice). No masking is applied
for inference of novel test interventions.

To obtain a regime-specific prediction ŷv for a query embedding h(uv) within Hv, we apply Algo-
rithm 3 (for expositional simplicity, the algorithm shows weight computation given the embedding
ĥ, but in practice we learn both together in an end-to-end fashion). We implement an efficient
differentiable version of the algorithm based on batched least squares to obtain the risk-optimal
estimators for all test interventions in Hv . To train the weights of h,WK ,WQ, we minimize the MSE
for our predictions on the train environments

∑
e∈E(ŷ

e − ye)2. Thus, we learn the transformation ĥ
and the weights α̂ together in an end-to-end fashion.

B PROOFS

B.1 PROOF OF THEOREM 3.1

Assume LEC, namely that under embedding h∗, the test feature embedding can be expressed as a
weighted combination of training feature embeddings with respect to a subset Eh∗ ⊆ E of training
environments, with weights αe. Assume also near-orthogonality of mean effects under embedding
h∗ and for the subset Eh∗ .

We first recall the latent causal system (LCS) set-up from the main text (notation as in the main text
unless otherwise noted): (

h∗(xe)
ye

)
= B⋆

(
h∗(xe)
y

)
+ ε+ δ∗e (14)

Following Appendix E.2 in (Shen et al., 2023), for the LCS above and for any regression coefficient
b, we define the vector w as:

w :=
[
[(I −B∗)−1]p+1,. − b⊤[(I −B∗)−1]1:p,.

]⊤
. (15)

From Appendix E.2 in (Shen et al., 2023) we have: E[(ye − bTh(xe))2]− E[(y0 − bTh(x0))2] =
wTµ∗

eµ
∗
e
Tw, where µ∗

e = E[δ∗e ].

Under the LEC assumption, for a target environment v we have:

∃α ∈ R|Eh∗ | : E[h∗(xv)] =
∑

e∈Eh∗

αeE[h(xe)],

12
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where Eh ⊆ E is a subset of training environments. That is, the target environment’s embedding can
be expressed as a linear combination of the embeddings of some training environments.

From LCS h∗(xv) = B̃∗h∗(xv) + ε+ δ∗e (assuming no effect of ye on xe and writing B̃ ∈ Rq×q for
the submatrix for x). This gives (I − B̃∗)h∗(xv) = ε+ δ∗e , and hence:

µ∗
e = (I − B̃∗)E[h∗(xv)]

= (I − B̃∗)
∑
e∈Eh

αeE[h∗(xe)]

=
∑
e∈Eh

αeµ
∗
e (16)

As noted above, we can write the expected loss for a test environment v using the using the true latent
mean effects µ∗

v as E[(yv − bTh∗(xv))2]− E[(y0 − bTh∗(x0))2] = wTµ∗
vµ

∗
v
Tw. Finally, using Eq.

(16) and the assumed near-orthogonality of latent mean effects we have:

E[(yv − bTh∗(xv))2]− E[(y0 − bTh∗(x0))2]

= wT

(∑
e∈Eh

αeµ
∗
e

)(∑
e∈Eh

αeµ
∗
e

)T

w

≈
∑
e∈Eh

(αe)
2wTµ∗

eµ
∗
e
Tw

=
∑
e∈Eh

(αe)
2E[(ye − bTh∗(xe))2]− k(b, α),

where as in the main text k(b, α) =
∑

e∈Eh
(αe)

2E[(y0 − bTh∗(x0))2].
□

B.2 PROOF OF COROLLARY 3.2

This proof is inspired by (Shen et al., 2023). Consider the expected risk:

R(e, b) = (E[ye]− bTE[h(xe)])2

Using the definition of the latent causal system Equation (2):(
h(xe)
ye

)
= B

(
h(xe)
ye

)
+ ε+ δe

⇐⇒
(
h(xe)
ye

)
= (I −B)−1(ε+ δe)

(17)

We can rewrite the expected risk as:

R(e, b) = (((I −B)−1)p+1,:E[(ϵ+ δe)]− bT ((I −B)−1):p,:pE[(ϵ+ δe)])
2

= ((((I −B)−1)p+1,: − bT ((I −B)−1):p,:p)E[(ϵ+ δe)])
2

Define w = (((I −B)−1)p+1,: − bT ((I −B)−1):p,:p) and notice that ϵ is zero-mean.

R(e, b) = (wTE[(ϵ+ δe)])
2

= (wTE[δe])
2

= wTE[δe]E[δe]
Tw

Now, consider the expectation of ye and recall that we do not allow direct interventions on ye,
meaning that δep+1 = 0:

E[ye] = E[Bp+1,:ph(x
e)] + E[Bp+1,p+1y

e] + E[ep+1] + E[δep+1]

= Bp+1,:pE[h(xe)] +Bp+1,p+1E[ye]

=
Bp+1,:pE[h(xe)]

(1−Bp+1,p+1)

13
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Consider now the expected perturbation effect in a novel evironment:

E[yv] =
Bp+1,:pE[h(xv)]

(1−Bp+1,p+1)

=
Bp+1,:p

∑
e∈Eh

αeE[h(xe)]

(1−Bp+1,p+1)

=
∑
e∈Eh

αe
Bp+1,:pE[h(xe)]

(1−Bp+1,p+1)

=
∑
e∈Eh

αeE[ye]

Using LEC, the expected risk on an unseen test sample is:

R(v, b) LEC
= (E[yv]− bT

∑
e

αeE[h(xe)])2

= (
∑
e

αeE[ye]− bT
∑
e

αeE[h(xe)])2

= (
∑
e

αe(E[ye]− bTE[h(xe)]))2

= (
∑
e

αe(w
TE[ϵ+ δe]))

2

= (
∑
e

αe(w
TE[δe]))

2

=
∑
e

αe

∑
e′

αe′w
TE[δe]E[δe′ ]

Tw

As the perturbations δe, δe′ are orthogonal for e ̸= e′, only the summands for e = e′ remain.

R(v, b) =
∑
e

α2
ew

TE[δeδe]
Tw

=
∑
e

αeR(e, b)

□

C EXPERIMENTAL DETAILS

C.1 SYNTHETIC DATASET

First, assuming h∗ is an identity, we note from Eq.2 that the difference in mean representations
can be expressed as E[xe]− E[x0] = δe, where δe denotes a mean additive intervention. Taking
the mean of the reference environment to be an intercept and setting it to zero for simplicity, i.e.
E[x0] = 0, we define the following SCM: xe1 = δe + ϵ1,e;x

e
2 = ηe δe + ϵ2,e; y

e = b δe + ϵy,e
with causal parameter b = 1. The environment–specific tie ηe induces a spurious correlation
between x2 and the response y, that is it acts as a non-causal regime-specific predictor. We draw
δe ∼ N (0, 1), and model small finite-sample averaging errors of environment means by independent
noises ϵ1,e, ϵ2,e ∼ N (0, 0.05) and ϵy,e ∼ N (0, 0.005). We create five training environments, that
is |E| = 5, and set ηe ∈ {1, 2, 3, 4, 5}. For test environments,we sample a perturbation magnitude
α ∈ {1, . . . , 100} and a training environment e, and set the test feature means to follow the LEC
assumption: xv1 = α δe + ϵ1,v;x

v
2 = αηe δe + ϵ2,v; y

v = bαδe + ϵy,v. The ϵ parameters are drawn
from the same distributions as in training.

C.2 FEATURES UNAVAILABLE

In Section 5 of the experiments, we turned to the challenging task of predicting morphological
readouts on the cell painting compounds dataset without observational data. Instead, we embed

14
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each perturbation and adapt the approach as detailed in Section 3.6. Specifically, each compund of the
dataset is represented by a unique identifier and an InChI-Key. From the latter, we reconstructed the
SMILES representations through a look-up in the PubChem Database. This SMILES representation
could then be used directly as input to ChemBERTa to retrieve a 600-dimensional embedding for
each perturbation.

Due to the vastness of the compounds dataset, we subsample 5000 datapoints which we then treat
as the whole dataset for training, testing and validation. We report the mean performance on 5
randomly selected readouts in Table 1.

Method yeast K562 K562 scGPT compounds

Ours
ridge 0.6361± 0.187 0.8138 ± 0.145 0.3414± 0.170 0.0220± 0.116
lasso 0.6638± 0.141 0.8166 ± 0.144 0.3564 ± 0.174 0.0737 ± 0.115
attention 0.7570 ± 0.064 0.8068± 0.150 0.4647 ± 0.105 0.1702 ± 0.099

Baselines

unweighted 0.5034± 0.142 0.5409± 0.054 0.2580± 0.148 0.0539± 0.111
OLS Ridge 0.7013 ± 0.118 0.7954± 0.122 0.2889± 0.156 0.0673± 0.114
anchor 0.6988± 0.086 0.8058± 0.139 0.2580± 0.148 0.0441± 0.113
irm 0.5262± 0.186 0.7899± 0.141 0.2542± 0.140 0.0503± 0.117

Table 2: Average Pearson Correlation (± std) across datasets. For K562 scGPT and compounds no covariates
are available, rather scGPT and ChemBERTa are used as representations of the perturbation. For yeast
and K562, covariates X are available. On yeast and K562, both Anchor Regression and Invariant Risk
Minimization performed poorly owing to the underdeterminacy of the problem when given all covariates.
For these two datasets and algorithms, we reduced the number of input covariates to the 600 highest varying
covariates.

D PSEUDOCODE FOR COMPUTATION OF α

Algorithm 2 Sparse Weight Estimation via LASSO (ISTA)

1: Input: Training covariates X = [xe]e∈E , target covariate xv, LASSO regularization parameter
λ, step size η, max iterations T , tolerance ϵ

2: Output: Sparse weight vector α
3: Initialize: α(0) ← 0
4: for t = 1 to T do
5: Compute gradient: ∇α = X⊤(Xα(t−1) − xv)
6: Gradient step: z = α(t−1) − η∇α

7: Soft-thresholding (proximal step):
α(t) = sign(z)⊙max(|z| − ηλ, 0)

8: Check convergence: stop if ∥α(t) −α(t−1)∥2 < ϵ
9: end for

10: Return: α
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Algorithm 3 Regime-specific estimation with attention

Input: Train matrix He ∈ R|E|×q , train responses Y ∈ R|E|×k, test sample h(uv) ∈ Rq , weights
αv ∈ R|E|, λ
Output: Predicted test targets ŷv ∈ Rk

1. Diagonal Weight Matrix:
Av = diag((αv)2) ∈ R|E|×|E|

2. Compute linear coefficients:

b̂v ←
(
He⊤AvH

e + λI
)−1

He⊤AvY

3. Compute Predictions for Test Intervention:
ŷv ← b̂⊤v h(u

v)

Return: ŷv
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