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Abstract

Modern quantum machine learning (QML) methods involve the variational op-1

timization of parameterized quantum circuits on training datasets, followed by2

predictions on testing datasets. Most state-of-the-art QML algorithms currently3

lack practical advantages due to their limited learning capabilities, especially in4

few-shot learning tasks. In this work, we propose three new frameworks employing5

quantum diffusion model (QDM) as a solution for the few-shot learning: label-6

guided generation inference (LGGI); label-guided denoising inference (LGDI); and7

label-guided noise addition inference (LGNAI). Experimental results demonstrate8

that our proposed algorithms significantly outperform existing methods.9

1 Introduction10

Quantum machine learning (QML) has emerged as a powerful tool for automated decision-making11

across diverse fields such as finance, healthcare, and drug discovery[1–4]. However, in the realm of12

few-shot learning, where only a limited amount of data is available for training, QML demonstrates13

suboptimal performance. In classical machine learning, diffusion models have been validated14

as effective zero-shot classifiers and hold significant potential for addressing few-shot learning15

problems[5, 6]. Nevertheless, in the domain of QML, the utilization of quantum diffusion models16

(QDMs) for few-shot learning remains largely unexplored[7]. This is primarily due to the limitations17

of quantum computing resources and the inherent noise associated with quantum computers, despite18

the QDM’s demonstrated success in generative tasks[8].19

In this work, we propose three new algorithms based on the QDM to address the few-shot learning20

problem. Our contributions are as follows:21

• The QDM has demonstrated strong performance in generative tasks. Building on QDM’s22

generative capabilities, we propose the Label-Guided Generation Inference (LGGI)23

algorithm to address the few-shot learning problem. Additionally, we introduce two algo-24

rithms: Label-Guided Noise Addition Inference (LGNAI) and Label-Guided Denoising25

Inference (LGDI), to perform test inference respectively in diffusion and denoising stages.26

• We compare our algorithms with other baselines in experiments on different datasets, which27

verified the superior performance of our proposed approaches.28

• We conduct a comprehensive ablation study to evaluate the impact of various components29

and hyperparameters on the performance of the proposed algorithms.30

2 Background31

Quantum Neural Network (QNN). A Quantum Neural Network (QNN) has been used to perform32

various machine learning tasks. It typically consists of a data encoder E(x) that embeds a classical33
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Figure 1: Various types of variational quantum circuits (VQC).

input x into a quantum state |x⟩, a variational quantum circuit (VQC) Q that generates the output34

state, and a measurement layer M that maps the output quantum state to a classical vector. Fig. 135

shows some VQC ansatz examples[9–12] used for QNNs. Given a training dataset, the input data36

x is transformed into a quantum input feature map using E(x). A parameterized VQC ansatz is37

then utilized to manipulate the quantum input feature through unitary transformations. Finally, the38

predicted classification is obtained by measuring the quantum state. The loss function is predefined39

to calculate the difference between the output of the QNN and the true target value y. Training40

a QNN involves iteratively searching for the optimal parameters in the VQC through a hybrid41

quantum-classical optimization procedure.42

Quantum Few-shot Learning (QFSL). Few-shot learning (FSL) is a machine learning approach43

designed to address supervised learning challenges with a very limited number of training samples.44

Specifically, it involves a support set and a query set. The support set consists of a small number45

of labeled examples from which the model learns, encompassing n classes, each with k samples,46

hence called n-way k-shot learning. The query set is a collection of unlabeled examples that the47

model needs to classify into one of the n classes. Existing solutions to the QFSL problem can be48

categorized into data-based, model-based, and algorithm-based methods[13]. Quantum Few-shot49

learning (QFSL) involves using QNNs as classifiers to solve QFSL problems[14, 15]. However,50

traditional algorithms used in QFSL often underperform due to the limited computational resources51

available and the noise present in real quantum devices.52

Quantum Diffusion Model (QDM). Diffusion model (DM)[16, 17] is a popular approach for53

generating images and other high-dimensional data. It comprises two main processes: the diffusion54

process and the denoising process. During the diffusion process, noise is gradually added to the55

data over a series of steps, transforming it into a simpler distribution, as formulated by (1), in which56

N (·;µ,Σ) denotes the normal distribution of mean µ and covariance Σ, βt is a small positive57

constant that controls the amount of noise added at step t, and I is the identity matrix.58

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

The denoising process aims to learn how to reverse the forward process and incrementally remove59

noise to generate new data from the noise, with its training objective formulated by60

Eq(x0:T )

[
T∑

t=1

DKL

(
q(xt−1|xt, x0)∥pθ(xt−1|xt)

)]
, (2)

in which q(xt−1|xt, x0) is the posterior distribution of the forward process and the parameterized61

model pθ(xt−1|xt) can predict the data point at the previous step given the current noisy data point.62

The denoising process is described by63

pθ(xt−1|xt) = N
(
xt−1;µθ(xt, t), Σθ(xt, t)

)
. (3)

The QDM, which integrates QML and DM, is utilized for generative tasks within the quantum domain,64

including quantum state generation and quantum circuit design. The quantum denoising diffusion65

model (QDDM)[7] is acknowledged as the leading quantum diffusion method for image generation.66

It outperforms classical models with similar parameter counts, while leveraging the efficiencies of67

quantum computing. Fig. 3 shows the framework of QDDM and its image generation process is68

illustrated in Fig. 2. In our work, we extend the QDDM with a label-guided mechanism to fully69

leverage the capabilities of QDDM in addressing the QFSL problems. This is achieved by introducing70

an additional qubit and applying a Pauli-X rotation by an angle of 2πy/n, where y represents the71

specified label and n denotes the total number of classes.72
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Figure 2: Generated images using QDDM under the guidance of different labels. The input to the
model is random noise.

Figure 3: Framework of QDDM. Noise Predictor
is employed to estimate the noise present in the
noisy image data.

Figure 4: Framework of QDDM-based Label-
Guided Generation Inference (QDiff-LGGI). The
gray-filled circle represents the embedded label.

3 Method73

To address the QFSL problems, we propose methods from both data and algorithmic perspectives.74

From the data perspective, we utilize QDDM to augment the training samples and use the generated75

data to train QNN, thereby improving the prediction accuracy of QNN on real data. From an76

algorithmic perspective, we employ two strategies to complete the inference process by guiding77

QDDM in two distinct stages: diffusion and denoise.78

3.1 QDiff-Based Label-Guided Generation Inference (QDiff-LGGI)79

The size of the training dataset is a critical factor that limits the performance of QNN. The primary80

reason for the suboptimal performance of QFSL is the limited availability of training data. Thus,81

from a data perspective, expanding the training dataset can significantly enhance the performance82

of QFSL. The QDDM is highly effective in generation tasks, making it suitable for augmenting the83

training dataset. Initially, a small amount of training data is used to train the QDDM. Once trained,84

the QDDM is employed to expand the training dataset for QNN. This expanded dataset is then used85

to train the QNN, which in turn improves its inference accuracy on real data.86

To enhance the quality of data generated by the QDDM, we employ a label-guided generation method.87

During the QDDM training process, we perform amplitude encoding on the classical data and angle88

encoding on the labels. During the data generation process, we use random noise and the label as89

input, enabling the QDDM to generate data according to the specified label. Fig. 2 illustrates the data90

generation process under different label guidance. Fig. 4 describes the QDiff-LGGI algorithm.91

3.2 QDiff-Based Label-Guided Noise Addition Inference (QDiff-LGNAI)92

The learning objective of the QDDM outlined in Equation 2 relies on using a noise predictor to93

estimate the noise in noisy data compared to the actual noise. The noise predictor’s estimation is94

guided by a label, with different labels corresponding to different noise predictions. By using the95

correct label for guidance, the error between the predicted noise and the actual noise is minimized.96

Based on this principle, we propose the QDM-Based Label-Guided Noise Addition Inference (Diff-97

LGNAI) method, shown in the Fig. 5.98

We first utilize a small amount of training data to complete the training of the QDDM. Once trained,99

the noise predictor P within the QDDM is used for subsequent inference. For a given input x0, the100

possible labels are {L1, L2, . . . , Lm}. Noise is gradually added to x0 over T iterations. Specifically,101

at each time step t, xt is calculated as xt−1 + ϵt, where ϵt ∼ N (xt−1,W[t]), and W represents the102

noise weight. The noise predictor P is then employed to estimate the noise in the noisy data xt,103

guided by various possible labels, resulting in the predicted noise set {P(xt|L1), . . . ,P(xt|Lm)}.104

We calculate the mean squared error (MSE) between the predicted noise and the actual noise,105

MSE(P(xt|Li), ϵt). The error is computed for each possible label, and the label with the minimum106
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Figure 5: Framework of QDDM-based Label-Guided
Noise Addition Inference (QDiff-LGNAI). The term ϵ̂nm
represents the predicted noise at step m associated with
label n. L0/L1-loss denotes the difference between the
true noise and the predicted noise under the guidance of
different labels Li.

Figure 6: Framework of QDDM-based Label-Guided
Denoising Inference (QDiff-LGDI). Solid circles in dif-
ferent colors represent distinct embedded labels. The
output images, each framed by a square of varying col-
ors, indicate the generated images guided by different
labels Li.

average error over T iterations is selected as the predicted label:107

arg min
Li∈L

T∑
t=1

MSE(P(xt|Li), ϵt).

3.3 QDiff-Based Label-Guided Denoising Inference (QDiff-LGDI)108

During the denoising phase of QDDM, the noise predictor is used to estimate the noise present in109

the noisy data, which is then subtracted from the noisy data. This denoising process is repeated110

over T iterations. The noise prediction is guided by labels, with each label producing distinct noise111

estimates. The data generated under the guidance of the true label is expected to be most similar to112

the original data. In this framework, we propose the QDiff-Based Label-Guided Denoising Inference113

(QDiff-LGDI) method.114

For an input x0, we gradually add noise to x0 over T iterations, resulting in progressively noisier data115

{x1, x2, . . . , xT }. Then, we use the noise predictor P to predict the noise in the noisy data under116

the guidance of label Li, obtaining P(xT |Li). The predicted noise is subtracted from the noisy data.117

This denoising process is also performed over T iterations, producing progressively noise-reduced118

data {xT +1, xT +2, . . . , x2T }, where xT +t+1|Li = xT +t −P(xT +t|Li). We then use the MSE loss119

to calculate the error between the generated data and the noisy data under the guidance of different120

labels Li, and the predicted label is chosen such that121

arg min
Li∈L

T∑
t=0

MSE(xt, x2T −t|Li).

4 Experiment122

In this section, we first outline the fundamental settings of our experiment. We then design a series of123

experiments to explore the following specific questions, each addressed in a dedicated subsection:124

• What are the performance advantages of our proposed three QDiff-based algorithms com-125

pared to other baseline methods?126

• What factors influence the performance of our algorithms?127

• How effectively does our algorithms solve the zero-shot problem?128

4.1 Basic Experimental Settings129

In this section, we provide a detailed description of the dataset used for the experiments, the baseline130

algorithms, and the parameter settings of the algorithms.131

Dataset. During the experiment, we use the Digits MNIST[18], MNIST[19], and Fashion MNIST[20]132

datasets. For the 2-way k-shot tasks, we select classes 0 and 1 from both the Digits MNIST and133

MNIST datasets, and the T-shirt and Trouser classes from the Fashion MNIST dataset. For the 3-way134

k-shot tasks, we choose classes 0, 1, and 2 from both the Digits MNIST and MNIST datasets, and135

the T-shirt, Trouser, and Pullover classes from the Fashion MNIST dataset. During training, for the136
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Table 1: Performance comparison of QDiff-based algorithms across various tasks, with T = 5. Each
algorithm is evaluated using 5 random seeds to report mean performance and standard error. The
best-performing algorithm for each task is highlighted in blue.

Dataset Tasks LGDI LGNAI LGGI QMLP C14 OPTIC Quantumnat

Digits

2w-01s 0.975±0.059 0.978±0.003 0.992±0.009 0.764±0.108 0.505±0.175 0.525±0.133 0.751±0.147

2w-10s 0.983±0.006 0.997±0.002 0.984±0.012 0.892±0.086 0.627±0.086 0.886±0.193 0.722±0.186

3w-01s 0.525±0.001 0.635±0.007 0.573±0.069 0.338±0.087 0.447±0.193 0.475±0.021 0.555±0.013

3w-10s 0.857±0.015 0.801±0.008 0.632±0.035 0.355±0.059 0.481±0.183 0.698±0.121 0.687±0.156

MNIST

2w-01s 0.943±0.002 0.965±0.003 0.805±0.093 0.675±0.067 0.567±0.064 0.845±0.149 0.701±0.162

2w-10s 0.953±0.011 0.978±0.005 0.915±0.079 0.817±0.048 0.810±0.152 0.807±0.173 0.727±0.151

3w-01s 0.475±0.003 0.505±0.007 0.428±0.035 0.325±0.027 0.503±0.122 0.477±0.159 0.501±0.012

3w-10s 0.720±0.016 0.825±0.008 0.405±0.022 0.547±0.085 0.607±0.142 0.770±0.191 0.527±0.078

Fashion

2w-01s 0.738±0.007 0.768±0.007 0.898±0.036 0.688±0.064 0.581±0.187 0.765±0.149 0.583±0.181

2w-10s 0.755±0.020 0.805±0.002 0.895±0.066 0.731±0.035 0.773±0.099 0.793±0.157 0.887±0.129

3w-01s 0.453±0.008 0.433±0.001 0.483±0.012 0.331±0.098 0.332±0.172 0.473±0.128 0.622±0.063

3w-10s 0.655±0.018 0.735±0.004 0.585±0.025 0.647±0.015 0.527±0.173 0.593±0.139 0.653±0.032

Average 0.754±0.015 0.795±0.004 0.719±0.045 0.574±0.060 0.546±0.140 0.678±0.150 0.666±0.120

Figure 7: Training Loss Trends during QDDM
Model Training.

Figure 8: Performance of QDiff-based algorithms
on 3-way, 1-shot task under varying diffusion and
denoising step configurations.

one-shot task, we select one image from each category, and for the ten-shot task, we select ten images137

from each category. In the inference phase, we use 200 images from each category to construct the138

evaluation dataset.139

Baselines and Parameters Setting. For the selection of baselines, we choose four representative140

QNN structures in the current QML domain to accomplish the QFSL task [9–12]. The frameworks141

of the four QNNs are shown in Fig. 1. During the training of the QNN, we resize the image data to142

8× 8 and utilize amplitude encoding to convert classical data into quantum states. Adam optimizer is143

employed with a learning rate of 0.001 and cross entropy loss is minimized over 40 iterations.144

QDDM Training. Before applying QDiff-based algorithms to finish the QFSL task, it is essential145

to obtain a well-trained QDDM model. For training the QDDM, we utilize a label-guided quantum146

dense architecture, where the label is embedded using an RX rotation, and the strongly entangling147

layers[21] are used to transform the data. The training process of QDDM involves using the Adam148

optimizer with 10,000 iterations. The model architecture and learning rate are tailored to each dataset.149

For the Digits MNIST dataset, the circuit consists of 47 layers with a learning rate of 0.00097. For the150

MNIST dataset, it comprises 60 layers with a learning rate of 0.00211, and for the Fashion MNIST151

dataset, the circuit includes 121 layers with a learning rate of 0.00014.152

4.2 Performance Analysis of QDiff-based QFSL Algorithms153

During the QDDM training phase, in the n-way, k-shot setting, k images are selected from each154

of the n categories, resulting in a total of n× k images. Fig. 7 illustrates the trend of training loss155

while training QDDM on Digits MNIST dataset. As training progresses, the decreasing training loss156

reflects the improved accuracy of the noise predictor in estimating noise, resulting in denoised images157

that closely resemble the target images.158

Table 1 presents the performance of the QDiff-based QFSL algorithm compared to other baselines159

for 2-way 1-shot, 2-way 10-shot, 3-way 1-shot, and 3-way 10-shot scenarios. The results in the table160

demonstrate that the QDiff-based algorithm achieves state-of-the-art performance. We also assess161

the performance of the QDiff-based algorithms on a 3-way, 1-shot task using the Digits MNIST162

dataset on a real quantum computer (IBM_Almaden). The results, as shown in Fig. 9, reveal a slight163

performance decline due to noise inherent in the quantum hardware. Nevertheless, the decrease is164

marginal, indicating that our algorithms perform robustly even in noisy processors.165
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Figure 9: Performance
of QDiff-based algorithms
for the 3-way, 1-shot task
in (IBM_Almaden).

Figure 10: Performance
of QDiff-LGGI on the 3-
way, 1-shot task across dif-
ferent QNNs.

Figure 11: Performance
of QDiff-based algorithms
on the zero-shot, two-class
classification task.

Figure 12: Performance
of QDiff-based algorithms
on the zero-shot, three-
class classification task.

4.3 Factors Impacting the Effectiveness of QDiff-based QFSL Algorithms166

In this section, we explore the factors that influence the performance of QDiff-based algorithms,167

including the impact of diffusion and denoising steps, the quantity of training data, and the selection168

of QNNs utilized in QDiff-LGGI.169

With variations in the number of diffusion and denoising steps, the performance of QDiff-based170

algorithms on the Digits MNIST and MNIST datasets varies, as shown in Fig. 8. The experimental171

results demonstrate that QDiff-LGGI is highly sensitive to the number of diffusion and denoising steps.172

As the number of steps increases, QDiff-LGGI is improved, indicating that more steps result in the173

generation of higher-quality images that are closer to the target data domain. However, an excessive174

number of steps may cause the original image to degrade too much into noise during the diffusion175

stage. Consequently, during the denoising stage, the reconstruction process may overemphasize the176

label, resulting in a mismatch with the original image. This mismatch negatively impacts inference177

performance, and the phenomenon is more pronounced in QDiff-LGNAI and QDiff-LGDI.178

The quantity of training data used to train the QDDM significantly influences the performance of179

the QDiff-based QFSL algorithm. We compare the performance of the QDDM when trained with180

one-shot versus ten-shot learning. Table 1 presents the performance comparison across different181

datasets. The results indicate that increasing the amount of training data enhances the training of the182

QDDM, which subsequently leads to improved performance of the QDiff-based algorithms when the183

QDDM is well-trained.184

QDiff-LGGI uses generated images to train QNN, which is then used for inference. The performance185

of inference varies depending on the QNN architecture. Fig. 10 shows that different QNNs produce186

varying inference results, likely due to differences in the quantum circuits’ expressibity and entangling187

capabilities[10].188

4.4 Zero-Shot Learning with QDiff-based QFSL Algorithms189

We evaluate the effectiveness of our methods in solving zero-shot tasks. The QDDM model is initially190

trained on the MNIST dataset and then applied within QDiff-based algorithms for evaluation on the191

Digits MNIST dataset. Conversely, we also train the QDDM model on the Digits MNIST dataset192

and assess its performance on the MNIST dataset. We evaluate performance on both 2-way and193

3-way zero-shot classification tasks. The results of these experiments are shown in Figs. 11 and 12.194

Based on these results, we conclude that QDiff-based algorithms demonstrate strong performance in195

zero-shot scenarios when the training and evaluation datasets belong to similar domains.196

5 Conclusion and Future Work197

In this work, we introduce quantum diffusion model (QDM) to tackle the challenges of quantum198

few-shot learning. We propose three algorithms—QDiff-LGDI, QDiff-LGNAI, and QDiff-LGGI—199

developed from both data-driven and algorithmic perspectives. These algorithms demonstrate signifi-200

cant performance improvements over existing baselines. Nevertheless, the current limitations of the201

QDM confine its applicability to relatively simple datasets. Future research could focus on enhancing202

the QDM’s capability and expanding its application to other QML tasks, such as quantum object203

detection and quantum semantic segmentation.204
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