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Verifiable Privacy-Enhanced Rotation Invariant
LBP Feature Extraction in Fog Computing

Mingyun Bian , Joseph Liu , Senior Member, IEEE, Shifeng Sun, Xinpeng Zhang , and Yanli Ren

Abstract—Rotation invariant local binary pattern (RI-
LBP) features have been applied in diverse scenarios with
the advantages of gray-scale and rotation invariance. Se-
cure fog computing has become an emerging paradigm for
enterprises or individuals with a huge volume of private
data, but limited computing power for feature extraction.
Prior secure outsourcing protocols based on LBP and RI-
LBP simply focus on local data privacy, which can only
resist ciphertext-only attack, and also make extracted fea-
tures exposed to the cloud. This work focuses on how
to effectively ensure data confidentiality and feature in-
tegrity. We propose a verifiable privacy-enhanced protocol
for RI-LBP feature extraction (VRLBP) based on the fog
computing paradigm, which mitigates the aforementioned
challenges by involving the proposed symmetric crypto-
graphic scheme where local data and extracted features
are proven secure against chosen plaintext attack. Mean-
while, the stage of verification can check the correctness of
outsourced features with an overwhelming probability and
constant computational complexity. The security analysis
and computational costs demonstrate that VRLBP can re-
duce the computation overhead to around 30% of original
feature extraction in a privacy-preserving manner. To ex-
hibit the practical utility, VRLBP is implemented for deep-
fake detection on five public datasets. Extensive evalua-
tions indicate that VRLBP achieves almost the same accu-
racy as the original RI-LBP algorithm and outperforms the
state-of-the-art protocols.

Index Terms—Deepfake detection, feature extraction, ro-
tation invariant local binary pattern (RI-LBP), secure fog
computing.
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I. INTRODUCTION

IN the era of the Internet of Things (IoT), huge amounts of
data are processed from IoT systems with limited computing

and defense capabilities [1]. Centralized cloud computing infras-
tructure demands extensive costs for consistent implementation,
and the rapid development of fog computing brings considerable
advantages in public resource usage efficiency and economic
productivity. Efficient and flexible fog computing facilitates
public services with sufficient data storage and computing power
to reduce time costs. Fog computing achieves decentralized
computing by the IoT devices and cloud platform, and the hierar-
chical architecture is shown in Fig. 1. In the meantime, fog nodes
are intended for processing part of the applications’ workload
locally to the clients’ devices. Therefore, the computationally
weak end-user tends to transport big data with confidential
information to a local fog server, and then deposit it in a cloud.
Such practices seem intriguing, yet raise critical security and
privacy concerns in smart IoT systems. To ensure individuals’
privacy, the confidentiality of data and the query results should
not be disclosed in a fog-cloud environment. Rotation invariant
local binary pattern (RI-LBP) [2] has attracted considerable
attention in different research areas.

The advance of modern digital image processing tools and
deep learning has resulted in a flood of forgery images or videos
on the Internet, such as deepfake, which synthesizes and manip-
ulates real videos of humans based on deep learning, to create
fake videos with high fidelity. Several algorithms based on LBP
focus on deepfake detection to uncover deceived images [3], [4],
[5]. Arini et al. [3] applied an LBP descriptor for image feature
preprocessing to filter the image processing effect of deepfake
generation. Remya et al. [4] exploited an efficient deepfake
detection model incorporating deep RI-LBP features sourced
from chrominance space. To achieve faster execution, Suganthi
et al. [5] utilized a fusion of the fisherface-LBP histogram algo-
rithm for reducing the dimensionality of features and execution
of detection time.

Fog computing, as a decentralized computing infrastructure,
complements cloud computing with the ability to store and ana-
lyze data temporarily. In an architecture of fog computing, more
owners are willing to delegate the heavy computational work-
loads of image feature extraction to fog-cloud servers. There
exist some potential risks in cyberspace and some researchers
have paid increasing attention for privacy-preserving computa-
tion to overcome potential security risks in various scenarios.
Revathi et al. [6] developed a secure healthcare data publishing
protocol by integrating adaptive fractional brain storm with
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Fig. 1. Architecture of fog computing.

whale optimization algorithm to protect the privacy of healthcare
data while keeping data utility. Liu et al. [7] proposed the first dy-
namic searchable symmetric encryption protocol and achieved
a secure index based on the hash chain and trapdoor updates to
resist file injection attacks and protect patients’ privacy. Deebak
et al. [8] provided an identity-based seamless secure protocol
based on cryptography and hash-centered rank for resisting
quantum-computer attack. To guarantee the validity of cloud
data efficiently, Gao et al. [9] put forward an integrity auditing
protocol by utilizing a private keyword without exposing any
identity of data containing the queried keyword.

Most privacy-preserving works for feature processing based
on homomorphic encryption scheme, multiparty computation,
secret sharing, and order-preserving encryption (OPE) [10],
[11], [12], [13], [14], [15]. There exist tradeoff requirements
between utility and privacy preservation without uniform stan-
dards. Recently, Hsu et al. [10] conducted a pioneer study of
secure scale-invariant feature transform (SIFT) computation in
the ciphertext domain by using Paillier’s homomorphic encryp-
tion, but its deficiencies of intractable and insecure computation
on the server side could not be ignored. To achieve image
global feature detection algorithms in the ciphertext domain, Qin
et al. [11] made it feasible by deploying somewhat homomorphic
encryption to convert feature descriptor detection in the plaintext
domain into circuit-level operations with a security guarantee.
Hu et al. [12] applied the same encryption method as [11] to
secure computation on SIFT based on additive secret sharing
among two servers.

In recent years, there have been growing research endeav-
ors on building LBP-based privacy-preserving protocols [13],
[14], [15]. Xia et al. [13], [14] designed secure image feature
extraction protocols on LBP descriptors and proposed special
image encryption algorithms, including image block shuffling
and pixel substitution operations, in the foundation of OPE,
but it can only resist the ciphertext-only attack (COA). Similar
to [14], Wang et al. [15] proposed a privacy-preserving rotation
invariant LBP feature computation protocol including block
shuffling, pixel shift, and diffusion. Although the content of
original image sets is protected by OPE [13], [14], [15], it cannot
offer strong security to ciphertext statistic information, which
may be divulged to semihonest adversaries. Currently, there
exist the following security challenges in the privacy-preserving
RI-LBP feature extraction. First, the statistic information of

outsourced features is exposed to the adversaries in an untrusted
environment. Second, the outsourced results may be deceived
by the cloud for intentional or unintentional purposes. Third,
the ciphertext of data can only resist ciphertext-only attack. To
address these security challenges, a verifiable privacy-enhanced
RI-LBP protocol is proposed, which can not only protect the
content of sensitive data and outsourced features against chosen
plaintext attack, but also check the integrity of outsourced results
effectively. The main contributions are listed as follows.

1) To pave the way for secure RI-LBP feature extraction
in a fog-cloud environment, we propose a lightweight
cryptographic scheme based on the approximate greatest
common divisor problem (GCD) [16], which supports
basic building blocks of the proposed protocol.

2) We design a verifiable privacy-enhanced RI-LBP feature
extraction protocol (VRLBP) in fog computing. It not
only protects the privacy of both the local data and out-
sourced results, but also checks the integrity of outsourced
RI-LBP features with an overwhelming probability and
constant computational complexity.

3) Based on the proposed cryptographic scheme, we provide
detailed security proof and prove that VRLBP achieves
a higher security strength against chosen plaintext attack
than related works [13], [14], [15]. Simultaneously, the
constant computational complexity in verification is supe-
rior to [17], [18], [19], and [20] with linear computational
complexity.

4) Experiments on the computational costs on the client side
show that VRLBP decreases around 70% of the original
computation overhead. In the meantime, VRLBP gains
time efficiency in verification compared with [17] and
[18]. To evaluate the performance of secure feature ex-
tractions, we apply VRLBP to deepfake detection on five
datasets. The utility is almost identical to the original RI-
LBP algorithm and outperforms the related works [13],
[14], [15].

The rest of the article is organized as follows. In Section II,
we present the background including the symmetric encryption
schemes, RI-LBP algorithm, and system model. In Section III,
we introduce the proposed encryption scheme and verifiable
privacy-enhanced RI-LBP protocol in detail. We carry out the
security analysis in Section IV, and evaluate the proposed pro-
tocol in Section V. Finally, Section VI concludes this article.

II. BACKGROUND

In this section, the related background of research topic and
the system model structure with security goals are demonstrated
briefly.

A. Security Notions of Symmetric Encryption Schemes

Based on the approximate GCD problems [16], a specific
assumption is made to describe symmetric encryption schemes,
which is constructed as follows.

According to [16], there is a corresponding assumption to
be stated. λ is the security parameter used to output secret
key p. For a λ-bit odd positive integer p, the distribution over
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TABLE I
TABLE OF MAIN NOTATIONS

γ-bit integers equals to Dγ,ρ(p) = {q R←− Z
⋂
[0, 2γ/p), r

R←−
Z
⋂
(−2ρ, 2ρ) : Output � = pq + 256r}, where q and r are

the random integers constrained in the intervals of [0, 2γ/p)
and (−2ρ, 2ρ), respectively. It should be noted that the 256r is
substantially smaller than p/2 in absolute value. In short, (λ, γ,
ρ)-Approximate− GCD Problem is the hardness of recovering
p based on some polynomially samples derived from Dγ,ρ(p)
[16], [29].

IND-CPA security: The indistinguishability of ciphertexts
against chosen plaintext attack (IND-CPA) is represented by
the upcoming adversarial procedures of a cryptographic game
between a challenger C and an adversary A .

1) C first generates public parametersPP and the secret key
pbased on the initial security parameter λ, then broadcasts
PP to A while secret key p is kept by C privately.

2) A submits messagem for encryption queries.C performs
encryption operations to return the ciphertext of message
m to A .

3) A generates two chosen plaintexts m0, m1 with the same
length and transmits them to C . C randomly picks mα

where α ∈ {0, 1} and encrypts it into cα based on p.
Eventually, C sends cα back to A .

4) A completes its guessα′ ∈ {0, 1}. Ifα′ = α, and A wins
the game.

In the above game, A is defined as an IND-CPA adversary
and the advantage is defined as |Pr[α′ = α] − 1

2 |. (u, ε)-IND-
CPA secure means all u-time IND-CPA adversaries with the
advantage of no more than ε to win the game. For a probabilistic
encryption system, it is regarded as IND-CPA secure if any IND-
CPA adversary wins the game with a negligible advantage.

B. Feature Extraction on RI-LBP

RI-LBP descriptor was first proposed in [2] with the advan-
tages of sample theory and effective computation, and rotation
invariance property derived from LBP descriptor, it has been

Fig. 2. RI-LBP descriptor with 3 × 3 neighborhood.

proved to be applicable in different fields. For a better un-
derstanding, the process of feature extraction on the RI-LBP
descriptor is elaborated in Fig. 2 based on a 3× 3 neighborhood
with a radius of 1. The whole process of monochrome texture
image feature extraction on RI-LBP consists of three parts,
i.e., 1) local neighborhood initialization; 2) toward gray-scale
invariance; and 3) toward rotation invariance.

To initialize a local neighborhood, a neighbor set is defined as
V = {vc, v0, v1, v2, . . . , vN−1}, where vc denotes the gray value
to the center pixel of a local neighborhood, N (N > 1) denotes
the maximum number of neighbors on a circle of radius r, and
vi (i = 0, 1, . . . ,N− 1) denotes gray values corresponding to
coordinates of a local neighborhood, which are calculated by

xi = xc + rcos

(
2πi
N

)
,

yi = yc − rsin

(
2πi
N

)
(1)

if xi and yi are two float point numbers, pi can be figured out
by bilinear interpolation computation.

In order to achieve gray-scale invariance, we calculate the dif-
ferences of pixel values vi − vc to get {δi}N−1

i=0 = {v0 − vc, v1 −
vc, . . . , vN−1 − vc}. The neighbors are signed as “1” when the
neighborhood pixel value are bigger than the center pixel value,
otherwise “0”. The calculation of gray-scale invariant features is

G =

N−1∑
i=0

s(vi − vc)2
n, (2)

s(x) =

{
1, x ≥ 0

0, otherwise.
(3)

To make improvements on gray-scale invariance and achieve
the rotation variance, the results of RI-LBP features LBPRI are
calculated by

LBPRI = min({ROR(G, i)|i = 0, 1, . . . ,N− 1}) (4)

where ROR(G, i) means the i times bit-wise operation of the
circular right shift in the clockwise direction on a candidate num-
ber G, and the function of min(·) finds the smallest item among
a set of inputs. As shown in Fig. 2, the decimal conversion of the
binary number (00100111)2 is the final result. We summarize
the main notations in Table I.
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Fig. 3. System model.

C. System Model

Inspired by three hierarchies of the fog computing architec-
ture, as shown in Fig. 3, system model consists of three kinds
of entities, including data provider (DP), fog nodes (FNs), and
cloud server (CS). They are as follows.

1) DP: With the massive multimedia image data collected
from the Internet, DP sends several queries to CS via the
local FNs to extract RI-LBP features for personal needs
(e.g., deepfake detection). Meanwhile, DP can verify the
integrity of outsourced results.

2) FNs: FNs bridge DP and CS, which have relative ad-
vantages in data storage with low network latency con-
sumption for DP. They will store the outsourced data and
cooperate with CS to provide the secure feature extraction
services for DPs.

3) CS: CS intends to get a deep insight into the multimedia
image patches stored in every FN, and communicates with
multiple FNs asynchronously to solve DP’s queries. Sup-
pose that both FNs and CS will confirm to the proposed
protocol in principle.

D. Security Model

In this section, the threat model and security requirements of
VRLBP are presented as below.

1) Threat Model: As illustrated in Fig. 3, the adversaries have
divided into three categories: 1) untrusted CS; 2) malicious FNs;
and 3) the third-party adversaries.

Untrusted CS: CS is untrusted in VRLBP, which means it
not only may try to compromise the private knowledge of DP
from their ciphertext data, but also may feedback incorrect
computational results to DP. During the protocol execution,
it may collude with some malicious FNs to infer the private
intermediate results and deceive DPs with error results. VRLBP
requires that at most κ− 1 malicious FNs can collude with CS
for security considerations, where κ denotes the total number of
FNs.

Malicious FNs: In VRLBP, malicious FNs may analyze the
sensitive knowledge of DPs from their ciphertext data. They
may also collude with the untrusted CS to obtain the private
information of outsourced features and generate meaningless
outsourced results deliberately for illegal uses.

Third-party adversaries: Apart from untrusted CS and mali-
cious FNs, some potential adversaries outside the VRLBP are

defined as the third-party adversaries, which can eavesdrop,
investigate, and manipulate the messages transmitted by the
insecure public channels.

2) Security Goals: As mentioned above, for such a malicious
model, the security goals are listed below as follows.

1) Data privacy: FNs and CS should not gain any content
of local image sets at any time for illegal purposes. In
the same time, it should not exposed to the third-party
adversaries during data transmission.

2) Feature privacy: The intermediate results and final out-
puts should not be disclosed to FNs and CS in cleartexts
while protocol executes. The third-party adversaries have
no way to infer the content of extracted features.

3) Feature integrity: DP will receive correct results if FNs
and CS conform to the protocol. Under a malicious set-
ting, the correctness of outsourced results needs to be
verified by DP.

4) Efficiency: Outsourcing computation should solve the
tasks towards limited client resources in that the compu-
tational burden of DP in the privacy-preserving protocol
should be significantly lower than the original RI-LBP
algorithm.

III. PROPOSED PRIVACY-ENHANCED FEATURE EXTRACTION

PROTOCOL OF RI-LBP

In this section, the proposed symmetric encryption scheme
and privacy-enhanced protocol for RI-LBP feature extraction
are described in detail.

A. Proposed Symmetric Encryption Scheme

The proposed symmetric encryption scheme E consists of
three main components.

1) KeyGen(λ): Generate theλ-bit secret keypunder the input
of security parameter λ.

2) Enc(p, m): Select two random integers r, q in (−2ρ, 2ρ)
and [0, 2γ/p), respectively, where 256r is substantially
smaller than p/2 in absolute value. Given a plaintext
messagem ∈ [0, 255] and the private key p, the ciphertext
of m is calculated

c = pq + 256r +m. (5)

3) Dec(p, c): Output m based on the input of p and c

m = (c mod p) mod 256 (6)

where the results of the modular arithmetic operation on
the divisor of p and 256 range from [0, p− 1] and [0, 255],
respectively.

It should be pointed out that the symmetric encryption scheme
turns out to be “somewhat homomorphic” if the noise r is small
enough compared with the secret keyp. It supports the evaluation
of low-degree polynomials over ciphertexts. In other words,
the symmetric encryption scheme provides finite arithmetic
operations of addition and multiplication over ciphertexts [21].

Correctness: As mentioned before, the noise of Encrypt is
substantially smaller than p in absolute value, (i.e., |256r| � p).
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Then, the ciphertext output of c = pq + 256r +mwith |256r +
m| < p. Therefore, we obtain [[c]]p = 256r +m, and m =
[[[[c]]p]]256, where [[·]]p, [[·]]256 mean the modular arithmetic op-
eration on the divisor of p and 256, respectively.

More importantly, the proposed protocol is built based on the
addictive homomorphic properties of E

Encp(m1) +©Encp(m2) = Encp(m1 +m2), (7)

a · Encp(m) = Encp(a ·m) (8)

whereadenotes a positive scalar integer and the results of (a ·m)
belong to [0, 255].

B. Proposed Privacy-Enhanced Protocol

Now, the VRLBP is introduced in detail, where the data
provider offloads feature extraction tasks to fog servers. The
system framework of VRLBP is comprised of the following
four stages.

1) Initialization: The shared secret key of the symmetric
encryption scheme is established by mutual agreement
between DP and CS.

2) Query construction: DP first encrypts raw image sets by
the secret key and splits every encrypted image into κ
(κ > 1) patches without overlapping. Then, encrypted
image patches are transferred to all of FNs as queries,
and let every FN receive one patch per encrypted image
randomly.

3) Feature extraction: FNs and CS extract secure features
interactively according to the protocol, and outsourced
results are obtained by FNs.

4) Feature verification: DP decrypts and verifies the correct-
ness of outsourced features responded by FNs.

The concrete construction of four stages are described in the
next paragraphs.

Initialization: In the first stage, each entity implements ini-
tialization preparation. The initialization phase consists of the
following two parts.

1) DP generates and shares a symmetric key p of E with CS,
which is kept privately by two parties for data protection and
feature analysis.

2) There are κ FNs for data collection and the system param-
eter κ is broadcast to DP.

Query construction: For a dataset D , DP performs the fol-
lowing two steps to form queries for outsourcing computation
services.

1) In a period of time, DP collects a dataset D = {di|i ∈
[1, T ]} with T images from the Internet, and encrypts them by
p.

2) DP splits every encrypted image intoκpatches, and delivers
them to FNs with randomly shuffling, which makes every FN
obtain one image patch per encrypted image.

Feature extraction: On receiving the queries from DP, every
FN picks an image patch to calculate RI-LBP features with CS
through Algorithm 2–4.

Algorithm 1: Query Construction.
Input:

DP : The image data set with identity codes
(D = {di}Ti=1, ID = {idi}Ti=1), the symmetric
encryption algorithm E and secret key p.

Output:
The encrypted image patches with identity codes
(De = {{[[dij ]]}Ti=1}κj=1, ID).

1: for each i ∈ [1, T ] do
2: [[di]]= E .Encp(di), and[[di]] is splitted into

{[[dij ]]}κj=1.
3: Send {[[dij ]]}κj=1 to FNs with randomly shuffling.
4: end for

As shown in Fig. 2, there exist four kinds of operations in the
plaintext algorithm, where four main subprotocols over a neigh-
borhood are summarized in Algorithm 2–4 and the intact feature
statistics over an image patch are obtained by Algorithm 5.

1) Secure difference: FN first selects an image patch and
initiates a local neighborhood as V . The center coordinates are
noted as (xc, yc), the another coordinates of eight neighbors are

figured out by ({xj}7
j=0 = {xc + cos(

2πj
8

)}7
j=0, {yj}7

j=0 =

{yc − sin(
2πj

8
)}7

j=0). For some floating-point numbers in

{xj , yj}7
j=0, [[vj ]] is calculated by

[[vj ]] = (�xj	 − xj) · (�yj	 − yj) ·M(
xj�, 
yj�)
+©(�xj	 − xj) · (yj − 
yj�) ·M(�xj	, 
yj�)
+©(xj − 
xj�) · (�yj	 − yj) ·M(
xj�, �yj	)
+©(xj − 
xj�) · (yj − 
yj�) ·M(�xj	, �yj	) (9)

where M(·) is a function that mapping the possible coordinates
into values one-to-one. �·	 returns a number rounded up to a
input number of decimal places, 
·� returns a number rounded
down to an input number of decimal places.

To satisfy the encryption mechanism E , the floating-point
number in {[[vj ]]}7

j=0 is transformed into the integer by

[[vj ]] =

{
�[[vj ]]	, [[vj ]] -©
[[vj ]]� > �[[vj ]]	 -©[[vj ]]


[[vj ]]�, otherwise.
(10)

Then, the set {[[δk]]}7
k=0 is calculated by subtracting the center

pixel from neighbor pixels. To guarantee the security, FN masks
{[[δk]]}7

k=0 by a private and random permutation matrix σ with
size of 8×8, where permutation matrix is a binary matrix with
only one entry of 1 in each row and each column.

2) Secure binarization: As CS owns the secret key p, the set
of {[[δ̂k]]}7

k=0 can be binarized toB with the threshold of 0, where
values greater than or equal to the given limit map to 1; otherwise
values map to 0.

3) Secure shift: To restore the original order of B̂, FN utilizes
their own σ−1 to get B, and calculate eight results through at
most seven times bit-wise operations of the circular right shift
in clockwise direction based on homomorphic addition.
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Algorithm 2: Secure Difference and Binarization.
Input:

FN: An encrypted image patch.
CS: The secret key p of E .

Output:
The results of secure difference and binary operation B̂.

1: FN initializes a set V = {[[vc]],[[v0]],[[v1]], . . . ,[[v7]]} as a
local neighborhood of an image patch where [[vc]] is the
center value in ciphertext.

2: for each i ∈ [0, 7] do
3: [[δi]]=[[vi]] -©[[vc]].
4: end for
5: Choose a random permutation matrix σ to get
{[[δ̂i]]}7

i=0 = {[[δi]]}7
i=0 · σ.

6: Send {[[δ̂i]]}7
i=0 to CS .

7: for each i ∈ [0, 7] do
8: CS binarizes the plaintext of [[δ̂i]]with a threshold

of 0 to get b̂i.
9: Encrypt b̂i to get [[b̂i]]= E .Encp(b̂i).

10: end for
11: Send B̂ = {[[b̂i]]}7

i=0 to FN .

Algorithm 3: Secure Shift.
Input:

FN :B̂, the inverse matrix σ−1.
Output:

The results of secure shifting operation {Tci}7
i=0.

1: Cancel permutation and get B = B̂ · σ−1 = {[[bi]]}7
i=0.

2: for each i ∈ [0, 7] do
3: Convert {[[bi]]}7

i=0 to the decimal with eight results:
4: [[Td]]i =[[b0]]· 2(7−i)mod8 ⊕ [[b1]]· 2(6−i)mod8 ⊕

[[b2]]· 2(5−i)mod8 ⊕ [[b3]]· 2(4−i)mod8 ⊕
[[b4]]· 2(3−i)mod8 ⊕ [[b5]]· 2(2−i)mod8 ⊕
[[b6]]· 2(1−i)mod8 ⊕ [[b7]]· 2(0−i)mod8.

5: end for
6: for each i ∈ [0, 7] do
7: if i < 7 then
8: for each j ∈ [i+ 1, 7] do
9: Tci = {′Tci,′[[Tdi]] -©[[Tdj ]]}.

10: end for
11: else
12: Tc7 = {′Tc7,

′[[Td7]] -©[[Td6]]}.
13: end if
14: end for
15: Send {Tci}7

i=0 to CS.

4)Secure minimization: To find the minimum value in a neigh-
borhood, CS finds the first subset that only contains nonpos-
itive elements in {Tci}7

i=0. Based on the predefined label set
{[[Tdi]]}7

i=0, FN will find the minimum cipher.
Suppose there are t neighborhoods in an image patch, a

ciphertext feature set {[[ci]]}ti=1 is extracted by Algorithm 2–4, the
principal task is to count the feature values in total. Followed by

Algorithm 4: Secure Minimization.
Input:

CS :{Tci}7
i=0, secret key p of E .

Output:
The label of minimum value in a neighborhood ′Tc′i.

1: for each i ∈ [0, 7] do
2: Decrypt {Tci} to get a difference set in plaintext

{Tpi} = E .Decp({Tci}).
3: if all elements in {Tpi} ≤ 0 then
4: Store the corresponding label ′Tc′i and break.
5: else
6: Continue.
7: end if
8: end for
9: Send the label of minimum value ′Tc′i to FN .

Algorithm 5: Secure Feature Set Over an Image Patch.
Input:

FN: Given a feature set of ciphertext {[[ci]]}ti=1.
CS: Secret key p of E .

Output:
The secure RI-LBP feature set PF over an image
patch.

1: for each i ∈ [1, t− 1] do
2: foreach j ∈ [j + 1, t] do
3: TCi = {′TCi,

′[[ci]] -©[[cj ]]}.
4: end for
5: end for
6: TCt = {′TCt,

′ TCt =[[ct]] -©[[ct−1]]}.
7: Send {TCi}ti=1 to CS .
8: for each i ∈ [1, t] do
9: CS gets TPi = E .Decp(TCi).

10: end for
11: for each i ∈ [1, t] do
12: Count the numbers of value 0 in TPi, which is

noted as tci, and store it with corresponding label
′TC ′i.

13: end for
14: Send {′TCi,

′ tci}ti=1 to FN.
15: FN gets a secure feature set PF = {{[[ci]], tci}ti=1, id}

via the label sets {′TC ′i}ti=1.
16: return PF .

Algorithm 5, FN takes the differences in the encrypted domain,
which can be visualized by an upper triangular matrix⎛

⎜⎜⎜⎝
[[c1]] -©[[c2]] [[c1]] -©[[c3]] · · · [[c1]] -©[[ct]]

[[c2]] -©[[c3]] · · · [[c2]] -©[[ct]]
. . .

...
0 [[ct−1]] -©[[ct]]

⎞
⎟⎟⎟⎠ .

FN allocates a label set {′TC ′i}t−1
i=1 to each row of the upper

triangular matrix and attach TCt =[[ct]] -©[[ct−1]]with the label
of {′TC ′t}. Then, CS decrypts {TCi}ti=1 into {TPi}ti=1, which
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can be visualized by a matrix⎛
⎜⎜⎜⎝

m1 −m2 m1 −m3 · · · m1 −mt

m2 −m3 · · · m2 −mt

. . .
...

0 mt−1 −mt

⎞
⎟⎟⎟⎠

and checks the numbers of zero elements in each subset. Finally,
FN gets the intact feature statistics over an image patch.

Feature verification: Upon receiving FNs’ feedback, DP first
merges some PFs with the same id to obtain SF, thus the total
secure feature set is noted as {SFi, idi}Ti=1. Then, a random
sample SFξ (ξ ∈ [1, T ]) is selected and decrypted to get the
secure feature histogram Rs

ξ. At the same time, the original
image feature histogram Ro

ξ is matched by idξ. Eventually,
DP measures the similarity between Ro

ξ and Rs
ξ to check the

correctness of outsourced results. The verification is successful
if the score f is no more than the empirical threshold τ (τ = 0.4);
otherwise, the outsourced results are invalid and rejected.

(f ∪ ⊥)← Verify(τ,
√∑

(Ro
ξ − Rs

ξ)
2). (11)

Remark: To get the empirical threshold τ , it is necessary
to calculate errors between outsourced and original RI-LBP
features over all samples involved in experiments. As the process
of RI-LBP feature extraction involves floating-point calculation
and the proposed symmetric encryption scheme only deals
with integers, thus there exists rounding-off errors between
outsourced and plaintext features. The maximum calculation
error is set as the threshold τ .

IV. ANALYSIS OF THE PROPOSED PROTOCOL

In this section, the proof of the proposed symmetric encryp-
tion scheme and security analysis of VRLBP are provided.
Moreover, computational complexity and advantages compared
to the related works are demonstrated.

A. Security Proof of Symmetric Encryption Scheme

In this section, the proposed symmetric cryptographic scheme
is proved to be IND-CPA secure based on the (λ, γ, ρ)-
approximate− GCD problem, where λ denotes the security pa-
rameter, γ, ρ are separately set to restrict the range of q and r,
which are public parameters in (5).

Lemma IV.1: The proposed symmetric probabilistic en-
cryption scheme is (u, ε)-IND-CPA secure if (λ, γ, ρ, u′, ε′)-
Approximate −GCDProblem holds, where u′ = u and ε′ =
ε

256 .
Proof: qp(z) and rp(z) are referred to as the quotient and re-

mainder of z to p, respectively, therefore, z = qp(z) · p+ rp(z),
which is an integer belonging to the set [0, 2γ). Provable security
can be evaluated by a game between an adversary A and a
challenger C . �

Suppose that A can output correct plaintext bit with the
advantage of at least ε and has access to adequate numbers of
samples from Dγ,ρ(p), the target is to get the encryption key
p with a probability of ε′ and its procedures are presented as
follows.

1) C initiates a random sample set {�1, �2, . . ., �φ} ∈
Dγ,ρ(p) and sends the security parameter λ to A .

2) A submits the plaintext message m for encryption
queries. After obtaining it, C randomly selects a subset
S ⊆ {1, 2, . . . , φ} and figures out c = m+

∑
l∈S �l as

the ciphertext of m. Finally, c is sent to A .
3) A submits two chosen plaintexts m0, m1 with the same

length and C randomly chooses a plaintextmα whereα ∈
{0, 1}, two integers r ∈ (−2ρ, 2ρ), z ∈ [0, 2γ), a subset
S ′ ⊆ {1, 2, . . ., φ} and calculates

c′ = z +mα + 256r + 256
∑
l∈S′

�l. (12)

4) A completes its guess α′ ∈ {0, 1}.
The above procedures of the game are conducted interactively

by A and C many times. Based on the assumption that A has
the advantage of ε to win the game, thus c′ will be a correct
ciphertext of mα or m1−α. Simultaneously, the plaintext of c′

equals to mα′ = [[rp(z)]]256 +mα, considering

[[[[c′]]p]]256 = [[[[z]]p]]256 +mα = [[rp(z)]]256 +mα. (13)

Take an operation of modular 2 on c′

[[mα′ ]]2 = [[[[rp(z)]]256]]2 +©[[mα]]2 = [[rp(z)]]2 +©[[mα]]2. (14)

Besides

[[rp(z)]]2 = [[mα′ ]]2 +©[[mα]]2. (15)

As the prime p is large enough, therefore

[[z]]2 = [[qp(z)]]2 +©[[rp(z)]]2. (16)

From (15) and (16)

[[z]]2 = [[qp(z)]]2 +©[[mα′ ]]2 +©[[mα]]2. (17)

Eventually, C gains

[[qp(z)]]2 = [[z]]2 +©[[mα′ ]]2 +©[[mα]]2. (18)

As shown in [16] and [22], C can recover p with a probability
of 1

2 if C gets access to multiple [[qp(z)]]2 corresponding to
different z. Consequently, the algorithm with above procedures
could recover p under the conditions of the probability of A
distinguishing ciphertext is larger than 1

2 .
Now, we give a probability analysis to illustrate the success

probability for C to recover p. If [[rp(z)]]256 +mα = mα or
m1−α holds, accordingly, [[rp(z)]]256 = 0 or m1−α −mα, and
the probability is 1

128 . In the aforementioned analysis, C can
recover p with a probability of 1

2 if C gets access to multiple
[[qp(z)]]2 corresponding to the different z. In total, C can recover
p with the probability of ε′ = ε

256 .
Remark: The secret key length is set to at least 128 bits to

obtain enough key space for resisting brute force and exhaustive
attacks. In experimental settings, λ is set as 150 in the proposed
encryption scheme for security consideration.

B. Security Analysis of VRLBP

In this section, the security of VRLBP is analyzed from two
aspects of data privacy and feature privacy as follows.
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1) Data privacy: The raw image patches are encrypted
before exposing to FNs, the security of the symmetric
encryption algorithm has been analyzed before, and the
outsourced results achieve IND-CPA security. While the
owners of the secret key are limited to DP and CS, the
confidentiality of complete original data is well protected
against corrupted parties. Even ifκ− 1 FNs are malicious
and colluding with CS, it is still secure as the partial image
patches that the honest FN holds are well protecting. In ad-
dition, randomly shuffling in image patches transferring
from DP to FNs will make it hard for data restoration.

2) Feature privacy: For the whole process of feature ex-
traction in an untrusted fog-cloud environment, VRLBP
guarantees the security of extracted features. During the
process of secure difference and binarization, FNs obtain
the results of secure difference over a neighborhood,
as the intermediate results {[[δi]]}7

i=0 are shuffled, which
guarantees Algorithm 2 with a security strength of 8! per
local neighborhood. Upon gaining the results of secure
binarization that CS encrypts, FNs will not decipher it
without the secret key. In the phase of secure shift , eight
results of seven times bit-wise of circular right shifting
clockwise are achieved through addition, scalar multipli-
cation operation in ciphertext based on the homomorphic
properties, which could prevent it from being exposed to
CS. In a period of the whole secure features generation of
a patch, FNs finally own the features statistics results in
ciphertext without the secret key, and CS obtains the total
difference results without corresponding labels; there-
fore, the plaintext of complete RI-LBP features cannot
be divulged in an untrusted fog-cloud environment.

C. Probability Analysis for Verification

In this section, the security of the verification phase is ana-
lyzed in the following paragraphs. After interactive computation
between FNs and CS, FNs feedback the outsourced feature
sets {SFi, idi}Ti=1 to DP, which contains T ciphertext feature
vectors with corresponding identity codes. Under the malicious
setting, we declare that DP is intended to choose a secure
feature histogram randomly from {SFi}Ti=1 to verify. It is secure
for deceptive attacking while T − 1 ciphertext feature sets are
fabricated and one real feature set is left in probability.

The success probability of verification is

Pr =
T − 1
T

= 1− 1
T
. (19)

It has a negligible advantage with the number of images
increasing, therefore the phase of verification is effective with
an overwhelming probability.

As the prior works [13], [14], [15] have not deployed verifica-
tion modules in their LBP-based privacy-preserving protocols,
thus we analyze VRLBP with verifiable protocols [17], [18],
[19], [20] applied in different scenarios. In detail, VPMLP [17]
and GuardLR [18] verify the correctness of machine learning
predictions based on discrete logarithm problem and message
authentication code, respectively. FEncKV [19] realize verifica-
tion by a self-designed trapdoor permutation function, and Ge

TABLE II
COMPUTATIONAL COMPLEXITY AND SUCCESS PROBABILITY OF VERIFICATION

TABLE III
COMPUTATIONAL COMPLEXITY OF DIRECT AND OUTSOURCING

FEATURE EXTRACTION

et al. [20] designed a verifiable keyword search scheme based
on bilinear pairing. Note that the schemes of [17], [19], and [20]
could guarantee results with the probability of 1 and [18] gives
a near 100% success rate, but the computational complexity
of [17], [18], [19], and [20] was linearly related to the total
number of data/records. Only a random sample is involved in the
verification of VRLBP such that the computational complexity
is independent of the number of samples. Thus, the verification
mechanism of VRLBP has the competitive advantages compared
with [17], [18], [19], and [20]. The theoretical analysis on
different verification approaches is listed in Table II and VRLBP
achieves relative advantages in computational complexity and
success probability.

D. Comparisons of Computational Complexity With
Direct Feature Extraction

To exhibit the efficiency of computational complexity at DP,
Table III compares direct feature extraction and outsourcing
computation complexity on 10 000 JPEG images with the size of
28× 28, where “Add., Sub., Mult., Div., Mod., Exp.” means the
arithmetic operations of addition, subtraction, multiplication,
division, modulo, and exponential, respectively.

As described in Section II, the original RI-LBP algorithm
composes of local neighborhood initialization, toward gray-
scale invariance, and toward rotation invariance. First, we an-
alyze the computational complexity of a single pixel required in
RI-LBP. In the stage of local neighborhood initialization, it takes
20 addition, 40 subtraction, 64 multiplication, and 16 division
operations. In the next stage, it takes 8 subtraction operations
to achieve gray-scale invariance over a local neighborhood.
For the advanced improvement of rotation variance, it costs 56
addition, 64 multiplication, and 64 exponential operations per
pixel. Therefore, it requires 76 addition, 48 subtraction, 128
multiplication, 16 division, and 64 exponential operations for
a single pixel in the original RI-LBP in total. Then, the total
costs for 10 000 images per 784 pixels have been reckoned,
and it needs around 6.0× 108 addition, 3.8× 108 subtraction,
1.0× 109 multiplication, 1.3× 108 division, and 5.0× 108 ex-
ponential operations.

In VRLBP, as two addition and two multiplication operations
are required in one image encryption, DP first encrypts 10 000
images by taking 2× 105 addition, and 2× 105 multiplication
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TABLE IV
COMPARISON OF LBP-BASED PRIVACY-PRESERVING WORKS

operations. Then, FNs and CS jointly extract ciphertext features
by performing around 1.7× 109 addition, 4.2× 109 subtrac-
tion, 2.1× 109 multiplication, 1.3× 108 division, 6.8× 109

modulo, and 5× 109 exponential operations in total following
the Algorithm 2–5. Lastly, two modulo operations are needed
in one image decryption, thus DP decrypts the ciphertext fea-
tures by taking around 1.6× 107 modulo operations in feature
verification.

In VRLBP, DP can reduce the computational complexity
apparently in five terms except for the modulo operations in
comparison with original RI-LBP algorithm. It should be noted
that the modulo operations that DP executes for verification are
constant with the variable number of images. Thus, it ensures
efficient implementation of DP.

E. Comparisons of the Prior Works

As VRLBP is a crypto-based algorithm to protect confidential
information for RI-LBP descriptor, the comparison of the exist-
ing LBP-based secure outsourcing protocols is listed in Table IV
to show meaningful advantages in different security properties.

Although all of the related works [13], [14], [15] can ensure
data confidentiality for resisting ciphertext-only attack, VRLBP
based on an IND-CPA encryption scheme can achieve higher
security towards local data than the previous ones. More impor-
tantly, the confidentiality of extracted features is guaranteed in
a fog-cloud environment, at the same time, the correctness of
outsourced features can be checked. In total, VRLBP can resist
chosen plaintext attack while guarding the privacy of user data
with extracted features and the integrity of outsourced results to
defend against potential deceptive attacks. In summary, VRLBP
has the significant advantages in a higher secure guarantee than
prior works.

V. EXPERIMENTAL EVALUATIONS

In this section, VRLBP is evaluated in terms of the compu-
tational efficiency of clients, the utility of outsourced RI-LBP
features, and the efficiency of verification. The experiments
are implemented on two machines, a desktop computer with
Intel(R) Core(TM) i7-10700 CPU at 2.90 GHz and 16-GB
memory (CS+NPs), and a MacBook Pro laptop with Intel Core i5
CPU@1.4 GHz and 8-GB memory (DP). The number of FNsκ is
set as 4. The programming language version is Python3.6, using
the NumPy library. In addition, the facial images are normalized
to 28×28 and each FN obtains image patches with 14 × 14.

As far as we know, there are three LBP-based privacy-
preserving works [13], [14], [15], serving as backbones for
utility evaluation. Based on the OPE encryption technique, Xia

et al. [13], [14] and Wang et al. [15] separately design privacy-
preserving protocols for extracting LBP and RI-LBP features.
All of prior arts only enable data privacy with COA secure. The
encryption approaches of prior arts mainly focus on shuffling
image blocks and neighbors inside image blocks. Its utility
degradation cannot be ignored because of the randomly shuffling
operation for neighbors inside image blocks, which irreversibly
disturb the original feature values of local neighborhoods. More
importantly, the plaintext of extracted features can be obtained
by an untrusted server, it is vulnerable to feature privacy and
potential deceptive attacks. Thus, we design a privacy-enhanced
RI-LBP protocol to solve the abovementioned issues effectively.

A. Communication Overhead

Now the communication costs between DP and FNs are
calculated as follows. As every pixel is encrypted by (5), the bit
length of a pixel in ciphertext is γ > λ ≥ 128. We set λ = 150,
and the total number of images T = 10 000; thus, the total size
of the encrypted image patches is

10 000×(150× 28× 28 + 32) ≈ 1.176× 109bit ≈ 140.2M.
(20)

Noted that each integer of image label occupies 32 bits of space
in label sets.

Assume that the transmission rate is 10 M/s, the communi-
cation time of transferring the above ciphertext image patches
from DP to FNs is calculated by

140.2/10 ≈ 14s (21)

where “s” means “second.”
FNs and CS extract RI-LBP features over ciphertext image

patches and transmit the results of outsourced features to DP.
Finally, {SFi, idi}Ti=1 are sent back to DP. The total length is

(150 + 32)× 784× 10000 ≈ 1.43× 109bit ≈ 170.5 M.
(22)

The communication time is

170.5/10 ≈ 17.1 s. (23)

From (21) and (23), the total communication costs between
DP and FNs are

14 + 17.1 = 31.1 s. (24)

B. Computation Overhead

DP encrypts the local image data in pixel-wise by utilizing
the proposed encryption algorithm and decrypts the result of
extracted features to obtain the complete outsourced features
in plaintext. FNs and CS extract the secure features over the
ciphertext images. We compare the computational overheads of
DP with direct RI-LBP feature extraction, including the com-
putational time of raw data encryption, results decryption, and
communication latency. In specific, facial images are cropped
from Faceforensic++ [23] which is a dataset of facial forgeries.

To highlight the efficiency at DP in VRLBP, the comparison
results of computational time on different approaches are shown
in Fig. 4.
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Fig. 4. Comparison of computational time.

Fig. 5. Comparison of verification time.

For DP, the computational overheads of VRLBP are decreased
to around 70% of direct feature extraction such that it is efficient
to delegate large volumes of data to FNs for feature extraction
with sufficient computational burden savings. In addition, we
also compare the computational costs of DP with those of related
works [13], [14], [15] based on the permutation encryption, and
VRLBP requires higher computational costs by three types of
arithmetic operation in a pixel-wise manner. But it achieves
higher security with CPA secure and better prediction accuracy
based on five public datasets as shown in Section V-C.

Next, to present the efficiency at DP in the verification
stage, the comparison results of VRLBP with VPMLP [17] and
GuardLR [18] in verification time are shown in Fig. 5. There
are insurmountable gaps in research objectives between VRLBP
and [19] and [20], which are oriented to secure keyword search;
thus, the verification time of [19] and [20] are absent in Fig. 5.
As analyzed in Section IV-C, the computational complexity of
VPMLP is linearly related to the total number of samples, while
the time costs of VRLBP (≈ 0.0427 s) are constant under the
different number of samples. We conduct fair simulations to
evaluate verification time under the same experimental settings.
From simulation results, VRLBP gains the competitive advan-
tage in the verification time when the total number of samples is
approximately larger than 3000. Based on the above analysis, the
proposed verification mechanism has the significant advantages
in computational complexity and time consumption.

C. Performance Evaluation

To illustrate the utility of VRLBP by comparing it with the
prior arts [13], [14], [15] and the original RI-LBP algorithm,

we implement VRLBP for deepfake detection in two scenarios,
namely, 1) binary classification; and 2) multiclass classification.
In the meantime, we evaluate the verification time with other
verifiable protocols.

1) Datasets: We examine VRLBP on five public deep-
fake datasets including Faceforensics++ [23], HifiFace [24],
DeepfakeTIMIT (TIMIT) [25], Deepfake Detection Challenge
(DFDC) [26], and MegaFS [27].

Faceforensics++ [23]: The dataset consists of 1000 original
video sequences and four kinds of automated face manipulation
methods.

HifiFace [24]: The dataset is a high-fidelity face swapping
dataset by preserving the face identity and attributes of source
face and target face. As we know, it totally contains 1000
swapped face videos sourced from real face videos in Face-
forensics++ [23].

TIMIT [25]: The dataset consists of 32 subjects with 640
videos where faces are swapped by the generative adversarial
network-based (GAN-based) approach, which originates from
the autoencoder-based Deepfake algorithm.

DFDC [26]: The dataset is an “in-the-wild” face swap video
dataset generated by deep learning based, and nonlearned meth-
ods, which contains more than 100 000 videos with 3426 sub-
jects.

MegaFS [27]: The dataset is designed for the research of
forgery detection and face swapping. For forgery detection,
a face-swapped dataset MegaFS-FF++ is generated with 889
subjects based on Faceforensics++. Besides, there are three
kinds of datasets for face swapping research, called MegaFS-IFL
for short.

2) Experimental implementation: In experiments, we are in-
tended to compare VRLBP with direct feature extraction and
prior works to test the utility of outsourced features. Based on
[28], deepfake detection is deemed a classification task where
classifiers are utilized to identify the authentic images or the
fake ones. Support vector machine (SVM) is generally used for
two-group classification problems with the advantages of high
speed and good performance on a limited number of samples.
Thus, secure RI-LBP features are fed to the SVM classifier to
detect deepfake images.

To eliminate biases from data, VRLBP is fitted to two sce-
narios of binary and multiclass classification on five differ-
ent datasets, in which HifiFace, TIMIT, DFDC, and MegaFS-
FF++ are intended for binary classification, Faceforensics++
and MegaFS-IFL are intended for multiclass classification. In
addition, 70% of images are evenly allocated to the training set,
while the rest of images are regarded as the test set.

3) Results and analysis: First, to validate the utility, the exper-
imental results of VRLBP with the original RI-LBP algorithm,
and prior protocols [13], [14], [15] in binary classification are
presented in Fig. 6. It is obvious that the classification accuracy
of VRLBP is nearly same as that of the original RI-LBP al-
gorithm. In principle, the goal of secure outsourcing protocol is
that computationally weak clients can obtain outsourced features
with similar utility compared with the plaintext features. Thus,
VRLBP achieves the goal and its performance is similar to that of
the direct RI-LBP. In addition, VRLBP outperforms [13], [14],
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Fig. 6. Comparison of binary classification performance. (a) The performance of HiFiFace. (b) The performance of TIMIT. (c) The performance of
DFDC. (d) The performance of MegaFS-FF++.

Fig. 7. Comparison of multiclass classification performance. (a) The
performance of Faceforensics++. (b) The performance of MegaFF-IFL.

[15] with an apparent accuracy gap. The phenomenon of utility
degradation stems from the operation of “intrablock pixels shuf-
fling permutations,” which disturbs the original LBP/RI-LBP
feature values of the local neighborhoods. Therefore, VRLBP
gains better performance than related works [13], [14], [15].

Then, multiclass classification on Faceforensic++ [23] and
MegaFS-IFL [27] are conducted in Fig. 7 to explore diverse
scenarios. Similar with binary classification, the experimental
results also reflect the outperformance of VRLBP over various
images. Overall, the performance of VRLBP is almost the same
as the original RI-LBP algorithm and superior to the state-of-the-
art works [13], [14], [15]. In the meantime, VRLBP is executed
based on integers, and there may exist somewhat accuracy errors
in both of VRLBP and the original RI-LBP algorithm owing
to rounding operation in the local neighborhood computation.
Fortunately, the rounding errors are acceptable from perspective
of experimental results.

In addition, SVM classifier models the posterior probability
directly from the input features, i.e., probability of class given
inputs. Note that unbalanced and noisy data without proportional
support vectors will degrade prediction accuracy significantly.
To show data diversity, five different datasets are involved and
the trends of accuracy curves are varied which depends on the
quality of datasets.

Based on the above experimental results, VRLBP can not
only check the integrity of outsourced RI-LBP features with an
overwhelming probability and constant computational complex-
ity, but also decrease the computational overhead at the client
side greatly. Based on the complexity analysis, the verification
complexity of VRLBP is superior to [17], [18], [19], and [20],
and gains time efficiency compared with [17] and [18] based
on simulation results. In addition, we implement secure RI-LBP

features to deepfake detection in two different scenarios to show
practical utility. Note that deepfake detection as an auxiliary
task serves to validate the effectiveness of utility. Besides,
VRLBP can be extended to more privacy-preserving research,
such as secure image retrieval [30], [31], [32]. Intrinsically,
the schemes of [30], [31], and [32] extract features over the
plaintext images and focus on how to protect the confidential fea-
tures in secure similarity measurement. To make secure image
retrieval possible, a specific privacy-preserving protocol is re-
quired to measure the similarity of query and database images in
ciphertexts.

VI. CONCLUSION

In summary, we have proposed a verifiable privacy-enhanced
protocol for RI-LBP feature extraction. The privacy of local data
and outsourced RI-LBP features were well preserved based on
the proposed probabilistic encryption scheme. At the same time,
the correctness of outsourced RI-LBP features can be checked
with an overwhelming probability and constant computational
complexity. Based on security analysis and experimental perfor-
mance, the proposed protocol showed superiority concerning the
prior works while keeping the local image data and extracted
features secure. By applying outsourced features to deepfake
detection over binary and multiclass classification tasks on five
open-source datasets, extensive evaluations demonstrated that
the proposed protocol could save the computational costs of
clients greatly while gaining practical performance.
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