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Abstract

Text-to-image diffusion models are typically trained on large-scale web data, often
resulting in outputs that misalign with human preferences. Inspired by preference
learning in large language models, we propose ABC (Alignment by Classifica-
tion), a simple yet effective framework for aligning diffusion models with human
preferences. In contrast to prior DPO-based methods that depend on suboptimal
supervised fine-tuned (SFT) reference models, ABC assumes access to an ideal ref-
erence model perfectly aligned with human intent and reformulates alignment as a
classification problem. Under this classification view, we recognize that preference
data naturally forms a semi-supervised classification setting. To address this, we
propose a data augmentation strategy that transforms preference comparisons into
fully supervised training signals. We then introduce a classification-based ABC
loss to guide alignment. Our alignment by classification approach could effectively
steer the diffusion model toward the behavior of the ideal reference. Experiments
on various diffusion models show that our ABC consistently outperforms existing
baselines, offering a scalable and robust solution for preference-based text-to-image
fine-tuning. Code is available at https://github.com/dailongquan/abc.

1 Introduction

Text-to-image diffusion models [4] have dominated image generation for years, trained on web-scale
text-image pairs in a single stage. However, this approach may produce images misaligned with
human preferences. In contrast, Large Language Models (LLMs) excel at generating human-preferred
outputs through a two-stage process: pre-training on web data and fine-tuning on preference data.
Applying this fine-tuning strategy to text-to-image models could enhance their ability to meet diverse
user preferences, making them more useful and relevant.

Recent research [2, 9, 14, 59, 61] has focused on enhancing diffusion models to align with human
preferences using Reinforcement Learning from Human Feedback (RLHF) [22]. This RLHF approach
involves pretraining a reward model [56] to capture human preferences and then optimizing the
diffusion models to maximize the reward of generated images. However, creating a robust reward
model that accurately reflects human preferences is both challenging and computationally costly, and
over-optimizing the reward model can lead to significant issues of model collapse [38].

Diffusion-DPO [51] integrates Direct Preference Optimization (DPO) [40] into the preference learning
framework of diffusion models, eliminating the need for a reward model. DPO reparameterizes the
reward function in RLHF to directly learn a model from preference data. In DPO, the implicit reward
is formulated using the log ratio of the likelihood of a response between the current model and the
supervised fine-tuned (SFT) model. However, the SFT model is far from an ideal model that aligns
with human preferences completely. We hypothesize that this discrepancy may lead to suboptimal
performance.
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In this work, we propose the ABC (Alignment by Classification) framework, a simple yet effective
preference optimization algorithm to solve this problem. The core of our algorithm relies on three
key insights: (1), DPO with an ideal reference model can be framed as a classification problem
using a diffusion model. (2), The alignment performance depends on the discriminative ability of
the diffusion model. (3), We identify alignment with preference data as semi-supervised learning
and propose a data augmentation method to convert it into supervised data. (4), We propose a
classification-based ABC loss, incorporating augmented preference data, to align the diffusion model,
which is equivalent to aligning the diffusion model with the ideal reference model. Therefore a
reference model is not needed during training which saves a lot of memory.

We conduct empirical evaluations of our ABC framework on state-of-the-art text-to-image diffusion
models, including SD1.5 [42] and SDXL) [37], comparing it with leading image preference alignment
methods. Extensive analysis demonstrates that our ABC method effectively leverages preference
data, resulting in a more accurate ranking of winning and losing responses.

2 Related Work

Diffusion model alignment can be achieved through fine-tuning [11, 60, 63]. Recently, methods [1,
2, 9, 14, 27, 48, 59, 61] based on RLHF have garnered increasing attention. Among them, Wallace
et al. [51] expanded direct preference optimization [40], which was originally suggested for language
models, to diffusion models, aligning them with pairwise preference datasets on top of a frozen
reference model. Similarly, Li et al. [26] applies Kahneman-Tversky Optimization [13] from language
model alignment to diffusion models to inject preferences into the reference model. Theoretically,
using an ideal alignment model as the reference should produce the best results, but all these methods
rely on a non-perfect SFT checkpoint as the reference model. In this paper, we disclose that using an
ideal alignment model as the reference and minimizing the DPO loss will minimize a classification
loss. We thus transform the reference-required alignment task into a reference-free classification task.

Diffusion model classification is a type of generative classification [64], where class probabilities
p(y|x) are inferred by modeling the data likelihood p(x|y) using generative models. Compared to
discriminative classifiers [49], generative classifiers tend to be more robust and better calibrated [31].
Zimmermann et al. [65] leverage score-based models to compute the log-likelihood p(x|y) via
integration and then apply Bayes’ theorem to obtain p(y|x). Other works [16, 21] perform diffusion
in logit space to model the categorical classification distribution. Recent studies [6, 8, 17, 25] convert
diffusion models into generative classifiers, showing that generative networks can be effectively
repurposed for discriminative tasks. In this paper, we further reveal a close connection in the reverse
direction: discriminative learning, specifically classification, can also be naturally applied to a
particular generative task—diffusion model alignment.

Classification loss generally follows two paradigms: learning with class-level labels and learning
with pairwise labels. In the first setting, the model is trained to assign each input to its corresponding
class using a classification loss, such as L2-Softmax [41], Large-margin Softmax [29], Angular
Softmax [28], NormFace [52], AM-Softmax [53], and ArcFace [12]. In contrast, pairwise-based
approaches learn to directly model similarity or dissimilarity between sample pairs. Representative
methods include contrastive loss [7, 15], triplet loss [19, 43], Lifted-Structure loss [34], N-pair
loss [46], Histogram loss [50], Angular loss [54], Margin-based loss [57], and Multi-Similarity
loss [55]. In this paper, we employ Circle loss [47], which unifies the two paradigms, to conduct the
diffusion model alignment task.

3 Background

Diffusion models are certifiably robust classifiers [5]. To provide a classification perspective on the
preference alignment of diffusion models, we offer a preliminary discussion on diffusion models [4,
18] and diffusion classifiers [5, 8], as well as the Circle loss [47], a generalized classification loss.

3.1 Diffusion Models

We briefly review denoising diffusion probabilistic models [18]. Given x0 from a real data distribution
q(x0) and assuming that the signal-to-noise ratio SNR(t) = αt/σ

2
t is monotonically decreasing
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over time, the forward diffusion process gradually adds Gaussian noise to the data to obtain a
sequence of noisy samples {xt}Tt=1 according to {αt}Tt=1 and {σt}Tt=1 which are designed such
that xT is nearly an Gaussian distribution q(xt|x0) = N (xt;

√
αtx0, σ

2
t I). The reverse process

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ̃
2
t I) is defined as a Markov chain aimed at approximating q(x0)

by gradually denoising from the Gaussian distribution p(xT ) = N (xT ;0, I). where µθ is generally
parameterized by a time-conditioned noise prediction network ϵθ(xt, t). Let C be a small constant
and wt be the weight. The reverse process can be learned by optimizing the variational lower bound
on the log-likelihood as

log pθ(x) ≥ −Eϵ,t

[
wt∥ϵθ(xt, y, t)− ϵ∥22

]
+ C (1)

3.2 Classification with Diffusion Models

Consider a dataset Ω =
{
(x(l), y(l))

}L

l=1
, where each image x(l) is associated with a label y(l) that

belongs to one of K classes, denoted as Y = {yk}Kk=1. Given a new image x, the classification
objective is to predict the class label ỹ that has the highest probability of being assigned to x.

ỹ = argminyk∈Y −p(y|x) = argminy∈Y −p(x|y) · p(y). (2)

Assuming a uniform prior distribution over the classes, i.e. p(yk) = 1
K for all k, the prior term

becomes constant and can be ignored in the maximization process. Thus, the problem reduces to:

ỹ = argminy∈Y − log p(x|y). (3)

Clark and Jaini [8] leverage the score function s̄θ(x, y) (5), which can be considered a good measure
of the similarity between the category prompt y and the image x, to approximate log pθ(x|y) and
convert the text-to-image diffusion model into a classifier (4).

ỹ = argminy∈Y − log pθ(x|y) ≈ argminy∈Y −s̄θ(x, y), where (4)

s̄θ(x, y) = −Eϵ,t [sθ(x, y)] and sθ(x, y) = wt∥ϵ− ϵθ
(√

αtx+ σtϵ, y, t
)
∥22 (5)

Further, Chen et al. [5] extend this approach by calculating the class probability pθ(y|x) through

pθ(yk|x) =
p(x|yk) · p(yk)∑

yj∈Y p(x|yj) · p(yj)
=

exp(log pθ(x|yk))∑
yj∈Y exp(log pθ(x|yj))

≈ exp(s̄θ(x, yk))∑
yj∈Y exp(s̄θ(x, yj))

(6)

3.3 Circle Loss for Classification

Classification involves selecting one target category from K candidate categories. Suppose the scores
of x for binary categories are {yi}2i=1 for simplicity. The binary cross-entropy loss is given by:

LBCE =
∑

x
[log (1 + exp (ι(x, y1, y2))) + log (1 + exp (ι(x, y2, y1)))] , where

ι(x, y+, y−) = Eϵ,t

[
sθ(x, y

+)
]
− Eϵ,t

[
sθ(x, y

−)
]
.

(7)

Sun et al. [47] propose the binary Circle loss LCircle by extending ι(x, y+, y−) as:

ι(x, y+, y−) = η+
(
Eϵ,t

[
sθ(x, y

+)
]
−∆+

)
− η−

(
Eϵ,t

[
sθ(x, y

−)
]
−∆−) . (8)

The Circle loss degenerates to AM-Softmax LAM loss [53], an important variant of the binary
cross-entropy loss 7, when ι(x, y+, y−) is defined as:

ι(x, y+, y−) = Eϵ,t

[
sθ(x, y

+)
]
−

(
Eϵ,t

[
sθ(x, y

−)
]
−∆−) . (9)

4 ABC for Diffusion Models

In this section, we introduce our Alignment by Classification (ABC) framework for diffusion models.
We first reformulate alignment as a classification task. To mitigate the instability from the semi-
supervised nature of preference data, we apply data augmentation to enable supervised learning.
Finally, we present the ABC objective for preference alignment.
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4.1 The Connection Between Alignment and Classification

In the following sections, we assume each text prompt corresponds to a single aligned image. Let x+
y

denote the image aligned with prompt y, and x−
y a misaligned one. Here, we provide a classification

perspective on diffusion model preference alignment [51], formalized through two theorems.

The first theorem shows that the Diffusion-DPO loss serves as an upper bound on the diffusion
classification score (6). Specifically, the Diffusion-DPO loss [51] is defined as Equation (10), where
sref(x, y) = ωt∥ϵ − ϵref(

√
αtx + σtϵ, y, t)∥22, and ϵref is a reference diffusion model. Therefore,

minimizing this loss corresponds to training a diffusion-based classifier.

LDDPO = Eϵ,t

[
log

(
1 + exp

(
−
(
sθ(x

−
y , y)− sref(x

−
y , y)

))
exp

(
sθ(x

+
y , y)− sref(x

+
y , y)

))]
, (10)

Unlike common practices where ϵref
(
xt, y, t

)
is set as the SFT checkpoint [40], we consider it as the

ideal model here for discussion. The reason is that using the ideal alignment model as the reference
model should produce optimal performance in preference optimization. Thus, it deserves a typical
case to discuss in the following theorem.
Theorem 1. (Proof in the supplementary material) We say a diffusion model ϵali

(
xt, y, t

)
is ideal

alignment if it satisfies ∥ϵali
(
x+
t;y, y, t

)
− ϵ∥22 = 0 and ∥ϵali

(
x−
t;y, y, t

)
− ϵ∥22 = δ for any y. Here,

x+
t;y =

√
αtx

+
y + σtϵ and x−

t;y =
√
αtx

−
y + σtϵ. When the reference model ϵref

(
xt, y, t

)
=

ϵali
(
xt, y, t

)
in Equation (10) is an ideal alignment model and sali(x, y) = wt∥ϵ − ϵali

(√
αtx +

σtϵ, y, t
)
∥22, the AM-Softmax loss (9) is upper bounded by the Diffusion-DPO loss (10). Specifically,

we have
log

(
1 + exp

(
−
(
Eϵ,t

[
sθ(x

−
y , y)

]
− δ

)))
exp

(
Eϵ,t

[
sθ(x

+
y , y)

])
≤ Eϵ,t

[
log

(
1 + exp

(
−
(
sθ(x

−
y , y)− sali(x

−
y , y)

))
exp

(
sθ(x

+
y , y)− sali(x

+
y , y)

))]
.

(11)

This theorem indicates that the Diffusion-DPO loss serves as an upper bound for the AM-Softmax
loss [53]. Thus, minimizing the Diffusion-DPO loss with an ideal reference model will also minimize
the AM-Softmax loss. This implies that performing the alignment task results in performing the
classification task for diffusion models.

The second theorem shows that the predicted noise in a diffusion model is a weighted average of
noise estimates across all possible images. To generate an image aligned with a prompt, the model
must increase the weight on the noise corresponding to the aligned image—highlighting that strong
classification ability is essential for alignment.
Theorem 2. (Proof in the supplementary material) Let Y = {yi}Ni=1 denote N text prompts and
D = {xyi} be corresponding aligned images. We assume that the prior prompt distribution p(y) and
image distribution p(x) are uniform. To describe the discriminative ability, we define the conditional
probability p(x|y) as

p(y|xyi) =

{
n
N y = yi,
N−n

N(N−1) y ∈ Y − {yi}.
where n < N. (12)

Then, p(x|y) = p(y|x) and the optimal diffusion model ϵopt(xt, y, t), which achieves minimal
diffusion loss over both the training set and the test set, over D is given by:

ϵopt(xt, y, t) =
∑

x(i)∈D

wi∑
x(j)∈D wj

· ϵi, (13)

where ϵi =
xt−

√
αtx

(i)

σt
, λ = n(N−1)

N−n , wi =

λ · exp
(
−∥xt−

√
αtx

(i)∥2
2

2σ2
t

)
, x(i) ∈ {xy},

exp
(
−∥xt−

√
αtx

(i)∥2
2

2σ2
t

)
, x(i) ∈ D − {xy}.

.

Theorem 2 indicates that the predicted noise of the optimal diffusion model is the weighted average
of the noise ϵi, which denotes the exact noise contained in xt with respect to the clean image
x(i) ∈ D. In order to control the diffusion model to approximate the image xy that is aligned with
the text y, it has to make the predicted noise approximate to the noise xt−

√
αtxy

σt
. This further leads

n to approximate N , which means we maximize p(y|xy). Since diffusion models provide a good
estimation for p(y|x) according to Equation (4), this implies that once the diffusion model is an ideal
classifier, the diffusion model ϵopt(xt, y, t) will be an ideal alignment model.
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Finally, to enhance understanding, we briefly interpret the two theorems. Theorem 1 proves that
the AM-Softmax loss is upper bounded by the Diffusion-DPO loss. In other words, minimizing
the Diffusion-DPO loss for better alignment will also reduce the AM-Softmax loss, leading to
improved classification performance. Simply put, better alignment leads to better classification.
Conversely, Theorem 2 shows that, under certain conditions, improved classification leads to better
alignment. Together, these two theorems reveal a strong connection between classification and
alignment, forming the theoretical foundation of our approach, which replaces the DPO loss with the
ABC loss for alignment tasks. We first establish a connection between alignment and classification.

4.2 The Connection Between Alignment and Semi-Supervised Learning

Diffusion model alignment is a form of semi-supervised learning using a human preferences dataset.
Specifically, Diffusion-DPO [51] is fine-tuned on Pick-a-Pic [23], a human preference dataset for
text-to-image generation. To construct the dataset, an SFT model generates pairs of images (x1,x2)
from a given prompt y. These pairs are then shown to human annotators, who indicate a preference,
denoted as x+

y ≻ x−
y , where x+

y and x−
y are the preferred and dispreferred images, respectively.

Each dataset item is thus a triplet (y,x+
y ,x

−
y ). In this setup, y serves as the correct label for x+

y ,
while x−

y lacks a corresponding optimal prompt. As alignment resembles a classification task in
which only half the data has labels, it naturally fits within a semi-supervised classification framework.

Regularization is critical for stable semi-supervised training. When aligning the diffusion model
using AM-Softmax—as suggested in Theorem 1—the optimization problem reduces to:

minθ
∑

y∈Y
log

(
1 + exp

(
ι(x−

y ,x
+
y , y)

))
, where

ι(x−,x+, y) = Eϵ,t

[
sθ(x

+, y)
]
−

(
Eϵ,t

[
sθ(x

−, y)
]
−∆−) . (14)

Since x−
y lacks a corresponding prompt, the optimization tends to maximize sθ(x

−
y , y), which can

lead to ∥ϵ − ϵθ
(√

αtx
−
y + σtϵ, y, t

)
∥22 becoming arbitrarily large. However, even if x−

y is less
preferred than x+

y , this reconstruction error should still remain bounded; otherwise, the diffusion
model will lose its ability to generate valid images. A practical compromise to prevent the loss
from diverging is to select a large ∆−, effectively modeling an ideal alignment function with large
∥ϵali(x−

t;y, y, t)− ϵ∥22 during DPO optimization. However, this does not fully resolve the issue, which
helps explain why Diffusion-DPO may fail to reliably train diffusion models in some cases.

We regularize classification through data augmentation to mitigate instability caused by missing
prompts in half of the user preference dataset. Specifically, we define y+ as the original prompt y,
and construct y− by appending “The image that aligns less with human preferences” to y. This refor-
mulates each preference tuple (y,x+

y ,x
−
y ) into two supervised examples: (y+,xy+) and (y−,xy−).

The task thus becomes a binary classification problem between images conditioned on y+ and y−,
converting the semi-supervised objective (14) into a fully supervised one (15), which helps stabilize
training by constraining the residual error term.

minθ
∑

y∈Y

[
log

(
1 + exp

(
ι(xy− ,xy+ , y

+)
))

+ log
(
1 + exp

(
ι(xy+ ,xy− , y

−)
))]

, where

ι(x−,x+, y) = Eϵ,t

[
sθ(x

+, y)
]
−

(
Eϵ,t

[
sθ(x

−, y)
]
−∆−

y

)
. (15)

4.3 ABC Loss for Alignment

Theorem 1 shows that optimizing the Diffusion-DPO loss (10) effectively minimizes the AM-Softmax
loss (9). Theorem 2 further demonstrates that achieving ideal alignment requires the diffusion model
to be discriminative. Section 4.2 attributes training instability of alignment to the semi-supervised
nature of the task, which we address through a data augmentation strategy that converts it into a
supervised classification problem. Together, these results support the feasibility of aligning diffusion
models to human preferences via classification.

Alignment by classification imposes an important constraint: the expected score for the less preferred
image, Eϵ,t [sθ(x

−, y)], must be properly bounded. If this value becomes too large, the model is
compelled to increase Eϵ,t [sθ(x

+, y)] accordingly, which may cause the diffusion model to fail
in generating coherent images. Conversely, if Eϵ,t [sθ(x

−, y)] is too small, the model becomes
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insufficiently discriminative, weakening its ability to align with human preferences according to
Theorem 2. Ideally, the model should maintain a margin-based separation:

Eϵ,t

[
sθ(x

−, y)
]
= Eϵ,t

[
sθ(x

+, y)
]
+ δ, (16)

where δ > 0 is a fixed positive margin that ensures both discriminability and stability. To enforce
this constraint, we adopt the Circle loss (8)—a generalized version of the AM-Softmax loss—which
better accommodates the margin-based formulation. Specifically, we introduce the Alignment by
Circle (ABC) loss, denoted as LABC, defined as follows:

LABC(θ) =
∑

y∈Y

[
log

(
1 + exp

(
ι(xy− ,xy+ , y

+)
))

+ log
(
1 + exp

(
ι(xy+ ,xy− , y

−)
))]

, where

ι(x−,x+, y) = η+y
(
Eϵ,t

[
sθ(x

+, y)
]
−∆+

y

)
− η−y

(
Eϵ,t

[
sθ(x

−, y)
]
−∆−

y

)
. (17)

Here, η+y and η−y act as self-paced weighting factors that adaptively emphasize samples with subopti-
mal scores—specifically, those far from their ideal values O+

y and O−
y —to ensure stronger gradients

and more effective updates. We define these weights as follows:{
η+y = Eϵ,t [sθ(x

+, y)]−O+
y ,

η−y = O−
y − Eϵ,t [sθ(x

−, y)] .

{
O+

y = 0,

∆+
y = 0.

{
O−

y = sg[Eϵ,t[sθ(x
+
y , y)]] + δ,

∆−
y = sg[Eϵ,t[sθ(x

+
y , y)]] + δ.

(18)

Since log (1 + exp(x)) is a monotonically increasing function, minimizing the loss is equivalent to
minimizing the term ι(x−,x+, y). Substituting Equation (18) into this term yields:

ι(x−,x+, y) =

(
Eϵ,t

[
sθ(x

+, y)
]
−

O+
y +∆+

y

2

)2

+

(
Eϵ,t

[
sθ(x

−, y)
]
−

O−
y +∆−

y

2

)2

, (19)

where sg[·] denotes stop-gradient (i.e., the value is detached from backpropagation), and δ introduces
a soft margin to ensure a separation between positive and negative scores. The minimizer of this
objective can be verified as (0, sg[Eϵ,t[sθ(x

+
y , y)]] + δ). Accordingly, the loss drives Eϵ,t [sθ(x

+, y)]

toward 0, while encouraging Eϵ,t [sθ(x
−, y)] to approach sg[Eϵ,t[sθ(x

+
y , y)]] + δ—precisely the

behavior we desire for effective alignment.

5 Experiments

We present both qualitative and quantitative experiments in Section 5.1 to highlight the alignment
advantages of our method. In Section 5.2, we provide a deeper analysis of why our approach
outperforms existing diffusion model alignment techniques. In Section 5.3, we conduct an ablation
study to examine how the hyperparameters in the ABC loss affect alignment quality.

5.1 Human Preference Alignment Comparison

We present both quantitative and qualitative comparisons for human preference alignment. Our
approach builds on the Diffusion-DPO codebase [51]. We train the models using the AdamW [30]
optimizer for SD1.5, Adafactor [45] optimizer for SDXL on 8 A6000 GPUs, with a batch size
of 2, gradient accumulation of 128 steps and a learning rate of 1 × 10−8, incorporating a linear
warmup schedule. For SD1.5 and SDXL training, δ is set to 0.025. These settings largely follow
the original Diffusion-DPO configuration, with minor modifications to enhance training efficiency.
We apply our proposed ABC loss to fine-tune both the SD1.5 and SDXL base models, resulting
in our SD1.5-ABC and SDXL-ABC variants. For clarity, we adopt a “Model–Method” naming
convention—e.g., SDXL-ABC refers to the SDXL model fine-tuned with the ABC loss.

5.1.1 Qualitative Comparison

We present a qualitative comparison of SDXL-ABC with SDXL-Base, SDXL-DPO [51], SDXL-
SPO [27], and SDXL-MAPO [20] in Figure 1, where SDXL-Base represents the original SDXL-1.0
model. As shown in Figure 1, SDXL-ABC generates images with clear improvements in text-image
alignment. To assist readers in identifying mismatches between the text and the generated images, we
highlight relevant textual phrases in color and enclose the corresponding image regions in bounding
boxes. Our method incorporates human preferences through direct optimization based on user
feedback, resulting in more engaging visuals, such as vivid color palettes, dramatic lighting, coherent
compositions, fine detail, creative elements, consistent color harmony, and structured multi-object
arrangements. More important, the generated text-image pairs are also more semantically aligned.
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Prompts SDXL-Base SDXL-DPO SDXL-SPO SDXL-MAPO SDXL-ABC

A capybara
wearing

sunglasses
and a blue cap.

A baby red
panda wearing

cake
as a hat.

A pineapple
with one beer
left and two
beers right.

Figure 1: Qualitative Comparison for Diffusion Model Alignment. We develop an alignment-by-
classification approach to align diffusion models with human preferences. Fine-tuned from the
SDXL-1.0 model, our method generates images with improved visual appeal and textual alignment
compared to other alignment baselines. In our comparisons, SDXL-DPO [51], SDXL-SPO [27] and
SDXL-MAPO [20] denote competing aligned variants and SDXL-Base denote the SDXL-1.0 model.

Table 1: Quantitative Win-rate Comparison Using Automated Preference Metrics. We evaluate the
alignment performance of diffusion models using prompts from HPS and PartiPrompts across various
evaluators. Both SDXL and SD1.5 serve as base models. Win rates above 50%—indicating superior
performance over the baseline—are highlighted in bold. We note that MAPO has not released their
SD1.5-based checkpoint, and KTO has not released their SDXL-based checkpoint.

PartiPrompts HPS benchmark

PickScore HPS Aesthetics CLIP PickScore HPS Aesthetics CLIP

vs. SD1.5-Base 60.02 81.51 74.27 59.72 74.83 85.75 68.84 59.65
vs. SD1.5-DPO 55.85 73.02 64.90 44.97 53.46 71.50 64.19 52.06
vs. SD1.5-SPO 51.16 61.59 47.60 60.02 45.35 54.99 38.08 64.83
vs. SD1.5-KTO 57.77 44.72 53.90 47.22 52.28 42.88 52.86 53.93
vs. SDXL-Base 74.38 79.26 80.20 52.46 79.35 70.17 72.28 60.38
vs. SDXL-DPO 73.22 72.50 68.25 50.51 77.26 69.54 70.19 57.06
vs. SDXL-SPO 52.49 40.31 59.93 55.53 51.16 52.41 46.78 59.87
vs. SDXL-MAPO 65.35 81.17 72.10 46.97 68.55 64.89 68.18 51.14

5.1.2 Quantitative Comparison

We compare our method against existing baselines—including SD1.5, SDXL, and their DPO, SPO,
KTO, and MAPO variants—using both user studies and automated preference metrics. For automated
evaluation, we assess Pick Score [23], HPS [58], LAION Aesthetics [44], and CLIP [39], using
prompts from the HPS benchmark [58] and PartiPrompts [62]. We report win rates between our
method and each baseline under these metrics in Table 1, while Table 2 presents results on the
GenEval benchmark evaluating model performance across 8,000 prompts.

To confirm the method’s efficacy, we conducted a user study. Specifically, we randomly sampled 100
prompts from the PartiPrompts dataset and another 100 prompts from the HPSv2 benchmark. For
each prompt, we generated five images using five different methods. Participants were shown five
images per prompt (one from each method) and asked to answer three questions: Q1 Which image is
your overall preferred choice? Q2 Which image is more visually attractive? Q3 Which image better
matches the text description? To minimize position bias, the order of images was randomized for
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Table 2: Quantitative comparison on GenEval. We evaluate model performance on 8,000 prompts
spanning attribute binding, relationships, numeracy, and complex compositions. Higher scores
indicate stronger alignment with the intended composition.

Model Color
(B-VQA)

Shape
(B-VQA)

Texture
(B-VQA)

Numeracy
(UniDet)

2D-
Spatial

(UniDet)

3D-
Spatial

(UniDet)

Non-
Spatial
(CLIP)

Complex
(3-in-1)

SD1.5-Base 0.3811 0.3395 0.4192 0.4436 0.1460 0.2912 0.3092 0.3002
SD1.5-DPO 0.3943 0.3440 0.4374 0.4523 0.1627 0.3090 0.3091 0.3032
SD1.5-SPO 0.4030 0.4001 0.4152 0.4461 0.1471 0.2958 0.3010 0.3131
SD1.5-KTO 0.4645 0.3815 0.4730 0.4618 0.1919 0.3318 0.3104 0.3514
SD1.5-ABC 0.4647 0.4005 0.4751 0.4570 0.1895 0.3324 0.3106 0.3587
SDXL-Base 0.5708 0.4880 0.5600 0.5591 0.1949 0.3551 0.3065 0.4383
SDXL-DPO 0.6586 0.5358 0.6521 0.5300 0.2376 0.3668 0.3116 0.4923
SDXL-SPO 0.6431 0.5200 0.6496 0.5765 0.2298 0.3513 0.3031 0.4424
SDXL-MAPO 0.6682 0.5104 0.5650 0.5189 0.1700 0.3507 0.3136 0.4401
SDXL-ABC 0.6708 0.5450 0.6866 0.5623 0.2401 0.3697 0.3154 0.5051

Pa
rt
i

H
PS

SDXL
SD1.5

SDXL
SD1.5

13.1%
14.3%

13.5%
19.2%

21.6%
20.7% 17.6%

18.8% 33.0%
28.2%

9.8%
12.2%

11.6%
17.7%

23.9%
20.9% 18.3%

18.2% 36.5%
30.9%

SD1.5 SDXL DPO SPO KTO MAPO ABC

Figure 2: Quantitative Win-rate Comparison Using User Study. Both SD1.5-ABC and SDXL-ABC
outperform the baselines, with the top figure showing results on PartiPrompts and the bottom showing
results on the HPS benchmark. The rows for SD1.5 and SDXL indicate that the base diffusion models
are SD1.5 and SDXL, respectively. Our method consistently generates outputs with higher overall
preference across two key dimensions: visual appeal and prompt alignment. We note that MAPO has
not released their SD1.5-based checkpoint, and KTO has not released their SDXL-based checkpoint.

each prompt. Each method’s final score was computed as a weighted sum of its win rates under the
three criteria, with weights of 30% for general preference, 30% for visual appeal, and 40% for prompt
alignment. The study was conducted as a blind evaluation. Annotators were not informed about
which method generated each image. We recruited participants from our research group, comprising
approximately 100 students, and collected a total of 82 valid responses.

Table 1 reports the win rates of ABC-aligned diffusion models against their respective baselines.
Fine-tuning with our ABC loss consistently improves performance for both SD1.5 and SDXL across
nearly all metrics and datasets, demonstrating the effectiveness of our approach. Table 2 shows the
quantitative comparison on GenEval, with ABC achieving competitive or superior performance across
various compositional tasks. Figure 2 further illustrates user study results, where our method receives
the highest number of winning votes in terms of general preference and visual appeal. For instance,
on the HPS dataset with SDXL, ABC achieves a leading win rate of 36.5% in general preference
among five competing methods.

5.2 Performance Analysis

Theorem 1 demonstrates that enhancing a model’s alignment capability improves its classification
performance, while Theorem 2 indicates that stronger discriminative ability leads to better alignment.
In this section, we evaluate the zero-shot classification performance of aligned diffusion models
to investigate the intrinsic connection between alignment and classification. We also analyze their
discriminative strength, providing experimental evidence to support the effectiveness of our approach.

5.2.1 Zero-Shot Classification

To validate the effectiveness of Theorem 1, we evaluate zero-shot classification performance on six
benchmark datasets: Food-101 [3], CIFAR-10 [24], Aircraft [32], Pets [36], Flowers102 [33], and
STL-10 [10]. We adopt prompt templates and class labels from [39], including refinements to disam-
biguate class names (e.g., “crane” → “crane bird”) [35]. As shown in Table 3, diffusion classifiers
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Table 3: Zero-Shot Classification Performance. We adopt the Robust Classification via a Single
Diffusion Model method [6] to evaluate the classification ability of checkpoints produced by dif-
ferent alignment methods. The results suggest that alignment generally improves the classification
capabilities of diffusion models. Among all alignment approaches, our method achieves the highest
classification accuracy.

Food-101 CIFAR-10 Aircraft Pets Flowers102 STL-10

SD1.5-Base 75.87 83.15 25.47 83.53 50.33 89.44
SD1.5-DPO 78.57 84.79 28.39 87.37 52.96 92.38
SD1.5-SPO 76.04 84.59 27.25 84.64 51.94 91.06
SD1.5-KTO 77.93 83.92 26.71 86.21 51.13 92.03
SD1.5-ABC (Ours) 79.12 85.13 29.11 88.48 53.42 93.75

0.05887
0.05833

0.05875
0.05813

0.05861
0.05795

0.05840
0.05734

0.05837
0.05720

0.00740
0.01003

0.00760
0.01141

0.00851
0.01167

0.00804
0.01080

0.00904
0.01207

HPS
Pick-a-Pic

HPS
Pick-a-PicSD

 
DPO

SPO

KTO

ABC

Figure 3: Comparison of Noise Prediction Errors on Pick-a-Pic and HPS. Left: Average noise
prediction error Eϵ,t [sθ(x

+, y)] for the preferred text-image pair (x+, y). Right: Average margin
∆ = Eϵ,t [sθ(x

−, y)] − Eϵ,t [sθ(x
+, y)] between the noise prediction errors of the preferred pair

(x+, y) and the dispreferred pair (x−, y). A lower noise prediction error suggests higher image
quality, while a larger ∆ indicates better discrimination aligned with user preference.

built on aligned models—SD1.5-DPO, SD1.5-SPO, and SD1.5-KTO—consistently outperform the
baseline classifier based on the original SD1.5. We attribute this improvement to the fact that the dif-
fusion DPO loss serves as an upper bound to the AM-Softmax classification loss, thereby enhancing
alignment with discriminative objectives. These results empirically support the theoretical insight
from Theorem 1, which states that better alignment capability improves classification performance.
Furthermore, our method outperforms other diffusion-based classifiers, likely due to the explicit use
of classification loss to guide alignment.

5.2.2 Discriminative Strength Measured by Prediction Error

Theorem 2 confirms that stronger discriminative ability in diffusion models leads to better alignment.
Assuming a uniform prompt distribution p(y), Equations (4) and (5) show that the class probability
p(y|x) is proportional to exp (−Eϵ,t [sθ(x, y)]). Therefore, a lower prediction error indicates better
generation quality and a higher likelihood that x belongs to class y. To further improve discriminative
power, it is crucial to maximize the margin between prediction errors of positive and negative
samples. However, directly maximizing exp

(
−Eϵ,t

[
sθ(x

−
y , y)

])
can destabilize training when the

prediction error is large. A more stable approach is to maximize the margin ∆ = Eϵ,t [sθ(x
−, y)]−

Eϵ,t [sθ(x
+, y)] ensuring it is large while keeping the generation quality high. Ideally, the noise

prediction error Eϵ,t [sθ(x
+, y)] should be as low as possible for preferred pairs, and the margin ∆

should be as large as possible to reinforce alignment with human preferences. As shown in Figure 3,
our method achieves the lowest prediction error and the largest margin on both the Pick-a-Pic and
HPS datasets.

5.3 Ablation Study

The ABC loss (17) introduces a hyperparameter δ, which defines the separation margin between
preferred and dispreferred samples. This margin directly affects the strength of the alignment signal
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during training, consequently, the quality of the generated results. As shown in Table 4, all metrics
follow a consistent U-shaped trend, with δ = 0.025 achieving the best overall performance.

Table 4: Ablation Study on δ, which controls the discrimi-
nation strength of the diffusion model in the ABC objective.
δ=0.025 yields the best performance.

δ PickScore ↑ HPS ↑ Aesthetics ↑ CLIP ↑
0.005 18.34 24.25 4.55 22.16
0.015 19.97 25.72 4.96 28.79
0.025 21.79 27.67 5.65 33.86
0.035 20.08 26.09 4.61 29.81
0.055 14.27 19.75 3.32 8.87

When δ is too small, the model strug-
gles to distinguish between preferred
and dispreferred outputs. This of-
ten leads to trivial solutions—such
as degrading dispreferred samples to
minimize the loss—which ultimately
harms both generation fidelity and
alignment quality (see the first row
of the table). Conversely, when δ
is too large, the model enforces an
overly strict separation, resulting in
high noise prediction errors for dispreferred samples, which negatively impacts generation quality
(as shown in the last row). In summary, a small δ limits the discriminative power of the model,
weakening alignment, while a large δ increases prediction error, degrading output quality.

6 Conclusion

In this work, we propose a method for aligning text-to-image diffusion models with human preferences
through classification. We begin by reformulating the alignment task as a classification problem,
showing that optimizing the Diffusion-DPO loss effectively minimizes the AM-Softmax loss, and
demonstrating that achieving ideal alignment requires the diffusion model to be discriminative.
Building on this insight, we introduce the Alignment by Circle (ABC) loss to guide diffusion models
toward human-aligned outputs. From the classification perspective, we identify that human preference
datasets are inherently semi-supervised and propose a data augmentation strategy to convert them into
fully supervised datasets for more stable ABC training. Experimental results show that our method
outperforms previous approaches in human preference alignment, highlighting the effectiveness of
alignment by classification for fine-tuning diffusion-based text-to-image models.

7 Limitation

In this paper, we reveal the connection between discriminative ability and alignment performance
through Theorem 1 and 2. However, this connection remains primarily qualitative. A promising direc-
tion for future research is to establish a quantitative relationship between discriminative strength and
alignment effectiveness. Moreover, since preference data are inherently noisy, it is often challenging
to define a clear criterion for determining whether one image is preferred over another. Although we
do not explicitly address this issue in the current work, our formulation offers a potential path forward:
by transforming the alignment task into a classification problem, we can leverage the extensive
literature on classification under label noise. Adapting these techniques to noisy alignment scenarios
may provide a principled solution, which we leave for future investigation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: ABC assumes access to an ideal reference model perfectly aligned with human
intent and reformulates alignment as a classification problem. (see Abstract and the fourth
paragraph of the introduction.)
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a discussion of limitations in the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All assumptions and derivations are presented in Section 4 and formally proven
in the supplementary material, including Theorem 1 and Theorem 2.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 5.1 provides full details of training procedures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: We are currently reorganizing and simplifying the codebase for better clarity
and usability. Although the full implementation is not yet publicly available, we intend to
release it on GitHub after the paper decision.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 5.1 provides full details of training parameter settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not have error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify the training hardware setup at the beginning of the experiments
section, which also applies to the inference and evaluation stages.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We use only publicly available datasets and open-source models.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We propose a more effective alignment method which may benefit the broader
research and application of generative models.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:[NA]

Justification: The paper does not release any models or datasets that pose potential misuse
risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use publicly available models (e.g., SD 1.5, SDXL) and datasets with
proper citation and license attribution (e.g., HPS dataset, PartiPrompts dataset).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We conducted a human evaluation to compare generated images from different
methods in figure 2. Annotators were volunteer graduate students who were informed of the
task and consented to participate without compensation.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve human subjects research. The human annotations
were limited to scoring the quality of generated images, without collecting any personal or
sensitive data.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No large language models were used as part of the core methodology of this
research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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