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Abstract
Sound evaluation of a neural machine trans-001
lation (NMT) model is key to its understand-002
ing and improvement. Current evaluation of003
an NMT system is usually built upon a heuris-004
tic decoding algorithm (e.g., beam search) and005
an evaluation metric assessing similarity be-006
tween the translation and golden reference007
(e.g., BLEU). However, this system-level eval-008
uation framework is prone to its evaluation009
over only one best hypothesis and search er-010
rors brought by heuristic decoding algorithms.011
To better understand NMT models, we pro-012
pose a novel evaluation protocol, which de-013
fines model errors with hypothesis distribution.014
In particular, we first propose an exact top-015
k decoding algorithm, which finds top-ranked016
hypotheses in the whole hypothesis space and017
avoids search errors. Then, we evaluate NMT018
model errors with the distance between hy-019
pothesis distribution with the ideal distribution,020
aiming for a comprehensive interpretation. We021
apply our evaluation on various NMT bench-022
marks and model architectures to provide an023
in-depth understanding of how NMT models024
work. We show that the state-of-the-art Trans-025
former models are facing serious ranking er-026
rors and do not even outperform the random027
chance level. We further provide several in-028
teresting findings over data-augmentation tech-029
niques, dropouts, and deep/wide models. Ad-030
ditionally, we analyze beam search’s lucky bi-031
ases and regularization terms. Interestingly,032
we find these lucky biases decrease when in-033
creasing model capacity.034

1 Introduction035

Recent sequence-to-sequence (Seq2Seq) models036

(Sutskever et al., 2014; Vaswani et al., 2017) have037

shown promising results in neural machine trans-038

lation (NMT), where methods typically frame a039

conditional probability distribution from a source040

sentence to a target sentence.041

One key to the booming of neural machine trans-042

lation is the sound evaluation, which shows the043

trajectory to a better model design and architecture. 044

The commonly used evaluation protocol of an NMT 045

system comprises two main components: a search 046

algorithm and an evaluation metric. The algorithm 047

is responsible for decoding a translated sentence, 048

and the metric computes the discrepancy between 049

the generated translation and the reference. 050

The above evaluation paradigm is widely used in 051

NMT. It assumes that the gap between an NMT 052

model and the ideal model can be depicted by 053

the gap between decoded translations and refer- 054

ences. However, this assumption does not always 055

hold. Recent literature (Stahlberg and Byrne, 2019; 056

Meister et al., 2020) points out that search errors 057

brought by heuristic decoding methods would hide 058

huge flaws of NMT models (model errors), such 059

as empty string is commonly scored with highest 060

probability among model’s probabilities over all hy- 061

potheses, i.e., hypothesis distribution. It is essential 062

to evaluate model errors without being interfered 063

by search errors. 064

Those approaches perform well, but they only 065

take the mode1 hypothesis of hypothesis distribu- 066

tion to evaluate the term of model errors, which 067

is not comprehensive in only considering one hy- 068

pothesis. In contrast, we want to understand model 069

errors in the hypothesis distribution-level: 070

• Q1:What are the most crucial errors that a 071

model’s hypothesis distribution is facing? 072

• Q2:How do these model errors connect with 073

current search algorithms? 074

To answer these questions, we introduce a new 075

distribution-level evaluation of model errors. The 076

decoding and evaluation of model errors need to fit 077

the requirements of the distribution-level evalua- 078

tion of an NMT model. For the decoding algorithm, 079

it should be both exact (not affected by search er- 080

rors) and able to access the top-ranked hypotheses 081

1Mode is the hypothesis with the highest probability in a
distribution.
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given by hypothesis distribution. For the evalu-082

ation, it is essential to identify how good or bad083

these top hypotheses are quantitatively. Particu-084

larly, we propose an exact top-k decoding algo-085

rithm that not only avoids search errors but can086

access the top-ranked region of the whole hypothe-087

sis space. Furthermore, we provide formal defini-088

tions of distribution-level evaluation, and, to deal089

with infinite search space, present a computation-090

ally viable approach to evaluate an NMT model’s091

hypothesis-ranking (HR) ability, based on our exact092

top-k decoding.093

Extensive experiments are conducted over three094

different machine translation benchmarks with095

small, medium, and large sizes. We find that the096

state-of-the-art Transformer models have weaker097

hypothesis ranking abilities than that of the random098

chance level. We further provide several interest-099

ing findings over data-augmentation techniques,100

dropouts, and deep/wide models. In addition, we101

connect model errors with two crucial factors of102

beam search algorithms: beam search lucky biases103

and regularization terms. Interestingly, we find104

those lucky biases decrease with the increase of105

model capacity.2106

Our contributions can be summarized as follows:107

• To the best of our knowledge, we are the first108

to propose and provide formal definitions of109

distribution-level evaluation protocol without110

the interfere of search errors.111

• We provide a realization of distribution-level112

model errors with a newly proposed exact top-113

k decoding method and hypothesis-ranking114

(HR) based evaluation.115

• On errors that NMT models are facing (Q1),116

we conduct in-depth analysis over various117

NMT techniques and find that the state-118

of-the-art Transformer models face severe119

hypothesis-ranking problems with abilities120

weaker than the random chance level.121

• On connection with search algorithms (Q2),122

we analyze the search algorithm in lucky bi-123

ases and regularization terms. Interestingly,124

we find these lucky biases decrease when in-125

creasing model capacity.126

2 Definitions127

In this section, we introduce the formal definitions128

of system-level, mode-level and distribution-level129

evaluations.130
2Codes will be released upon acceptance.

2.1 NMT Model and Hypothesis Space 131

Give an NMT model M , a source sentence x and a 132

reference sentence ŷ. Most of the NMT models are 133

auto-regressive models, which define a conditional 134

distribution for a hypothesis yi as: 135

P (yi|x) =
∏

t∈(1,T )

P (yti |x; y1:t−1i ), 136

= M(x, yi), (1) 137

where t represents the time step on target side and 138

T is the total length of yi. 139

The hypothesis space of M is defined as the set 140

of all hypotheses given by M , 141

Y = {y, ∀P (yi|x) > 0}, (2) 142

and we refer to Y as M ’s hypothesis space. We 143

have the hypothesis distribution of an NMT model 144

over its hypothesis space as, 145

P (Y|x) = {P (yi|x), ∀yi ∈ Y}. (3) 146

2.2 System-level Evaluation 147

Given a decoding algorithm F and an evaluation 148

metric like BLEU (Papineni et al., 2002), the 149

system-level evaluation of NMT system usually 150

proceeds by first decoding a hypothesis y′ from the 151

hypothesis space. 152

y′ = F (Y, P (Y)), (4) 153

where F usually selects one or a few translation(s) 154

with the highest step-by-step conditional probabil- 155

ities from hypothesis space because of the auto- 156

regressive computation order. Next, we evaluate 157

the similarity measure for y′ and reference ŷ. 158

Ssystem = Score(ŷ, y′). (5) 159

2.3 Mode-level Evaluation 160

It is recognized in previous literature (Niehues 161

et al., 2017; Stahlberg et al., 2018; Stahlberg and 162

Byrne, 2019; Meister et al., 2020) that evaluating an 163

NMT model and the decoding method as a whole 164

system hinders our understanding of true NMT 165

model errors. Therefore, Stahlberg and Byrne 166

(2019) proposes an exact decoding method that 167

finds the top-1 hypothesis ym over hypothesis dis- 168

tribution (mode) to evaluate model errors. 169

ym = argmaxy∈Y(P (Y)), Sme = Score(ŷ, ym).
(6) 170
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They find empty strings usually appear to be the171

modes of distributions and use the empty rate of172

modes to quantify the model errors.173

Concretely, the rate of empty modes is defined by174

checking ym = "<EOS>". We call this paradigm175

the mode-level evaluation in the following sections.176

2.4 Distribution-level Evaluation177

Evidently, selecting only one hypothesis in the178

whole hypothesis space loses much information179

of the hypothesis distribution and makes the180

evaluation biased. Alternatively, we define the181

distribution-level evaluation which directly deals182

with the NMT model’s hypothesis distribution over183

Y , by computing the distance between P (Y) and184

ideal distribution Pideal(Y):185

Sdist = Score(P (Y), Pideal(Y)). (7)186

Providing a sound definition to the ideal distri-187

bution of an NMT model is non-trivial. Here we188

mainly model one key attribute of the ideal distribu-189

tion, which we call the hypothesis ranking ability.190

Intuitively, the ideal model’s distribution over hy-191

pothesis space should align with the translation192

qualities over the hypothesis space. In particular,193

if the translation quality of a specific hypothesis194

translation yi is better than that of yj , the model’s195

probability over yi should also be higher than that196

over yj .197

P (yi|x) > P (yj |x) if Q(yi) > Q(yj)198

∀yi, yj ∈ Y, (8)199

where Q(yi) is the translation quality function (e.g.,200

BLEU), and short for Q(ŷ, yi).201

Hence, by extending such ability from pairwise202

to all hypotheses of a source sentence x, we define203

a proxy for ideal distribution using the perfectly204

ordered hypothesis array of which the indices are205

sorted by translation quality. Formally, we define a206

perfect hypothesis-level ranking (HR) array YHR207

over the hypothesis space Y with,208

YHR = [yI0HR
, yI1HR

, · · · , yInHR
]; (9)209

IHR = argsort([Q(y1), · · · , Q(yn)]). (10)210

The model’s array produced by hypothesis distribu-211

tion can be collected by sorting probabilities,212

YM = [yI0M , yI1M , · · · , yInM ]; (11)213

IM = argsort([P (y1|x), · · · , P (yn|x)]). (12)214

Thus, we can now define the distribution-level 215

model errors with the distance between these two 216

sorted arrays, 217

Sdist = D(YHR,YM), (13) 218

where D is a certain distance function. 219

2.5 Relationship between Mode and 220

Distribution 221

In this section, we discuss the relationship between 222

mode-level and distribution-level model error eval- 223

uation. We show that the empty rate is a special 224

case of our distribution-level evaluation. 225

On the one hand, given any matching-based 226

translation quality function Q, the empty output 227

should always be scored 0 and ranked to the last 228

of YHR. On the other hand, ym is the mode of 229

hypothesis distribution and should rank the first in 230

YM. 231

ym = YM[0]; yemp = YHR[n− 1]. (14) 232

Then, the corresponding distance function D in 233

(13) is: 234

Dempty =

{
1 YM[0] = YHR[n− 1]

0 else
, (15) 235

As shown, the rate of empty modes is a special 236

case of our distributional modeling. 237

3 Our Proposed Evaluation 238

Previous distribution-level definitions are powerful 239

and promising. Yet, the realization of distributional 240

evaluation is non-trivial due to the exponentially 241

large search space of an NMT model. In the follow- 242

ing sections, we provide our exact top-k decoding 243

method, which helps find the topmost hypotheses 244

over the whole hypothesis space, and describe how 245

to perform such distribution-level evaluation based 246

on the exact decoding algorithm. 247

3.1 Exact Top-k Decoding 248

As mentioned above, obtaining whole hypothesis 249

space is intractable due to the exponentially large 250

search space. Therefore, one reasonable approx- 251

imation is to focus more on hypotheses with the 252

highest probabilities. Luckily, we care about these 253

hypotheses the most in real-world NMT applica- 254

tions. 255

We extended the exact decoding algorithm 256

(Stahlberg and Byrne, 2019) and propose a top- 257

k DFS-based exact decoding algorithm (Algorithm 258
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1). Our decoding method is guaranteed to find259

the exact top-k hypotheses from the model’s hy-260

pothesis distribution. Particularly, we traverse the261

search space of an NMT model in depth-first or-262

der. We enumerate all tokens in the vocabulary at263

each search step and concatenate them with the cur-264

rent history as the next possible translation prefixes.265

During the search process, we keep track of the266

current top-k hypotheses that we find. Specifically,267

a minimum heap is used to maintain current top-k268

hypotheses during the search procedure. The hy-269

pothesis with the lowest score in the minimum heap270

dynamically update our lower bound during search-271

ing: Once we find a newly finished hypothesis (i.e.,272

ended with </s>), we push the hypothesis into the273

heap and make adjustments to retain the heap size274

equals k. Then, we update the lower bound and275

truncate decoding paths. Finally, the hypotheses276

stayed in the minimum heap are returned. We use277

beam search result as the initial bound of the search278

space and sort the vocabulary before enumeration279

for a faster update of lower bounds.280

It is not easy to make top-k exact search tractable281

under the condition of modern CPU/GPU archi-282

tectures. We devote many efforts to implemen-283

tation for making the search time under the ac-284

ceptable line, and sometimes our method is even285

faster than the original DFS algorithm implementa-286

tion (Stahlberg and Byrne, 2019). The implementa-287

tion details and computational cost analysis can be288

found in Appendix B.289

3.2 HR-based Model Errors290

Here, we present our HR-based model evalua-291

tion. As discussed above, getting the complete292

HR ranked array YHR and model ranked array YM293

are both intractable. Our evaluation has to rely294

on approximation.3 Luckily, in real-world NMT295

models, we prioritize top-ranked hypotheses. Thus296

we define our evaluation over these top-ranked hy-297

potheses found by our exact top-k. Formally, we298

define a truncated model array:299

ỸM = YM[0 : k]; ĨM = IM[0 : k], (16)300

where k denotes how many top-ranked hypothe-301

ses we consider. For YHR, we select hypotheses302

3We provide another interesting approach with edit-
distance as the quality function in the Appendix.

ALGORITHM 1: DFS-based Top-k Exact Search.
Input :x: Source sentence, y: Translation prefix

(default: []), p: logP (y|x) (default 0.0), k:
Top-k hypotheses to output, V: Vocabulary.

1 , Output :List l contains top-k hypotheses with
log-probabilities.

2 global minHeap
3 global γ ← − inf
4 Function dfsTopK(x, y, p):
5 if y[|y| − 1] =< /s > then
6 push(minHeap, (p, y))
7 if len(minHeap) > k then
8 pop(minHeap)
9 end

10 if len(minHeap) = k then
11 γ ← minHeap[0][0]
12 end
13 end
14 for v ∈ V do
15 p′ ← p+ logP (v|x, y)
16 if p′ ≥ γ then
17 dfsTopK(x, [y; v], p′)
18 end
19 end
20 return minHeap
21 return dfsTopK(x, [], 0.0)

appeared in YM to form a local HR array ˜YHR, 303

˜YHR = [yĨ0HR
, yĨ1HR

, · · · , yĨkHR
], (17) 304

ĨHR = argsort([Q(yĨ0M
), · · · , Q(yĨkM

)]). (18) 305

For ranking distance D, we provide two distance 306

functions here. Firstly, we propose an extended 307

version of nDCG (Järvelin and Kekäläinen, 2002), 308

Topk Ranked Gains (kRG): 309

kRG(YHR, ỸM) =
DCG(ỸM)

DCG( ˜YHR)
, (19) 310

DCGk(Y) =
∑

yj∈Y[0:k]

2f(yj)

log2(j + 1)
, (20) 311

f(yj) = k − Rank(yj ,Y), (21) 312

where f(yj) denotes the relevance score of a cer- 313

tain ranked hypothesis. kRG directly measures the 314

ranking of a model’s top-k hypotheses, where 0 315

means a completely wrong ranking and 1 means a 316

perfect ranking. 317

Next, in concern of translation quality of se- 318

lected top-k hypotheses, we further propose Topk 319

Quality-based Ranked Gains (kQRG): 320

kQRG(YHR, ỸM) =
DCGqk(ỸM)

DCGqk(YHR)
(22) 321

DCGqk(Y) =
∑

yj∈Y[0:k]

2Q(yj)D(j), (23) 322
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Name Train Dev Test BPE

NIST Zh-En 1.2M 1664 5105 40K/30K

WMT’14 En-De 4.5M 3000 3003 32K

WMT’14 En-Fr 35.7M 6003 3003 40K

Table 1: Statistics of Datasets

where we replace relevance score with translation323

quality Q ∈ [0, 1] and normalize over YHR. We324

approximate DCGqk(YHR) with its upper-bound:325

DCGqk(YHR) =
∑

yj∈YHR[0:k]

2Q(yj)D(j) (24)326

<=
∑

j∈[0:k]

21.0D(j). (25)327

kQRG consider both how the topmost hypotheses328

ranked and whether these hypotheses have good329

translation quality, where 0 represents a bad rank-330

ing with totally wrong translation, and 1 represents331

a perfect ranking and a perfect collection of top-332

ranked hypotheses.333

4 Experiments and Findings334

Setups. All experiments are conducted over three335

commonly used NMT benchmarks, NIST Chinese-336

English, WMT’14 English-German, and WMT’14337

English-French with small, medium, and large338

sizes. The statistics of datasets are presented in Ta-339

ble 1. Detailed pre-processing steps can be found340

in Appendix A.341

Training and Evaluation. Our models are trained342

using the fairseq toolkit4. We train each of our343

Transformer models for 100k/300k/300k steps344

for three datasets and evaluate each model for345

5000 steps. The default label smoothing is 0.1.346

The dropout rates for different Transformer mod-347

els range from 0.1 to 0.4. The batch sizes are348

8k/64k/64k tokens for three datasets. All our Trans-349

former models are pre-norm models. Other hyper-350

parameter settings are the same as in (Vaswani351

et al., 2017). For evaluation, we report case-352

sensitive tokenized BLEU scores using multi-353

bleu.perl5 for both WMT’14 En-De and En-Fr, and354

case-insensitive tokenized BLEU scores for NIST355

Chinese-English. We select the best checkpoint356

4https://github.com/pytorch/fairseq
5https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

Method System Mode HR-Based

BLEU # Emp kRG kQRG

Transformer 27.22 64.70 50.33 10.50

w/o LS 26.76 34.85 51.62 13.44
w/ para BT 27.36 27.26 51.70 14.05
w/ para FT 28.06 0.93 53.76 18.70

w/ dropout 0.2 27.81 61.74 50.30 11.48
w/ dropout 0.3 27.25 58.81 50.59 11.10

w/ 12-layer Enc 27.75 58.11 50.84 11.30
w/ 18-layer Enc 28.03 53.58 51.55 12.02

w/ Dim 768 28.00 50.18 51.56 11.77
w/ Dim 1024 28.49 44.72 51.58 12.81

Table 2: Model errors of different models in WMT’14
En-De task. All numbers range in [0, 100%]. ‘para
BT’ and ‘para FT’ denote back-translation and forward-
translation over parallel golden data, and LS denotes
label smoothing.

Method BLEU # Emp kRG kQRG

Transformer 40.78 46.75 52.50 18.27

w/o LS 40.70 19.51 54.17 23.47
w/ para FT 40.95 27.26 55.76 26.99

w/ 12-layer Enc 41.28 44.99 52.81 18.84
w/ 18-layer Enc 41.74 53.58 52.93 19.18

w/ Dim 768 41.73 46.12 53.08 19.07
w/ Dim 1024 42.35 40.42 53.24 20.01

Table 3: Model errors of different models in WMT’14
En-Fr task. All numbers range in [0, 100%].

on the validation set and report its performance on 357

the test set. All reported results are averaged over 358

all sentences in the test set. For results with beam 359

search, the beam size is 5, and the length penalty is 360

0.6. For all results with distribution-level metrics, 361

our translation quality function is the sentence-bleu 362

method provided by sacrebleu (Post, 2018), and we 363

use floor smooth with 0.01 as floor value. Other 364

metrics like METEOR can also be used. By de- 365

fault, we use top-10 hypotheses for approximation 366

in experiments. 367

4.1 Findings on NMT Techniques 368

Table 2, 3, 4 demonstrate the results for differ- 369

ent Transformer-based models in WMT’14 En-De, 370

WMT’14 En-Fr and NIST Zh-En tasks respectively. 371

We make following observations: 372

v

https://github.com/pytorch/fairseq
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl


Method BLEU # Emp kRG kQRG

Transformer 42.47 41.14 51.31 11.33

w/o LS 42.44 14.59 53.56 16.51
w/ para FT 42.17 17.52 52.99 18.09

w/ 12-layer Enc 43.38 36.24 51.49 12.48
w/ 18-layer Enc 43.81 43.11 51.41 11.79

w/ Dim 768 42.88 40.76 51.61 13.23
w/ Dim 1024 43.43 34.03 52.13 14.05

Table 4: Model errors of different models in NIST
Chinese-English task. All numbers range in [0, 100%].

I. Failure of mode evaluation. Let us take a look373

at the empty rates, the evaluation for model errors374

proposed in previous literature. We find that remov-375

ing label smoothing, adding pseudo-parallel data376

will drastically decrease the number of empty rates,377

even close to 0 (“para FT”), indicating an almost378

perfect model with tiny model errors. However, it379

is not the case. Our kRG and kQRG results indi-380

cate that the model still has much to improve (to381

100%). These demonstrate that mode-level evalua-382

tion collapses when evaluating certain models. In383

contrast, our evaluation can consistently evaluate384

these models and is consistent with human judg-385

ments (See Appendix D), showing the superiority386

of our evaluation.387

II. The State-of-the-art Transformer models face388

serious ranking problem. Among all models, our389

kRG results range from about 50% ∼ 56%. To fur-390

ther interpret these results, we take 100k trails of391

random permutation using the same scoring func-392

tion, and the kRG is 58.72%. It indicates that even393

though our Transformer models show some ranking394

ability, SOTA Transformer models perform worse395

than the random chance level in terms of the rank-396

ing abilities. When including the translation quality397

into accounts, i.e., kQRG, we find the distribution-398

level scores only range from 10% ∼ 20% for En-399

De, 18% ∼ 27% for En-Fr, and 11% ∼ 18% for400

Zh-En. It shows that Transformer models’ hypoth-401

esis distributions are deficient. The models give402

high probabilities to low-quality translations and403

face severe model errors.404

III. Widening models are more effective in reduc-405

ing model errors. Recently, many interests have406

been drawn for using deeper models instead of407

wider models to increase model capacity. However,408
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Figure 1: Results on NIST with wide and deep models.

as shown in Figure 1 and tables, widening models 409

is still more effective in improving both kRG and 410

kQRG, demonstrating better abilities of ranking 411

and selection. 412

IV. Different dropout values affect model errors 413

slightly. NMT models tend to be sensitive to hyper- 414

parameter settings like dropout values in system- 415

level evaluation. Here, we evaluate models with 416

dropout {0.1, 0.2, 0.3} in Table 2 and find that 417

kRG and kQRG are only slightly affected by vari- 418

ous dropouts. A potential reason is that some em- 419

pirically better choices in hyper-parameters, e.g., 420

suitable dropout values, may only be over-fittings 421

to the search process (e.g., beam search). 422

V. Model confidence may be crucial to boosting 423

the model’s distribution-level performance. Re- 424

sults show that the models trained using parallel 425

and forward translation data show impressive im- 426

provements in both HR metrics, e.g., +3.43 and 427

+8.20 for En-De. Nonetheless, it has similar BLEU 428

performance with beam search compared with our 429

deeper model (w/ 18-layer Encoder) and wider 430

model w/ Dim 768. In this case, system-level eval- 431

uation fails to capture decent improvements over 432

the model’s distribution over candidate space. As 433

forward-translation training and disabling label- 434

smoothing generally enhance the model confidence 435

over beam search candidates, we conjecture that 436

model errors are highly related to model confidence 437

and leave the exploration as future work. 438

4.2 Connection with Beam Search 439

4.2.1 Lucky Bias and Model Errors 440

As pointed out in recent work (Meister et al., 2020), 441

beam search seems to bring a lucky bias that covers 442

some of the model errors. In this section, we utilize 443

the HR-based evaluation to understand the bias 444

brought by beam search. 445

Concretely, we use HR-based evaluation to eval- 446

uate the errors from both exact top-k and beam 447
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Method Distribution Beam Search

kRG kQRG kRG kQRG

6-layer 51.31 11.33 61.36(+10.05) 23.58(+12.25)

9-layer 51.11 11.49 61.73(+10.62) 23.84(+12.36)

12-layer 51.49 12.48 61.69(+10.20) 24.12(+11.64)

15-layer 51.56 12.41 61.57(+10.00) 24.37(+11.96)

18-layer 51.41 11.79 61.11(+ 9.70) 24.29(+12.49)

Table 5: HR-based evaluation over distributional top-
10 outputs and beam top-10 outputs when increasing
number of encoder layers.

Method Distribution Beam Search

kRG kQRG kRG kQRG

D384 50.28 9.78 61.85(+11.57) 22.97(+13.19)

D512 51.31 11.33 61.36(+10.05) 23.58(+12.25)

D640 51.50 12.29 61.90(+10.40) 23.90(+11.61)

D768 51.61 13.23 61.35(+ 9.74) 23.85(+10.62)

D896 52.33 13.15 60.07(+ 7.74) 23.83(+10.68)

D1024 52.13 14.05 61.66(+ 9.53) 24.10(+10.05)

Table 6: HR-based evaluation over distributional top-
10 outputs and beam top-10 outputs when increasing
model’s dimension size.

search k outputs. In this way, the gap between448

two errors provides a quantitative method to eval-449

uate the lucky bias brought by beam search. Ex-450

periments are conducted in NIST Zh-En and re-451

sults are shown in Table 5 and 6. We find that452

beam search indeed provides the inductive bias453

that improves models by reducing model errors.454

For different models, the beam search outputs im-455

proves kRG with 7% ∼ 11% and kQRG with456

10% ∼ 13%, which shows a better hypothesis rank-457

ing ability. Since models do not change, these find-458

ings prove that the inductive bias of beam search459

filters out some hypotheses with low quality or460

assigned wrong probabilities by NMT models. Ad-461

ditionally, we notice one interesting fact that with462

the increases of model capacity, the lucky bias463

brought by beam search decreases. This pro-464

vides a clue about when these lucky biases would465

disappear.466

4.2.2 Understanding Search Regularization467

Recent research has reported that regularization468

terms are essential in the success of beam search al-469

gorithms. Regularization terms, like length penalty470

(Bahdanau et al., 2014; Wu et al., 2016), UID penal-471

ties (Meister et al., 2020), typically modify the log-472

# Method kRG kQRG

Transformer(base) 50.33 10.50

1 w/ length normalization 67.27 11.83
2 w/ max regularization 62.88 11.79
3 w/ square regularization 63.85 11.82
4 w/ variance regularization 64.53 11.83
5 w/ greedy regularization 63.14 11.78

Table 7: Model errors computed by top-100 hypothe-
ses in hypothesis space reranked using regularization
terms, in WMT’14 En-De. All numbers range in [0,
100%.]

probability produced by model. In this section, 473

we study how these regularization terms (or called 474

penalties) affect model errors. 475

These regularizations of beam search are com- 476

monly considered as inductive biases to help beam 477

search avoid errors. As a result, these regulariza- 478

tion terms are commonly regarded as fixes for the 479

beam search algorithm. Nonetheless, we argue that 480

these regularization terms substantially improve the 481

model’s ranking capability and can be evaluated 482

using the proposed HR-based model error metrics. 483

Recall our definition of the model’s ranking array 484

defined in Equation 11. Then, a specific regulariza- 485

tion termR(y) changes model rankings to: 486

YMR = [yI0MR
, yI1MR

, · · · , yInMR
], (26) 487

IMR = argsort([logP (y1|x) +R(y1), · · · , 488

logP (yn|x)] +R(yn)), (27) 489

Accordingly, we can evaluate search penalties 490

with kRG and kQRG. In particular, we use search 491

penalties to rerank the exact search outputs for the 492

Transformer model, to see how search penalties 493

change rankings and overall model errors. For 494

search penalties, we choose length normalization 495

(Wu et al., 2016) and UID regularizations (Meister 496

et al., 2020). 497

As shown in Table 7, all regularization terms 498

substantially improve the model errors by a strong 499

margin, from 50.33 to 62+ in kRG and from 10.50 500

to 11.79+ in kQRG. We find that length normaliza- 501

tion (1) performs the best among all terms among 502

all penalties, which proves length bias is an im- 503

portant issue in model errors. The UID terms (2- 504

5) have lower performance in the ranking ability 505

(kRG) but get similar results in kQRG, compared 506

with length normalization, demonstrating that UID 507

terms improve in an orthogonal direction compared 508

with length norm term. 509
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5 Related Work510

Decoding Methods. Most decoding methods in511

NMT aims to find the hypothesis with the high-512

est conditional probability. This is called the513

maximum-a-posterior (MAP) decoding algorithm.514

Among all MAP decoding methods, beam search515

is the most widely applied method in the modern516

NMT systems for evaluation, which utilizes a fixed517

beam size for each decoding step. Naive beam518

search with log probabilities has several known519

drawbacks, such as favoring short translations and520

its monotonic constraint. Hence, many regulariza-521

tion/rescoring methods (Bahdanau et al., 2014; Wu522

et al., 2016; He et al., 2016; Yang et al., 2018; Mur-523

ray and Chiang, 2018) or beam search variants (Fre-524

itag and Al-Onaizan, 2017; Shu and Nakayama,525

2018) are proposed to improve the actual perfor-526

mance. Other than beam search, one promising527

MAP decoding technique for evaluation is the DFS-528

based exact search (Stahlberg and Byrne, 2019),529

which is designed to find the mode of model dis-530

tributions. Despite its high computational cost, it531

reveals important information about model distri-532

butions. We follow this approach and present a533

top-k exact search method, which can access the534

top-region of hypothesis distribution.535

In addition, there are some non-MAP decod-536

ing algorithms. A typical one is the stochastic537

sampling-based decoding methods (Ackley et al.,538

1985; Holtzman et al., 2019), which randomly539

choose candidates from each step’s output dis-540

tribution. Eikema and Aziz (2020) introduces a541

Minimum Bayesian Risk decoding method based542

on sampling. Leblond et al. (2021) propose a543

metric-driven search approach via Monte-Carlo544

Tree Search (MCTS). These approaches are promis-545

ing and may incorporate with our distribution-level546

evaluation in future directions.547

Error Evaluation. Evaluation of NMT errors548

focuses on studying the gap between machine-549

translated results and human-translated references.550

Statistical matching metrics, such as BLEU, ME-551

TEOR (Papineni et al., 2002; Banerjee and Lavie,552

2005; Koehn et al., 2007; Denkowski and Lavie,553

2014; Guo and Hu, 2019), are dominant in evaluat-554

ing errors. These metrics prove that linguistic simi-555

larity between references and machine translations556

correlates the human evaluation well. However, to557

the best of our knowledge, these statistical metrics558

evaluate one best hypothesis decoded from heuris-559

tic decoding algorithm (i.e., system-level evalua-560

tion), which incorporate huge search errors and 561

bias understanding of NMT models. 562

Recent efforts (Niehues et al., 2017; Stahlberg 563

et al., 2018; Stahlberg and Byrne, 2019; Meister 564

et al., 2020; Eikema and Aziz, 2020) are devoted 565

to analyzing model errors without search errors 566

and provide meaningful conclusions. Nonetheless, 567

these approaches still evaluate over one hypothesis 568

in hypothesis distribution except with the one with 569

highest probability. This is incomprehensive due 570

to neglecting errors inside the whole hypothesis 571

distribution. In contrast, we dig into model errors 572

over distribution-level and provide a comprehen- 573

sive evaluation. In addition, we provide various 574

interesting findings over model errors with regards 575

to NMT techniques and search algorithms. 576

6 Conclusion and Future Work 577

This paper presents a novel distribution-level eval- 578

uation protocol for model errors. Specifically, we 579

propose a new exact top-k decoding algorithm and 580

evaluate NMT model errors with the distance be- 581

tween hypothesis distribution and ideal distribution. 582

Our evaluation protocol helps understand current 583

NMT systems from two perspectives: 1) various 584

NMT techniques, and 2) search algorithms, which 585

together comprise the backbone of NMT systems. 586

With experiments over various NMT benchmarks 587

and architectures, we prove the effectiveness of our 588

evaluation on model errors, and provide understand- 589

ings over commonly used NMT techniques such as 590

data augmentation, dropouts, increasing model ca- 591

pacity, etc. In addition, we demonstrate that current 592

NMT models underperform in terms of hypothesis 593

ranking ability. Regarding beam search, we mainly 594

investigate lucky biases and search penalties and 595

show that the lucky biases decrease when the model 596

capacity increases. Furthermore, the experimen- 597

tal results provide a clue about when these biases 598

would disappear. Finally, we prove that search 599

penalties can help rank hypotheses correctly. 600

From our point of view, it is essential to under- 601

stand NMT models without search errors, and we 602

believe that is one of the future directions of NMT. 603

Researchers can save a large amount of time in 604

tuning models where beam search blessing does 605

not necessarily exist. It is valuable if the decoding 606

algorithms are exact as well, to align with the evalu- 607

ation properly. We plan to investigate a faster exact 608

decoding algorithm or approximation algorithm 609

that can be deployed in NMT systems. 610
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A Experimental Details753

A.1 Detailed Descriptions of Datasets754

For our WMT’14 En-De/En-Fr tasks, we use 4.5M755

/ 35.7M preprocessed data, which is tokenized and756

split using byte pair encoded (BPE) (Sennrich et al.,757

2016) with 32K/40K merge operations and a shared758

vocabulary for source and target sides. For En-759

De, we use newstest2013 as the validation set and760

newstest2014 as the test set. For En-Fr, we use the761

combination of newstest2012 and newstest2013 as762

our validation set and newstest2014 as the test set.763

For the NIST Zh-En task, we use 1.25M sen-764

tences extracted from LDC corpora6. To validate765

the performance of our model, we use the NIST766

2006 (MT06) test set with 1664 sentences as our767

validation set. Then, the NIST 2002 (MT02), 2004768

(MT04), 2005 (MT05), 2008 (MT08) test sets are769

used as our test sets, which contain 878, 1788,770

1082, and 1357 sentences, respectively. All re-771

ported results are averaged over different test sets.772

B Implementation Details of Exact Top-k773

Here we explain the implementation details of our774

exact top-k algorithm. The detailed algorithm is775

shown in Algorithm 2. Our implementation is built776

upon uid-decoding7 and sgnmt8 projects, and is777

compatible with the models trained with fairseq.778

The original implementation of exact top-1 decod-779

ing heavily relies on CPU operations. In contrast,780

our top-k version moves a number of computations781

to GPU, and improves several implementation de-782

tails as follows.783

• Optimizing the iterating process. As de-784

fined the 13-th line of our Algorithm 2, we785

need to iterate through all words in the vo-786

cabulary. However, the order of iterations787

significantly influences the speed because of788

the lower bounds. Empirically, we find that789

iterating the vocabulary greedily substantially790

reduces the run time.791

• Batching the hypotheses for each time step.792

As stated at the 14-th line of Algorithm 2,793

we iterate one word and perform one forward794

model inference at a time. However, the GPU795

6The corpora include LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.

7https://github.com/rycolab/
uid-decoding

8https://github.com/ucam-smt/sgnmt

utilization of this scheme is extremely low. 796

Thus, we use batch technique and batch b 797

different words for one model forward pass, 798

which efficiently increases the GPU utiliza- 799

tion. 800

• Good lower bounds facilitate the search 801

process. We observe that better lower bounds 802

vastly reduce the search time. In our imple- 803

mentation, we use the top n-best list output 804

from the beam search with larger beam sizes 805

than n as our lower bounds. 806

As a result, the speed is improved significantly. 807

B.1 Worst-case Analysis for Exact Search 808

Algorithm 809

This section analyzes the worst-case behaviors of 810

exact search algorithms. First, let us discuss a 811

simple case when the exact search does not use 812

lower bounds. Given a target sentence set Yl = 813

{y|len(y) = l} where all hypotheses in that set 814

have the same length l, it is obvious that the search 815

operations needed for exact top-1 and exact top- 816

k algorithms are the same, i.e., Nl = |Yl| = |V |l. 817

Thus, the total search operations for all lengths9 l ∈ 818

[1, lmax] can be computed by N =
∑

l∈[1,lmax]
Nl. 819

Next, we consider the case with lower bounds. 820

Since lower bounds help trim the search space, the 821

worst case happens when the search algorithm finds 822

the hypotheses in a reversed order. In that case, 823

lower bounds could not trim any search space and 824

have to iterate all hypotheses. Hence, the numbers 825

of search operations needed for both top-1 and top- 826

k algorithms are identical, i.e., N =
∑

l∈[1,lmax]
Nl 827

operations. On the other hand, both the top-1 and 828

our top-k algorithms are similar to Branch&Bound 829

algorithm (Hendy and Penny, 1982), which cannot 830

lower the time complexity in the worst case, and 831

its time complexity is the same as the one of depth- 832

first-search (DFS) algorithm (Mackworth, 2013). 833

However, it is practically useful because it is proved 834

to be able to improve the search speed significantly. 835

C Empirical Computational Cost 836

C.1 Compared with Different Decoding 837

Algorithms 838

This section provides several empirical results to 839

show how different decoding methods perform in 840

9We do not use the length constraint in our implementation.
Here, we add the max length constraint for the clarity of our
proof.
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ALGORITHM 2: DFS-based Top-k Exact Search.
Input :x: Source sentence, y: Translation prefix

(default: []), p: logP (y|x) (default 0.0), k:
Top-k hypotheses to output

Output :List l contains top-k hypotheses with
log-probabilities.

1 global minHeap
2 global γ ← − inf
3 Function dfsTopK(x, y, p):
4 if y[|y| − 1] =< /s > then
5 push(minHeap, (p, y))
6 if len(minHeap) > k then
7 pop(minHeap)
8 end
9 if len(minHeap) = k then

10 γ ← minHeap[0][0]
11 end
12 end
13 for v ∈ V do
14 p′ ← p+ logP (v|x, y)
15 if p′ ≥ γ then
16 dfsTopK(x, [y; v], p′)
17 end
18 end
19 return minHeap
20 return dfsTopK(x, [], 0.0)

terms of computational time. We randomly sam-841

ple 100 sentences in WMT’14 En-De newstest2014842

and report the corresponding run time as well as the843

number of expansion operations. The expansion844

operation, i.e., model’s forward pass, is the most845

time-consuming operation in the exact search algo-846

rithm and is linear to the number of computation847

flops. We report the computational costs for three848

different algorithms, including Beam Search, Exact849

Top-1 and Exact Top-5. Each reported number is850

the average over four runs with different samples851

as inputs.852

The results are shown in Table 8. First, we can853

see that Beam Search is about ten to twenty times854

faster than exact search algorithms. This is con-855

sistent with results in previous literature. Second,856

compared with previous Exact Search implementa-857

tion, our implementation of top-5 search has almost858

the same time cost as top-1, which demonstrates859

the effectiveness and efficiency of our proposed860

approach.861

By taking the number of expansions into account,862

we notice two more interesting facts – On the one863

hand, the number of expansions is not linear to k.864

Our top-k algorithm explores only about five times865

the search space compared with top-1 algorithm.866

On the other hand, our algorithm is significantly867

more efficient than the original implementation,868

with four times faster in terms of the number of869

expansions and only about two times in terms of 870

the computational cost. 871

C.2 Compared with Different k 872

We also report results with different values of k, 873

shown in Table 9. The computational time and 874

the number of expansions grow as k increases. 875

When we enlarge the number of k from 5 to 10, the 876

time costs grow by about 1.9 times (15,916.2/ 8,914.4), 877

which denotes an almost linear time cost with re- 878

gard to k. Compared to (Stahlberg and Byrne, 879

2019), our algorithms are more efficient – Our top- 880

5 algorithm operates two times of expansions and 881

performs comparably with their algorithms in terms 882

of computational time. 883

In the main content of our paper, we mainly use 884

top-10 results for our evaluation method for the 885

trade-off between efficiency and effectiveness. 886

D Human Evaluation 887

This section presents the human judgements on 888

our kQRG results. We sample 100 sentences from 889

NIST Zh-En test sets and provide top-5 exact de- 890

coding results for comparison. We ask two profes- 891

sional Chinese-English annotators to rank the top-5 892

results of three different systems for each source 893

sentence, and average the ranks. We choose to 894

rank systems rather than directly score them since 895

the absolute score of each system’s top-5 given by 896

humans may differ drastically. In contrast, com- 897

paring against each other is more reliable. The 898

system gives the best top-5 results among systems 899

are scored with 3, and the one with worst top-5 900

results are scored with 1. Note that these ranks are 901

not easy to judge by humans. Through annotation, 902

we find the hypotheses given by NMT models are 903

sometimes very similar, with only a few different 904

tokens. Therefore, if a human annotator cannot 905

distinguish the difference between two hypotheses, 906

it is allowed to give tied scores, e.g., [3, 2, 2]. 907

The results are shown in Figure 2. We can 908

see that the trend of human judgements is closely 909

aligned with the ranks given by kQRG. Human re- 910

sults are higher than kQRG results due to the tied 911

scores. This proves that the differences in kQRG 912

are consistent with the ones of human judgements. 913

E Edit-Distance-based Evaluation 914

In this section, we provide an approach for com- 915

puting model errors, which do not rely on approx- 916

imation for YHR. The challenge is to score the 917
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Method Time Cost (seconds) Num Expansions

Beam Search 453.0 -
Stahlberg and Byrne (2019) 8,064.0 2,769.6

Exact Top-5 w/ BS lower bounds 8,914.4 6,029.4

Table 8: Time cost and number of expansions for exact search algorithms with 4 sampled runs on 100 test sentences.

Method Time Cost (seconds) Num Expansions

Stahlberg and Byrne (2019) 8,064.0 2,769.6

Exact Top-5 w/ BS lower bounds 8,914.4 6,029.4
Exact Top-10 w/ BS lower bounds 15,916.2 10,865.9
Exact Top-20 w/ BS lower bounds 28,313.9 19,155.8

Table 9: Computational time and expansions for exact search algorithms when k increases.

System A System B System C
0.0

0.5

1.0

1.5

2.0

2.5

Ra
nk

s

Human
kQRG

Figure 2: Human evaluated ranks versus kQRG ranks
for three different systems.

unbounded hypothesis space . It would be helpful918

if a HR array with a certain translation quality func-919

tion Q can be queried without actually constructing920

the array.921

Therefore, inspired by (Norouzi et al., 2016),922

we model YHR with an edit-distance based ranked923

array, where each hypothesis is ranked by its edit-924

distance to the references,925

Q(yi, ŷ, x) = −Edit_Distance(yi, ŷ), (28)926

where a larger edit distance means a lower rank in927

the HR array. Then, given a hypothesis yi with e928

edits to reference, we can predict the number of929

hypotheses with e edits from ŷ by,930

c(e, T ) =

T∑
s=0

(
T

s

)(
T + e− 2s

e− s

)
|V |e, (29)931

where s is the number of substitution operations932

and |V | is the vocabulary size. For more details,933

we refer our readers to (Norouzi et al., 2016). Then934

we can estimate the rank of a hypothesis yi with the 935

sum of numbers of hypotheses with edit distance 936

lower than e, 937

Rank(y) =
∑

e′∈[0,e)

c(e′, T ). (30) 938

The visualization of edit-distance rankings is 939

shown in Figure 3, which illustrates how the model 940

error changes when using different architectures 941

and techniques. 942

Note that we use exact top-100 hypotheses of 943

model distribution for this visualization. We expect 944

the hypotheses are located among the top 0 ∼ 10% 945

of edit-distance rankings. Interestingly, across all 946

models, the probability mass of these top-ranking 947

hypotheses lies either in the top 10% or the last 948

10% of edit-distance ranks. About 70% of the hy- 949

potheses are located in the last 10%. It indicates 950

model errors are severe, where the model prefers 951

both good hypotheses (ranked 0 ∼ 10%) and bad 952

hypotheses (ranked 90% ∼ 100%). In addition, we 953

make several observations: 954

• A model without label smoothing strongly de- 955

creases the number of top hypotheses in the 956

last 10% of ranks. (Figure 3(a)) 957

• Pseudo data generation techniques decrease 958

the model errors. The model with forward- 959

translated data significantly decreases model 960

errors. (Figure 3(a)) 961

• Increasing the dropout rate does not necessar- 962

ily improve model errors. (Figure 3(b)) 963
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(a) Loss and pseudo data.
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(b) Different dropouts.
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(c) Deeper architectures.
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(d) Wider architectures.

Figure 3: The edit-distance ranking visualization of Transformer models with different techniques. Here, we use
top-10 hypotheses of exact search. para FT and para BT denote the model trained with both golden dataset and
forward/backward generated pseudo dataset.

• Increasing model capacity, like deepening or964

widening model architectures, generally re-965

duces model errors monotonically. (Figure966

3(c, d))967

We use edit-distance metric because the com-968

monly used metrics in NMT (e.g., BLEU or969

METOR) are difficult to estimate the ranks of hy-970

potheses, therefore cannot provide the above analy-971

sis.972

F Investigations on Beam Search Curse973

Our proposed exact top-k decoding algorithm en-974

ables us to investigate the relationship between the975

beam search algorithm and the top-k decoding al-976

gorithm. First, we conduct an experiment to help977

understand to what extent these two algorithms dis-978

agree. We first run the exact decoding algorithm979

using k = 100 and beam search with beam sizes980

of 5, 10, 20, 50, 100 on the WMT’ 14 English-981

German testset. We plot the ranked positions of982

the beam search results over the exact outputs in983

Figure 4a, which demonstrates that a larger beam984

size leads to fewer search errors since the ranked985

positions of those hypotheses are higher. How-986

ever, the BLEU scores of the beam search results987

are inversely proportional to the beam size, which988

are 27.28%, 27.27%, 26.98%, 26.03%, 23.87% re-989

spectively. This is called beam search curse (Yang990

et al., 2018) - translation quality degrades as beam991

sizes increases.992

We further investigate the trends in terms of993

BLEU scores from sentence-level when using a994

larger beam size. For each source sentence, we995

track the BLEU score of its translated sentence996

from a small beam size to a large beam size. As997

a result, we can obtain two properties for each998

sentence. One is the number of getting a better999

translation. Conversely, the other is the number1000

of getting a worse translation. We plot the results1001
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Figure 4: The experimental results of comparing top-
k exact decoding with beam search decoding. (a) The
numbers of ranked positions of different beam search
results. (b) Sentence-level BLEU trends when increas-
ing the beam size. The horizontal axis is the number
of changes (positive values means getting better, vice
versa). The vertical axis is the counts of changes.

in Figure 4b. The results show that the trend is 1002

random in sentence-level, and not consistent with 1003

the facts we observe from the whole dataset. This 1004

reveals that the NMT model has a large number of 1005

ranking errors, i.e., two very close hypotheses may 1006

be ordered falsely by the model. 1007

Based on the above experimental results, we 1008

discover that beam search curse is closely related 1009

to the hypothesis ranking of an NMT model. This 1010

finding motivates us to study how to evaluate the 1011

hypothesis distribution of an NMT system. If an 1012

NMT model can successfully order all hypotheses 1013

by a certain scoring function, the beam search curse 1014

will disappear. 1015

G Case Study 1016

This section provides a case study for English- 1017

German translation outputs for our Exact Top-k 1018

decoding algorithm. Table 10 shows the generated 1019

hypotheses, their corresponding log probabilities, 1020

and BLEU scores. 1021

There are several problems of models’ generated 1022

outputs based on the example: First, the ranking 1023

problem we argue in the main content apparently 1024

exists, which is demonstrated in our provided ex- 1025
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Rank LogProb BLEU hypothesis

Ref - 100.00
Zwei Anlagen so nah beieinander: Absicht oder
Schildbürgerstreich? <EOS>

1 -9.04 00.00
<EOS>

2 -10.13 20.45
Zwei Leuchten so nah beieinander: absichtlich oder einfach
nur ein dummer Fehler? <EOS>

3 -10.40 07.47
Zwei Leuchten so nahe beieinander: absichtlich oder einfach
nur ein dummer Fehler? <EOS>

4 -10.56 22.24
Zwei Leuchten so nah beieinander: absichtlich oder nur
ein dummer Fehler? <EOS>

5 -10.92 08.13
Zwei Leuchten so nahe beieinander: absichtlich oder nur
ein dummer Fehler? <EOS>

6 -10.94 05.89
Zwei Leuchten so nahe beieinander? <EOS>

7 -11.10 22.24
Zwei Leuchten so nah beieinander: absichtlich oder einfach
ein dummer Fehler? <EOS>

8 -11.15 37.60
Zwei Leuchten so nah beieinander: Absicht oder einfach nur
ein dummer Fehler? <EOS>

9 -11.21 17.63
Zwei Leuchten so nah beieinander? <EOS>

10 -11.39 40.90
Zwei Leuchten so nah beieinander: Absicht oder nur ein
dummer Fehler? <EOS>

Table 10: The generated translations with top-10 decoding. The source sentence is "Two sets of lights so close to
one another: intentional or just a silly error?"

ample. For instance, the model gives the highest1026

score to an empty hypothesis (only <EOS>), which1027

ranks the model’s mode hypothesis the worst in1028

the hypothesis space. Second, the model ranks1029

some sub-optimal hypotheses in the top-10 rank-1030

ings, like 2-nd, 4-th, 7-th, 10-th. However, the best1031

hypothesis is ranked only at the 10-th position. It1032

can also prove the existence of the ranking prob-1033

lem. Third, the model favors shorter hypotheses.1034

The hypotheses at rank positions 1-st, 6-th, and1035

9-th are much shorter than the others. The short1036

hypotheses have roughly similar scores compared1037

with the longer ones. Furthermore, most of the1038

hypotheses share a similar prefix, which is similar1039

to the reference, demonstrating that the model can1040

find proper translations with incorrect log proba-1041

bilities. Those problems indicate the existence of1042

an under-confidence problem, which is in line with1043

our findings in Section 4.1.1044
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