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Abstract

Sound evaluation of a neural machine trans-
lation (NMT) model is key to its understand-
ing and improvement. Current evaluation of
an NMT system is usually built upon a heuris-
tic decoding algorithm (e.g., beam search) and
an evaluation metric assessing similarity be-
tween the translation and golden reference
(e.g., BLEU). However, this system-level eval-
vation framework is prone to its evaluation
over only one best hypothesis and search er-
rors brought by heuristic decoding algorithms.
To better understand NMT models, we pro-
pose a novel evaluation protocol, which de-
fines model errors with hypothesis distribution.
In particular, we first propose an exact top-
k decoding algorithm, which finds top-ranked
hypotheses in the whole hypothesis space and
avoids search errors. Then, we evaluate NMT
model errors with the distance between hy-
pothesis distribution with the ideal distribution,
aiming for a comprehensive interpretation. We
apply our evaluation on various NMT bench-
marks and model architectures to provide an
in-depth understanding of how NMT models
work. We show that the state-of-the-art Trans-
former models are facing serious ranking er-
rors and do not even outperform the random
chance level. We further provide several in-
teresting findings over data-augmentation tech-
niques, dropouts, and deep/wide models. Ad-
ditionally, we analyze beam search’s lucky bi-
ases and regularization terms. Interestingly,
we find these lucky biases decrease when in-
creasing model capacity.

1 Introduction

Recent sequence-to-sequence (Seq2Seq) models
(Sutskever et al., 2014; Vaswani et al., 2017) have
shown promising results in neural machine trans-
lation (NMT), where methods typically frame a
conditional probability distribution from a source
sentence to a target sentence.

One key to the booming of neural machine trans-
lation is the sound evaluation, which shows the

trajectory to a better model design and architecture.
The commonly used evaluation protocol of an NMT
system comprises two main components: a search
algorithm and an evaluation metric. The algorithm
is responsible for decoding a translated sentence,
and the metric computes the discrepancy between
the generated translation and the reference.

The above evaluation paradigm is widely used in
NMT. It assumes that the gap between an NMT
model and the ideal model can be depicted by
the gap between decoded translations and refer-
ences. However, this assumption does not always
hold. Recent literature (Stahlberg and Byrne, 2019;
Meister et al., 2020) points out that search errors
brought by heuristic decoding methods would hide
huge flaws of NMT models (model errors), such
as empty string is commonly scored with highest
probability among model’s probabilities over all hy-
potheses, i.e., hypothesis distribution. It is essential
to evaluate model errors without being interfered
by search errors.

Those approaches perform well, but they only
take the mode' hypothesis of hypothesis distribu-
tion to evaluate the term of model errors, which
is not comprehensive in only considering one hy-
pothesis. In contrast, we want to understand model
errors in the hypothesis distribution-level:

e Ql:What are the most crucial errors that a
model’s hypothesis distribution is facing?

e Q2:How do these model errors connect with
current search algorithms?

To answer these questions, we introduce a new
distribution-level evaluation of model errors. The
decoding and evaluation of model errors need to fit
the requirements of the distribution-level evalua-
tion of an NMT model. For the decoding algorithm,
it should be both exact (not affected by search er-
rors) and able to access the top-ranked hypotheses

"Mode is the hypothesis with the highest probability in a
distribution.



given by hypothesis distribution. For the evalu-
ation, it is essential to identify how good or bad
these top hypotheses are quantitatively. Particu-
larly, we propose an exact top-k decoding algo-
rithm that not only avoids search errors but can
access the top-ranked region of the whole hypothe-
sis space. Furthermore, we provide formal defini-
tions of distribution-level evaluation, and, to deal
with infinite search space, present a computation-
ally viable approach to evaluate an NMT model’s
hypothesis-ranking (HR) ability, based on our exact
top-k decoding.

Extensive experiments are conducted over three
different machine translation benchmarks with
small, medium, and large sizes. We find that the
state-of-the-art Transformer models have weaker
hypothesis ranking abilities than that of the random
chance level. We further provide several interest-
ing findings over data-augmentation techniques,
dropouts, and deep/wide models. In addition, we
connect model errors with two crucial factors of
beam search algorithms: beam search lucky biases
and regularization terms. Interestingly, we find
those lucky biases decrease with the increase of
model capacity.’

Our contributions can be summarized as follows:

* To the best of our knowledge, we are the first
to propose and provide formal definitions of
distribution-level evaluation protocol without
the interfere of search errors.

* We provide a realization of distribution-level
model errors with a newly proposed exact top-
k decoding method and hypothesis-ranking
(HR) based evaluation.

* On errors that NMT models are facing (Q1),
we conduct in-depth analysis over various
NMT techniques and find that the state-
of-the-art Transformer models face severe
hypothesis-ranking problems with abilities
weaker than the random chance level.

* On connection with search algorithms (Q2),
we analyze the search algorithm in lucky bi-
ases and regularization terms. Interestingly,
we find these lucky biases decrease when in-
creasing model capacity.

2 Definitions

In this section, we introduce the formal definitions
of system-level, mode-level and distribution-level
evaluations.

2Codes will be released upon acceptance.
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2.1 NMT Model and Hypothesis Space

Give an NMT model M, a source sentence x and a
reference sentence . Most of the NMT models are
auto-regressive models, which define a conditional
distribution for a hypothesis y; as:

II Py,

te(1,7)
M(CC, yl)7

P(yi|x)

)

where ¢ represents the time step on target side and
T is the total length of y;.

The hypothesis space of M is defined as the set
of all hypotheses given by M,

Y ={y, VP(yi|r) > 0}, (2)

and we refer to ) as M’s hypothesis space. We
have the hypothesis distribution of an NMT model
over its hypothesis space as,

P(Y|x) = {P(yi|r), Yy; € V}. 3)

2.2 System-level Evaluation

Given a decoding algorithm F' and an evaluation
metric like BLEU (Papineni et al., 2002), the
system-level evaluation of NMT system usually
proceeds by first decoding a hypothesis 3’ from the
hypothesis space.

y/:F(y7P(y))a 4)

where F usually selects one or a few translation(s)
with the highest step-by-step conditional probabil-
ities from hypothesis space because of the auto-
regressive computation order. Next, we evaluate
the similarity measure for y’ and reference 9.

Sqystem = Score(y, y'). 35)

2.3 Mode-level Evaluation

It is recognized in previous literature (Niehues
et al., 2017; Stahlberg et al., 2018; Stahlberg and
Byrne, 2019; Meister et al., 2020) that evaluating an
NMT model and the decoding method as a whole
system hinders our understanding of true NMT
model errors. Therefore, Stahlberg and Byrne
(2019) proposes an exact decoding method that
finds the top-1 hypothesis y,,, over hypothesis dis-
tribution (mode) to evaluate model errors.

Y = argmax, ¢y (P(Y)), Sme = Score(7, Ym)-
(6)



They find empty strings usually appear to be the
modes of distributions and use the empty rate of
modes to quantify the model errors.

Concretely, the rate of empty modes is defined by
checking y,,, = "<EOS>". We call this paradigm
the mode-level evaluation in the following sections.

2.4 Distribution-level Evaluation

Evidently, selecting only one hypothesis in the
whole hypothesis space loses much information
of the hypothesis distribution and makes the
evaluation biased. Alternatively, we define the
distribution-level evaluation which directly deals
with the NMT model’s hypothesis distribution over
Y, by computing the distance between P())) and
ideal distribution Pigeqa()):

Sdist = Score(P(Y), Paeal(Y))- (7)

Providing a sound definition to the ideal distri-
bution of an NMT model is non-trivial. Here we
mainly model one key attribute of the ideal distribu-
tion, which we call the hypothesis ranking ability.
Intuitively, the ideal model’s distribution over hy-
pothesis space should align with the translation
qualities over the hypothesis space. In particular,
if the translation quality of a specific hypothesis
translation y; is better than that of y;, the model’s
probability over y; should also be higher than that
over y;.

Pyilx) > P(yjlz) if Qyi) > Q(y;)

Vi, y; € Y, (8)

where Q) (y;) is the translation quality function (e.g.,
BLEU), and short for Q(7, ;).

Hence, by extending such ability from pairwise
to all hypotheses of a source sentence x, we define
a proxy for ideal distribution using the perfectly
ordered hypothesis array of which the indices are
sorted by translation quality. Formally, we define a
perfect hypothesis-level ranking (HR) array Yur
over the hypothesis space ) with,

€)
(10)

7yI;;R};
, Q(Yn)])-

The model’s array produced by hypothesis distribu-
tion can be collected by sorting probabilities,

ViR = [Yrg - Yngo
Ing = argsort([Q(y1), - -

(In
(12)

yM = [yl&vylﬁdv"' aylﬁ};
Iy = argsort([P(y1|x), -, P(yn|z)]).
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Thus, we can now define the distribution-level
model errors with the distance between these two
sorted arrays,

Sdist = D(YHR, M),

where D is a certain distance function.

13)

2.5 Relationship between Mode and
Distribution

In this section, we discuss the relationship between
mode-level and distribution-level model error eval-
uation. We show that the empty rate is a special
case of our distribution-level evaluation.

On the one hand, given any matching-based
translation quality function (), the empty output
should always be scored 0 and ranked to the last
of Yur. On the other hand, y,, is the mode of
hypothesis distribution and should rank the first in

Ym.
ym:yM[O]a yemp:yHR[n_”- (14)

Then, the corresponding distance function D in
(13) 1s:

Dempty = {

As shown, the rate of empty modes is a special
case of our distributional modeling.

1
0

Ym[0] = Yur[n — 1]

, (15)
else

3 Our Proposed Evaluation

Previous distribution-level definitions are powerful
and promising. Yet, the realization of distributional
evaluation is non-trivial due to the exponentially
large search space of an NMT model. In the follow-
ing sections, we provide our exact top-k decoding
method, which helps find the topmost hypotheses
over the whole hypothesis space, and describe how
to perform such distribution-level evaluation based
on the exact decoding algorithm.

3.1 Exact Top-%£ Decoding

As mentioned above, obtaining whole hypothesis
space is intractable due to the exponentially large
search space. Therefore, one reasonable approx-
imation is to focus more on hypotheses with the
highest probabilities. Luckily, we care about these
hypotheses the most in real-world NMT applica-
tions.

We extended the exact decoding algorithm
(Stahlberg and Byrne, 2019) and propose a top-
k DFS-based exact decoding algorithm (Algorithm



1). Our decoding method is guaranteed to find
the exact top-k£ hypotheses from the model’s hy-
pothesis distribution. Particularly, we traverse the
search space of an NMT model in depth-first or-
der. We enumerate all tokens in the vocabulary at
each search step and concatenate them with the cur-
rent history as the next possible translation prefixes.
During the search process, we keep track of the
current top-k hypotheses that we find. Specifically,
a minimum heap is used to maintain current top-k
hypotheses during the search procedure. The hy-
pothesis with the lowest score in the minimum heap
dynamically update our lower bound during search-
ing: Once we find a newly finished hypothesis (i.e.,
ended with </s>), we push the hypothesis into the
heap and make adjustments to retain the heap size
equals k. Then, we update the lower bound and
truncate decoding paths. Finally, the hypotheses
stayed in the minimum heap are returned. We use
beam search result as the initial bound of the search
space and sort the vocabulary before enumeration
for a faster update of lower bounds.

It is not easy to make top-k exact search tractable
under the condition of modern CPU/GPU archi-
tectures. We devote many efforts to implemen-
tation for making the search time under the ac-
ceptable line, and sometimes our method is even
faster than the original DFS algorithm implementa-
tion (Stahlberg and Byrne, 2019). The implementa-
tion details and computational cost analysis can be
found in Appendix B.

3.2 HR-based Model Errors

Here, we present our HR-based model evalua-
tion. As discussed above, getting the complete
HR ranked array Yyr and model ranked array Yum
are both intractable. Our evaluation has to rely
on approximation.> Luckily, in real-world NMT
models, we prioritize top-ranked hypotheses. Thus
we define our evaluation over these top-ranked hy-
potheses found by our exact top-k. Formally, we
define a truncated model array:

Ym = Ym0 : k]; Iy = In[0 : K], (16)

where k denotes how many top-ranked hypothe-
ses we consider. For Yyr, we select hypotheses

3We provide another interesting approach with edit-
distance as the quality function in the Appendix.
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ALGORITHM 1: DFS-based Top-k Exact Search.
Input

:x: Source sentence, y: Translation prefix
(default: []), p: log P(y|z) (default 0.0), k:
Top-k hypotheses to output, V: Vocabulary.
, Output : List [ contains top-k hypotheses with
log-probabilities.

global minHeap
global v < — inf
Function df sTopK (z, y, p) :
if y[|ly| — 1] =< /s > then
push(minHeap, (p, y))
if len(minHeap) > k then
| pop(minHeap)
end
if len(minHeap) = k then

| v  minHeap[0][0]
end
end
forv € V do
P’ < p+log P(v|z,y)
if p’ > ~y then

| dfsTopK (z, [y;v],p")
end

end
return minHeap
return dfsTopK (z, [|,0.0)

appeared in Y to form a local HR array Yf{R,
(17)
(18)

yHR = [yngayfI}{Rv T 7y[~11_€[R]5

Inr = argsort([Q(yz0), -+ Qyz))-

For ranking distance D, we provide two distance
functions here. Firstly, we propose an extended
version of nDCG (Jarvelin and Kekildinen, 2002),
Topk Ranked Gains (KRG):

5 DCG(Ym)
kRG = 19
(Vur, YM) DCG (Vi) (19)
2f(y;)
DCGy(¥)= > ———r, (0
y;EY[0:K] log(j +1)

where f(y;) denotes the relevance score of a cer-
tain ranked hypothesis. kRG directly measures the
ranking of a model’s top-k hypotheses, where 0
means a completely wrong ranking and 1 means a
perfect ranking.

Next, in concern of translation quality of se-
lected top-k hypotheses, we further propose Topk
Quality-based Ranked Gains (kQRG):

8 DCG,1(Ywm)
kQRG = - W 22
QRG(Yur, Ym) DCGo. (k) (22)
DCGu(Y) = Y. 22W)D(j),  (23)
y; €Y[0:k]



Name ‘ Train\ Dev ‘ Test ‘ BPE

HSystemH Mode ‘ HR-Based

Method
NIST Zh-En | 1.2M|1664|5105|40K/30K | BLEU ||# Emp|kRG kQRG
WMT’14 En-De| 4.5M|3000(3003| 32K Transformer || 27.22 || 64.70 |50.33 10.50
WMT' 14 En-Fr |35.7M|6003(3003| 40K wlo LS 26.76 || 34.85 [51.62 13.44
w/ para BT 27.36 || 27.26 |51.70 14.05
Table 1: Statistics of Datasets w/ para FT 28.06 0.93 |53.76 18.70
where we replace relevance score with translation w/ dropout 0.2 || 27.81 || 61.74 150.30 11.48
quality Q c [0, 1] and normalize over yHR~ We W/ dI'OpOllt 03 2725 5881 5059 1110
approximate DCG,(Yur) with its upper-bound: w/ 12-layer Enc|| 27.75 || 58.11 |50.84 11.30
» w/ 18-layer Enc|| 28.03 || 53.58 |51.55 12.02
_ Q(y; .
DCGyk(Ynr) > . 2RIDG) QY Dim 768 || 28.00 || 50.18 [51.56 11.77
y; VR [0:k] w/Dim 1024 || 28.49 || 44.72 |51.58 12.81
<= Z 210D (5). (25)

J€[0:k]

kQRG consider both how the topmost hypotheses
ranked and whether these hypotheses have good
translation quality, where O represents a bad rank-
ing with totally wrong translation, and 1 represents
a perfect ranking and a perfect collection of top-
ranked hypotheses.

4 Experiments and Findings

Setups. All experiments are conducted over three
commonly used NMT benchmarks, NIST Chinese-
English, WMT"’ 14 English-German, and WMT’ 14
English-French with small, medium, and large
sizes. The statistics of datasets are presented in Ta-
ble 1. Detailed pre-processing steps can be found
in Appendix A.

Training and Evaluation. Our models are trained
using the fairseq toolkit*. We train each of our
Transformer models for 100k/300k/300k steps
for three datasets and evaluate each model for
5000 steps. The default label smoothing is 0.1.
The dropout rates for different Transformer mod-
els range from 0.1 to 0.4. The batch sizes are
8k/64k/64k tokens for three datasets. All our Trans-
former models are pre-norm models. Other hyper-
parameter settings are the same as in (Vaswani
et al.,, 2017). For evaluation, we report case-
sensitive tokenized BLEU scores using multi-
bleu.perl® for both WMT’ 14 En-De and En-Fr, and
case-insensitive tokenized BLEU scores for NIST
Chinese-English. We select the best checkpoint

“https://github.com/pytorch/fairseq

Shttps://github.com/moses—smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

Table 2: Model errors of different models in WMT’ 14
En-De task. All numbers range in [0, 100%]. ‘para
BT’ and ‘para FT” denote back-translation and forward-
translation over parallel golden data, and LS denotes
label smoothing.

Method |BLEU||# Emp| kRG kQRG
Transformer || 40.78 || 46.75 |52.50 18.27
wlo LS 40.70 || 19.51 [54.17 23.47
w/ para FT 40.95 || 27.26 |55.76 26.99
w/ 12-layer Enc|| 41.28 || 44.99 [52.81 18.84
w/ 18-layer Enc | 41.74 || 53.58 |52.93 19.18
w/Dim 768 || 41.73 || 46.12 [53.08 19.07
w/Dim 1024 || 42.35 || 40.42 |53.24 20.01

Table 3: Model errors of different models in WMT’ 14
En-Fr task. All numbers range in [0, 100%].

on the validation set and report its performance on
the test set. All reported results are averaged over
all sentences in the test set. For results with beam
search, the beam size is 5, and the length penalty is
0.6. For all results with distribution-level metrics,
our translation quality function is the sentence-bleu
method provided by sacrebleu (Post, 2018), and we
use floor smooth with 0.01 as floor value. Other
metrics like METEOR can also be used. By de-
fault, we use top-10 hypotheses for approximation
in experiments.

4.1 Findings on NMT Techniques

Table 2, 3, 4 demonstrate the results for differ-
ent Transformer-based models in WMT’ 14 En-De,
WMT’ 14 En-Fr and NIST Zh-En tasks respectively.
We make following observations:


https://github.com/pytorch/fairseq
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl

Method |BLEU ||# Emp| KRG kQRG
Transformer || 42.47 || 41.14 |51.31 11.33
wlo LS 42.44 || 14.59 |53.56 16.51
w/ para FT 42.17 || 17.52 |52.99 18.09
w/ 12-layer Enc|| 43.38 || 36.24 [51.49 12.48
w/ 18-layer Enc|| 43.81 || 43.11 |51.41 11.79
w/Dim 768 | 42.88 || 40.76 |51.61 13.23
w/Dim 1024 || 43.43 || 34.03 |52.13 14.05

Table 4: Model errors of different models in NIST
Chinese-English task. All numbers range in [0, 100%].

L. Failure of mode evaluation. Let us take a look
at the empty rates, the evaluation for model errors
proposed in previous literature. We find that remov-
ing label smoothing, adding pseudo-parallel data
will drastically decrease the number of empty rates,
even close to 0 (“para FT”), indicating an almost
perfect model with tiny model errors. However, it
is not the case. Our kRG and kQRG results indi-
cate that the model still has much to improve (to
100%). These demonstrate that mode-level evalua-
tion collapses when evaluating certain models. In
contrast, our evaluation can consistently evaluate
these models and is consistent with human judg-
ments (See Appendix D), showing the superiority
of our evaluation.

I1. The State-of-the-art Transformer models face
serious ranking problem. Among all models, our
KRG results range from about 50% ~ 56%. To fur-
ther interpret these results, we take 100k trails of
random permutation using the same scoring func-
tion, and the kRG is 58.72%. It indicates that even
though our Transformer models show some ranking
ability, SOTA Transformer models perform worse
than the random chance level in terms of the rank-
ing abilities. When including the translation quality
into accounts, i.e., KQRG, we find the distribution-
level scores only range from 10% ~ 20% for En-
De, 18% ~ 27% for En-Fr, and 11% ~ 18% for
Zh-En. It shows that Transformer models’ hypoth-
esis distributions are deficient. The models give
high probabilities to low-quality translations and
face severe model errors.

I11. Widening models are more effective in reduc-
ing model errors. Recently, many interests have
been drawn for using deeper models instead of
wider models to increase model capacity. However,

vi
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Figure 1: Results on NIST with wide and deep models.

as shown in Figure 1 and tables, widening models
is still more effective in improving both kRG and
kQRG, demonstrating better abilities of ranking
and selection.

1V. Different dropout values affect model errors
slightly. NMT models tend to be sensitive to hyper-
parameter settings like dropout values in system-
level evaluation. Here, we evaluate models with
dropout {0.1, 0.2, 0.3} in Table 2 and find that
kRG and kQRG are only slightly affected by vari-
ous dropouts. A potential reason is that some em-
pirically better choices in hyper-parameters, e.g.,
suitable dropout values, may only be over-fittings
to the search process (e.g., beam search).

V. Model confidence may be crucial to boosting
the model’s distribution-level performance. Re-
sults show that the models trained using parallel
and forward translation data show impressive im-
provements in both HR metrics, e.g., +3.43 and
+8.20 for En-De. Nonetheless, it has similar BLEU
performance with beam search compared with our
deeper model (w/ [8-layer Encoder) and wider
model w/ Dim 768. In this case, system-level eval-
uation fails to capture decent improvements over
the model’s distribution over candidate space. As
forward-translation training and disabling label-
smoothing generally enhance the model confidence
over beam search candidates, we conjecture that
model errors are highly related to model confidence
and leave the exploration as future work.

4.2 Connection with Beam Search

4.2.1 Lucky Bias and Model Errors

As pointed out in recent work (Meister et al., 2020),
beam search seems to bring a lucky bias that covers
some of the model errors. In this section, we utilize
the HR-based evaluation to understand the bias
brought by beam search.

Concretely, we use HR-based evaluation to eval-
uate the errors from both exact top-k£ and beam



Method H Distribution ‘ Beam Search # ‘ Method H kRG \kQRG

|kRG kQRG| KRG | kQRG | Transformer(base) 150.33] 10.50
6-layer [|51.31 11.33 [61.36(+1009|23 58(+12.25) 1|w/ length normalization |/67.27| 11.83
9-layer ||51.11 11.49 |61.73(+10:62)|23 84(+12.36) 2|w/ max regularization 62.88| 11.79
12-layer||51.49 12.48 |61.690+10-20)|24 12(+11.69) 3| w/ square regularization ||63.85| 11.82
15-layer||51.56 12.41 |61.57¢+10:00) |24 37(+11.96) 4|w/ variance regularization ||64.53| 11.83

18-layer||51.41 11.79 |61.11¢%70) |24 29(+12:49)

5|w/ greedy regularization |/63.14| 11.78

Table 5: HR-based evaluation over distributional top-
10 outputs and beam top-10 outputs when increasing
number of encoder layers.

Method H Distribution ‘ Beam Search
|kRG kQRG| KRG kQRG

D384 ||50.28 9.78 [61.85(+1157) 22.97(+13.19)
D512 ||51.31 11.33 |61.36(+10:09) 23 58(+12.25)
D640  [|51.50 12.29 |61.90+1040) 23 go+11.61)
D768 ||51.61 13.23 |61.35¢%74) 23.85(+1062)
D896 [|52.33 13.15 |60.07¢+77 23.83(+10.68)
D1024 [[52.13 14.05 |61.66( %3 24,10+1005

Table 6: HR-based evaluation over distributional top-
10 outputs and beam top-10 outputs when increasing
model’s dimension size.

search k outputs. In this way, the gap between
two errors provides a quantitative method to eval-
uate the lucky bias brought by beam search. Ex-
periments are conducted in NIST Zh-En and re-
sults are shown in Table 5 and 6. We find that
beam search indeed provides the inductive bias
that improves models by reducing model errors.
For different models, the beam search outputs im-
proves KRG with 7% ~ 11% and kQRG with
10% ~ 13%, which shows a better hypothesis rank-
ing ability. Since models do not change, these find-
ings prove that the inductive bias of beam search
filters out some hypotheses with low quality or
assigned wrong probabilities by NMT models. Ad-
ditionally, we notice one interesting fact that with
the increases of model capacity, the lucky bias
brought by beam search decreases. This pro-
vides a clue about when these lucky biases would
disappear.

4.2.2 Understanding Search Regularization

Recent research has reported that regularization
terms are essential in the success of beam search al-
gorithms. Regularization terms, like length penalty
(Bahdanau et al., 2014; Wu et al., 2016), UID penal-
ties (Meister et al., 2020), typically modify the log-

Table 7: Model errors computed by top-100 hypothe-
ses in hypothesis space reranked using regularization
terms, in WMT’ 14 En-De. All numbers range in [0,
100%.]

probability produced by model. In this section,
we study how these regularization terms (or called
penalties) affect model errors.

These regularizations of beam search are com-
monly considered as inductive biases to help beam
search avoid errors. As a result, these regulariza-
tion terms are commonly regarded as fixes for the
beam search algorithm. Nonetheless, we argue that
these regularization terms substantially improve the
model’s ranking capability and can be evaluated
using the proposed HR-based model error metrics.
Recall our definition of the model’s ranking array
defined in Equation 11. Then, a specific regulariza-
tion term R (y) changes model rankings to:

yMR = [yI&R7 yII\1/[R’ to 7yIﬁR]7 (26)
Ivr = argsort([log P(yi|x) + R(y1),- - ,
log P(yn|2)] + R(yn)), @27

Accordingly, we can evaluate search penalties
with kRG and kQRG. In particular, we use search
penalties to rerank the exact search outputs for the
Transformer model, to see how search penalties
change rankings and overall model errors. For
search penalties, we choose length normalization
(Wu et al., 2016) and UID regularizations (Meister
et al., 2020).

As shown in Table 7, all regularization terms
substantially improve the model errors by a strong
margin, from 50.33 to 62+ in kKRG and from 10.50
to 11.79+ in kQRG. We find that length normaliza-
tion (1) performs the best among all terms among
all penalties, which proves length bias is an im-
portant issue in model errors. The UID terms (2-
5) have lower performance in the ranking ability
(kRG) but get similar results in kQRG, compared
with length normalization, demonstrating that UID
terms improve in an orthogonal direction compared
with length norm term.



5 Related Work

Decoding Methods. Most decoding methods in
NMT aims to find the hypothesis with the high-
est conditional probability. This is called the
maximum-a-posterior (MAP) decoding algorithm.
Among all MAP decoding methods, beam search
is the most widely applied method in the modern
NMT systems for evaluation, which utilizes a fixed
beam size for each decoding step. Naive beam
search with log probabilities has several known
drawbacks, such as favoring short translations and
its monotonic constraint. Hence, many regulariza-
tion/rescoring methods (Bahdanau et al., 2014; Wu
etal., 2016; He et al., 2016; Yang et al., 2018; Mur-
ray and Chiang, 2018) or beam search variants (Fre-
itag and Al-Onaizan, 2017; Shu and Nakayama,
2018) are proposed to improve the actual perfor-
mance. Other than beam search, one promising
MAP decoding technique for evaluation is the DFS-
based exact search (Stahlberg and Byrne, 2019),
which is designed to find the mode of model dis-
tributions. Despite its high computational cost, it
reveals important information about model distri-
butions. We follow this approach and present a
top-k exact search method, which can access the
top-region of hypothesis distribution.

In addition, there are some non-MAP decod-
ing algorithms. A typical one is the stochastic
sampling-based decoding methods (Ackley et al.,
1985; Holtzman et al., 2019), which randomly
choose candidates from each step’s output dis-
tribution. Eikema and Aziz (2020) introduces a
Minimum Bayesian Risk decoding method based
on sampling. Leblond et al. (2021) propose a
metric-driven search approach via Monte-Carlo
Tree Search (MCTS). These approaches are promis-
ing and may incorporate with our distribution-level
evaluation in future directions.

Error Evaluation. Evaluation of NMT errors
focuses on studying the gap between machine-
translated results and human-translated references.
Statistical matching metrics, such as BLEU, ME-
TEOR (Papineni et al., 2002; Banerjee and Lavie,
2005; Koehn et al., 2007; Denkowski and Lavie,
2014; Guo and Hu, 2019), are dominant in evaluat-
ing errors. These metrics prove that linguistic simi-
larity between references and machine translations
correlates the human evaluation well. However, to
the best of our knowledge, these statistical metrics
evaluate one best hypothesis decoded from heuris-
tic decoding algorithm (i.e., system-level evalua-
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tion), which incorporate huge search errors and
bias understanding of NMT models.

Recent efforts (Niehues et al., 2017; Stahlberg
et al., 2018; Stahlberg and Byrne, 2019; Meister
et al., 2020; Eikema and Aziz, 2020) are devoted
to analyzing model errors without search errors
and provide meaningful conclusions. Nonetheless,
these approaches still evaluate over one hypothesis
in hypothesis distribution except with the one with
highest probability. This is incomprehensive due
to neglecting errors inside the whole hypothesis
distribution. In contrast, we dig into model errors
over distribution-level and provide a comprehen-
sive evaluation. In addition, we provide various
interesting findings over model errors with regards
to NMT techniques and search algorithms.

6 Conclusion and Future Work

This paper presents a novel distribution-level eval-
uation protocol for model errors. Specifically, we
propose a new exact top-k decoding algorithm and
evaluate NMT model errors with the distance be-
tween hypothesis distribution and ideal distribution.
Our evaluation protocol helps understand current
NMT systems from two perspectives: 1) various
NMT techniques, and 2) search algorithms, which
together comprise the backbone of NMT systems.
With experiments over various NMT benchmarks
and architectures, we prove the effectiveness of our
evaluation on model errors, and provide understand-
ings over commonly used NMT techniques such as
data augmentation, dropouts, increasing model ca-
pacity, etc. In addition, we demonstrate that current
NMT models underperform in terms of hypothesis
ranking ability. Regarding beam search, we mainly
investigate lucky biases and search penalties and
show that the lucky biases decrease when the model
capacity increases. Furthermore, the experimen-
tal results provide a clue about when these biases
would disappear. Finally, we prove that search
penalties can help rank hypotheses correctly.

From our point of view, it is essential to under-
stand NMT models without search errors, and we
believe that is one of the future directions of NMT.
Researchers can save a large amount of time in
tuning models where beam search blessing does
not necessarily exist. It is valuable if the decoding
algorithms are exact as well, to align with the evalu-
ation properly. We plan to investigate a faster exact
decoding algorithm or approximation algorithm
that can be deployed in NMT systems.
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A Experimental Details

A.1 Detailed Descriptions of Datasets

For our WMT’ 14 En-De/En-Fr tasks, we use 4.5M
/ 35.7M preprocessed data, which is tokenized and
split using byte pair encoded (BPE) (Sennrich et al.,
2016) with 32K/40K merge operations and a shared
vocabulary for source and target sides. For En-
De, we use newstest2013 as the validation set and
newstest2014 as the test set. For En-Fr, we use the
combination of newstest2012 and newstest2013 as
our validation set and newstest2014 as the test set.

For the NIST Zh-En task, we use 1.25M sen-
tences extracted from LDC corpora®. To validate
the performance of our model, we use the NIST
2006 (MTO06) test set with 1664 sentences as our
validation set. Then, the NIST 2002 (MT02), 2004
(MTO04), 2005 (MTO05), 2008 (MTO08) test sets are
used as our test sets, which contain 878, 1788,
1082, and 1357 sentences, respectively. All re-
ported results are averaged over different test sets.

B Implementation Details of Exact Top-£

Here we explain the implementation details of our
exact top-k algorithm. The detailed algorithm is
shown in Algorithm 2. Our implementation is built
upon uid-decoding’ and sgnmi® projects, and is
compatible with the models trained with fairseq.
The original implementation of exact top-1 decod-
ing heavily relies on CPU operations. In contrast,
our top-k version moves a number of computations
to GPU, and improves several implementation de-
tails as follows.

* Optimizing the iterating process. As de-
fined the 13-th line of our Algorithm 2, we
need to iterate through all words in the vo-
cabulary. However, the order of iterations
significantly influences the speed because of
the lower bounds. Empirically, we find that
iterating the vocabulary greedily substantially
reduces the run time.

¢ Batching the hypotheses for each time step.
As stated at the 14-th line of Algorithm 2,
we iterate one word and perform one forward
model inference at a time. However, the GPU

%The corpora include LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.

"https://github.com/rycolab/
uid-decoding

$https://github.com/ucam-smt/sgnmt
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utilization of this scheme is extremely low.
Thus, we use batch technique and batch b
different words for one model forward pass,
which efficiently increases the GPU utiliza-
tion.

* Good lower bounds facilitate the search
process. We observe that better lower bounds
vastly reduce the search time. In our imple-
mentation, we use the top n-best list output
from the beam search with larger beam sizes
than n as our lower bounds.

As aresult, the speed is improved significantly.

B.1 Worst-case Analysis for Exact Search
Algorithm

This section analyzes the worst-case behaviors of
exact search algorithms. First, let us discuss a
simple case when the exact search does not use
lower bounds. Given a target sentence set Y; =
{yllen(y) = [} where all hypotheses in that set
have the same length [, it is obvious that the search
operations needed for exact top-1 and exact top-
k algorithms are the same, i.e., N; = |Vj| = |[V|\.
Thus, the total search operations for all lengths® | €
[1, Imax] can be computed by N' =3 _;cry ;1 N0
Next, we consider the case with lower bounds.
Since lower bounds help trim the search space, the
worst case happens when the search algorithm finds
the hypotheses in a reversed order. In that case,
lower bounds could not trim any search space and
have to iterate all hypotheses. Hence, the numbers
of search operations needed for both top-1 and top-
k algorithms are identical, i.e., N = Zle[l,lmax] N
operations. On the other hand, both the top-1 and
our top-k algorithms are similar to Branch&Bound
algorithm (Hendy and Penny, 1982), which cannot
lower the time complexity in the worst case, and
its time complexity is the same as the one of depth-
first-search (DFS) algorithm (Mackworth, 2013).
However, it is practically useful because it is proved
to be able to improve the search speed significantly.

C Empirical Computational Cost

C.1 Compared with Different Decoding
Algorithms

This section provides several empirical results to
show how different decoding methods perform in
“We do not use the length constraint in our implementation.

Here, we add the max length constraint for the clarity of our
proof.
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ALGORITHM 2: DFS-based Top-k Exact Search.
Input

:x: Source sentence, y: Translation prefix
(default: []), p: log P(y|z) (default 0.0), k:
Top-k hypotheses to output
Output : List [ contains top-k hypotheses with

log-probabilities.

global minHeap

global v < —inf

Function dfsTopK (z, y, p) :

ify[|ly| — 1] =< /s > then

push(minHeap, (p, y))
if len(minHeap) > k then
| pop(minHeap)
end
if len(minHeap) = k then

v < minHeap[0][0]

end

end

forv € V do

P « p+log P(v|z,y)
if p’ > ~ then

| dfsTopK (z, [y;v],p")
end

end
return minHeap
return dfsTopK (z, [], 0.0)

terms of computational time. We randomly sam-
ple 100 sentences in WMT’ 14 En-De newstest2014
and report the corresponding run time as well as the
number of expansion operations. The expansion
operation, i.e., model’s forward pass, is the most
time-consuming operation in the exact search algo-
rithm and is linear to the number of computation
flops. We report the computational costs for three
different algorithms, including Beam Search, Exact
Top-1 and Exact Top-5. Each reported number is
the average over four runs with different samples
as inputs.

The results are shown in Table 8. First, we can
see that Beam Search is about ten to twenty times
faster than exact search algorithms. This is con-
sistent with results in previous literature. Second,
compared with previous Exact Search implementa-
tion, our implementation of top-5 search has almost
the same time cost as top-1, which demonstrates
the effectiveness and efficiency of our proposed
approach.

By taking the number of expansions into account,
we notice two more interesting facts — On the one
hand, the number of expansions is not linear to k.
Our top-k algorithm explores only about five times
the search space compared with top-1 algorithm.
On the other hand, our algorithm is significantly
more efficient than the original implementation,
with four times faster in terms of the number of
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expansions and only about two times in terms of
the computational cost.

C.2 Compared with Different %

We also report results with different values of k,
shown in Table 9. The computational time and
the number of expansions grow as k increases.
When we enlarge the number of £ from 5 to 10, the
time costs grow by about 1.9 times (15.916.2/8914.4),
which denotes an almost linear time cost with re-
gard to k. Compared to (Stahlberg and Byrne,
2019), our algorithms are more efficient — Our top-
5 algorithm operates two times of expansions and
performs comparably with their algorithms in terms
of computational time.

In the main content of our paper, we mainly use
top-10 results for our evaluation method for the
trade-off between efficiency and effectiveness.

D Human Evaluation

This section presents the human judgements on
our kQRG results. We sample 100 sentences from
NIST Zh-En test sets and provide top-5 exact de-
coding results for comparison. We ask two profes-
sional Chinese-English annotators to rank the top-5
results of three different systems for each source
sentence, and average the ranks. We choose to
rank systems rather than directly score them since
the absolute score of each system’s top-5 given by
humans may differ drastically. In contrast, com-
paring against each other is more reliable. The
system gives the best top-5 results among systems
are scored with 3, and the one with worst top-5
results are scored with 1. Note that these ranks are
not easy to judge by humans. Through annotation,
we find the hypotheses given by NMT models are
sometimes very similar, with only a few different
tokens. Therefore, if a human annotator cannot
distinguish the difference between two hypotheses,
it is allowed to give tied scores, e.g., [3, 2, 2].

The results are shown in Figure 2. We can
see that the trend of human judgements is closely
aligned with the ranks given by kQRG. Human re-
sults are higher than kQRG results due to the tied
scores. This proves that the differences in kKQRG
are consistent with the ones of human judgements.

E Edit-Distance-based Evaluation

In this section, we provide an approach for com-
puting model errors, which do not rely on approx-
imation for Yyr. The challenge is to score the



Method HTime Cost (seconds) ‘ Num Expansions
Beam Search 453.0 -
Stahlberg and Byrne (2019) 8,064.0 2,769.6
Exact Top-5 w/ BS lower bounds | 8,914.4 | 60294

Table 8: Time cost and number of expansions for exact s

earch algorithms with 4 sampled runs on 100 test sentences.

Method || Time Cost (seconds)|Num Expansions
Stahlberg and Byrne (2019) I 8,064.0 | 27696
Exact Top-5 w/ BS lower bounds 8,914.4 6,029.4
Exact Top-10 w/ BS lower bounds 15,916.2 10,865.9
Exact Top-20 w/ BS lower bounds 28,313.9 19,155.8

Table 9: Computational time and expansion

BN Human
kQRG

2.5-

2.0-

Ranks

1.0-
0.5-

0.0 -

System A System B System C

Figure 2: Human evaluated ranks versus kQRG ranks
for three different systems.

unbounded hypothesis space . It would be helpful
if a HR array with a certain translation quality func-
tion ) can be queried without actually constructing
the array.

Therefore, inspired by (Norouzi et al., 2016),
we model Yyr with an edit-distance based ranked
array, where each hypothesis is ranked by its edit-
distance to the references,

Q(yla Q? I) = _Edit—DiStance(yiv Q)’ (28)

where a larger edit distance means a lower rank in
the HR array. Then, given a hypothesis y; with e
edits to reference, we can predict the number of
hypotheses with e edits from ¢ by,

()

where s is the number of substitution operations
and |V| is the vocabulary size. For more details,
we refer our readers to (Norouzi et al., 2016). Then

T

c(e,T) :Z

s=0

T
s

T+e—2s
e_

)vre, 29)

S

s for exact search algorithms when k£ increases.

we can estimate the rank of a hypothesis y; with the
sum of numbers of hypotheses with edit distance
lower than e,

Rank(y) = ) c(¢,T).

e’€(0,e)

(30)

The visualization of edit-distance rankings is
shown in Figure 3, which illustrates how the model
error changes when using different architectures
and techniques.

Note that we use exact top-100 hypotheses of
model distribution for this visualization. We expect
the hypotheses are located among the top 0 ~ 10%
of edit-distance rankings. Interestingly, across all
models, the probability mass of these top-ranking
hypotheses lies either in the top 10% or the last
10% of edit-distance ranks. About 70% of the hy-
potheses are located in the last 10%. It indicates
model errors are severe, where the model prefers
both good hypotheses (ranked 0 ~ 10%) and bad
hypotheses (ranked 90% ~ 100%). In addition, we
make several observations:

* A model without label smoothing strongly de-
creases the number of top hypotheses in the
last 10% of ranks. (Figure 3(a))

* Pseudo data generation techniques decrease
the model errors. The model with forward-
translated data significantly decreases model
errors. (Figure 3(a))

* Increasing the dropout rate does not necessar-
ily improve model errors. (Figure 3(b))
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Figure 3: The edit-distance ranking visualization of Transformer models with different techniques. Here, we use
top-10 hypotheses of exact search. para FT and para BT denote the model trained with both golden dataset and

forward/backward generated pseudo dataset.

* Increasing model capacity, like deepening or
widening model architectures, generally re-
duces model errors monotonically. (Figure
3(c, d))

We use edit-distance metric because the com-
monly used metrics in NMT (e.g., BLEU or
METOR) are difficult to estimate the ranks of hy-
potheses, therefore cannot provide the above analy-
sis.

F Investigations on Beam Search Curse

Our proposed exact top-k decoding algorithm en-
ables us to investigate the relationship between the
beam search algorithm and the top-k decoding al-
gorithm. First, we conduct an experiment to help
understand to what extent these two algorithms dis-
agree. We first run the exact decoding algorithm
using £ = 100 and beam search with beam sizes
of 5, 10, 20, 50, 100 on the WMT’ 14 English-
German testset. We plot the ranked positions of
the beam search results over the exact outputs in
Figure 4a, which demonstrates that a larger beam
size leads to fewer search errors since the ranked
positions of those hypotheses are higher. How-
ever, the BLEU scores of the beam search results
are inversely proportional to the beam size, which
are 27.28%, 27.27%, 26.98%, 26.03%, 23.87% re-
spectively. This is called beam search curse (Yang
et al., 2018) - translation quality degrades as beam
sizes increases.

We further investigate the trends in terms of
BLEU scores from sentence-level when using a
larger beam size. For each source sentence, we
track the BLEU score of its translated sentence
from a small beam size to a large beam size. As
a result, we can obtain two properties for each
sentence. One is the number of getting a better
translation. Conversely, the other is the number
of getting a worse translation. We plot the results

X1v

= beam 5
. beam 10
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beam 50
) == beam 100
& 1000
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Figure 4: The experimental results of comparing top-
k exact decoding with beam search decoding. (a) The
numbers of ranked positions of different beam search
results. (b) Sentence-level BLEU trends when increas-
ing the beam size. The horizontal axis is the number
of changes (positive values means getting better, vice
versa). The vertical axis is the counts of changes.

in Figure 4b. The results show that the trend is
random in sentence-level, and not consistent with
the facts we observe from the whole dataset. This
reveals that the NMT model has a large number of
ranking errors, i.e., two very close hypotheses may
be ordered falsely by the model.

Based on the above experimental results, we
discover that beam search curse is closely related
to the hypothesis ranking of an NMT model. This
finding motivates us to study how to evaluate the
hypothesis distribution of an NMT system. If an
NMT model can successfully order all hypotheses
by a certain scoring function, the beam search curse
will disappear.

G Case Study

This section provides a case study for English-
German translation outputs for our Exact Top-k
decoding algorithm. Table 10 shows the generated
hypotheses, their corresponding log probabilities,
and BLEU scores.

There are several problems of models’ generated
outputs based on the example: First, the ranking
problem we argue in the main content apparently
exists, which is demonstrated in our provided ex-



Rank ‘ ‘ LogProb ‘ BLEU ‘ hypothesis

Zwei Anlagen so nah beieinander: Absicht oder

Ref i 100.00 Schildbiirgerstreich? <EOS>
1 || -9.04 | 00.00/<F
Zwei Leuchten so nah beieinander: absichtlich oder einfach
2 -10.13 ) 2045 nur ein dummer Fehler? <EOS>
Zwei Leuchten so nahe beieinander: absichtlich oder einfach
3 -10.40 1 07.47 nur ein dummer Fehler? <EOS>
Zwei Leuchten so nah beieinander: absichtlich oder nur
4 -10.56 | 22.24 ein dummer Fehler? <EOS>
Zwei Leuchten so nahe beieinander: absichtlich oder nur
> -10.92 1 08.13 ein dummer Fehler? <EOS>
- — 5
6 1094 | 05.89 Zwei Leuchten so nahe beieinander? <EOS>
Zwei Leuchten so nah beieinander: absichtlich oder einfach
7 -11.10 1 22.24 ein dummer Fehler? <EOS>
g 1L15 37.60 Zwel Leuchten so nah beieinander: Absicht oder einfach nur
ein dummer Fehler? <EOS>
- — 5
9 1121 17.63 Zwei Leuchten so nah beieinander? <EOS>
10 1139 | 40.90 Zwei Leuchten so nah beieinander: Absicht oder nur ein

dummer Fehler? <EOS>

Table 10: The generated translations with top-10 decoding. The source sentence is "Two sets of lights so close to
one another: intentional or just a silly error?"

ample. For instance, the model gives the highest
score to an empty hypothesis (only <EOS>), which
ranks the model’s mode hypothesis the worst in
the hypothesis space. Second, the model ranks
some sub-optimal hypotheses in the top-10 rank-
ings, like 2-nd, 4-th, 7-th, 10-th. However, the best
hypothesis is ranked only at the 10-th position. It
can also prove the existence of the ranking prob-
lem. Third, the model favors shorter hypotheses.
The hypotheses at rank positions 1-st, 6-th, and
9-th are much shorter than the others. The short
hypotheses have roughly similar scores compared
with the longer ones. Furthermore, most of the
hypotheses share a similar prefix, which is similar
to the reference, demonstrating that the model can
find proper translations with incorrect log proba-
bilities. Those problems indicate the existence of
an under-confidence problem, which is in line with
our findings in Section 4.1.
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