
Put CASH on Bandits: A Max K-Armed Problem for
Automated Machine Learning

Amir Rezaei Balef, Claire Vernade and Katharina Eggensperger
Department of Computer Science, University of Tübingen

{amir.rezaei-balef, claire.vernade, katharina.eggensperger}@uni-tuebingen.de

Abstract

The Combined Algorithm Selection and Hyperparameter optimization (CASH)
is a challenging resource allocation problem in the field of AutoML. We propose
MaxUCB, a max k-armed bandit method to trade off exploring different model
classes and conducting hyperparameter optimization. MaxUCB is specifically
designed for the light-tailed and bounded reward distributions arising in this setting
and, thus, provides an efficient alternative compared to classic max k-armed bandit
methods assuming heavy-tailed reward distributions. We theoretically and empiri-
cally evaluate our method on four standard AutoML benchmarks demonstrating
superior performance over prior approaches. We make our code and data available
at https://github.com/amirbalef/CASH_with_Bandits.

1 Introduction

The performance of machine learning (ML) solutions is highly sensitive to the choice of algorithms
and their hyperparameter configurations which can make finding an effective solution a challenging
task. AutoML aims to reduce this complexity and make ML more accessible by automating these
critical choices [Hutter et al., 2019, Baratchi et al., 2024].

For example, Hyperparameter optimization (HPO) methods focus on finding well-performing hyper-
parameter settings given a resource constraint, such as an iteration count or a time limit. However, in
practice, it is often unclear which ML model class would perform best on a given dataset [Bischl
et al., 2025]. The problem of jointly searching the model class and the appropriate hyperparameters
has been coined CASH, Combined Algorithm Selection and Hyperparameter optimization [Thornton
et al., 2013]. As a prime example, on tabular data, a ubiquitous data modality [van Breugel and
van der Schaar, 2024], the state-of-the-art ML landscape covers classic ML methods, ensembles of
gradient-boosted decision trees and modern deep learning approaches [Kadra et al., 2021, Gorishniy
et al., 2021, 2024, McElfresh et al., 2023, Kohli et al., 2024, Hollmann et al., 2023, Holzmüller et al.,
2024].

A popular approach to address the CASH problem is to use categorical and conditional hyperparame-
ters to run HPO directly on the combined hierarchical search space of models and hyperparameters.
AutoML systems use this approach, which we call combined search, to search well-performing ML
pipelines [Thornton et al., 2013, Feurer et al., 2015, Komer et al., 2014, Kotthoff et al., 2017, Feurer
et al., 2022], but HPO remains inefficient in high-dimensional and hierarchical search spaces. A
naive solution to address the scalability limitation is to run HPO independently for the smaller search
spaces of each ML model class and then compare the found solutions. However, this solution often
exceeds available computational resources and does not scale well with an increasing number of ML
models. Figure 1 (left) illustrates the difference between searching each space individually (colored
dashed lines) and combined search (black line) on an exemplary dataset.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/amirbalef/CASH_with_Bandits

0 100 200
HPO iteration

0.73

0.74

0.75

0.76

0.77

0.78

0.79

M
ax

im
um

ob
se

rv
ed

ac
cu

ra
cy

MaxUCB
combined search

CatBoost
ExtraTrees

LightGBM
NN(FastAI)

NN(PyTorch)

Random Forest

XGBoost

0.750 0.755 0.760 0.765 0.770
Accuracy

0

50

100

150

P
ro

ba
bi

lit
y

D
en

si
ty

F
un

ct
io

n

LightGBM

CatBoost

mean

maximum

Multi-Armed Bandit (MaxUCB)

arm 1: model class 1

HPO

arm k: model class k

HPO

A(1) A(k)

...

pull

λt

L(A(1)
λt

, D)

r1,t = −L(A(1)
λt

, D)

Figure 1: (Left) MaxUCB (blue line) outperforms combined search (black line) to identify the best-
performing model class (brown line). (Middle) The irregular distribution of the empirical performance
of model classes is left-skewed, and a higher mean may not correspond to a higher maximum. (Right)
MaxUCB selects for which model to run one iteration of HPO during two-level optimization.

To leverage the efficiency of HPO in low dimensions, we use a Multi-Armed Bandit (MAB) method
[Lattimore and Szepesvári, 2020] to dynamically allocate our budget. As shown in Figure 1 (right),
each time the bandit strategy pulls an arm, it runs one iteration of HPO to evaluate a new configuration,
resulting in a loss. The negative of the loss is used as reward feedback for the bandit algorithm. This
approach is known as two-level CASH (decomposed CASH) [Hoffman et al., 2014, Liu et al., 2019].

While most classical MAB problems aim to maximize the average rewards over time, the goal of the
bandit algorithm for two-level CASH should be to maximize the maximum reward observed over time:
as illustrated in Figure 1 (middle), tuning the LightGBM (red) will eventually outperform CatBoost.
This goal aligns with Max K-Armed Bandit (MKB) problems [Carpentier and Valko, 2014, Achab
et al., 2017, Baudry et al., 2022], often referred to as Extreme Bandits.

In the context of AutoML, the time horizon is limited, making efficiency crucial. Prior work on
two-level CASH found that state-of-the-art MKB algorithms are not sufficiently sample-efficient
in practice [Hu et al., 2021, Balef et al., 2024]. Additionally, Nishihara et al. [2016] argued that
the parametric assumptions derived from extreme value theory are not applicable in the context
of HPO and stated that determining “what realistic assumptions are likely to hold in practice for
hyperparameter optimization is an important question”.

We precisely address this open question through a thorough statistical analysis of the empirical
reward distributions of HPO tasks. Our main contribution is a state-of-the-art algorithm for
decomposed CASH based on a novel extreme bandit algorithm we call MaxUCB (Algorithm 1).
We demonstrate the performance of our method on four benchmarks, which highlights the relevance
of our assumptions for a wide variety of CASH problems. We analyze the theoretical performance
of MaxUCB (Theorem 4.2) through regret bounds that also justify our novel choice of exploration
bonus for the type of distributions relevant to the CASH problem. Importantly, our objective is rather
to propose a practical algorithm with good empirical performance on CASH rather than a general
multi-purpose bandit algorithm, so our guarantees hold under carefully crafted assumptions that
resolve previously open questions [Nishihara et al., 2016].

2 Solving CASH using Bandits

The CASH problem for supervised learning tasks is defined as follows [Thornton et al., 2013]. Given
a dataset D = {Dtrain, Dvalid} of a supervised learning task, let A = {A(1), ..., A(K)} be the set of
K candidate ML algorithms, where each algorithm A(i) has its own hyperparameter search space
ΛΛΛ(i). The goal is to search the joint algorithm and hyperparameter configuration space to find the
optimal algorithm A(i∗) and its optimal hyperparameter configuration λλλ∗ that minimizes a loss metric
L, e.g., the validation error1. Formally,

A
(i∗)
λλλ∗ ∈ argmin

A(i)∈A,λλλ∈ΛΛΛ(i)

L(A(i)
λλλ ,D). (1)

1We note that L can also be the result of k-fold cross-validation or other evaluation protocols measuring the
expected performance of a model on unseen data [Raschka, 2018].

2

For our approach, we study the decomposed variant [Hoffman et al., 2014, Liu et al., 2019] and
address the following two-level optimization problem depicted in Figure 1 (right): at the upper level,
we aim to find the overall best-performing ML model A(i∗) by selecting model A(i) ∈ A iteratively,
and at the lower level, we aim to find the best-performing configuration λ∗λ∗λ∗ ∈ ΛΛΛ(i) for the selected
model A(i). Formally,

A(i∗) ∈ argmin
A(i)∈A

L(A(i)
λλλ∗ ,D), s.t. λλλ∗ ∈ argmin

λλλ∈Λ(i)Λ(i)Λ(i)

L(A(i)
λλλ ,D). (2)

The right-hand side of Equation 2 in the lower level can be efficiently addressed by existing iterative
HPO methods such as Bayesian optimization (BO) [Jones et al., 1998, Garnett, 2022], which has
been demonstrated to perform well in practical settings [Snoek et al., 2012, Chen et al., 2018, Cowen-
Rivers et al., 2022]. BO fits a surrogate model and uses an acquisition function to find a promising
configuration to evaluate next. On the upper level, or left-hand side of Equation 2, the challenge is to
carefully allocate the budget T of HPO runs to the K models in a manner that trades off exploration
of the hyperparameter space of all models and exploitation (optimization) of the most promising
model. As already noted in previous work, this is a typical MAB problem [Cicirello and Smith, 2005,
Streeter and Smith, 2006a, Nishihara et al., 2016, Metelli et al., 2022].

At time t, the bandit algorithm chooses model It ∈ A, and we denote λλλt the configuration proposed
by the HPO method in the lower level. As a reward ri,t, we feed back to the bandit algorithm an
evaluation of the negative loss:

ri,t = −L(A(i)
λλλt
,D). (3)

In general, and as opposed to standard MAB, this reward process is not i.i.d. conditionally on the arm
choices because the loss of the models depend on the progress of HPO on each model class (arm) as
well as additional loss evaluation noise. To be able to design a tractable bandit algorithm, it is crucial
to find an appropriate way to model this process to build controllable estimators. We focus on this
aspect in the next section.

To complete the bandit model of this problem, we need to choose a regret metric that defines the
oracle objective we compare to, and indeed aligns with Equation 2. For HPO, the regret should target
max-value objectives [Jamieson and Talwalkar, 2016, Nishihara et al., 2016]. Therefore, in this work,
we propose to minimize the (extreme) regret R(T):

R(T) = max
k≤K

E[max rk,t]
t≤T

−E[max rIt,t]
t≤T

, (4)

where the expectation is over the stochasticity of both the HPO procedure (e.g., random search
or Bayesian optimization), the ML models themselves (e.g., random initialization and training
variability), and the loss evaluation procedure at each round. The regret measures the gap between
the expected performance of the bandit algorithm (right part) and that of the oracle model that would
achieve the lowest loss, should we assign the full budget of HPO runs to it (left part). So this objective
is indeed aligned with Equation 2 and fully integrates the budget constraints.

Instead of using MKB algorithms to directly address Equation 4, related prior works focus on
alternative methods. For example, Hu et al. [2021] proposed and analyzed the Extreme-Region
Upper Confidence Bounds (ER-UCB) algorithm maximizing the extreme region of the feedback
distribution, assuming Gaussian rewards. More recently, Balef et al. [2024] have shown that existing
MKB algorithms underperform when applied to two-level CASH, and they proposed methods for
maximizing the quantile values instead of the maximum value.

As another alternative method, Li et al. [2020] framed the CASH problem as a Best Arm Identification
(BAI) task and introduced the Rising Bandits algorithm [Li et al., 2020]. This MAB method assumes
that the reward function for each arm increases with each pull, following a rested bandit model with
non-decreasing payoffs [Heidari et al., 2016] (which has been shown to have linear regret when the
reward increment per pull exceeds a threshold [Metelli et al., 2022]). Rising Bandits can be used for
our setting using the maximum observed performance of the HPO history as the reward. However,
this algorithm assumes deterministic rewards and increasing concave reward functions. To weaken
this assumption, Li et al. [2020] introduced a hyperparameter to increase initial exploration. Mussi
et al. [2024] further weakened this assumption by assuming that the moving average of the rewards is
an increasing concave function.

3

Generally, in BAI approaches, the goal is to identify the arm with the highest mean reward. Here,
rewards are the result of HPO runs, so this objective does not align well with Equation 2: there is no
reason to measure the quality of a model on average over a random subset of hyperparameters chosen
by HPO. This approximation made by prior work is justified by the complexity of this modeling
problem and the existence of solid foundations on BAI to build upon. But in this work, we propose a
fully data-driven model that fits better the true CASH objective and results in better empirical results.

3 Data Analysis of HPO Tasks

The reward process in Equation 3 is complex as it depends on the model and on the chosen HPO
algorithm. So, as discussed, it is necessary to model it. Rather than choosing a convenient parametric
family, we conduct a thorough analysis of typical sequences of losses obtained on real benchmarks.
For each ML model class (corresponding to arms in our setup), we run T = 200 iterations of HPO,
with 32 repetitions (each using a different seed) on a varying number of datasets on four AutoML
benchmarks (see Appendix D.2 and C.1).

We first analyze the survival function of the reward distributions. Recall that for a random variable
X ∼ d, the survival function is defined by: x 7→ G(x) = PX∼d(X ≥ x). Figure 2 shows the average
empirical survival function of all observed performances (normalized between 0 and 1 for each task)
for each arm. We rank model classes (i.e., arms) based on their best performance per dataset and
report results on two benchmarks (see Appendix C for more details and results on all benchmarks).
We observe that the reward distributions are

1. bounded. The reward, which measures the performance of a model, is determined by a score
metric, e.g., accuracy. The extreme values vary for each arm and depend on the capability of
the model class and the complexity of the task. Therefore, even if we run HPO indefinitely,
achieving an infinite reward is impossible. Consequently, each arm has a bounded support
with different maximum values, and at least a single optimal arm exists. → We can define
a sub-optimality gap (Definition 3.1).

2. short-tailed, left-skewed, and the right tail is not heavy. The rewards are concentrated
near the maximal value per model class, and extreme events are not outliers. As the HPO
method’s performance reaches a certain level, further optimization often yields only small
gains as optima tend to have flat regions [Pushak and Hoos, 2022]. Therefore, many
configurations perform similarly well, resulting in a skewed distribution.2 → We expect to
observe many extreme rewards.

3. nearly stationary. This means that the optimal arm does not change over time. This is
clear for TabRepoRaw. We observe significant changes in the distributions for YaHPOGym,
but most of the sub-optimal arms remain sub-optimal over time. → Ranking of well-
performing arms does not change over time.

YaHPOGym TabRepoRaw YaHPOGym TabRepoRaw

0.25 0.50 0.75 1.00
x

0.0

0.5

1.0

P
(r

ew
ar

d
≥
x

)

0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

P
(r

ew
ar

d
≥
x

)

Optimal arm 2nd arm 3rd arm 4th arm 5th arm 6th arm (only TabRepoRaw) Worst arm

0.00 0.25 0.50 0.75 1.00
x

0.0

0.5

1.0

P
(r

ew
ar

d
≥
x

)

0.00 0.25 0.50 0.75 1.00
x

0.0

0.5

1.0

P
(r

ew
ar

d
≥
x

)

0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

P
(r

ew
ar

d
≥
x

)

Optimal arm 2nd arm 3rd arm 4th arm 5th arm 6th arm (only TabRepoRaw) Worst arm

Figure 2: (Left) The average empirical survival function of the reward distribution per arm ranked per
dataset. Thin lines correspond to segments of the reward sequence and show the distribution change
over time. (Right) The average empirical survival function per dataset for the best and worst arm.
Thin lines correspond to individual datasets.

Prior research has shown that existing MKB algorithms can underperform if their assumptions
about the distributions are too weak or misaligned [Nishihara et al., 2016, Balef et al., 2024]. This

2This has also been observed for related tasks, e.g., neural architecture search on CIFAR-10 [Su et al., 2021].

4

underperformance is largely due to our second observation, which significantly differs from the
common assumptions of the existing algorithms.

Preliminaries. Based on these observations, we can formulate the following definition and assump-
tion on which we develop and analyze our algorithm.
Definition 3.1. The suboptimality gap ∆i ≥ 0 for arm i is defined as:

∆i = E

[
max
t≤T

ri∗,t

]
−E

[
max
t≤T

ri,t

]
where ri∗,t and ri,t are the rewards observed from optimal arm i∗ and arm i at time t, respectively.
Assumption 3.2. We assume that the i.i.d. random variable X , representing the rewards, follows a
bounded distribution with support in [a, b] and continuous survival function G.
Lemma 3.3. Suppose Assumption 3.2 holds. Then, there exists L,U ≥ 0 such that the survival
function G can be bounded near b by two linear functions:

∀ϵ ∈ (0, b− a), Lϵ ≤ G(b− ϵ) ≤ Uϵ. (5)

Lemma 3.3 (proof in Appendix B.1) provides a way to characterize the shape of any bounded distri-
bution near its maximum value through distribution-dependent constants, L and U (see Appendix C.2
for more details and a visualization). Intuitively, it quantifies the behavior of the distribution of the
ML model performance in a given hyperparameter space near the optimum. A large value of L
indicates a steep drop in the survival function near the maximum, while a small value of U leads to a
more gradual decay of the survival function and conversely (see Figure 3).

YaHPOGym TabRepoRaw

0 1
x

0.0

0.5

1.0

P
(r

ew
ar

d
≥
x

) U
>

100

L
>

1
U
>

8L
>

1

Optimal arm

Worst arm

0 1
x

0.0

0.5

1.0

P
(r

ew
ar

d
≥
x

)

U
>

25

L
>

1
U
>

4

L
>

1
Optimal arm

Worst arm

0 1
x

0.0

0.5

1.0

P
(r

ew
ar

d
≥
x

)

U ≈
1

L < 0.1

U ≈
1

L < 0.05

Log-normal

Pareto

Figure 3: (Left, Middle) L and U for the average
survival functions in Figure 2. (Right) We high-
light the difference to right-skewed Log-normal
and Pareto distributions.

YaHPOGym TabRepoRaw

100 101

Values for L
0

10

20

30

40

50

Fr
eq

ue
nc

y

100 102

Values for U

Optimal arm
Worst arm

100 101

Values for L
0

2

4

6

8

10

Fr
eq

ue
nc

y

100 102

Values for U

Optimal arm
Worst arm

Figure 4: Histogram of L and U values across
individual datasets.

We study the values of L and U in Lemma 3.3 on our empirical data and show the distribution of L
and U in Figure 4 (see Appendix C.3 for more analyses). Next, we focus on the uniqueness of our
assumptions before discussing how this impacts our MKB algorithm’s performance in Section 4.

Common Max K-armed Bandit assumptions are misaligned with CASH. Existing MKB algo-
rithms can be classified into two main categories. First, distribution-free approaches do not leverage
any assumption on the type of reward distributions [Streeter and Smith, 2006b, Bhatt et al., 2022,
Baudry et al., 2022]. Secondly, parametric and semi-parametric approaches typically assume that
the reward distributions follow heavy-tailed distributions, typically following a second-order Pareto
assumption whose parameters can be estimated using extreme value theory [Carpentier and Valko,
2014, Achab et al., 2017].

Our empirical analysis shows that existing MKB algorithms’ assumptions about reward distributions
are either overly broad or misaligned with the CASH problem. We identify two key differences
between our assumptions and those made by current MKB algorithms. First, the sub-optimality gap
makes the regret definition (Equation 4) for bounded distributions meaningful. Without the existence
of a nonzero gap, the regret definition fails since any policy consistently selecting a single arm can
achieve zero regret, as Nishihara et al. [2016] pointed out with Bernoulli distributions. Second, our
reward distributions differ from those used in existing MKB algorithms. Lemma 3.3 characterizes the
shape of the distribution, with a higher L ensuring more mass near extreme values, making extreme
values easier to estimate. In our case, values for L are mostly higher than 1 while for heavy-tailed
distributions, commonly used as the basis for MKB algorithms, are close to 0 (see the rightmost plot

5

in Figure 3). In general, our analysis shows that considering the right range of L values unlocks the
problem raised by Nishihara et al. [2016], who focused on constructing counterexamples through the
distributions that have unrealistic values for L. Thus, under our assumptions, their negative result3
does not apply here.

4 MaxUCB

Based on Lemma 3.3 and the regret definition (Equation 4), we introduce MaxUCB in Algorithm 1
for K arms with a limited time horizon of T iterations.4

Description of MaxUCB. Our algorithm balances exploration and exploitation according to the
standard optimism principle at the heart of Upper Confidence Bound (UCB) bandit methods [Auer,
2002, Lattimore and Szepesvári, 2020]. The main novelty we introduce is in the computation of a
distribution-adapted exploration bonus for MaxUCB.

Our exploration bonus (α log(t)
n)2 deviates from typical UCB literature due to faster concentration of

maximum values in bounded distributions. This is because the probability of bad events (violating
confidence intervals for the expectation of the max, see Equation 30 in Appendix B.3) can be written
as:

P (Bad events) ≤ O
(
e−n

√
C(n) + nC(n)

)
, (6)

where distribution-dependent constants are hidden for clarity. Then, setting C(n) = 1/n2 minimizes
the probability of bad events: the first term becomes independent of n, while the second term
decreases with n. Notably, this faster concentration can only be obtained for the reasonably well-
behaved distributions we consider following the study of the previous section and it is not a general
property of the maxima; more details can be found in Appendix B.4. Furthermore, MaxUCB uses
α ≥ 0 to control the exploration-exploitation trade-off; a higher α leads to more exploration.

Algorithm 1 MaxUCB

Require: α(exploration parameter) , T (time horizon), K(arms)

1: for each arm i ≤ K do
2: Pull arm i, set ni ← 1, observe reward ri,1 ▷ Evaluating default configuration
3: end for
4: for t = K + 1 to T do
5: for each arm i ≤ K do

6: Update policy Ui = max (ri,1, ..., ri,ni
) + (

α log(t)
ni

)2 ▷ differs from classical UCB, where Ui = r̄i +
√

α log(t)
ni

7: end for
8: Select arm It = argmax

i≤K
Ui , nIt ← nIt + 1 , then observe reward rIt,nIt

9: end for

Analysis of MaxUCB. We first show a regret decomposition result specific to max K-armed bandits
that directly relates the regret definition in equation 4 with the number of suboptimal trials.

Proposition 4.1. (Regret Upper Bound) the regret upper bound up to time T is related to the number
of times sub-optimal arms are pulled:

R(T) ≤
max
i≤K

bi

T

K∑
i ̸=i∗

Ni(T) (7)

where Ni(T) = E(
∑T

t=1 1{It = i}) is the number of sub-optimal pulls of arm i, and bi is the upper
bound on the support of the rewards of arm i.

3Theorem 11 in [Nishihara et al., 2016]: “no policy can be guaranteed to perform asymptotically as well as
an oracle that plays the single best arm for a given time horizon.”, which means any policy needs to explore all
arms for budget T

4MaxUCB needs to store the number of pulls and the maximum reward for each arm, resulting in a memory
requirement of O(K). The time complexity is O(KT).

6

The proof is provided in Appendix B.2 and relies on standard tools in the extreme bandit literature
[Baudry et al., 2022]. From this result, it is clear that we can now obtain an upper bound on the regret
by controlling the number of suboptimal arm pulls (Ni(T))i ̸=i⋆ individually. Our main theoretical
result below proves such an upper bound for Algorithm 1.
Theorem 4.2. For any suboptimal arm i ̸= i⋆, the number of suboptimal draws Ni(T) performed by
MaxUCB (Algorithm 1) up to time T is bounded by

Ni(T) ≤
T 1−2Li∗α

√
∆i

1− 2Li∗α
√
∆i

+ 2α
√
UiT log(T). (8)

The result of Theorem 4.2 (proof in Appendix B.3) highlights that MaxUCB primarily leverages two
key properties: the sub-optimality gap ∆i and the shape of the distribution, as defined in Lemma 3.3.
Specifically, the performance improves with a larger sub-optimality gap ∆i and higher values of Li∗

(L for the optimal arm), which means that samples drawn from the distribution of the optimal arm
are likely to be close to the extreme values. Additionally, smaller values of Ui (U for a sub-optimal
arm i), which means it is less likely to draw samples close to the extreme values, reduce the number
selecting sub-optimal arm i, thus enhancing overall performance. For our task, as is shown in Figure
3, the values for Li∗ are higher than 1 and Ui less than 10 in most cases, yielding high empirical
performance. We compare the number of pulls observed in our experiments with the expected values
based on our theoretical analysis in Appendix E.2, showing that our analysis is not loose. However, it
is essential to note that, in general, finding the optimal arm is challenging if ∆i is close to zero or Li∗

is very small. We assess the performance of MaxUCB on synthetic tasks in Appendix E.4, showing
that the performance of MaxUCB deteriorates on tasks that do not satisfy our assumptions.

Finally, we provide a regret upper bound that combines the decomposition in Proposition 4.1 with the
individual upper bounds above. This requires finding a parameter α that resolves a trade-off between
the arms and minimizes the total upper bound, as shown in Corollary 4.3, whose proof is immediate.
Corollary 4.3. If Li∗ , min

i ̸=i∗
(∆i), and T are known in advance, then the total regret R(T) can be

bounded as follows by choosing the exploration parameter α appropriately:

R(T) ≤ O
(
K log T√

T
max
i≤K

bi

)
, when α =

1

4Li∗
√

min
i ̸=i∗

∆i

(
1− 2 log(log(T))

log(T)

)
. (9)

This final result helps to understand the role of α and serves as guidelines to choose it in practice.
Specifically, Equation 9 shows that either a small value of Li∗ or a small sub-optimality gap requires
a higher value for α. Intuitively, a small L∗i means that the max value of the best arm needs more
samples to be nearly reached, and a small suboptimality gap means that the two best arms are
close and so hard to distinguish. Indeed, these problem-dependent quantities are unknown to the
practitioner, so a direct approach to calculate α is not feasible. Therefore, evaluating performance
robustness under "loose tuning" of α is essential.

5 Performance on AutoML tasks

Finally, we examine the empirical performance of MaxUCB in an AutoML setting via reporting
average ranking and the number of wins, ties, and losses across tasks for each benchmark (details in
Appendix D.1). We first focus on the impact of the hyperparameter α and then compare our approach
to others. Specifically, we show that our two-level approach performs better than single-level HPO
on the joint space, and MaxUCB outperforms other state-of-the-art bandit methods. To begin, we
will provide a brief overview of the experimental setup used across all experiments.

Experimental setup. We use four AutoML benchmarks5, all implementing CASH for tabular
supervised learning differing in the considered ML models, HPO method, and datasets, which we

5We used the AutoML Toolkit (AMLTK) [Bergman et al., 2024]. We ran HPO on a compute cluster equipped
with Intel Xeon Gold 6 240 CPUs, requiring 20 000 CPU hours. We conducted the remaining experiments on a
local machine with Intel Core i7-1370P, requiring an additional 32 CPU hours.

7

detail in Table D.1. For TabRepo and Reshuffling, we use available pre-computed HPO trajectories,
whereas for TabRepoRaw and YaHPOGym, we use SMAC [Hutter et al., 2011, Lindauer et al., 2022]
as Bayesian optimization method to run HPO ourselves.

YaHPOGym TabRepoRaw

0 200
Iteration

4

6

8

R
an

ki
ng

0 200
Iteration

4

6

8

α = 0.5 α = 0.0 α = 0.1 α = 0.2 α = 0.3
α = 0.4 α = 0.6 α = 0.7 α = 0.8 α = 0.9

Figure 5: The sensitivity of MaxUCB to
hyperparameter α, lower is better.

How sensitive is MaxUCB to the choice of α? Figure 5,
shows that the choice of α impacts performance. Lower
values of α (light red lines) lead to good performance
with small budgets, whereas higher values (dark red lines)
achieve stronger final performance when sufficient time
is available. An α around 0.5 yields a balanced trade-
off, offering robust anytime performance across tasks (see
Appendix D.4 for detailed results). Another insight from
this study is that the right choice of α may depend on
characteristics of the datasets, such as the support of the
losses, and could be meta-learned.

Competitive Baselines. We compare against Quan-
tile Bayes UCB [Balef et al., 2024], ER-UCB-S [Hu et al.,
2021] and Rising Bandits [Li et al., 2020] which have been
developed for the decomposed CASH task. We consider
extreme bandits (QoMax-SDA [Baudry et al., 2022], Max-
Median [Bhatt et al., 2022]) and classic UCB as general

bandit methods. We use default hyperparameter settings for all methods. As combined search
baselines, we consider Bayesian optimization (SMAC) and random search.6 Additionally, we report
the performance of the best (oracle) arm.

How does the two-level approach compare against combined search? We first compare the average
rank over time in Figure 6 using combined search (black lines; random search and SMAC if available)
to the two-level approach. We observe that all methods outperform random search (dotted line) and
that while SMAC quickly catches up, some bandit methods continuously achieve a better (lower)
rank. Additionally, we observe that most MAB algorithms (except Rising Bandits and QoMax-SDA)
lead to superior performance in the early stages (T = 50). This demonstrates that the decomposition
is particularly useful when the number of iterations is limited. Additionally, Table 1 shows that the
difference in final performance between combined search and the two-level approach is significant.

How does MaxUCB compare against other bandit methods? Figure 6 shows a substantial
difference in the ranking. In the beginning, many methods perform competitively, but MaxUCB
yields the best anytime and final performance. Classical UCB (red) and extreme bandits (QoMax-SDA;
brown) perform worst. The Max-Median algorithm (purple) shows strong initial performance, but its
effectiveness declines with more iterations. While Max-Median identifies and avoids the worst arm;
it sometimes struggles to select the optimal arm, resulting in non-robust performance.

Next, we look at methods that were originally designed for AutoML. Both ER-UCB-S (pink) and
Quantile Bayes UCB (orange) focus on estimating the higher region of the reward distribution rather
than the extreme values. ER-UCB-S assumes a Gaussian reward distribution and is consistently
outperformed by Quantile Bayes UCB, a distribution-free algorithm. Rising Bandits (green) un-
derperforms initially due to its costly initialization but reaches a competitive final performance.
This is especially pronounced for the YaHPOGym benchmark, where Rising Bandits outperforms
MaxUCB with respect to normalized average performance (see Figure D.5 in Appendix D.5). This
benchmark contains datasets where the optimal arm changes over time. Since Rising Bandits models
non-stationary rewards, it performs better for these instances.7

Finally, MaxUCB and Quantile Bayes UCB are the only ones that significantly outperform combined
search in Table 1. And looking at TabRepoRaw and Reshuffling, as depicted in Figure 6, demonstrates
that MaxUCB is a robust method for CASH problems.

6Only available for TabRepoRaw and YaHPOGym, where we computed HPO trajectories ourselves.
7A burn-in phase, i.e., pulling each arm for a few rounds at the beginning without observing the rewards,

yields a competitive solution as we assess in Appendix E.3.

8

TabRepo[RS] TabRepoRaw[SMAC] YaHPOGym[SMAC] Reshuffling[HEBO]

0 200
Iteration

2

4

6

8

R
an

ki
ng

0 200
Iteration

2

4

6

8

0 200
Iteration

2

4

6

8

10

0 200
Iteration

2

4

6

8
MaxUCB

Quantile Bayes UCB

ER-UCB-S

Rising Bandit

QoMax-SDA

Max-Median

UCB

SMAC

Random Search

Oracle Arm

Figure 6: Average rank of algorithms on different benchmarks, lower is better. SMAC and ran-
dom search perform combined search across the joint space.

Benchmark MaxUCB Quantile
Bayes UCB ER-UCB-S Rising Bandit QoMax-SDA Max-Median UCB

TabRepo
[RS]

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00006 0.00000
w/t/l 186/4/10 179/6/15 135/5/60 185/4/11 172/5/23 126/3/71 135/5/60

TabRepoRaw
[SMAC]

p-value 0.00072 0.00261 0.95063 0.42777 0.99194 0.99984 0.99194
w/t/l 24/0/6 23/0/7 11/0/19 16/0/14 9/0/21 6/0/24 9/0/21

YaHPOGym
[SMAC]

p-value 0.00880 0.00503 0.31038 0.00074 0.08372 0.50000 0.02412
w/t/l 64/0/39 65/0/38 54/1/48 68/0/35 59/0/44 52/0/51 62/0/41

Table 1: P-values from a sign test assessing whether bandit methods outperform combined search.
P-values below α = 0.05 are underlined, while those below α = 0.05 after multiple comparison
correction (adjusting α by #comparisons) are boldfaced, indicating that the two-level approach is
superior to combined search. Additionally, we report the number of wins, ties, and losses (w/t/l).

6 Conclusions, Discussions and Future Work

This paper addresses the CASH problem, proposing MaxUCB, an MKB method. Our data-driven
analysis answers an open question on the applicability of extreme bandits to CASH. We provide a
novel theoretical analysis and show state-of-the-art performance on several important benchmarks.

Limitations. Though our method can be applied beyond AutoML in principle, it is finely tuned for
this setting with bounded and skewed distributions and for maximal value optimization. Our analysis
relies on stationary distributions, which might not always be accurate, especially at the beginning
of the HPO run, so a short burn-in phase may be needed to reach this regime. Our approach may
not be distributionally optimal, as optimality in bounded extreme bandits remains an open question,
and establishing lower bounds is left for future work. Lastly, we provide a default value for our
hyperparameter α that might need adjusting for other applications.

Impact on AutoML systems. Our approach complements prior work on AutoML systems and
increases their flexibility. First, our approach allows to choose any HPO method for each model at
the lower level and thus it may integrate recent progress in HPO methods for some ML model classes,
e.g., multi-fidelity or meta-learned methods [György and Kocsis, 2011, Li et al., 2018, Falkner et al.,
2018, Müller et al., 2023, Chen et al., 2022]. Second, some AutoML systems [Swearingen et al., 2017,
Li et al., 2023] decompose the search space into smaller subspaces to scale to a distributed setting
and use Bandit methods to select promising subspaces [Levine et al., 2017, Li et al., 2020]. While
we focus on applying bandits to select promising ML models, our methods could also be applied in
this setting. Finally, beyond CASH, MaxUCB is well-suited for sub-supernet selection in Neural
Architecture Search (NAS) [Hu et al., 2022], showing similar reward distributions [Ly-Manson et al.,
2024] (see Appendix E.5).

Choosing α adaptively. Figure 5 suggests that one could try to tune α online. However, it is
known that, in theory, without additional information, data-adaptive parameters cannot be found
at a reasonable exploration cost in bandit optimization settings [Locatelli and Carpentier, 2018].
In AutoML systems, though, supplementary data, like estimates of the sub-optimality gap, reward
distribution shape, and HPO convergence rate, can help adjust α adaptively.

9

Future Directions. To extend our extreme bandit setting, one could further refine the reward
modeling by incorporating the non-stationarity, especially in AutoML for data streams, where optimal
models shift with data distributions [Verma et al., 2024]. Incorporating cost-aware optimization is
another promising direction, as computational resources and time, rather than iteration counts, often
define budgets in AutoML; this would require estimating model training times and factoring them
into the decision process. Addressing the growing complexity of heterogeneous ML tasks, such as
those involving pre-training, fine-tuning, or prompt engineering, may benefit from a hierarchical
approach that allocates resources effectively across diverse [Balef and Eggensperger, 2025a,b].
Additionally, exploiting structural similarities among algorithms and their hyperparameters could
reduce exploration costs by sharing information across arms in the CASH problem, further enhancing
efficiency.

Acknowledgments and Disclosure of Funding

The authors are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy – EXC number 2064/1 – Project number 390727645.
Additionally, C. Vernade acknowledges funding from the DFG under the project 468806714 of the
Emmy Noether Programme. The authors also thank the International Max Planck Research School
for Intelligent Systems (IMPRS-IS).

References
F. Hutter, L. Kotthoff, and J. Vanschoren, editors. Automated Machine Learning: Methods, Systems,

Challenges. Springer, 2019. Available for free at http://automl.org/book.

M. Baratchi, C. Wang, S. Limmer, J. van Rijn, H. Hoos, B. Thomas, and M. Olhofer. Automated
machine learning: past, present and future. Artificial Intelligence Review, 57, 2024.

Bernd Bischl, Giuseppe Casalicchio, Taniya Das, Matthias Feurer, Sebastian Fischer, Pieter Gijsbers,
Subhaditya Mukherjee, Andreas C. Müller, László Németh, Luis Oala, Lennart Purucker, Sahithya
Ravi, Jan N. van Rijn, Prabhant Singh, Joaquin Vanschoren, Jos van der Velde, and Marcel Wever.
Openml: Insights from 10 years and more than a thousand papers. Patterns, 6(7):101317, 2025.
ISSN 2666-3899. doi: https://doi.org/10.1016/j.patter.2025.101317.

C. Thornton, F. Hutter, H. Hoos, and K. Leyton-Brown. Auto-WEKA: combined selection and
Hyperparameter Optimization of classification algorithms. In I. Dhillon, Y. Koren, R. Ghani,
T. Senator, P. Bradley, R. Parekh, J. He, R. Grossman, and R. Uthurusamy, editors, The 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’13), pages
847–855. ACM Press, 2013.

Boris van Breugel and Mihaela van der Schaar. Why tabular foundation models should be a
research priority. In R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett, and
F. Berkenkamp, editors, Proceedings of the 41st International Conference on Machine Learning
(ICML’24), volume 235 of Proceedings of Machine Learning Research. PMLR, 2024.

A. Kadra, M. Lindauer, F. Hutter, and J. Grabocka. Well-tuned simple nets excel on tabular datasets.
In M. Ranzato, A. Beygelzimer, K. Nguyen, P. Liang, J. Vaughan, and Y. Dauphin, editors,
Proceedings of the 35th International Conference on Advances in Neural Information Processing
Systems (NeurIPS’21). Curran Associates, 2021.

Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko. Revisiting deep learning models for tabular
data. In M. Ranzato, A. Beygelzimer, K. Nguyen, P. Liang, J. Vaughan, and Y. Dauphin, editors,
Proceedings of the 35th International Conference on Advances in Neural Information Processing
Systems (NeurIPS’21). Curran Associates, 2021.

Y. Gorishniy, I. Rubachev, N. Kartashev, D. Shlenskii, A. Kotelnikov, and A. Babenko. TabR: Tabular
deep learning meets nearest neighbors. In International Conference on Learning Representations
(ICLR’24), 2024. Published online: iclr.cc.

10

http://automl.org/book
iclr.cc

D. McElfresh, S. Khandagale, J. Valverde, V. Prasad, B. Feuer, C. Hegde, G. Ramakrishnan, M. Gold-
blum, and C. White. When do neural nets outperform boosted trees on tabular data? In E. Denton,
J. Ha, and J. Vanschoren, editors, Proceedings of the Neural Information Processing Systems Track
on Datasets and Benchmarks, 2023.

Ravin Kohli, Matthias Feurer, Katharina Eggensperger, Bernd Bischl, and Frank Hutter. Towards
quantifying the effect of datasets for benchmarking: A look at tabular machine learning. Data-
centric Machine Learning Research (DMLR) Workshop at ICLR, 2024.

N. Hollmann, S. Müller, K. Eggensperger, and F. Hutter. TabPFN: A transformer that solves
small tabular classification problems in a second. In International Conference on Learning
Representations (ICLR’23), 2023. Published online: iclr.cc.

D. Holzmüller, L. Grinsztajn, and I. Steinwart. Better by default: Strong pre-tuned mlps and boosted
trees on tabular data. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak,
and C. Zhang, editors, Proceedings of the 37th International Conference on Advances in Neural
Information Processing Systems (NeurIPS’24), 2024.

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient and robust
automated machine learning. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,
editors, Proceedings of the 29th International Conference on Advances in Neural Information
Processing Systems (NeurIPS’15), pages 2962–2970. Curran Associates, 2015.

B. Komer, J. Bergstra, and C. Eliasmith. Hyperopt-sklearn: Automatic hyperparameter configuration
for scikit-learn. In F. Hutter, R. Caruana, R. Bardenet, M. Bilenko, I. Guyon, B. Kégl, and
H. Larochelle, editors, ICML workshop on Automated Machine Learning (AutoML workshop
2014), 2014.

Lars Kotthoff, Chris Thornton, Holger H Hoos, Frank Hutter, and Kevin Leyton-Brown. Auto-WEKA
2.0: Automatic model selection and hyperparameter optimization in WEKA. Journal of Machine
Learning Research, 18(25):1–5, 2017.

M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter. Auto-Sklearn 2.0: Hands-free
automl via meta-learning. Journal of Machine Learning Research, 23(261):1–61, 2022.

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

Matthew Hoffman, Bobak Shahriari, and Nando Freitas. On correlation and budget constraints in
model-based bandit optimization with application to automatic machine learning. In Artificial
Intelligence and Statistics, pages 365–374. PMLR, 2014.

Sijia Liu, Parikshit Ram, Deepak Vijaykeerthy, Djallel Bouneffouf, Gregory Bramble, Horst Samu-
lowitz, Dakuo Wang, Andrew R. Conn, and Alexander G. Gray. An ADMM based framework for
AutoML pipeline configuration. In AAAI Conference on Artificial Intelligence, 2019.

Alexandra Carpentier and Michal Valko. Extreme bandits. In Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Weinberger, editors, Proceedings of the 28th International Conference on
Advances in Neural Information Processing Systems (NeurIPS’14). Curran Associates, 2014.

M. Achab, S. Clémençon, A. Garivier, A. Aurélien, A. Sabourin, and C. Vernade. Max K-Armed
Bandit: On the ExtremeHunter Algorithm and Beyond, page 389–404. Springer International
Publishing, 2017.

D. Baudry, Y. Russac, and E. Kaufmann. Efficient algorithms for extreme bandits. In International
Conference on Artificial Intelligence and Statistics, 2022.

Y. Hu, X. Liu, and S. Liand Y. Yu. Cascaded algorithm selection with extreme-region UCB bandit.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(10):6782–6794, 2021.

Amir Rezaei Balef, Claire Vernade, and Katharina Eggensperger. Towards bandit-based optimization
for automated machine learning. In 5th Workshop on practical ML for limited/low resource settings,
2024. URL https://openreview.net/forum?id=S5da3rzyuk.

11

iclr.cc
https://openreview.net/forum?id=S5da3rzyuk

Robert Nishihara, David Lopez-Paz, and Léon Bottou. No regret bound for extreme bandits. In
Artificial Intelligence and Statistics, pages 259–267. PMLR, 2016.

S. Raschka. Model evaluation, model selection, and algorithm selection in machine learning. ArXiv,
abs/1811.12808, 2018.

D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of expensive black box functions.
Journal of Global Optimization, 13:455–492, 1998.

R. Garnett. Bayesian Optimization. Cambridge University Press, 2022. Available for free at
https://bayesoptbook.com/.

J. Snoek, H. Larochelle, and R. Adams. Practical Bayesian optimization of machine learning
algorithms. In P. Bartlett, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors, Proceedings
of the 26th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’12), pages 2960–2968. Curran Associates, 2012.

Y. Chen, A. Huang, Z. Wang, I. Antonoglou, J. Schrittwieser, D. Silver, and N. de Freitas. Bayesian
optimization in alphago. arXiv:1812.06855 [cs.LG], 2018.

A. Cowen-Rivers, W. Lyu, R. Tutunov, Z. Wang, A. Grosnit, R. Griffiths, A. Maraval, H. Jianye,
J. Wang, J. Peters, and H. Ammar. HEBO: Pushing the limits of sample-efficient hyper-parameter
optimisation. Journal of Artificial Intelligence Research, 74:1269–1349, 2022.

V. Cicirello and S. Smith. The max K-armed bandit: a new model of exploration applied to search
heuristic selection. In M. Veloso and S. Kambhampati, editors, Proceedings of the 20th National
Conference on Artificial Intelligence (AAAI’05), page 1355–1361. AAAI Press, 2005.

M. Streeter and S. Smith. An asymptotically optimal algorithm for the Max k-Armed Bandit problem.
In AAAI Conference on Artificial Intelligence, 2006a.

Alberto Maria Metelli, Francesco Trovo, Matteo Pirola, and Marcello Restelli. Stochastic rising
bandits. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári, G. Niu, and S. Sabato, editors,
Proceedings of the 39th International Conference on Machine Learning (ICML’22), volume 162
of Proceedings of Machine Learning Research. PMLR, 2022.

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparameter
optimization. In Artificial intelligence and statistics, pages 240–248. PMLR, 2016.

Y. Li, J. Jiang, J. Gao, Y. Shao, C. Zhang, and B. Cui. Efficient automatic CASH via rising bandits.
In F. Rossi, V. Conitzer, and F. Sha, editors, Proceedings of the Thirty-Fourth Conference on
Artificial Intelligence (AAAI’20), pages 4763–4771. Association for the Advancement of Artificial
Intelligence, AAAI Press, 2020.

H. Heidari, M. Kearns, and A. Roth. Tight policy regret bounds for improving and decaying bandits.
In S. Kambhampati, editor, Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI’16), pages 1562–1570, 2016.

Marco Mussi, Alessandro Montenegro, Francesco Trovó, Marcello Restelli, and Alberto Maria
Metelli. Best arm identification for stochastic rising bandits. In R. Salakhutdinov, Z. Kolter,
K. Heller, A. Weller, N. Oliver, J. Scarlett, and F. Berkenkamp, editors, Proceedings of the 41st
International Conference on Machine Learning (ICML’24), volume 235 of Proceedings of Machine
Learning Research. PMLR, 2024.

Y. Pushak and H. Hoos. Automl loss landscapes. ACM Transactions on Evolutionary Learning and
Optimization, 2(3):1–30, 2022.

Xiu Su, Tao Huang, Yanxi Li, Shan You, Fei Wang, Chen Qian, Changshui Zhang, and Chang Xu.
Prioritized architecture sampling with monto-carlo tree search. 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 10963–10972, 2021.

Matthew J. Streeter and Stephen F. Smith. A simple distribution-free approach to the Max k-
Armed Bandit problem. In International Conference on Principles and Practice of Constraint
Programming, 2006b.

12

https://bayesoptbook.com/

S. Bhatt, P. Li, and G. Samorodnitsky. Extreme bandits using robust statistics. IEEE Transactions on
Information Theory, 69(3):1761–1776, 2022.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

Edward Bergman, Matthias Feurer, Aron Bahram, Amir Rezaei Balef, Lennart Purucker, Sarah Segel,
Marius Lindauer, Frank Hutter, and Katharina Eggensperger. AMLTK: A Modular Automl Toolkit
in Python. Journal of Open Source Software, 9(100):6367, 2024. doi: 10.21105/joss.06367. URL
https://doi.org/10.21105/joss.06367.

F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm
configuration. In C. Coello, editor, Proceedings of the Fifth International Conference on Learning
and Intelligent Optimization (LION’11), volume 6683 of Lecture Notes in Computer Science, pages
507–523. Springer, 2011.

M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, T. Ruhkopf,
R. Sass, and F. Hutter. SMAC3: A versatile bayesian optimization package for Hyperparameter
Optimization. Journal of Machine Learning Research, 23(54):1–9, 2022.

András György and Levente Kocsis. Efficient multi-start strategies for local search algorithms.
Journal of Artificial Intelligence Research, 41:407–444, 2011.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research, 18(185):1–52, 2018.

S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and efficient Hyperparameter Optimization
at scale. In J. Dy and A. Krause, editors, Proceedings of the 35th International Conference on
Machine Learning (ICML’18), volume 80, pages 1437–1446. Proceedings of Machine Learning
Research, 2018.

Samuel G. Müller, Matthias Feurer, Noah Hollmann, and Frank Hutter. PFNs4BO: In-context
learning for bayesian optimization. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato,
and J. Scarlett, editors, Proceedings of the 40th International Conference on Machine Learning
(ICML’23), volume 202 of Proceedings of Machine Learning Research. PMLR, 2023.

Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Richard Zhang, David Dohan, Kazuya
Kawakami, Greg Kochanski, Arnaud Doucet, Marc’aurelio Ranzato, et al. Towards learning
universal hyperparameter optimizers with transformers. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh, editors, Proceedings of the 36th International Conference on
Advances in Neural Information Processing Systems (NeurIPS’22), pages 32053–32068. Curran
Associates, 2022.

Thomas Swearingen, Will Drevo, Bennett Cyphers, Alfredo Cuesta-Infante, Arun Ross, and Kalyan
Veeramachaneni. ATM: A distributed, collaborative, scalable system for automated machine
learning. In 2017 IEEE international conference on big data (big data), pages 151–162. IEEE,
2017.

Yang Li, Yu Shen, Wentao Zhang, Ce Zhang, and Bin Cui. VolcanoML: speeding up end-to-end
AutoML via scalable search space decomposition. The VLDB Journal, 32(2):389–413, 2023.

Nir Levine, Koby Crammer, and Shie Mannor. Rotting bandits. In I. Guyon, U. von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Proceedings of the 31st
International Conference on Advances in Neural Information Processing Systems (NeurIPS’17).
Curran Associates, 2017.

Shoukang Hu, Ruochen Wang, HONG Lanqing, Zhenguo Li, Cho-Jui Hsieh, and Jiashi Feng.
Generalizing few-shot NAS with gradient matching. In International Conference on Learning
Representations (ICLR’22), 2022.

13

https://doi.org/10.21105/joss.06367

Timotée Ly-Manson, Mathieu Leonardon, Abdeldjalil Aissa El Bey, Ghouti Boukli Hacene, and
Lukas Mauch. Analyzing few-shot neural architecture search in a metric-driven framework. In
M. Lindauer, K. Eggensperger, R. Garnett, J. Vanschoren, and J. Gardner, editors, Proceedings of
the Third International Conference on Automated Machine Learning (AutoML’24). Proceedings of
Machine Learning Research, 2024.

Andrea Locatelli and Alexandra Carpentier. Adaptivity to smoothness in X-armed bandits. In Annual
Conference Computational Learning Theory, 2018.

Nilesh Verma, Albert Bifet, Bernhard Pfahringer, and Maroua Bahri. ASML: A scalable and efficient
AutoML solution for data streams. In M. Lindauer, K. Eggensperger, R. Garnett, J. Vanschoren,
and J. Gardner, editors, Proceedings of the Third International Conference on Automated Machine
Learning (AutoML’24). Proceedings of Machine Learning Research, 2024.

Amir Rezaei Balef and Katharina Eggensperger. Posterior sampling using prior-data fitted networks
for optimizing complex automl pipelines. In Eighteenth European Workshop on Reinforcement
Learning, 2025a.

Amir Rezaei Balef and Katharina Eggensperger. In-context decision making for optimizing complex
automl pipelines. arXiv preprint arXiv:2508.13657, 2025b.

F. Pfisterer, L. Schneider, J. Moosbauer, M. Binder, and B. Bischl. YAHPO Gym – an efficient multi-
objective multi-fidelity benchmark for hyperparameter optimization. In I. Guyon, M. Lindauer,
M. van der Schaar, F. Hutter, and R. Garnett, editors, Proceedings of the First International
Conference on Automated Machine Learning. Proceedings of Machine Learning Research, 2022.

David Salinas and Nick Erickson. TabRepo: A large scale repository of tabular model evaluations
and its AutoML applications. In M. Lindauer, K. Eggensperger, R. Garnett, J. Vanschoren, and
J. Gardner, editors, Proceedings of the Third International Conference on Automated Machine
Learning (AutoML’24). Proceedings of Machine Learning Research, 2024.

Thomas Nagler, Lennart Schneider, B. Bischl, and Matthias Feurer. Reshuffling resampling splits
can improve generalization of hyperparameter optimization. ArXiv, abs/2405.15393, 2024.

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits.
In International Conference on Machine Learning, pages 1238–1246. PMLR, 2013.

Nobuaki Kikkawa and Hiroshi Ohno. Materials discovery using Max K-Armed Bandit. Journal of
Machine Learning Research, 25(100):1–40, 2024.

J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning
Research, 7:1–30, 2006.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We wrote the abstract and introduction to reflect the paper’s contribution (a
practical Bandit strategy for decomposed CASH) as detailed as possible and discuss it ability
to generalize to other settings in the Conclusion (Section 6) and in Appendix B.4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a separate paragraph for the limitations of our methods in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

15

Answer: [Yes]
Justification: Yes, we provide all necessary assumptions for the theoretical results in Sec-
tion 3 and detail proofs for theories in Appendix B. We also discuss the validity of our
assumptions using on empirical data analysis in Section 3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we provide detailed information about all the methods we used. This
includes a description of the computing infrastructure in Footnote 5, an ablation study for
hyperparameter selection in Section 5 and Appendix D.4, as well as metrics and experimental
details in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

16

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.checklist

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We make our code and data available at https://anonymous.4open.
science/r/CASH_with_Bandits/README.md.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, in addition to making code available, we provide detailed information
about all the methods we used, including the choice of hyperparameters. This includes a
description of the computing infrastructure in Footnote 5, an ablation study for hyperparam-
eter selection in Section 5 and Appendix D.4, as well as metrics and experimental details in
Section D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report confidence intervals concerning the random seed after running the
experiments multiple times (see Figure 6 and Table 1 in the main paper), and we discuss
this further in the Appendix D.

17

https://anonymous.4open.science/r/CASH_with_Bandits/README.md
https://anonymous.4open.science/r/CASH_with_Bandits/README.md
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide a description of the computing infrastructure in Footnote 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work complies with the NeurIPS Code of Ethics. It involves no human
subjects, sensitive data, or misuse risks, and uses only public datasets.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

18

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]
Justification: This paper focuses on advancing the field of Machine Learning without direct
societal impacts or specific applications that would need to be discussed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work poses no known risks of misuse and does not involve high-risk
models or datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All external assets (datasets and code) used in our work are publicly available,
properly cited, and used in accordance with their respective licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.

19

• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented, and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This research does not involve human subjects or require IRB approval.

20

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only used LLMs for text polishing and coding assistance.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

Table of Contents for the Appendices

• Appendix A: Preliminaries . 23
• Appendix B: Proofs . 23

– B.1 Proof of Lemma 3.3 . 23
– B.2 Proof of Proposition 4.1 .24
– B.3 Proof of Theorem 4.2 . 25
– B.4 Extension of Proof of Theorem 4.2 . 27

• Appendix C: More Details on Reward Distribution . 30
– C.1 Reward Distribution Analysis . 30
– C.2 More Details on Lemma 3.3 . 31
– C.3 Empirical Validation of Lemma 3.3 . 32

• Appendix D: More Details on the Experiments . 35
– D.1 Metric Calculation . 35
– D.2 Experimental Setup . 35
– D.3 Baselines and Their Hyperparameters . 39
– D.4 More Results on the Sensitivity Analysis of Hyperparameter α 40
– D.5 More Results for the Empirical Evaluation . 43
– D.6 More Baselines for the Empirical Evaluation . 45

• Appendix E: More Details on the Empirical Behaviour of MaxUCB 47
– E.1 The Number of Times Each Arm is Pulled . 47
– E.2 From Theory to Practice . 49
– E.3 Addressing Non-Stationary Rewards . 49
– E.4 Toy Examples from the Extreme Bandit’s Literature .51
– E.5 Supernet Selection in Few-Shot Neural Architecture Search 53

• Appendix F: NeurIPS Paper Checklist . 15

22

A Preliminiaries

Lemma A.1. Let X1, . . . , Xn be n samples independently drawn from distribution d, and let
G(x) = P (X > x) be the survival function. We have:

P

(
max
1≤t≤n

Xt ≤ x

)
≤ e−nG(x),

P

(
max
1≤t≤n

Xt > x

)
≤ nG(x). (10)

Proof. Let F (x) = P (X ≤ x) be the cumulative distribution function, so G(x) = 1 − F (x) =
P (X > x). First, consider the probability that the maximum of the n samples is less than or equal to
x:

P

(
max
1≤t≤n

Xt ≤ x

)
=

n∏
i=1

P (Xi ≤ x) = (F (x))n = (1−G(x))n ≤ e−nG(x), (11)

using the inequality (1 − x)n ≤ e−nx. Next, consider the probability that the maximum of the n
samples is greater than x:

P

(
max
1≤t≤n

Xt > x

)
≤

n∑
i=1

P (X > x) = nG(x). (12)

B Proofs

B.1 Proof of Lemma 3.3

Lemma 3.3. Suppose Assumption 3.2 holds. Then, there exists L,U ≥ 0 such that the survival
function G can be bounded near b by two linear functions.

∀ϵ ∈ (0, b− a), Lϵ ≤ G(b− ϵ) ≤ Uϵ (13)

Proof. By applying the Mean Value Theorem (MVT) to the survival function G over an interval
[b− ϵ, b], there exists a point c ∈ (b− ϵ, b) such that:

G(b)−G(b− ϵ) = G′(c)(b− (b− ϵ)) = G′(c)ϵ (14)

Since G′(x) = −f(x) where f(x) the probability density function (PDF) and G(b) = 0 we have:

G(b− ϵ) = f(c)ϵ (15)

Let L and U be the minimum and maximum values of the PDF f(c) = G(b−ϵ)
ϵ over ϵ ∈ (0, b− a).

Lϵ ≤ G(b− ϵ) ≤ Uϵ (16)

Notably, in cases where we are interested in the survival function near some b1 < b and a1 > a i.e.,
over (b1 − ϵ, b1) applying the MVT again, there exists c ∈ (b1 − ϵ, b1) such that:

G(b1)−G(b1 − ϵ) = G′(c)ϵ = −f(c)ϵ (17)

which rearranges to:

G(b1 − ϵ) = f(c)ϵ+G(b1) (18)

For any ϵ ∈ (δ, b1 − a1) with δ > 0 we can bound G(b1 − ϵ) as:

Lϵ ≤ Lϵ+G(b1) ≤ G(b1 − ϵ) ≤ (f(c) +
G(b1)

δ
)ϵ ≤ Uϵ (19)

23

B.2 Proof of Proposition 4.1

Proposition 4.1. (Upper Regret Bound) the upper regret bound up to time T is related to the number
of times sub-optimal arms are pulled,

R(T) ≤
max
i≤K

bi

T

K∑
i ̸=i∗

Ni(T) (20)

Where Ni(T) = E(
T∑

t=1
1{It = i}) is the number of sub-optimal pulls of arm i, arm i∗ is the optimal

arm and bi is the upper bound on the reward of arm i as given by Assumption 3.2, i.e., the reward of
arm i lies within the interval [ai, bi].

Proof. This proof is inspired by Assumption 1 of Baudry et al. [2022]. First, we need to determine
an upper bound for the difference in the highest observed reward for arm i when it has been pulled
for Ni(T) times compared to when it has been pulled for T times.

E

[
max
t≤T

ri,t

]
−E

[
max

t≤Ni(T)
ri,t

]
= E

[
1

{
max

Ni(T)+1≤t≤T
ri,t = max

t≤T
ri,t

}
max

Ni(T)+1≤t≤T
ri,t

]
≤ E

[
1

{
max

Ni(T)+1≤t≤T
ri,t = max

t≤T
ri,t

}
1

{
max

Ni(T)+1≤t≤T
ri,t ≤ B

}
max

Ni(T)+1≤t≤T
ri,t︸ ︷︷ ︸

≤B

]

+E

[
1

{
max

Ni(T)+1≤t≤T
ri,t = max

t≤T
ri,t

}
1

{
max

Ni(T)+1≤t≤T
ri,t > B

}
max

Ni(T)+1≤t≤T
ri,t

]

≤ P

(
max

Ni(T)+1≤t≤T
ri,t = max

t≤T
ri,t

)
B

+E

[
1

{
max

Ni(T)+1≤t≤T
ri,t = max

t≤T
ri,t

}
1

{
max

Ni(T)+1≤t≤T
ri,t > B

}
max

Ni(T)+1≤t≤T
ri,t

]
. (21)

Since always max
Ni(T)+1≤t≤T

ri,t ≤ bi by choosing B = bi we ensure that

1

{
max

Ni(T)+1≤t≤T
ri,t > B

}
= 0, leading to:

E

[
max
t≤T

ri,t

]
−E

[
max

t≤Ni(T)
ri,t

]
≤ P

(
max

Ni(T)+1≤t≤T
ri,t = max

t≤T
ri,t

)
B

≤
(
1− Ni(T)

T

)
B =

(
1− Ni(T)

T

)
bi. (22)

24

Using this and according to the regret definition, we obtain the following:

R(T) = E[max ri∗,t]
t≤T

−E[max rIt,t]
t≤T

≤ E

[
max
t≤T

ri∗,t

]
−max

i≤K
E

[
max

t≤Ni(T)
ri,t

]
= min

i≤K
(E

[
max
t≤T

ri∗,t

]
−E

[
max

t≤Ni(T)
ri,t

]
)

= min
i≤K

(∆i +E

[
max
t≤T

ri,t

]
−E

[
max

t≤Ni(T)
ri,t

]
︸ ︷︷ ︸

Equation 22

)

≤ min
i≤K

(∆i + (1− Ni(T)

T
)bi)

≤ min
i≤K

(∆i + (1− Ni(T)

T
)max
i≤K

bi) (23)

Based on Definition 3.1, the suboptimality gap for the optimal arm i∗ is zero (∆i∗ = 0). Additionally,
the total number of pulls for the optimal arm Ni∗(T) can be calculated as the difference between
the total number of pulls across all arms T and the pulls for all suboptimal arms (i ̸= i∗), i.e.

Ni∗(T) = T −
K∑

i ̸=i∗
Ni(T). We upper bound the min in equation 23 by the specific value for the

optimal arm i∗:

R(T) ≤
max
i≤K

bi

T

K∑
i ̸=i∗

Ni(T) (24)

B.3 Proof of Theorem 4.2

Theorem 4.2. For any suboptimal arm i ̸= i⋆, the number of suboptimal draws Ni(T) performed by
Algorithm 1 up to time T is bounded by

Ni(T) ≤
T 1−2Li∗α

√
∆i

1− 2Li∗α
√
∆i

+ 2α
√
UiT log(T) (25)

Proof. In order to find the upper bound for the number of sub-optimal pulls of arm i for the
algorithm 1, without loss of generality, we assume that arm 1 is the optimal arm, i.e. i∗ = 1. Let
∆i = E[max

t≤T
r1,t]−E[max

t≤T
ri,t] be the suboptimality gap. Our goal is to determine an upper bound

on Ni(T), the number of times the sub-optimal arm i has been pulled up to time T . First, we identify
the event that the algorithm pulls the sub-optimal arm i at time t:

S = {max (r1,1, ..., r1,n1(t)) + Ct(n1(t)) ≤ max (ri,1, ..., ri,ni(t)) + Ct(ni(t))}
= { max

1≤n≤n1(t)
r1,n + Ct(n1(t)) ≤ max

1≤n≤ni(t)
ri,n + Ct(ni(t)} (26)

where S is the event of selecting a sub-optimal arm i with a padding function Ct(n). The exploration
bonus Ct(n) is a function that is designed to account for the exploration-exploitation trade-off
and typically depends on t and the number of times each arm has been pulled n. Let n1(t) and
ni(t) represent the number of times the optimal arm 1 and an sub-optimal arm i have been pulled,
respectively, where n1(t) ≤ t and ni(t) ≤ t. We want to express S in a union of events that covers
all possible scenarios leading to S. Thus, we split S into two complementary conditions as follows:

S ⊆ { max
1≤n≤n1(t)

r1,n + Ct(n1(t)) ≤ x} ∪ { max
1≤n≤ni(t)

ri,n + Ct(ni(t)) > x} (27)

25

Where x is a threshold value, we take x = E[max
t≤T

ri,t],

S ⊆
{

max
1≤n≤n1(t)

r1,n + Ct(n1(t)) ≤ E[max
t≤T

ri,t]

}
∪
{

max
1≤n≤ni(t)

ri,n + Ct(ni(t)) > E[max
t≤T

ri,t]

}
=

{
max

1≤n≤n1(t)
r1,n ≤ E[max

t≤T
r1,t]−∆i − Ct(n1(t))

}
∪
{

max
1≤n≤ni(t)

ri,n > E[max
t≤T

ri,t]−Ct(ni(t))

}
(28)

Thus, the event S can be contained within the union of two bad events:

• Underestimating the upper confidence bound of extreme values for the optimal arm 1

• Overestimating the upper confidence bound of extreme values for the sub-optimal arm i

Now we use Lemma A.1 to calculate the probability of 28:

P (S) ≤ P

({
max

1≤n≤n1(t)
r1,n ≤ E[max

t≤T
r1,t]− Ct(n1(t))−∆i

})
+ P

({
max

1≤n≤ni(t)
ri,n > E[max

t≤T
ri,t]− Ct(ni(t))

})
≤ e
−n1(t)G1

(
E[max

t≤T
r1,t]−Ct(n1(t))−∆i

)

+ ni(t)Gi

(
E[max

t≤T
ri,t]− Ct(ni(t))

)
. (29)

Now, by applying Lemma 3.3, we can simplify the analysis by eliminating the complexities associated
with survival functions G1 and Gi.

P (S) ≤ e−n1(t)L1(Ct(n1(t))+∆i) + ni(t)UiCt(ni(t)) (30)

For the first term of the right-hand side, by the Arithmetic Mean-Geometric Mean (AM-GM)
inequality (a+ b ≥ 2

√
ab) of equation 30, we have:

e−n1(t)L1(Ct(n1(t))+∆i) ≤ e−2L1n1(t)
√

Ct(n1(t))∆i (31)

In this stage, we want to find a proper padding function Ct(n), which controls the right-hand side of
equation 30 and equation 31. By choosing Ct(n) = (α log(t)

n)2, we have:

e−n1(t)L1(Ct(n1(t))+∆i) ≤ e−2L1n1(t)
√

Ct(n1(t))∆i = e−2L1α log(t)
√
∆i = t−2L1α

√
∆i (32)

ni(t)UiCt(ni(t)) ≤
α2Ui log

2(t)

ni(t)
(33)

This selection of the function of the exploration bonus results in two significant advantages. First,
it provides an upper bound for the right-hand side of equation 30 that remains independent of n1.
Furthermore, Equation 31 shows a decreasing trend as the number of pulls for the sub-optimal arm i
increases.8

8We note that this choice is not based on the inherent property of maximum values. In general one can use
Ct(n) = (α log(t)

n
)m for m > 1 with the optimal m depending on the setting. In Appendix B.4 we show how

m affects the regret.

26

Now, we assume that the sub-optimal arm i has been played for li times, so ni(t) ≥ li. We want to
calculate the number of sub-optimal pulls of arm i up to time T :

Ni(T) ≤ li +

T∑
t=li

P (S) ≤ li +

T∑
t=li

t−2L1α
√
∆i +

T∑
t=li

α2Ui log
2(t)

li

≤ li +
T 1−2L1α

√
∆i

1− 2L1α
√
∆i

+
α2Ui

li
T log2(T) (34)

By choosing li = α
√
UiT log(T), we have:

Ni(T) ≤
T 1−2L1α

√
∆i

1− 2L1α
√
∆i

+ 2α
√
UiT log(T) (35)

B.4 Extension of Proof of Theorem 4.2

As we discuss in Section 3, the reward distribution in our setting is left-skewed. We now
show that under the assumption that the survival function decays rapidly near the maximum i.e.,
Gi(E[maxt≤T ri,t]) = O(1

T 2), a tighter bound can be derived. This assumption means that the
reward distribution has a very light-tail near its upper extreme, which may often hold for our left-
skewed distributions. Furthermore, we generalize our algorithm by assuming Ct = (α log(t)

ni
)m as a

exploration bonus function, where m ≥ 1 is a hyperparameter.

Proof. We begin with Equation 27 and we take x = E[max
t≤T

ri,t] + c∆i, where c is an arbitrary

variable c ∈ [0, 1]. We have:

S ⊆
{

max
1≤n≤n1(t)

r1,n + Ct(n1(t)) ≤ E[max
t≤T

ri,t] + c∆i

}
∪
{

max
1≤n≤ni(t)

ri,n + Ct(ni(t)) > E[max
t≤T

ri,t] + c∆i

}
=

{
max

1≤n≤n1(t)
r1,n ≤ E[max

t≤T
r1,t]−(1− c)∆i − Ct(n1(t))

}
∪
{

max
1≤n≤ni(t)

ri,n > E[max
t≤T

ri,t]−Ct(ni(t)) + c∆i

}
=

{
max

1≤n≤n1(t)
r1,n ≤ E[max

t≤T
r1,t]−(1− c)∆i − Ct(n1(t))

}
︸ ︷︷ ︸

S1

(36)

∪
{

max
1≤n≤ni(t)

ri,n > E[max
t≤T

ri,t]−Ct(ni(t)) + c∆i, Ct(ni(t)) ≤ c∆i

}
︸ ︷︷ ︸

S2

(37)

∪
{

max
1≤n≤ni(t)

ri,n > E[max
t≤T

ri,t]−Ct(ni(t)) + c∆i, Ct(ni(t)) > c∆i

}
︸ ︷︷ ︸

S3

(38)

First, we calculate the probability of event S2:

P (S2) ≤ P (

{
max

1≤n≤ni(t)
ri,n > E[max

t≤T
ri,t]

}
) ≤ niGi(E[max

t≤T
ri,t]) ≤ TGi(E[max

t≤T
ri,t). (39)

27

By calculating the number of sub-optimal pulls of arm i up to time T , we know the third part of the
event (S3) can happen at most C−1T (c∆i) = (α log(T)

c∆i
)

1
m times:

Ni(T) ≤ (
α log(T)

c∆i
)

1
m +

T∑
t=1

P (S1) +

T∑
t=1

P (S2) (40)

≤ (
α log(T)

c∆i
)

1
m + T 2Gi(E[max

t≤T
ri,t]) +

T∑
t=1

P (S1) (41)

≤ (
α log(T)

c∆i
)

1
m +M +

T∑
t=1

P (S1) (42)

Where M is a constant as we assume Gi(E[maxt≤T ri,t]) = O(1
T 2). Finally, we need to find an

upper bound for P (S1). We need to differentiate between two situations, when m = 1 and when
m > 1

For m = 1. We set c = 1 and then we have:

P (S1) ≤ e−n1G1(E[maxt≤T r1,t]−(1−c)∆i−Ct(n1(t))) ≤ (43)

e−L1(Ct(n1(t))+(1−c)∆i) ≤ e−αL1 log(T) ≤ T−αL1 (44)

Finally, we have:

Ni(T) ≤ M +
α log(T)

∆i
+

T 1−αL1

1− αL1
(45)

With α > 1
L1

:

Ni(T) = O(
log(T)

L1∆i
) (46)

For m > 1. We know n((an)
m + b) ≥ ab

m−1
m [m(m− 1)

1
m−1]. We have:

P (S1) ≤ e−n1(t)L1(Ct(n1(t))+(1−c)∆i) ≤ e−αL1 log(T)((1−c)∆i)
m−1
m [m(m−1)

1
m

−1] (47)

≤ T−αL1((1−c)∆i)
m−1
m [m(m−1)

1
m

−1] (48)

For simplicity, we set c = 1
2 . Then:

Ni(T) ≤ (
α log(T)

c∆i
)

1
m +M +

T∑
t=1

P (S2) (49)

≤ (
2α log(T)

∆i
)

1
m +M +

T 1−αL1(
∆i
2)

m−1
m [m(m−1)

1
m

−1]

1− αL1(
∆i

2)
m−1
m [m(m− 1)

1
m−1]

(50)

Finally, we have:

Ni(T) = (
2α log(T)

∆i
)

1
m +O(T 1−αL1(

∆i
2)

m−1
m [m(m−1)

1
m

−1]). (51)

And by choosing α as below

α = O
(

1

L1(∆i)
m−1
m

)
, (52)

28

We have:

Ni(T) = O
(

log(T)

L1∆
2m−1

m
i

) 1
m

. (53)

We would like to emphasize again that this result only holds when Gi(E[maxt≤T ri,t]) is sufficiently
small. By using a weaker assumption, controlling Gi(E[maxt≤T ri,t]) is necessary. In Theorem B.3,
we address this for our method by considering Ct(ni(t)) ≥ Gi(E[maxt≤T ri,t]) to ensure proper
control.

Notably, in general, ∆i depends on T (see Definition 3.1). Meaning that log(T)
∆i

does not necessarily
lead to a logarithmic regret. However, in some special scenarios where the reward distributions have
different supports, we can ensure that ∆i = b1 − bi as T approaches infinity, and a logarithmic regret
is achievable.

Furthermore, Equation 53 shows that the parameter m controls Ni(T), the number of times a
suboptimal arm is pulled asymptotically. When T is very large, a higher value of m (along with the
optimal α) improves performance. However, it makes the algorithm more sensitive to the choice of α.
As shown in Equation 52, with increasing m, ∆i has a greater influence on the optimal α. Noting
that ∆i varies across arms and is typically unknown for an unseen task, finding the optimal α is not
feasible in practice. Therefore, there is a trade-off between performance and sensitivity. In the CASH
setting, m = 2 performs empirically well, while exhibiting low sensitivity to α. Furthermore, as
shown in Appendix D.4, we can find a range of α for which the MaxUCB works well across different
CASH tasks.

29

C More Details on Reward Distribution

C.1 Reward distribution analysis

In addition to the analysis in the main paper in Figure 2 in Section 3, we collected the observed
rewards (the output of HPO) for all arms on each model class. We calculate each dataset’s empirical
survival function G and provide the reward distribution analysis for all benchmark tasks. Notably,
the shift in distribution (indicated by the thin lines) is low for all tasks, not contradicting the i.i.d.
assumptions. For our method, we design our algorithm based on analyzing the distribution of raw
rewards (in contrast to the distribution of maximum values over time).

Over time, the maximum value of samples generated from an i.i.d. distribution has an increasing
trend, i.e., the extreme values get better. Notably, this is not contradictory with the Rising Bandits
strategy Liu et al. [2019], which assumes that the maximum observed value over time is not decreasing
(and then analyses the trend of this maximum observed value as a (non i.i.d) reward).

TabRepo

0.6 0.8 1.0
Reward

0.0

0.5

1.0

S
ur

vi
va

l
fu

nc
ti

on

0.00 0.25 0.50 0.75 1.00
Reward

0.0

0.5

1.0

S
ur

vi
va

l
fu

nc
ti

on

2 3 4 5 6 7
Sub-optimal arm

0.0

0.2

0.4

∆
i

TabRepoRaw

0.2 0.4 0.6 0.8 1.0
Reward

0.0

0.5

1.0

S
ur

vi
va

l
fu

nc
ti

on

0.00 0.25 0.50 0.75 1.00
Reward

0.0

0.5

1.0

S
ur

vi
va

l
fu

nc
ti

on

2 3 4 5 6 7
Sub-optimal arm

0.00

0.25

0.50

0.75

∆
i

YaHPOGym

0.25 0.50 0.75 1.00
Reward

0.0

0.5

1.0

S
ur

vi
va

l
fu

nc
ti

on

0.00 0.25 0.50 0.75 1.00
Reward

0.0

0.5

1.0

S
ur

vi
va

l
fu

nc
ti

on

2 3 4 5 6
Sub-optimal arm

0.00

0.25

0.50

0.75

∆
i

Reshuffling

0.00 0.25 0.50 0.75 1.00
Reward

0.0

0.5

1.0

S
ur

vi
va

l
fu

nc
ti

on

0.00 0.25 0.50 0.75 1.00
Reward

0.0

0.5

1.0

S
ur

vi
va

l
fu

nc
ti

on

2 3 4
Sub-optimal arm

0.00

0.25

0.50

0.75

∆
i

Optimal arm 2nd arm 3rd arm 4th arm 5th arm 6th arm Worst arm

Figure C.1: (Left) The average empirical survival function of rewards (observed performances) per
arm ranked per dataset. We divided the reward sequence into five segments over the budget (time
horizon) to show the distribution change over time. Thin lines correspond to empirical survival
functions for different segments, visualizing the change over time. (Middle) The average empirical
survival function per dataset for the best and worst arm with thin lines corresponding to individual
datasets. (Right) The sub-optimality gap ∆i.

30

C.2 More Details on Lemma 3.3

L and U are lower and upper bounds for the tangent line approximation of the survival function G
near the maximum value, indicating the shape of the distribution. We provide three examples to
demonstrate this numerically.

Toy example: Assume two simple survival functions G1(x) = 1− x2 (left skewed, blue curve) and
G2(x) = (1− x)2 (right skewed, orange curve) with support [0, 1]. We calculate G(1− ϵ)/ϵ over
some values of ϵ in the Figure C.2. To compute L and U, we determine the minimum and maximum
values of G(1− ϵ)/ϵ over the range 0 < ϵ < 1. For clarity, we restricted ϵ to iterate only over the set
{0.1, 0.3, 0.5, 0.7, 0.9}. It implies that the calculated values of L and U are valid for ϵ ∈ [0.1, 0.9].

ϵ G1(1−ϵ)
ϵ

G2(1−ϵ)
ϵ

0.10 1.90 0.10

0.30 1.70 0.30

0.50 1.50 0.50

0.70 1.30 0.70

0.90 1.10 0.90

L 1.10 0.10

U 1.90 0.90
0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

y
=
U

1 ε

y =
L

1εy = U
2ε

y = L2ε

G1(x) = 1− x2

G2(x) = (1− x)2

0.10.30.50.70.9
ε

Figure C.2: (Left) Determining L and U for G1 and G2. We calculate G(1−ϵ)
ϵ over different ranges of

ϵ. The minimum and maximum values obtained from this ratio are assigned as L and U , respectively.
(Right) Showing two survival functions G1 and G2 along with their linear line approximations (gray
lines). These tangent lines illustrate how L and U effectively bound the survival function G near its
maximum value.

Truncated uniform distribution: Assume that we have a truncated uniform distribution with support
[a, b]. We know G(x) = b−x

b−a for x ∈ (a, b). For every ϵ ∈ [a, b] we have G(b−ϵ)
ϵ = 1

b−a , which
means L = U = 1

b−a .

Truncated Gaussian distribution: There is no closed-form solution to formulate L and U based on
the parameters of the truncated Gaussian distribution. Thus, we show the results of simulations to
estimate L and U for truncated Gaussian within [0, 1] with various values µ and σ, averaging over
1000 runs in Figure C.3.

µ σ L U

0.25 0.5 0.58± 0.06 1.70± 0.48

0.50 0.5 0.85± 0.07 1.53± 0.34

0.75 0.5 1.01± 0.01 1.64± 0.25

0.25 0.2 0.34± 0.07 1.54± 0.28

0.50 0.2 0.44± 0.08 1.36± 0.04

0.75 0.2 1.01± 0.00 1.95± 0.04 0.00 0.25 0.50 0.75 1.00
x

0.00

0.25

0.50

0.75

1.00

G
(x

)

µ = 0.25, σ2 = 0.5

µ = 0.50, σ2 = 0.5

µ = 0.75, σ2 = 0.5

µ = 0.25, σ2 = 0.2

µ = 0.50, σ2 = 0.2

µ = 0.75, σ2 = 0.2

Figure C.3: (Left) Determining L and U for truncated Gaussian within [0, 1] with different values
for µ and σ. Averaged over 1 000 runs. (Right) Showing survival function of truncated Gaussian
distribution with different values for µ and σ.

31

TabRepo

0 1

100

101

102

G
(b

)

Optimal arm

0 1

2nd arm

0 1

3rd arm

0.0 0.5

4th arm

0 1

5th arm

0 1

6th arm

0 1

Worst arm

0.1 1 10
Values for L

0

10

20

30

Fr
eq

ue
nc

y

0.1 1 10
Values for L

0.1 1 10
Values for L

0.1 1 10
Values for L

0.1 1 10
Values for L

0.1 1 10
Values for L

0.1 1 10
Values for L

0.01 1 100
Values for U

0

10

20

30

Fr
eq

ue
nc

y

0.01 1 100
Values for U

0.01 1 100
Values for U

0.01 1 100
Values for U

0.01 1 100
Values for U

0.01 1 100
Values for U

0.01 1 100
Values for U

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Average Gi(b) Gi(b) (per dataset) Li = min(Gi(b)) Ui = max(Gi(b))

Figure C.4: Arms are ordered by sub-optimality gap. (Top) Thin orange lines represent G(b−ϵ)
ϵ , while

the blue and red points correspond to L and U for our empirical reward distributions (see Lemma 3.3
for details). (Middle) Histogram of values for L. (Bottom) Histogram of values for U .

C.3 Empirical Validation of Lemma 3.3

To study the empirical values for L and U in Lemma 3.3, we leverage the calculated empirical
survival function G for each dataset in Appendix C.1. Specifically, we evaluate G(b−ϵ)

ϵ over the
range G−1(0.99) < ϵ < G−1(0.01), where G−1(x) denotes the inverse of the survival function
G(x). Focusing on this range allows us to achieve a more robust estimation. Additionally, for
TabRepo dataset, we exclude 23 datasets containing an arm with a standard deviation smaller than
0.001, further enhancing the robustness of our analysis. In Figures C.4, C.5, C.6, and C.7, the
evaluated values of G(b−ϵ)

ϵ for different benchmarks are shown. Additionally, the values for L and U ,
corresponding to min

ϵ
(G(b−ϵ)

ϵ) and max
ϵ

(G(b−ϵ)
ϵ), respectively, are presented. Finally, the histograms

of these two variables are also included.

32

TabRepoRaw

0 1

100

101

102

G
(b

)

Optimal arm

0.0 0.5

2nd arm

0 1

3rd arm

0 1

4th arm

0 1

5th arm

0 1

6th arm

0 1

Worst arm

0.1 1 10
Values for L

0

5

10

Fr
eq

ue
nc

y

0.1 1 10
Values for L

0.1 1 10
Values for L

0.1 1 10
Values for L

0.1 1 10
Values for L

0.1 1 10
Values for L

0.1 1 10
Values for L

0.01 1 100
Values for U

0

2

4

6

Fr
eq

ue
nc

y

0.01 1 100
Values for U

0.01 1 100
Values for U

0.01 1 100
Values for U

0.01 1 100
Values for U

0.01 1 100
Values for U

0.01 1 100
Values for U

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Average Gi(b) Gi(b) (per dataset) Li = min(Gi(b)) Ui = max(Gi(b))

Figure C.5: Arms are ordered by sub-optimality gap. (Top) Thin orange lines represent G(b−ϵ)
ϵ , while

the blue and red points correspond to L and U for our empirical reward distributions (see Lemma 3.3
for details). (Middle) Histogram of values for L. (Bottom) Histogram of values for U .

YaHPOGym

0.0 0.5 1.010 1

100

101

102

G
(b

)

Optimal arm

0.0 0.5 1.0

2nd arm

0.0 0.5 1.0

3rd arm

0.0 0.5 1.0

4th arm

0.0 0.5 1.0

5th arm

0.0 0.5 1.0

Worst arm

0.1 1 10
Values for L

0

20

40

Fr
eq

ue
nc

y

0.1 1 10
Values for L

0.1 1 10
Values for L

0.1 1 10
Values for L

0.1 1 10
Values for L

0.1 1 10
Values for L

0.01 1 100
Values for U

0

10

20

30

40

Fr
eq

ue
nc

y

0.01 1 100
Values for U

0.01 1 100
Values for U

0.01 1 100
Values for U

0.01 1 100
Values for U

0.01 1 100
Values for U

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Average Gi(b) Gi(b) (per dataset) Li = min(Gi(b)) Ui = max(Gi(b))

Figure C.6: Arms are ordered by sub-optimality gap. (Top) Thin orange lines represent G(b−ϵ)
ϵ , while

the blue and red points correspond to L and U for our empirical reward distributions (see Lemma 3.3
for details). (Middle) Histogram of values for L. (Bottom) Histogram of values for U .

33

Reshuffling

0.0 0.2 0.4 0.610 1

100

101

102

G
(b

)

Optimal arm

0.00 0.25 0.50 0.75 1.00

2nd arm

0.00 0.25 0.50 0.75 1.00

3rd arm

0.00 0.25 0.50 0.75 1.00

Worst arm

0.1 1 10
Values for L

0

1

2

3

Fr
eq

ue
nc

y

0.1 1 10
Values for L

0.1 1 10
Values for L

0.1 1 10
Values for L

0.01 1 100
Values for U

0

1

2

3

Fr
eq

ue
nc

y

0.01 1 100
Values for U

0.01 1 100
Values for U

0.01 1 100
Values for U

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Average Gi(b) Gi(b) (per dataset) Li = min(Gi(b)) Ui = max(Gi(b))Figure C.7: Arms are ordered by sub-optimality gap. (Top) Thin orange lines represent G(b−ϵ)
ϵ , while

the blue and red points correspond to L and U for our empirical reward distributions (see Lemma 3.3
for details). (Middle) Histogram of values for L. (Bottom) Histogram of values for U .

34

name #models #tasks type HPO meth. (rep.) budget reference

YaHPOGym 6 103 surrogate SMAC (32) 200 [Pfisterer et al., 2022]
TabRepo 7 200 tabular random search (32) 200 [Salinas and Erickson, 2024]
TabRepoRaw 7 30 raw SMAC (32) 200 -
Reshuffling 4 10 raw HEBO (30) 250 [Nagler et al., 2024]

Table D.1: Overview of AutoML tasks. For TabRepo and Reshuffling, we use pre-computed HPO
trajectories. TabRepoRaw resembles the same model space as TabRepo, but instead of random search,
we run HPO ourselves. Similarly, we run HPO across provided surrogate HPO benchmark tasks
YaHPOGym. We use SMAC [Lindauer et al., 2022, Hutter et al., 2011], implementing Bayesian
optimization using Random forests for both tasks.

D More Details on the Experiments

D.1 Metric calculation

Average ranking calculation. We use bootstrapping with Monte Carlo sampling to calculate the
average ranking plot with confidence intervals. For each time step and each task in every dataset, we
resample the performance of each repetition (with replacement) and compute the average performance.
We then rank the algorithms based on these averaged performances and repeat this process for all
tasks. Finally, we average the rankings across tasks. This entire procedure was repeated 1000 times
to estimate the confidence interval.

Number of wins, ties, and losses. To determine the number of wins, ties, and losses for each task in
every dataset, we first compute the average performance of each algorithm over all repetitions at the
final time step. We then perform pairwise comparisons of these averaged performances among all
algorithms versus combined search. To account for negligible differences that are not statistically
significant, we consider two performances to be tied if they are sufficiently close. Specifically, we use
NumPy’s isclose function to compare the averaged performances, treating values within a default
tolerance of 1× 10−8 as equal.

D.2 Experimental Setup

Here, we provide details on our experimental setups. We used several well-established and widely
used benchmark sets (as described in Table D.1) that were developed to compare HPO methods.
Each benchmark contained different datasets, tasks, and search spaces to ensure that our empirical
distribution analysis was not limited to a single source or problem type.

YaHPOGym [Pfisterer et al., 2022], a surrogate benchmark, covers 6 ML models (details in Table
D.2) on 103 datasets and uses a regression model (surrogate model) to predict performances for
queried hyperparameter settings. We use Bayesian optimization as implemented by SMAC [Lindauer
et al., 2022] using Random Forests to conduct HPO. Additionally, we compare our two-level approach
to combined search using SMAC, SMAC without initial design (SMAC-no-init), and Random Search.
We run 32 repetitions and use a budget of 200 iterations for each evaluation.

TabRepo [Salinas and Erickson, 2024] consists of pre-evaluated performance scores for 200 iter-
ations of random search for 7 ML models (details in Table D.3) on 200 datasets (context name:
D244_F3_C1530_200). We run 32 repetitions and use a budget of 200 iterations for each task.

TabRepoRaw which uses the search space from TabRepo (details in Table D.3) and allows HPO to
evaluate all configurations. For constructing TabRepo [Salinas and Erickson, 2024], each configura-
tion was evaluated with a one-hour time limit and 8-fold cross-validation. To reduce computational
requirements for TabRepoRaw, we reduced this to 5 minutes and 4-fold cross-validation, and we
provide it for 30 datasets (context name: D244_F3_C1530_30). We use Bayesian optimization as
implemented by SMAC [Lindauer et al., 2022] using Random Forests to conduct HPO. Additionally,
we compare our two-level approach to combined search using SMAC, Random Search. We run 32
repetitions and use a budget of 200 iterations for the mentioned task.

To enable a fair comparison, we always evaluate the default configuration for each model first and
then allow SMAC to run an initial design of 50 − #arms configurations in the upper level and

50
#arms−1 in the lower level.

35

Table D.2: Hyperparameter spaces for ML models in YaHPOGym.
ML model Hyperparameter Type Range Info

- trainsize continuous [0.03, 1] =0.525 (fixed)
imputation categorical {mean, median, hist} =mean (fixed)

Glmnet alpha continuous [0, 1]
s continuous [0.001, 1097] log

Rpart

cp continuous [0.001, 1] log
maxdepth integer [1, 30]
minbucket integer [1, 100]
minsplit integer [1, 100]

SVM

kernel categorical {linear, polynomial, radial}
cost continuous [4.5e-05, 2.2e4] log
gamma continuous [4.5e-05, 2.2e4] log, kernel
tolerance continuous [4.5e-05, 2] log
degree integer [2, 5] kernel

AKNN

k integer [1, 50]
distance categorical {l2, cosine, ip}
M integer [18, 50]
ef integer [7, 403] log
ef_construction integer [7, 403] log

Ranger

num.trees integer [1, 2000]
sample.fraction continuous [0.1, 1]
mtry.power integer [0, 1]
respect.unordered.factors categorical {ignore, order, partition}
min.node.size integer [1, 100]
splitrule categorical {gini, extratrees}
num.random.splits integer [1, 100] splitrule

XGBoost

booster categorical {gblinear, gbtree, dart}
nrounds integer [7, 2980] log
eta continuous [0.001, 1] log, booster
gamma continuous [4.5e-05, 7.4] log, booster
lambda continuous [0.001, 1097] log
alpha continuous [0.001, 1097] log
subsample continuous [0.1, 1]
max_depth integer [1, 15] booster
min_child_weight continuous [2.72, 148.4] log, booster
colsample_bytree continuous [0.01, 1] booster
colsample_bylevel continuous [0.01, 1] booster
rate_drop continuous [0, 1] booster
skip_drop continuous [0, 1] booster

Reshuffling [Nagler et al., 2024] which uses Heteroscedastic and Evolutionary Bayesian Optimization
solver (HEBO) [Cowen-Rivers et al., 2022] for HPO. This benchmark includes HPO runs for 4 ML
models (details in Table D.4) across 10 datasets, with 10 repetitions and 3 different validation split
ratios within a budget of 250 iterations. Although the benchmark does not support HPO over the
entire search space, it offers a valuable opportunity to compare the performance of bandit methods in
a realistic setting.

36

Table D.3: Hyperparameter spaces for ML models in TabRepo and TabRepoRaw.
ML model Hyperparameter Type Range Info Default value

NN(PyTorch)

learning rate continuous [1e-4, 3e-2] log 3e-4
weight decay continuous [1e-12, 0.1] log 1e-6
dropout prob continuous [0, 0.4] 0.1
use batchnorm categorical False, True
num layers integer [1, 5] 2
hidden size integer [8, 256] 128
activation categorical relu, elu

NN(FastAI)

learning rate continuous [5e-4, 1e-1] log 1e-2
layers categorical [200], [400], [200, 100],

[400, 200], [800, 400],
[200, 100, 50], [400, 200, 100]

emb drop continuous [0.0, 0.7] 0.1
ps continuous [0.0, 0.7] 0.1
bs categorical 256, 128, 512, 1024, 2048
epochs integer [20, 50] 30

CatBoost

learning rate continuous [5e-3 ,0.1] log 0.05
depth integer [4, 8] 6
l2 leaf reg continuous [1, 5] 3
max ctr complexity integer [1, 5] 4
one hot max size categorical 2, 3, 5, 10
grow policy categorical SymmetricTree, Depthwise

LightGBM

learning rate continuous [5e-3 ,0.1] log 0.05
feature fraction continuous [0.4, 1.0] 1.0
min data in leaf integer [2, 60] 20
num leaves integer [16, 255] 31
extra trees categorical False, True

XGBoost

learning rate continuous [5e-3 ,0.1] log 0.1
max depth integer [4, 10] 6
min child weight continuous [0.5, 1.5] 1.0
colsample bytree continuous [0.5, 1.0] 1.0
enable categorical categorical False, True

Extra-trees
max leaf nodes integer [5000, 50000]
min samples leaf categorical 1, 2, 3, 4, 5, 10, 20, 40, 80
max features categorical sqrt, log2, 0.5, 0.75, 1.0

Random-forest
max leaf nodes integer [5000, 50000]
min samples leaf categorical 1, 2, 3, 4, 5, 10, 20, 40, 80
max features categorical sqrt, log2, 0.5, 0.75, 1.0

37

Table D.4: Hyperparameter spaces for ML models in Reshuffling.
ML model Hyperparameter Type Range Info

Funnel-Shaped MLP

learning rate continuous [1e-4, 1e-1] log
num layers integer [1, 5]
max units categorical 64, 128, 256, 512
batch size categorical. 16, 32, ..., max_batch_size
momentum continuous. [0.1, 0.99]
alpha continuous. [1e-6, 1e-1] log

Elastic Net C continuous [1e-6, 10e4] log
l1 ratio continuous [0.0, 1.0]

XGBoost

max depth integer [2, 12] log
alpha continuous [1e-8, 1.5] log
lambda continuous [1e-8, 1.0] log
eta continuous [0.01, 0.3] log

CatBoost
learning rate continuous [0.01 ,0.3] log
depth integer [2, 12]
l2 leaf reg continuous [0.5, 30]

38

D.3 Baselines and their hyperparameters

We use several bandit algorithms as baselines. Table D.5 summarizes the hyperparameters and their
values.

Table D.5: Hyperparameters of Bandit Baselines.
Algorithm Hyperparameter Value Reference

MaxUCB α 0.5 Ours

Quantile
Bayes UCB

α 1.0

Balef et al. [2024]
β 0.2
τ 0.95

Quantile UCB α 0.5
τ 0.95

ER-UCB-S β 0.6

Hu et al. [2021]

θ 0.01
γ 20.0

ER-UCB-N
α 1.0
θ 0.01
γ 20.0

Rising Bandits C 7 Li et al. [2020]
T Time horizon

Max-Median ϵ 1/(t), t is iteration Bhatt et al. [2022]

QoMax-SDA q 0.5

Baudry et al. [2022]

γ 2/3

QoMax-ETC q 0.5
bT 4
nT 3
T Time horizon

UCB α 0.5 Auer [2002]

ThresholdAscent δ 0.1
Streeter and Smith [2006b]s 20

T Time horizon

Successive Halving η 2.0 Karnin et al. [2013]
T Time horizon

R-SR ϵ 0.25

Mussi et al. [2024]

T Time horizon

R-UCBE α 57.12
ϵ 0.25
σ 0.05
T Time horizon

MaxSearch
(Gaussian) c 1.0 Kikkawa and Ohno [2024]

MaxSearch
(SubGaussian) c 0.27

39

D.4 More Results on the Sensitivity Analysis of Hyperparameter α

In addition to the results shown in Figure 5 in Section 5, we provide additional results here. We
evaluated the performance of MaxUCB for α ∈ [0, 2.9] with step size 0.1. We plot the performance
over the number of iterations for different values of α in Figures D.1, D.2, D.3, D.4. Green indicates
better performance, showing the impact of α at different stages of the optimization procedure.
Furthermore, we provide a comparison between MaxUCB with different values of α with combined
search(SMAC) in Table D.6. For the experiments in the main paper, we choose α = 0.5 as a robust
choice over all datasets. Notably, α = 0.5 is selected based on the assumption that the reward
distribution support is [0, 1]. For other supports, we recommend scaling α according to the range of
the support.

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

α

Normalized loss - TabRepo[RS]

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120 140 160 180
Iteration

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

α

Ranking - TabRepo[RS]

10

15

20

25

Figure D.1: Heatmap showing the performance of our algorithm with different values of α for
TabRepo dataset.

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

α

Normalized loss - TabRepoRaw[SMAC]

0.05

0.10

0.15

0.20

0.25

0.30

0 20 40 60 80 100 120 140 160 180
Iteration

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

α

Ranking - TabRepoRaw[SMAC]

5

10

15

20

25

Figure D.2: Heatmap showing the performance of our algorithm with different values of α for
TabRepoRaw dataset.

40

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

α

Normalized loss - YaHPOGym[SMAC]

0.05

0.10

0.15

0.20

0.25

0 20 40 60 80 100 120 140 160 180
Iteration

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

α

Ranking - YaHPOGym[SMAC]

5

10

15

20

25

Figure D.3: Heatmap showing the performance of our algorithm with different values of α for
YaHPOGym dataset.

0 25 50 75 100 125 150 175 200 225 250
Iteration

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

α

Normalized loss - Reshuffling[HEBO]

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0 25 50 75 100 125 150 175 200 225
Iteration

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

α

Ranking - Reshuffling[HEBO]

5

10

15

20

25

Figure D.4: Heatmap showing the performance of our algorithm with different values of α for
Reshuffling dataset.

41

Table D.6: Comparing MaxUCB with combined search(SMAC) for different values of α and time
steps. P-values from a sign test assessing whether bandit methods outperform combined search.
P-values below α = 0.05 are underlined, while those below α = 0.05 after multiple comparison
correction (adjusting α by the number of comparisons) are boldfaced and underlined indicating that
the two-level approach is superior to combined search. Additionally, we report the normalized loss
and the number of wins, ties, and losses (w/t/l) of bandit methods.

Time α=0.0 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6 α=0.7 α=0.8 α=0.9

Ta
bR

ep
oR

aw
[S

M
A

C
]

50
p-value 0.1002 0.0214 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
w/t/l 19/0/11 21/0/9 27/0/3 29/0/1 29/0/1 29/0/1 29/0/1 28/0/2 27/0/3 27/0/3
loss 0.2555 0.2446 0.2172 0.1946 0.1965 0.2134 0.2203 0.2229 0.2249 0.2296

100
p-value 0.9974 0.9919 0.8998 0.1808 0.0081 0.0214 0.1002 0.5722 0.8192 0.9919
w/t/l 8/0/22 9/0/21 12/0/18 18/0/12 22/0/8 21/0/9 19/0/11 15/0/15 13/0/17 9/0/21
loss 0.2138 0.2053 0.1832 0.1346 0.1283 0.1113 0.1164 0.1208 0.1279 0.1512

150
p-value 0.9993 0.9919 0.9506 0.2923 0.0007 0.0007 0.0026 0.0081 0.1002 0.7077
w/t/l 7/0/23 9/0/21 11/0/19 17/0/13 24/0/6 24/0/6 23/0/7 22/0/8 19/0/11 14/0/16
loss 0.1994 0.1911 0.1671 0.1020 0.0898 0.0752 0.0775 0.0849 0.0887 0.0973

200
p-value 0.9998 0.9993 0.9786 0.1808 0.0214 0.0007 0.0026 0.0026 0.0081 0.0081
w/t/l 6/0/24 7/0/23 10/0/20 18/0/12 21/0/9 24/0/6 23/0/7 23/0/7 22/0/8 22/0/8
loss 0.1864 0.1790 0.1489 0.0686 0.0651 0.0563 0.0622 0.0698 0.0703 0.0751

Y
aH

PO
G

ym
[S

M
A

C
]

50
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
w/t/l 74/1/28 83/1/19 95/1/7 102/1/0 102/1/0 102/1/0 102/1/0 102/1/0 102/1/0 101/1/1
loss 0.1853 0.1532 0.1071 0.0930 0.0942 0.0978 0.1047 0.1101 0.1151 0.1190

100
p-value 0.3833 0.3833 0.3833 0.0459 0.0112 0.0112 0.0088 0.0572 0.2153 0.4220
w/t/l 53/1/49 53/1/49 53/1/49 60/1/42 63/1/39 63/1/39 64/0/39 60/0/43 56/0/47 53/0/50
loss 0.1494 0.1177 0.0876 0.0813 0.0782 0.0713 0.0668 0.0702 0.0718 0.0749

150
p-value 0.3833 0.6167 0.8135 0.0686 0.0036 0.0065 0.0028 0.0005 0.0028 0.0148
w/t/l 53/1/49 50/1/52 47/1/55 59/1/43 65/1/37 64/1/38 66/0/37 68/1/34 66/0/37 63/0/40
loss 0.1378 0.1013 0.0758 0.0722 0.0716 0.0551 0.0518 0.0507 0.0520 0.0500

200
p-value 0.5394 0.8135 0.6896 0.2442 0.0185 0.0088 0.0015 0.0002 0.0000 0.0001
w/t/l 51/1/51 47/1/55 49/1/53 55/1/47 62/1/40 64/0/39 67/0/36 70/0/33 75/0/28 71/0/32
loss 0.1190 0.0856 0.0697 0.0660 0.0614 0.0457 0.0443 0.0418 0.0423 0.0421

42

D.5 More Results for the Empirical Evaluation

In addition to the analysis in the main paper in Figure 6 in Section 5, we report the averaged
normalized loss over time in Figure D.5, the average ranking in Figure D.6, the normalized loss
per task in Figure D.7, the ranking per task in Figure D.8 and critical distance plots as described
by Demšar [2006] in Figure D.9. Additionally, we report results for a Random Policy (yellow) that
selects arms to pull at random.

TabRepo[RS] TabRepoRaw[SMAC] YaHPOGym[SMAC] Reshuffling[HEBO]

0 200
Iteration

0.1

N
or

m
al

iz
ed

lo
ss

0 200
Iteration

0.1

0 200
Iteration

0.1

0 200
Iteration

0.01

MaxUCB

Quantile Bayes UCB

ER-UCB-S

Rising Bandit

QoMax-SDA

Max-Median

UCB

Random Policy

SMAC

SMAC-no-init

Random Search

Oracle Arm

Figure D.5: Average normalized loss of algorithms on different benchmarks, lower is better. SMAC
and random search perform combined search across the joint space.

TabRepo[RS] TabRepoRaw[SMAC] YaHPOGym[SMAC] Reshuffling[HEBO]

0 200
Iteration

2

4

6

8

R
an

ki
ng

0 200
Iteration

2.5

5.0

7.5

10.0

0 200
Iteration

2.5

5.0

7.5

10.0

0 200
Iteration

2

4

6

8
MaxUCB

Quantile Bayes UCB

ER-UCB-S

Rising Bandit

QoMax-SDA

Max-Median

UCB

Random Policy

SMAC

SMAC-no-init

Random Search

Oracle Arm

Figure D.6: Average ranking of algorithms on different benchmarks, lower is better. SMAC and
random search perform combined search across the joint space.

TabRepo[RS]

MaxUCB
Quantile Bayes UCB

ER-UCB-S
Rising Bandit
QoMax-SDA
Max-Median

UCB
Random Policy

Random Search
Oracle Arm

SMAC
SMAC-no-init

TabRepoRaw[SMAC] YaHPOGym[SMAC] Reshuffling[HEBO]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure D.7: Heatmap showing the normalized loss of algorithms per task of each benchmark, sorted
by the oracle arm performance, lower is better. SMAC and random search perform combined search
across the joint space.

43

TabRepo[RS]

MaxUCB
Quantile Bayes UCB

ER-UCB-S
Rising Bandit
QoMax-SDA
Max-Median

UCB
Random Policy

Random Search
Oracle Arm

SMAC
SMAC-no-init

TabRepoRaw[SMAC] YaHPOGym[SMAC] Reshuffling[HEBO]

2

4

6

8

10

Figure D.8: Heatmap showing the ranking of algorithms per task of each benchmark, sorted by the
oracle arm performance, lower is better. SMAC and random search perform combined search across
the joint space.

TabRepo TabRepoRaw

1234567

UCBER-UCB-SQoMax-SDAMax-Median Quantile Bayes UCBMaxUCBRising Bandit

CD 1234567

UCBQoMax-SDAMax-MedianER-UCB-S Rising BanditQuantile Bayes UCBMaxUCB

CD

123

Random SearchMaxUCB Oracle Arm

CD
1234

Random SearchSMAC MaxUCBOracle Arm

CD

YaHPOGym Reshuffling

1234567

UCBQoMax-SDAMax-MedianER-UCB-S Quantile Bayes UCBRising BanditMaxUCB

CD 1234567

UCBQoMax-SDAER-UCB-SQuantile Bayes UCB Rising BanditMax-MedianMaxUCB

CD

12345

Random SearchSMAC-no-initMaxUCB SMACOracle Arm

CD

Figure D.9: Diagrams to compare the performance (ranking) of different algorithms using the Critical
Distance (CD). For each benchmark on top, we compare bandit methods, and on the bottom, we
compare MaxUCB against combined search and the oracle arm.

44

D.6 More Baselines for the Empirical Evaluation

Max K-armed Bandit Baselines. We compare MaxUCB against MaxSearch Gaussian [Kikkawa and
Ohno, 2024], MaxSearch SubGaussian [Kikkawa and Ohno, 2024], QoMax-ETC [Baudry et al., 2022],
QoMax-SDA [Baudry et al., 2022], Max-Median [Bhatt et al., 2022] and Threshold Ascent [Streeter
and Smith, 2006b]. We report the averaged normalized loss over time in Figure D.10, the average
ranking in Figure D.11. As shown, our algorithm outperforms all extreme bandit algorithms in these
benchmarks.

TabRepo[RS] TabRepoRaw[SMAC] YaHPOGym[SMAC] Reshuffling[HEBO]

0 200
Iteration

0.1

N
or

m
al

iz
ed

lo
ss

0 200
Iteration

0.1

0 200
Iteration

0.1

0 200
Iteration

0.1

MaxUCB

MaxSearch Gaussian

MaxSearch SubGaussian

QoMax-ETC

QoMax-SDA

Max-Median

Threshold Ascent

Random Policy

SMAC

SMAC-no-init

Random Search

Oracle Arm

Figure D.10: Average normalized loss of MKB algorithms on different benchmarks, lower is better.
SMAC and random search perform combined search across the joint space.

TabRepo[RS] TabRepoRaw[SMAC] YaHPOGym[SMAC] Reshuffling[HEBO]

0 200
Iteration

2

4

6

8

R
an

ki
ng

0 200
Iteration

2

4

6

8

10

0 200
Iteration

2.5

5.0

7.5

10.0

0 200
Iteration

2

4

6

8
MaxUCB

MaxSearch Gaussian

MaxSearch SubGaussian

QoMax-ETC

QoMax-SDA

Max-Median

Threshold Ascent

Random Policy

SMAC

SMAC-no-init

Random Search

Oracle Arm

Figure D.11: Average ranking of MKB algorithms on different benchmarks, lower is better. SMAC
and random search perform combined search across the joint space.

A Few More Relevant Bandit Baselines. We compare MaxUCB against Quantile UCB [Balef
et al., 2024], ER-UCB-N [Hu et al., 2021], R-SR [Mussi et al., 2024], R-UCBE [Mussi et al., 2024],
Successive Halving [Karnin et al., 2013] and EXP3 [Auer et al., 2002]. We report the averaged
normalized loss over time in Figure D.12, the average ranking in Figure D.13.

TabRepo[RS] TabRepoRaw[SMAC] YaHPOGym[SMAC] Reshuffling[HEBO]

0 200
Iteration

0.1

N
or

m
al

iz
ed

lo
ss

0 200
Iteration

0.1

0 200
Iteration

0.1

0 200
Iteration

0.01

MaxUCB

Quantile UCB

ER-UCB-N

R-SR

R-UCBE

Successive Halving

Exp3

Random Policy

SMAC

SMAC-no-init

Random Search

Oracle Arm

Figure D.12: Average normalized loss of algorithms on different benchmarks, lower is better. SMAC
and random search perform combined search across the joint space.

45

TabRepo[RS] TabRepoRaw[SMAC] YaHPOGym[SMAC] Reshuffling[HEBO]

0 200
Iteration

2

4

6

8

R
an

ki
ng

0 200
Iteration

2

4

6

8

10

0 200
Iteration

2.5

5.0

7.5

10.0

0 200
Iteration

2

4

6

8
MaxUCB

Quantile UCB

ER-UCB-N

R-SR

R-UCBE

Successive Halving

Exp3

Random Policy

SMAC

SMAC-no-init

Random Search

Oracle Arm

Figure D.13: Average ranking of algorithms on different benchmarks, lower is better. SMAC and
random search perform combined search across the joint space.

46

E More Details on the Empirical Behaviour of MaxUCB

Here, we provide further analysis of MaxUCB. Concretely, we study how often our algorithm pulls
the optimal arm and compare it to the theoretical results. Furthermore, we evaluate an extension of
MaxUCB to handle non-stationary rewards and finally study MaxUCB performance on common
synthetic benchmarks used in the extreme bandit literature.

E.1 The number of times each arm is pulled

Proposition 4.1 shows that the number of times the optimal arm is pulled can be viewed as a
good metric for measuring the performance of algorithms. Figure E.1, E.2,E.3,E.4 shows the
average number of pulling arms on different benchmarks. They indicate that, on average, MaxUCB,
Rising Bandits, and Max-Median algorithms often choose the optimal arm. However, for Max-Median,
the number of pulls of the optimal arm is either very close to 0 or to T , leading to a non-robust
performance, which has already been observed in Baudry et al. [2022] experiments. UCB and
ER-UCB-S perform almost similarly.

0 1 2 3 4 5 6
arms

0

50

100

150

200

N
um

b
er

of
pu

lls

TabRepo[RS]

MaxUCB

Quantile Bayes UCB

ER-UCB-S

Rising Bandit

QoMax-SDA

Max-Median

UCB
M

a
xU

C
B

Q
ua

nt
ile

B
ay

es
U

C
B

E
R

-U
C

B
-S

R
is

in
g

B
an

di
t

Q
oM

ax
-S

D
A

M
ax

-M
ed

ia
n

U
C

B

Algorithm

0

50

100

150

200

O
pt

im
al

A
rm

P
ul

l
C

ou
nt

Figure E.1: (Right) The number of all arm pulls, with each bar graph showing the average and
the error bars indicating additional statistical information. (Left) The number of best arm pulls for
different bandit algorithms.

0 1 2 3 4 5 6
arms

0

50

100

150

200

N
um

b
er

of
pu

lls

TabRepoRaw[SMAC]

MaxUCB

Quantile Bayes UCB

ER-UCB-S

Rising Bandit

QoMax-SDA

Max-Median

UCB

M
a

xU
C

B

Q
ua

nt
ile

B
ay

es
U

C
B

E
R

-U
C

B
-S

R
is

in
g

B
an

di
t

Q
oM

ax
-S

D
A

M
ax

-M
ed

ia
n

U
C

B

Algorithm

0

50

100

150

200

O
pt

im
al

A
rm

P
ul

l
C

ou
nt

Figure E.2: (Right) The number of all arm pulls, with each bar graph showing the average and
the error bars indicating additional statistical information. (Left) The number of best arm pulls for
different bandit algorithms.

47

0 1 2 3 4 5
arms

0

50

100

150

200

N
um

b
er

of
pu

lls

YaHPOGym[SMAC]

MaxUCB

Quantile Bayes UCB

ER-UCB-S

Rising Bandit

QoMax-SDA

Max-Median

UCB

M
a

xU
C

B

Q
ua

nt
ile

B
ay

es
U

C
B

E
R

-U
C

B
-S

R
is

in
g

B
an

di
t

Q
oM

ax
-S

D
A

M
ax

-M
ed

ia
n

U
C

B

Algorithm

0

50

100

150

200

O
pt

im
al

A
rm

P
ul

l
C

ou
nt

Figure E.3: (Right) The number of all arm pulls, with each bar graph showing the average and
the error bars indicating additional statistical information. (Left) The number of best arm pulls for
different bandit algorithms.

0 1 2 3
arms

0

50

100

150

200

250

N
um

b
er

of
pu

lls

Reshuffling[HEBO]

MaxUCB

Quantile Bayes UCB

ER-UCB-S

Rising Bandit

QoMax-SDA

Max-Median

UCB

M
a

xU
C

B

Q
ua

nt
ile

B
ay

es
U

C
B

E
R

-U
C

B
-S

R
is

in
g

B
an

di
t

Q
oM

ax
-S

D
A

M
ax

-M
ed

ia
n

U
C

B

Algorithm

0

50

100

150

200

250

O
pt

im
al

A
rm

P
ul

l
C

ou
nt

Figure E.4: (Right) The number of all arm pulls, with each bar graph showing the average and
the error bars indicating additional statistical information. (Left) The number of best arm pulls for
different bandit algorithms.

48

E.2 From theory to practice

To validate our theorem against practical outcomes, we applied our algorithm to all benchmarks and
plotted the number of pulls for each arm, denoted as "Real Experiment." Additionally, we computed
the upper bound on the number of pulls by using the empirical values of L1 and Ui and ∆i. Notably,
we report the first term of Equation 22 since the second term is nearly constant across all arms
according to calculation. The results demonstrate that although the empirical pull counts are much
less than the theoretical bounds of Equation 22, both follow a similar decreasing pattern as the rank
of suboptimality increases.

0 1 2 3 4 5 6
arms

0

50

100

150

N
um

b
er

of
pu

lls

TabRepo[RS]

0 1 2 3 4 5 6
arms

0

50

100

150

N
um

b
er

of
pu

lls

TabRepoRaw[SMAC]

0 1 2 3 4 5
arms

0

50

100

150

N
um

b
er

of
pu

lls

YaHPOGym[SMAC]

0 1 2 3
arms

0

50

100

150

200

N
um

b
er

of
pu

lls

Reshuffling[HEBO]

Real Experiment

Theory

Figure E.5: The number of pulls for each arm in our algorithm, labeled as "Real Experiment" and the
theoretical values of this number

E.3 Addressing Non-stationary Rewards

To handle non-stationary rewards, we pull each arm C times without observing the rewards before
running MaxUCB. This "burn-in" allows the Markov Chain to reach equilibrium, especially from a
poor starting point. Algorithm E.1 shows the adapted version of our algorithm. Therefore, empirically,
this allows MaxUCB to operate after a fixed exploration phase of all arms until the reward distribution
is stationary.

We run Algorithm E.1 with different parameters of C ∈ {5, 6, 7, 8} using up to 48 iterations
corresponding to almost 25% of the total budget. Figure E.6 shows normalized loss per task where
columns are sorted by the maximum change of the mean of the reward distributions of the optimal
arm computed every 10 HPO iterations (as an indicator of non-stationarity; shown at the top panel in
Figure E.6. Figure E.7 shows the average ranking and normalized loss over time for different values
of the hyperparameter C.

The initial burn-in improves final performance for the few tasks where we observe a high shift (right
part of Figure E.6) while the initial performance is worse across all tasks (as shown in Figure E.7).
However, the results are not sensitive to the exact value of C. Overall, this naive solution can improve
performance for some tasks at the cost of not using potentially valuable information obtained from
initial exploration. Thus, optimally addressing non-stationary rewards could be a promising direction
for future work.

49

Algorithm E.1 MaxUCB-Burn-in

Require: α(exploration parameter), C (burn-in rounds) , T (time horizon), K(arms) ▷ Burn-in phase

1: for j ≤ C, for each arm i ≤ K do
2: Pull arm i
3: end for ▷ Initial phase
4: for each arm i ≤ K do
5: Pull arm i
6: set ni ← 1, observe reward ri,1
7: end for ▷ Main phase
8: for t = (CK + K + 1) to T do
9: for each arm i ≤ K do

10: Update policy Ui = max (ri,1, ..., ri,ni
) + (

α log(t)
ni

)2

11: end for
12: Select arm It = argmax

i≤K
Ui

13: nIt ← nIt + 1

14: Observe reward rIt,nIt

15: end for

0.0

0.5

1.0Maximum shift
of mean

Tasks-YaHPOGym[SMAC]

MaxUCB

MaxUCB-Burn-in(C=5)

MaxUCB-Burn-in(C=6)

MaxUCB-Burn-in(C=7)

MaxUCB-Burn-in(C=8)

Rising Bandit

SMAC

SMAC-no-init

Random Search

Oracle Arm

0.0

0.1

0.2

0.3

0.4

0.5

Figure E.6: Heat map shows normalized loss per task, sorted by the distribution shift.

0 100 200
Iteration

2

4

6

8

10

R
an

ki
ng

0 100 200
Iteration

0.1

N
or

m
al

iz
ed

lo
ss

MaxUCB

MaxUCB-Burn-in(C=5)

MaxUCB-Burn-in(C=6)

MaxUCB-Burn-in(C=7)

MaxUCB-Burn-in(C=8)

Rising Bandit

SMAC

SMAC-no-init

Random Search

Oracle Arm

Figure E.7: Average rank and normalized loss of algorithms on YaHPOGym benchmark, lower is
better.

50

E.4 Toy examples from the extreme bandit’s literature

In this section, we provide additional results on commonly used benchmark functions used in the
extreme bandit literature. Concretely, we use a similar setup to [Baudry et al., 2022] and report the
following four tasks:

1. K = 5 Pareto distributions with tail parameters λk = [2.1, 2.3, 1.3, 1.1, 1.9]. Results are
shown in Figure E.8.

2. K = 10 Exponential arms with a survival function Gk(x) = e−λkx with parameters
λk = [2.1, 2.4, 1.9, 1.3, 1.1, 2.9, 1.5, 2.2, 2.6, 1.4]. Results are shown in Figure E.9.

3. K = 20 Gaussian arms, with same mean µk = 1,∀k, and different variances σk =

[1.64, 2.29, 1.79, 2.67, 1.70, 1.36, 1.90, 2.19, 0.80, 0.12, 1.65, 1.19, 1.88, 0.89, 3.35, 1.5, 2.22, 3.03, 1.08, 0.48].
The dominant arm has a standard deviation of 3.35. Results are shown in Figure E.10.

4. (our toy example) K = 5 power distributions with domain parameter [3, 4, 5, 5, 4] and shape
parameter [1.01, 1.01, 1.01, 1.1, 1]. Results are shown in Figure E.11.

For each task, we run N = 1000 independent repetitions for six time horizons T ∈
{50, 100, 200, 500, 1000, 2000}. We show the CDF of the rewards for each arm, the number of
times the optimal arm was pulled, and the proxy empirical regret. Notably, the proxy empirical regret
is introduced by Baudry et al. [2022] to overcome the issue of high variance in the maximum values
of distributions.

100 101 102

Reward

0.0

0.2

0.4

0.6

0.8

1.0

S
uu

rv
iv

al
fu

nc
ti

on Arm 1

Arm 2

Arm 3

Arm 4

Arm 5

50 100 200 500 1000 2000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
A

rm
pu

lls
ra

te

50 100 200 500 1000 2000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

xy
E

m
pi

ri
ca

l
R

eg
re

t

MaxUCB

QoMax-ETC

QoMax-SDA

MaxMedian

ExtremeETC

ExtremeHunter

Threshold-Ascent

MaxSearch-SubGaussian

MaxSearch-Gaussian

Figure E.8: Experiment 1: (Top) Survival function of distribution of each arm (left) Number of pulls
of the optimal arm. (Right) Proxy Empirical Regret

51

10−2 10−1 100 101

Reward

0.0

0.2

0.4

0.6

0.8

1.0

S
uu

rv
iv

al
fu

nc
ti

on

Arm 1

Arm 2

Arm 3

Arm 4

Arm 5

Arm 6

Arm 7

Arm 8

Arm 9

Arm 10

50 100 200 500 1000 2000
Iteration

0.0

0.2

0.4

0.6

0.8

B
es

t
A

rm
pu

lls
ra

te

50 100 200 500 1000 2000
Iteration

0.0

0.2

0.4

0.6

P
ro

xy
E

m
pi

ri
ca

l
R

eg
re

t

MaxUCB

QoMax-ETC

QoMax-SDA

MaxMedian

ExtremeETC

ExtremeHunter

Threshold-Ascent

MaxSearch-SubGaussian

MaxSearch-Gaussian

Figure E.9: Experiment 2: (Top) Survival function of distribution of each arm (left) Number of pulls
of the optimal arm. (Right) Proxy Empirical Regret

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
Reward

0.0

0.2

0.4

0.6

0.8

1.0

S
uu

rv
iv

al
fu

nc
ti

on

Arm 11

Arm 12

Arm 13

Arm 14

Arm 15

Arm 16

Arm 17

Arm 18

Arm 19

Arm 20

50 100 200 500 1000 2000
Iteration

0.0

0.2

0.4

0.6

0.8

B
es

t
A

rm
pu

lls
ra

te

50 100 200 500 1000 2000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

xy
E

m
pi

ri
ca

l
R

eg
re

t

MaxUCB

QoMax-ETC

QoMax-SDA

MaxMedian

ExtremeETC

ExtremeHunter

Threshold-Ascent

MaxSearch-SubGaussian

MaxSearch-Gaussian

Figure E.10: Experiment 3: (Top) Survival function of distribution of some arms (left) Number of
pulls of the optimal arm. (Right) Proxy Empirical Regret

52

0.2 0.4 0.6 0.8 1.0
Reward

0.0

0.2

0.4

0.6

0.8

1.0

S
uu

rv
iv

al
fu

nc
ti

on Arm 1

Arm 2

Arm 3

Arm 4

Arm 5

50 100 200 500 1000 2000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
A

rm
pu

lls
ra

te

50 100 200 500 1000 2000
Iteration

0.00

0.01

0.02

0.03

P
ro

xy
E

m
pi

ri
ca

l
R

eg
re

t

MaxUCB

QoMax-ETC

QoMax-SDA

MaxMedian

ExtremeETC

ExtremeHunter

Threshold-Ascent

MaxSearch-SubGaussian

MaxSearch-Gaussian

Figure E.11: Experiment 4: (Top) Survival function of distribution of each arm (left) Number of pulls
of the optimal arm. (Right) Proxy Empirical Regret

E.5 Supernet selection in Few-Shot Neural Architecture Search

In one-shot NAS, a single supernet approximates all architectures. However, this estimation could
be inaccurate. To address this, few-shot NAS splits the supernet into smaller sub-supernets [Hu
et al., 2022, Ly-Manson et al., 2024]. To further improve performance, [Hu et al., 2022] introduced
supernet selection, which identifies the most promising sub-supernet and its optimal architecture
using techniques such as Successive Halving . We aim to identify the best-performing architecture
among several subspaces, each corresponding to a sub-supernet. This problem is analogous to the
MKB problems, where each arm represents a sub-supernet.

Dataset Preparation. We use data provided in [Ly-Manson et al., 2024] for three benchmark datasets:
CIFAR-10, CIFAR-100, and ImageNet16-120. Each dataset’s search space is split using 10 different
metrics. The splitting follows a binary tree structure with a depth of 3, where operations are divided
into two groups at each branch. This process results in 8 sub-supernets per metric. Consequently, for
each dataset, we have one full search space and 8 sub-search spaces.

Each combination of dataset and splitting metric is treated as a separate task, yielding a total of 30
tasks (3 datasets × 10 metrics), each with 8 arms. Following the setup of [Ly-Manson et al., 2024],
we randomly sample 600 architectures from both the full search space and each sub-search space.
This process is repeated 32 times using different random seeds to ensure variability and robustness in
the results.

Analyzing the reward distribution. Figure E.12 illustrates the empirical survival functions of the
rewards and sub-optimality gaps for the benchmark. As shown, the distribution shape is similar to that
of HPO tasks: both are bounded and left-skewed. However, the sub-optimality gap is considerably
smaller than HPO tasks, suggesting that identifying the optimal arm is more challenging and may
require additional iterations. In Figure E.13, we show values of L and U from Lemma 3.3 for this
benchmark.

Performance Analysis. Figure E.14 presents the average ranking and normalized loss of various
bandit algorithms in this benchmark. As shown, Successive Halving, Max-Median, and ER-UCB-S
perform well with a small time budget but fail to explore sufficiently to identify the optimal arm.
Rising Bandits, as a fixed-confidence best-arm identification method, struggles to find the optimal
arm. In contrast, MaxUCB outperforms all other baselines, demonstrating better performance when
searching the entire search space with a higher budget.

53

Supernet

0.00 0.25 0.50 0.75 1.00
Reward

0.0

0.5

1.0

S
ur

vi
va

l
fu

nc
ti

on

0.00 0.25 0.50 0.75 1.00
Reward

0.0

0.5

1.0

S
ur

vi
va

l
fu

nc
ti

on

2 3 4 5 6 7 8
Sub-optimal arm

0.00

0.05

0.10

0.15

∆
i

Optimal arm 2nd arm 3rd arm 4th arm 5th arm 6th arm 7th arm Worst arm

Figure E.12: (Left) The average empirical survival function of the reward (observed performances)
per arm ranked per dataset. We divided the reward sequence into five segments over the budget to
show the distribution change over time. Thin lines correspond to the survival function of different
segments, visualizing the change over time. (Middle) The average ECDF per dataset for the best and
worst arm with thin lines corresponding to individual datasets. (Right) The sub-optimality gap ∆i.

Supernet

0 1

100

101

G
(b

)

Optimal arm

0 1

2nd arm

0 1

3rd arm

0 1

4th arm

0 1

5th arm

0 1

6th arm

0 1

7th arm

0 1

Worst arm

0.1 1 10
Values for L

0.0

2.5

5.0

7.5

10.0

Fr
eq

ue
nc

y

0.1 1 10
Values for L

0.1 1 10
Values for L

0.1 1 10
Values for L

0.1 1 10
Values for L

0.1 1 10
Values for L

0.1 1 10
Values for L

0.1 1 10
Values for L

0.01 1 100
Values for U

0

2

4

6

8

Fr
eq

ue
nc

y

0.01 1 100
Values for U

0.01 1 100
Values for U

0.01 1 100
Values for U

0.01 1 100
Values for U

0.01 1 100
Values for U

0.01 1 100
Values for U

0.01 1 100
Values for U

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Average Gi(b) Gi(b) (per dataset) Li = min(Gi(b)) Ui = max(Gi(b))

Figure E.13: Arms are ordered by sub-optimality gap. (Top) Thin orange lines represent G(b−ϵ)
ϵ ,

while the blue and red points correspond to L and U for our empirical reward distributions (see
Lemma 3.3 for details). (Middle) Histogram of values for L. (Bottom) Histogram of values for U .

54

0 200 400 600
Iteration

2

4

6

8

R
an

ki
ng

0 200 400 600
Iteration

0.1

N
or

m
al

iz
ed

lo
ss

MaxUCB

Quantile Bayes UCB

ER-UCB-S

Rising Bandit

QoMax-SDA

Max-Median

UCB

Successive Halving

Random Search
(Full Search Space)

Oracle Arm

Figure E.14: Average rank and normalized loss of algorithms on Supernet Selection benchmark,
lower is better.

55

	Introduction
	Solving CASH using Bandits
	Data Analysis of HPO Tasks
	MaxUCB
	Performance on AutoML tasks
	Conclusions, Discussions and Future Work
	Preliminiaries
	Proofs
	Proof of Lemma 3.3
	Proof of Proposition 4.1
	Proof of Theorem 4.2
	Extension of Proof of Theorem 4.2

	More Details on Reward Distribution
	Reward distribution analysis
	More Details on Lemma 3.3
	Empirical Validation of Lemma 3.3

	More Details on the Experiments
	Metric calculation
	Experimental Setup
	Baselines and their hyperparameters
	More Results on the Sensitivity Analysis of Hyperparameter Lg
	More Results for the Empirical Evaluation
	More Baselines for the Empirical Evaluation

	More Details on the Empirical Behaviour of MaxUCB
	The number of times each arm is pulled
	From theory to practice
	Addressing Non-stationary Rewards
	Toy examples from the extreme bandit's literature
	Supernet selection in Few-Shot Neural Architecture Search

