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Abstract

Recurrent neural networks are a standard building block in numerous machine
learning domains, from natural language processing to time-series classification.
While their application has grown ubiquitous, understanding of their inner workings
is still lacking. In practice, the complex decision-making in these models is seen as
a black-box, creating a tension between accuracy and interpretability. Moreover,
the ability to understand the reasoning process of a model is important in order to
debug it and, even more so, to build trust in its decisions. Although considerable
research effort has been guided towards explaining black-box models in recent
years, recurrent models have received relatively little attention. Any method that
aims to explain decisions from a sequence of instances should assess, not only
feature importance, but also event importance, an ability that is missing from state-
of-the-art explainers. In this work, we contribute to filling these gaps by presenting
TimeSHAP, a model-agnostic recurrent explainer that leverages KernelSHAP’s
sound theoretical footing and strong empirical results. As the input sequence
may be arbitrarily long, we further propose a pruning method that is shown to
dramatically improve its efficiency in practice.

1 Introduction

Recurrent neural networks (RNN) models, such as LSTMs [1] and GRUs [2], are state-of-the-art
for numerous sequential decision tasks, from speech recognition [3] to language modelling [4] and
time-series classification [5]. However, while the application of RNNs has grown ubiquitous and its
performance has steadily increased, understanding of its inner workings is still lacking. In practice,
the complex decision-making processes in these models is seen as a black-box, creating a tension
between accuracy and interpretability.

Understanding the decision-making processes of complex models may be crucial in order to detect
and correct flawed reasonings, such as those stemming from spurious correlations in the training
data. Models that rely on such spurious correlations, known as “Clever Hans” models1 [7], may have

1Named after an early 20th century horse that was thought to be able to do arithmetic, but was later found to
be picking up on behavioral cues from its owner when pointing to the correct answer [6].
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strong test results but generalize poorly when deployed in the real-world. By explaining the reasoning
in a given model, we simultaneously gather insight into how it may be improved and may advance
human understanding of the underlying task, as previously unknown patterns are uncovered by the
explanation.

Additionally, understanding the model’s reasoning may be a requirement in certain real-world
applications, as exemplified in GDPR’s “right to explanation” [8] (although its reach is contested [9,
10]). Just as humans are biased and sometimes discriminatory towards certain groups of the population,
so too can deep learning (DL) models be [11, 12, 13]. Regulators want to be able to peek under the
“model’s hood” in order to audit for potential discriminatory reasoning. Although humans may be
less accurate, and certainly less scalable than DL models, they can offer some form of after-the-fact
reasoning supporting their decisions. For all the benefits and efficiencies DL has brought about, in
order for the community to trust these models, it must be possible to explain their reasoning, at least
to a level that humans can understand.

In recent years, numerous methods have been put forth for explaining DL models [14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25]. However, RNNs pose a distinct challenge, as their predictions are
not only a function of the immediate input sample, but also of the previous input samples and the
context (hidden state) drawn thereafter. Blindly applying state-of-the-art DL explainers to RNNs
often disregards the importance of the hidden state, distributing all feature importance solely through
the features of the current input (as illustrated by Figure 1).

Recently, in landmark work, Lundberg and Lee [25] unified a large number of explanation methods
into a single family of “additive feature attribution methods”. The authors further proved that there is
a unique solution to this task that fulfills three crucial properties of explanations, and dubbed this
implementation KernelSHAP. However, no work yet extended this method to explaining timestep-wise
RNN predictions.

With this in mind, we propose TimeSHAP, a model-agnostic recurrent explainer suited for tabular
sequence learning that leverages KernelSHAP’s strong theoretical foundations and empirical results.

Figure 1: Comparison between SHAP-based methods from the literature (on the left) and TimeSHAP
(on the right) when used to explain a recurrent model’s predictions.

TimeSHAP extends the framework put forth by Lundberg and Lee [25] to the recurrent model setting.
By doing so, we enable explanation, not only of which features are most important to a recurrent
model, but also which previous events had the largest impact on a current prediction. As sequences
are arbitrarily long, we further propose a pruning method that increases real-world accuracy and
efficiency considerably. We analyze local and global explanations of an RNN using our method, and
find multiple instances in which these are crucial for debugging the underlying predictor.

The contributions of TimeSHAP can be summarized as follows:

• explanations of both feature- and event-wise importance in sequence predictions;

• a new perturbation function suited for the recurrent setting;

• a coalition pruning algorithm that dramatically increases the method’s efficiency in practice;

• an empirical analysis of our method on a real world banking dataset.
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2 Related Work

Research on machine learning model explainers can generally be subdivided into two categories:
model-agnostic, and model-specific explainers.

Model specific explainers exploit characteristics of the model’s inner workings or architecture to
obtain more accurate explanations of its reasoning [26]. The task of explaining RNNs is often tackled
by using attention mechanisms [27, 28, 29, 30]. However, whether attention can in fact explain a
model’s behavior is debatable and a known source of controversy in the ML community [31, 32, 33].

DL models, in which RNNs are included, can also be explained using gradient-based methods. These
explainers attribute a weight wi to each feature, representing the importance, or saliency, of the i-th
feature, based on the partial derivatives of the prediction function f(x) with respect to the input
xi: wi =

∣∣∣∂f(x)∂xi

∣∣∣ [14, 15, 16]. Another family of DL explainers is that of layer-wise relevance
propagation. In the network’s backward pass, starting from the output neuron, the relevance (which
initially corresponds to the predicted score) is propagated iteratively from higher layers to lower
layers, according to some rules [18, 19, 20, 21]. However, when explaining sequential inputs, DL-
specific methods focus on features instead of events, leaving event relevance as a largely unexplored
research direction. Regarding RNN-specific explainers [22, 23, 24], these are often inflexible with
regards to the model’s architecture. For instance, if the RNN is a building block of a larger DL model,
preceded/succeeded by other types of layers, it is not the direct input to the RNN we want to explain
but the input to the model. Hence, a model-agnostic explainer may be better suited to explain these
architectures, as real-world models are seldom built only with recurrent layers.

Model-agnostic explainers are substantially more flexible, thus often preferred in real-world appli-
cations. These explainers generally rely on post-hoc access to a model’s predictions under various
settings, such as perturbations of its input [34]. A perturbation hx of the input vector x ∈ Xm is
the result of converting all values of a coalition of features z ∈ {0, 1}m to the original input space
Xm, such that zi = 1 means that a feature i takes its original value xi, and zi = 0 means that a
feature i takes some uninformative background value bi representing its removal. Hence, the input
perturbation function hx is given as follows:

hx(z) = x� z + b� (1− z) (1)

where � is the component-wise product. The vector b ∈ Xm represents an uninformative input
sample, which is often taken to be the zero vector [35], b = 0, or to be composed of the average
feature values in the input dataset [25], bi = xi.

Lundberg and Lee [25] unified this and other explainers (both model-agnostic and model-specific)
into a single family of “additive feature attribution methods”. Moreover, the authors prove that there
is a single solution to this family of methods that fulfills both local accuracy (the explanation model
should match the complex model locally), missingness (features that are set to be missing should
have no impact on the predictions), and consistency (if a feature’s contribution increases then its
attributed importance should not decrease).

Those authors put forth KernelSHAP, a model-agnostic explainer that fulfills these three properties.
KernelSHAP approximates the local behavior of a complex model f with a linear model of feature
importance g, such that g(z) ≈ f(hx(z)). The task of learning the explanation model g is cast as a
cooperative game where a reward (f(x), the score of the original model) must be distributed fairly
among the players (i ∈ {1, . . . ,m}, the features). The optimal reward distribution is given by the
Shapley values formulation [36]. However, obtaining the true Shapley values for all features would
imply generating all possible coalitions of the input, z ∈ {0, 1}m, which scales exponentially with m
the number of features in the model,O(2m). As this task is computationally intractable, KernelSHAP
approximates the true values by randomly sampling feature coalitions [37]. The authors further show
that a single coalition weighing kernel, πx(z), and a single loss metric, L(f, g, πx), lead to optimal
approximations of the Shapley values:

πx(z) =
(m− 1)(

m
|z|
)
|z| (m− |z|)

(2)
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L(f, g, πx) =
∑

z∈{0,1}m
[f(hx(z))− g(z)]2 · πx(z) (3)

where |z| is the number of non-zero elements of z, and L is the squared loss used for learning g.

Despite being widely adopted by the ML community, KernelSHAP cannot be applied out-of-the-box
to recurrent models. Doing so disregards an important part of the model: the hidden state, which
carries information on the previous predictions. Hence, the current KernelSHAP framework cannot
be applied to recurrent models due to the following shortcomings: (1) assuming independence
between subsequent model predictions, and (2) disregarding the importance of the hidden state h
as a feature. There have been few approaches to extend this method to recurrent settings, but with
debatable implementations. Ho et al. [38] use KernelSHAP to explain RNN predictions on an ICU
mortality dataset [39]. However, their implementation perturbs only the time-step t being explained
(shortcoming (1)), and distributes the model’s score f(x(t), h(t−1)) solely through the input features
x(t) (shortcoming (2)).

3 Methodology

Firstly, our goal is to enable explaining sequence models while preserving three desirable properties
of importance attribution stemming from the Shapley values: local accuracy, missingness, and
consistency [40]. Secondly, as sequence models handle one extra dimension (spanning the sequence
of input events), we aim to explain both feature importance and event importance. Finally, our method
should be resource-efficient, as calculating the true Shapley values is trivial but computationally
intractable. Hence, we put forth TimeSHAP, a model-agnostic recurrent explainer with sound
theoretical footing and strong empirical results.

3.1 RNN Preliminaries

Although our method can be used to explain any sequence model, throughout this paper we will
use the example of a vanilla RNN, as it is both simple and widely used. Other types of recurrent
models that could be used include the long short-term memory (LSTM) [1], the gated recurrent
unit (GRU) [2], or conditional random field (CRF) [41]. The predictions of a sequence model at a
given time-step t are a function, not only of the current input x(t), but also of its previous inputs
x(t−1), x(t−2), . . . , x(0). For RNN, this recurrence is achieved indirectly through a hidden state h
that aims to encode all relevant information from previous time-steps. As such, an RNN’s prediction,
ŷ(t) = f(x(t), h(t−1)), is given as follows [42]:

a(t) = b+Wh(t−1) + Ux(t), (4)

h(t) = σ(a(t)), (5)

o(t) = c+ V h(t), (6)

ŷ(t) = softmax(o(t)), (7)

where b and c are learnable bias vectors, U, V and W are learnable weight matrices, and σ is a
nonlinearity (often chosen to be the hyperbolic tangent). Moreover, a(t) is known as the activation,
h(t) as the hidden state, o(t) is the output, and ŷ is a vector of probabilities over the output. If the
RNN is the last layer of the model, then ŷ(t) may be used directly as the prediction. Otherwise, o(t)
is passed to the following layers, and the prediction is given by the last layer in the forward-pass.

3.2 TimeSHAP

TimeSHAP builds upon KernelSHAP [25], a state-of-the-art model agnostic explainer, and extends
it to work on sequential data. Our method produces both feature-wise and event-wise explanations.
Hence, TimeSHAP attributes an importance value to each feature/event in the input, such that it
reflects the degree to which that feature/event affected the final prediction. In order to explain a
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sequential input, X ∈ Rd×l, with l events and d features per event, our method fits a linear explainer
g that approximates the local behavior of a complex explainer f by minimizing the loss given by
Equation 3. As events are simply features in a temporal dimension, and the algorithm for explaining
features x ∈ R1×l and events x ∈ Rd×1 is conceptually equal, we will henceforth use the word
feature to mean both rows and columns of X ∈ Rd×l. Thus, the formula for g is:

f(hX(z)) ≈ g(z) = w0 +

m∑
i=1

wi · zi, (8)

where the bias term w0 = f(hX(0)) corresponds to the model’s output with all features toggled off
(dubbed base score), the weights wi, i ∈ {1, . . . ,m}, correspond to the importance of each feature,
and either m = d or m = l depending on which dimension is being explained. The perturbation
function hX : {0, 1}m 7→ Rd×l maps a coalition z ∈ {0, 1}m to the original input space Rd×l. Note
that the sum of all feature importances corresponds to the difference between the model’s score
f(X) = f(hX(1)) and the base score f(hX(0)).

Input perturbations are generated differently depending on which dimension is being explained.
The perturbation function described in Equation 1 is suited to explain a single dimension of features.
We extend this function to the recurrent (and bi-dimensional) setting as follows. Given a matrix
B ∈ Rd×l representing an uninformative input (the absence of discriminative features or events),
a perturbation h′X along the features axis (the rows) of the input matrix X ∈ Rd×l is the result of
mapping a coalition vector z ∈ {0, 1}d to the original input space Rd×l, such that zi = 1 means that
row i takes its original value Xi,:, and zi = 0 means that row i takes the background uninformative
value Bi,: . Thus, when zi = 0 the feature i is essentially toggled off for all events of the sequence.
This is formalized as follows:

h′X(z) = DzX + (I −Dz)B, Dz = diag(z). (9)

On the other hand, a perturbation h∗X along the events axis (the columns) of the input matrix
X ∈ Rd×l is the result of mapping a coalition vector z ∈ {0, 1}l to the original input space Rd×l,
such that zj = 1 means that column j takes its original value X:,j , and zj = 0 means that column j
takes the value B:,j . Thus, when zj = 0 all features of event j are toggled off. This is formalized as
follows:

h∗X(z) = XDz +B(I −Dz), Dz = diag(z). (10)

Hence, when explaining features hX = h′X , and when explaining events hX = h∗X . This change in
the perturbation function is the sole implementation difference between explaining events and features.
Moreover, the perturbation of X according to a null-vector coalition z = 0 is the same regardless of
which dimension is being perturbed, h′X(0) = h∗X(0), and equally for z = 1, h′X(1) = h∗X(1).

In our setting, we define the background matrix B ∈ Rl×d to be composed of the average feature
values in the training dataset:

B =


x1 . . . x1
x2 . . . x2
...

. . .
...

xl . . . xl

 (11)

3.2.1 Pruning

One glaring issue with TimeSHAP is that the number of event (temporal) coalitions scales exponen-
tially with the length of the observed sequence, just as in KernelSHAP number of feature coalitions
scales exponentially with the number of input features. Moreover, in a recurrent setting, the in-
put sequence can be arbitrarily long, making this a serious issue that we address by proposing a
temporal-coalition pruning algorithm.
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It is common for real-world events to be preceded by a long history of past events (e.g., the whole
transaction history of a client), only a few of which are relevant to the current prediction. Additionally,
recurrent models are known to seldom encode information from events in the distant past [43]. Based
on this insight, we group together older unimportant events as a single feature, thereby reducing the
number of coalitions by a factor of 2i−1, where i is the number of grouped events. Essentially, we
lose the granularity between the importance of these grouped events, but their importance (albeit
small) is not disregarded.

The pruning method, defined in Algorithm 1, consists in splitting the input sequence X ∈ Rd×l
into two sub-sequences X:,1:i, X:,i+1:l, i ∈ {1, . . . , l − 1}, (X:,l being the most recent event) and
computing the true Shapley values for each. Computing these Shapley values amounts to 22 = 4 total
coalitions (for each i). Our objective is to find the largest i such that the importance value for X:,1:i

falls below a given importance threshold η.

Algorithm 1 Temporal Coalition Pruning
Input: input sequence X ,

model to explain f ,
tolerance η,

1: for i ∈ {l − 1, l − 2, . . . , 1} do . Starting from the end of the sequence
2: Z ← {[0, 0], [0, 1], [1, 0], [1, 1]} . Full set of coalitions to use for each i
3: w1, w2 ← KernelSHAP( . Call adapted KernelSHAP

model=f ,
input=[X:,1:i, X:,i+1:l], . X given as composed of only two features
perturbation=h∗X , . Parameterized by our temporal perturbation function
coalitions=Z) . Employing only 22 coalitions (SHAP sees only 2 features)

4: if |w1| < η then . w1 is the aggregate importance of all events up to i
5: return i . Index from which it is safe to lump event importances
6: return 0 . No sequential group of events fits the pruning criteria

The computational cost of this pruning algorithm scales only linearly, O(l), with the number of
events. Consequently, when employing pruning, the run-time of TimeSHAP when explaining the
events’ axis is reduced from O(2l) to O(2l−i). We will empirically show in Section 4.1 that events
in the distant past seldom affect the model’s score, leading to l− i� l. Taking the best-case scenario
of a recurrent model whose run-time scales linearly with l, such as a recurrent neural model (e.g.,
RNN, LSTM, GRU), TimeSHAP’s run-time with temporal-coalition pruning totals O(l · 2l−i). On the
other hand, when explaining the features’ axis, TimeSHAP’s computational complexity is unaffected
by the pruning algorithm, totalling O(l · 2d).

3.2.2 Algorithm

TimeSHAP’s objective is to answer the following questions: “Which events and features contributed
the most to the current prediction?” and “What was their influence on the model’s score?” Hence,
when explaining the features axis, TimeSHAP fits a linear explainer g that approximates the local
behavior of a complex explainer f by minimizing the loss given in Equation 3, parameterized by
our perturbation function h′X . On the other hand, when explaining the events’ axis, TimeSHAP
first (optionally) prunes the input sequence’s coalitions (as per Algorithm 1), and then fits the linear
explainer, parameterized by our perturbation function h∗X . Note that, as the number of coalitions
scales exponentially with the sequence’s length on the axis that is being explained (reduced by the
pruning factor), it may not be tractable to exhaustively evaluate all coalitions. In this case, similarly
to KernelSHAP, we randomly sample coalitions from the pool of coalitions up to a predetermined
number of draws.

4 Experiments

To validate our method, we trained a recurrent deep learning model on a large-scale real-world banking
dataset. The model is composed of an embedding layer for categorical variables, followed by a GRU
layer [2], and subsequently followed by a feed forward layer The task consists in predicting account
takeover fraud, a form of identity theft where a fraudster gains access to a victim’s bank account,
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Table 1: Temporal-coalition pruning analysis (Algorithm 1). Sequence length indicates the number
of events to be explained (events that were aggregated after pruning count as 1). Relative standard
deviation (RSD) of Shapley values computed over 10 runs of TimeSHAP.

Original η = .005 η = .0075 η = .01 η = .025 η = .05

Average seq. length 182.1 69.0 58.4 50.0 32.9 19.7
Median seq. length 138.5 33.0 27.0 23.0 14.0 9.0
Max seq. length 2187 2171 1376 1132 1130 879
Percentile at log2(32K) 10.0 27.3 32.7 36.5 58.3 78.8
TimeSHAP RSD, σµ 1.23 0.70 0.63 0.54 0.23 0.15

enabling them to place unauthorized transactions. The data is tabular, consisting of approximately
20M events, including clients’ transactions, logins, or enrollments2, as well as corresponding geo-
location and demographics data.

We run TimeSHAP on 1K randomly chosen sequences that were predicted positive by the model. We
set the maximum number of coalition samples to n_samples = 32K. Regarding pruning, we employ
our proposed temporal-coalition pruning algorithm, as it promotes exponentially faster execution
at no cost to the explanation’s reliability (only with decreased granularity on unimportant older
events). For sequences with a number of events/features higher than log2(n_samples), pruning does
not impact performance directly, improving instead the accuracy of results, as longer sequences
would need a higher number of coalition samples to accurately compute Shapley values. We can
choose a pruning tolerance value that enables exhaustively computing the Shapley values for most
input sequences within the allocated n_samples budget.

4.1 Pruning method results

Table 1 details average, median, and maximum number of events for unpruned sequences, and for
sequences pruned with varying tolerance levels for Algorithm 1. The percentage of sequences whose
length, |X|, is under log2(n_samples) ≈ 15 is shown in the fourth row. This represents the percentage
of input sequences whose Shapley values can be exactly computed by exhaustively evaluating all
2|X| coalitions. The Shapley values for all sequences longer than log2(n_samples) are estimated
by randomly sampling coalitions. We note that, for the original sequences, we can only compute
exact Shapley values for 10% of the samples. For the median original sequence, with a total number
of coalitions on the order of 2|X| = 2139, 32K sampled coalitions represents 10−36% of the total
universe of coalitions. Hence, pruning is not only resource-efficient but also a necessary step in order
to achieve accurate results.

When using η = 0.01, we can compute exact Shapley values for 36.5% of the input samples. On
the other hand, when using η = 0.025, we can compute exact values for 58.3% of the input samples.
Hence, we choose η = 0.025 as our pruning tolerance, providing a balance between explanations’
consistency, run-time, and granularity.

The last row of Table 1 shows the relative standard deviation3 [44] (RSD) of the Shapley values
obtained over 10 runs of TimeSHAP for different pruning levels. As expected, lower pruning
tolerances (lower η) lead to finer-grained event-level explanations (higher number of explained events)
but with lower reliability (higher RSD values). In fact, there is a strict negative relation between
pruning tolerance and RSD values. Running TimeSHAP on the original sequences (equivalent to
η = 0) leads to very high variance (RSD 1.23), while the highest pruning tolerance η = 0.05 leads to
relatively low variance (RSD 0.15). Once again, η = 0.025 (RSD 0.23) achieves a well-balanced
combination of metrics.

4.2 Local explanations

We analyze TimeSHAP’s local explanations on two predicted-positive sequences, hence labeled A
and B. Sequence A has a model score of f(A) = 0.57, and a total length of 47 events. Sequence B

2Examples of an enrollment event include changing the password or logging in from a new device.
3A standardized measure of dispersion, computed as the ratio of the standard deviation to the mean, σ

µ
.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Figures (a), (b), and (c) show TimeSHAP results for Sequence A. Figures (d), (e), and (f)
show TimeSHAP results for Sequence B. Figures (a) and (d) show the importance of older (X:,:t−1)
vs current events (X:,t:) calculated using Algorithm 1 also displaying also Shaps’ local accuracy
property. Event-level importance shown in Figures (b) and (e). Feature-level importance shown in
Figures (c) and (f).

has a model score of f(B) = 0.84, and a total length of 286 events. As a convention, we dub the
current event’s index (the most recent) as t = 0, and use negative indices for older events (the event
at index t = −1 immediately precedes the event at index t = 0, and so on).

Figures 2a and 2d show the Shapley values (importance) respectively for Sequences A and B, when
split into two disjoint sub-sequences at a given index t. This corresponds to the application of the for
loop in Algorithm 1, continuing even after the pruning condition has been fulfilled. Figure 2d only
displays the first 100 indexes as displaying all 286 events would clutter the Figure. As expected, the
aggregate importance of older events (from the beginning of the sequence up to index t) suffers a
steep decrease as its distance to the current event increases. This trend corroborates our hypothesis
and supports our coalition pruning algorithm. When considering the coalition pruning tolerance
η = 0.025, Sequence A is pruned to 11 events, grouping the 36 older events together. Similarly,
sequence B is pruned to 9 events, grouping the last 277 events together.

Sequence A’s event-wise explanations are shown in Figure 2b, and its feature-wise explanations in
Figure 2c. We conclude that there are two events crucial for the model’s prediction: the transaction
being explained (t = 0), with a Shapley value of 0.36, and another transaction, 4 events before
(t = −4), with a Shapley value of 0.17. Between the two relevant transactions, there are three logins
with little to no importance (events −3 ≤ t ≤ −1). Prior (in temporal order) to event t = −4,
there are 5 logins and 1 transaction with reduced importance, which were nonetheless left unpruned
by Algorithm 1. Regarding feature importances, we observe that the most relevant features are, in
decreasing order of importance, the transaction’s amount, IP feature D, and the clients’ age. When
inspecting the raw feature data, we observe that the amount transferred at both transactions t = 0
and t = −4 is unusually high, a known account takeover indicator. This is in accordance with the
simultaneous high event importance for t = 0 and t = −4, together with the high feature importance
for the transaction amount. Moreover, we observe that the client’s age is relatively high, another
well-known fraud indicator, as elderly clients are often more susceptible to being victims of fraud [45].
When analysing IP feature D, although this feature does not show any strange behavior, it assumes a
value that is frequent throughout the dataset. Upon further inspection we conclude that the IP belongs
to a cloud hosting provider, which domain experts confirm to be suspicious behavior.
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Sequence B’s event-wise explanations are shown in Figure 2e, and its feature-wise explanations
in Figure 2f. Regarding event importance, we conclude that the most relevant events are events at
indices −4 and −1 with their respective Shapley values of 0.48 and 0.24 followed by events −2
(0.089) and −3 (0.049). Interestingly, for this sequence, the most relevant event is not the current
input (t = 0), with near null contribution to the score (0.001). The event types for the sequence
of events from t = −4 to t = −2 are enrollment-login-transaction, a well-known pattern that is
repeated on numerous stolen accounts. This sequence of events encodes a change of account settings,
e.g.: a password change (enrollment), followed by a login into the captured account, and subsequently
followed by one or more fraudulent transactions. Interestingly, events t = −1 and t = −2 are
transactions that succeed the fraudulent enrollment and login, but precede the current transaction
(t = 0). The information up to t = −1 is already sufficient for the model to correctly identify the
account as compromised, corroborated by the low contribution of the transaction at t = 0.

Regarding feature importances, the most relevant features are related to the transaction type, event
type, the clients’ age, and the location. The feature transaction type indicates a finer grained event
taxonomy for when event type = “transaction”. When inspecting the raw feature data, we observe
that the client is in the elderly age range, which, as previously mentioned, may indicate a more
susceptible demographic. When analysing the location features Location feature A and Location
feature D, we observe a discrepancy between the location of the enrollment, login and transactions
from the account’s history. This discrepancy in physical location is highly suspicious and indicates
that there was an enrollment on the account from a previously unused location.

4.3 Global explanations

Supplying a data scientist with global explanations can enable an overview of the model’s decision
process, revealing which features, or events in the case of TimeSHAP, are relevant to the model and
which ones are not. This provides an insight into the model decision process guiding a data scientist
analysis of the model. To obtain these global explanations, TimeSHAP is used to explainN sequences
and drawing conclusions from aggregations and visualizations of the N local explanations. To obtain
global explanations presented in this work, 1K randomly sampled positive-predicted sequences were
explained using TimeSHAP and aggregations on both the event-wise and feature-wise

By analysing the global event-wise explanations, we conclude that the latest event (t = 0) has, on
average, the highest event importance throughout each sequence, with an average Shapley value
of 0.28. At the same time, we observe that events between indices −1 and −5 are often of high
importance as well, with average contributions ranging from 0.03 to 0.12.

From analyzing global feature-wise explanations, we conclude that the most relevant features for this
model, having a predominately positive contribution to the score (i.e., serving as fraud indicators),
are related to the transaction type (average contribution 0.28), the clients’ age (0.092), the event
type (0.09), and related to location and IP (0.08). These features are in accordance with our domain
knowledge of account takeover, where the event and transaction type together with the location and
IP features encode account behaviors, and the age of the client can, in most cases, indicate a possibly
vulnerable accounts.

5 Conclusion

While considerable effort has been guided towards explaining deep learning models, recurrent
models have received comparatively little attention. With this in mind, we presented TimeSHAP,
a model-agnostic recurrent explainer that leverages KernelSHAP’s sound theoretical footing and
strong empirical results. TimeSHAP carries three main contributions: (1) a new perturbation function
suited for the recurrent setting, (2) explanations of both feature- and event-wise importance, and (3) a
sequence pruning method that dramatically increases the method’s efficiency in practice.

TimeSHAP enables data scientists to see which features were most important for a model’s prediction,
but also which past events impact the current prediction the most. We apply our method on a large-
scale real-world dataset on account takeover fraud. We notice potentially discriminatory reasoning
based on the client’s age, as it is shown to increase the model’s fraud score on several occasions.
Overall, we find multiple instances whose explanations are crucial for debugging the underlying
predictor.
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