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Abstract. During childbirth, real-time assessment of fetal head posi-
tion and progression is crucial for ensuring the safety of both mother and
infant. Detecting key anatomical landmarks in intrapartum ultrasound
images and calculating the Angle of progression (AoP) have become criti-
cal techniques in the next-generation childbirth monitoring protocol pro-
posed by the World Health Organization (WHO). However, traditional
manual analysis is time-consuming and prone to subjective bias, high-
lighting the urgent need for automated methods to achieve standardized
and precise childbirth assessment. This paper presents a key point de-
tection approach combining self-supervised pre-training with a U-Net
architecture: first, the encoder is pre-trained using large-scale unlabeled
images through self-supervision to uncover latent structural information;
subsequently, this pre-trained encoder is transferred to the supervised
learning stage to achieve precise localization of three key points (PS1,
PS2, FH1). Our method achieved eighth place in the Intrapartum Ultra-
sound Grand Challenge 2025, demonstrating its effectiveness and gen-
eralization capability in the task of key point detection in intrapartum
ultrasound. This work provides a practical and feasible pathway toward
automated and scalable childbirth monitoring, with significant implica-
tions for global maternal and infant health.
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1 Introduction

The dynamic nature of labor necessitates continuous monitoring of maternal
and fetal health status in clinical practice. To standardize intrapartum moni-
toring and promote woman-centered childbirth experiences, the World Health
Organization (WHO) [10]introduced the Labour Care Guide (LCG) in 2020,
emphasizing the need for standardized measurement of key delivery parame-
ters. The degree of fetal descent and rotation during delivery serves as crucial
indicators for assessing labor progress. The Angle of Progression (AoP), as a
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core parameter reflecting this process, is increasingly becoming a critical basis
for clinical decisions regarding intervention timing and methods.AoP calcula-
tion relies on accurate identification of three key anatomical landmarks in intra-
partum ultrasound images: the two most superior points of the pubic symphysis
(PS1 and PS2) and the tangent point contacting the fetal head (FH1). However,
current clinical practice predominantly depends on experienced sonographers
for manual annotation of these landmarks, which is not only time-consuming
and subjective but also susceptible to intra-/inter-observer variability, conse-
quently compromising diagnostic consistency and reproducibility[3]. Therefore,
developing an efficient, accurate, and automated landmark detection method is
of significant importance for advancing intelligent labor assessment.In medical
image processing, deep learning technologies—particularly convolutional neu-
ral network (CNN)-based models—have been widely applied to tasks such as
image segmentation[l], object detection, and keypoint localization. Fully con-
volutional architectures like U-Net have demonstrated exceptional performance
in medical image segmentation[l1]. Nevertheless, acquiring annotated data re-
mains challenging in practical applications, especially for high-quality medical
imaging data, where annotation expertise and cost constraints hinder further
development of supervised learning.

Self-Supervised Learning (SSL) has emerged as a vital approach to address
the shortage of medical imaging data by learning useful image representations
through designed pretext tasks without requiring human-generated labels. In the
Intrapartum Ultrasound Grand Challenge (IUGC) 2025, the organizers provided
a well-structured and comprehensive dataset comprising 300 labeled cases|2],31,421
unlabeled cases, and 2,045 reference standard plane images. The task required
automatic localization of three key landmarks and precise calculation of AoP
based on transperineal ultrasound images. To encourage exploration of model
generalization capabilities, the use of additional pre-trained models was per-
mitted. Two core evaluation metrics were adopted to assess algorithm perfor-
mance: Mean Radial Error (MRE) for evaluating landmark localization accu-
racy and Absolute Parameter Difference (APD) for measuring AoP calculation
accuracy.To address these challenges, this study designed a keypoint detection
model integrating a self-supervised encoder with a U-Net architecture|[7]. Specif-
ically, extensive unlabeled images were utilized for self-supervised pre-training
to enhance the encoder’s perception of structural features. Subsequently, fine
tuning was performed on labeled images to train the network to generate precise
heatmaps for locating the three key points. The maximum activation positions in
the heatmaps were accurately mapped to original image coordinates through nor-
malization and interpolation, enabling automated AoP calculation.This method
demonstrated outstanding performance on the IUGC challenge test set, achiev-
ing ninth place among global participants, validating its stability and adapt-
ability on real clinical images. These results not only showcase the application
potential of self-supervised strategies in medical image keypoint detection tasks
but also establish a technical foundation for promoting the clinical translation
of intelligent obstetric ultrasound analysis tools.
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2 Method

2.1 Method Design

The adopted network model is based on the classic U-Net architecture[l1],
comprising symmetrical encoder and decoder modules. The encoder consists of
four convolutional blocks, each containing two consecutive convolutional layers
equipped with batch normalization and ReLLU activation functions, all using 3x3
convolutional kernels[(]. The spatial dimensions of the feature maps are progres-
sively reduced through max-pooling layers while increasing the number of feature
channels, enabling multi-scale feature extraction[5]. A bottleneck layer is incor-
porated at the deepest part of the network to further extract high-level semantic
information.The decoder section employs transposed convolution (ConvTrans-
pose2d) for upsampling, combined with feature maps from the corresponding
encoder layers to achieve feature fusion and spatial resolution recovery. The fi-
nal output layer uses a 1x1 convolution to map to the number of heatmap
channels corresponding to the keypoints, with outputs normalized through a
Sigmoid activation function[13].The model accepts three-channel color images
as input and generates two-dimensional heatmaps for each keypoint as output,
with the heatmap size fixed at 64 x64. This network design maintains consistency
with the self-supervised pre-trained encoder architecture to facilitate loading of
pre-trained weights, thereby accelerating training and enhancing model perfor-
mance. The model supports loading pre-trained encoder weights, importing only
layer parameters with matching key names and compatible shapes to ensure pa-
rameter compatibility and initialization quality.

2.2 Model architecture

A MoCo v2 framework was adopted to perform contrastive learning on large-scale
unlabeled fetal ultrasound sequences. The encoder consisted of the customized
U-Net encoder followed by a two-layer fully connected projection head. Input im-
ages underwent diverse augmentations, including random cropping and scaling,
color jitter, grayscale conversion, Gaussian blur, and horizontal flipping. Positive
pairs were generated from different augmented views of the same image, while
negative samples were maintained in a feature queue updated by a momentum
encoder. Training used a cross-entropy loss with the AdamW optimizer (learning
rate = le-3, weight decay = le-3), a batch size of 64, and 200 epochs.
High-quality “gold standard” sequences|4] were identified by computing cosine
similarity between candidate frames and a reference library using a ResNet50
feature extractor[9], with a threshold of 0.99. These sequences were then used to
construct temporally adjacent frame pairs for further contrastive training under
the MoCo v2 framework. Both query and key encoders were initialized from
Stage 1, with the key encoder updated by momentum. A fixed-length negative
sample queue of 16,384 was maintained. Training again used cross-entropy loss
with AdamW (learning rate = le-4, weight decay = le-4, batch size = 64),
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along with a ReduceLROnPlateau scheduler. This process produced the fully
fine-tuned encoder weights.

The fine-tuned encoder from Stage 2 was integrated into a U-Net backbone
for supervised keypoint localization. Input images were resized to 256 x 256, and
the network produced 64x64 keypoint heatmaps. Training employed MSE loss
with the Adam optimizer (learning rate = le-5, batch size = 8) for up to 1000
epochs,; incorporating early stopping and dynamic learning rate adjustment. A
custom collate function was designed to filter out invalid samples. Experimental
results demonstrated that two-stage self-supervised pre-training substantially
enhanced feature representation and training stability, achieving lower keypoint
localization|[3] error and AoP prediction error compared to models without pre-
training|?]. Ablation studies further validated the positive contribution of high-
quality sequence screening and the phased self-supervised learning strategy to
final model performance.
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Fig. 1. This figure outlines the three-stage training pipeline of the proposed SSL-
FetalBioNet model, which consists of two stages of self-supervised pre-training (MoCo
v2) on unlabeled data to learn general feature representations, followed by a final
supervised heatmap regression fine-tuning stage on labeled data for keypoint detection.
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Fig. 2. This figure illustrates the core algorithmic architecture employed in our study.
The model is based on the classic U-Net structure, where the left-side encoder path-
way utilizes pre-trained weights for multi-scale feature extraction, while the right-side
decoder pathway progressively restores spatial details through upsampling and feature
fusion.

3 Experiments

3.1 Evaluation Metrics

This experiment selected four evaluation metrics to comprehensively assess the
performance of the model in keypoint detection and AoP prediction, includ-
ing Mean Squared Error (MSE), Mean Absolute Error (MAE), Average Point
Distance, and the Mean Absolute Error for AoP (AOP_ MAE). The specific
definitions are as follows:

Mean Squared Error (MSE) is used to measure the squared difference be-
tween pixel values of the predicted heatmap and the ground truth heatmap. The
calculation formula is:

N

_ 1 Y
MSE_N;(?J: yz)

(1)

where y; and ¢; represent the true value and predicted value of the i-th pixel,
respectively, and IV is the total number of pixels.
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Mean Absolute Error (MAE) measures the absolute difference between pre-
dicted values and true values. The calculation formula is:

1 N
MAE = — i — G
N?:l |lyi — Uil

(2)

Average Point Distance is used to evaluate the accuracy of keypoint localiza-
tion. It is defined as the average Euclidean distance between predicted keypoint
coordinates and ground truth coordinates. The calculation formula is:

K
1
AveragePointDistance = e Z \/(33;C — k)% + (yr — r)?
k=1

(3)

where K is the number of keypoints, and (zx,yx) and (&, §x) are the true and
predicted coordinates of the k-th keypoint, respectively.

The Mean Absolute Error for AoP (AOP _MAE) quantifies the error in
predicting the key angle parameter. The formula is:

M
1 Z R

(4)

where M is the number of predicted angle parameters, and a,, and a,, are the
true and predicted values of the m-th angle, respectively.

3.2 Loss Function Analysis

In this task, the keypoint detection framework is based on a heatmap regres-
sion approach, which can be formalized as follows:

— Target Heatmap Generation: The ground-truth heatmap for each key-
point is constructed by centering a two-dimensional isotropic Gaussian dis-
tribution at the annotated coordinate location:

(x—xp)” + (y — yk)2>

(1)

i) = exp (=T

where (zy,yr) represents the spatial coordinate of the k-th keypoint on the
heatmap, and the standard deviation o is set to 2.

— Model Output: The U-Net architecture predicts a corresponding heatmap
f[k(x,y) for each keypoint. Each predicted heatmap is normalized to the
range [0, 1] via a sigmoid activation function.
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— Loss Function: The discrepancy between the predicted heatmaps Hj, and
the target heatmaps Hy is quantified using the Mean Squared Error (MSE)
loss, computed over all keypoints K and all spatial positions (H, W) within
the heatmaps:

1 K H
Luse = w2 2o

k=1y=1x=1

W 2
(Be(y) - He@y) . @)

Here, K denotes the total number of keypoints, and H x W specifies the
spatial dimensions of the heatmap (64 x 64 in this implementation).

This loss function enforces pixel-wise consistency between the predicted and
target heatmaps, guiding the network to learn the underlying spatial probability
distribution for each keypoint. The final keypoint coordinates are subsequently
deduced by identifying the pixel locations associated with the maximum values
(peaks) in the predicted heatmaps H, (z,y).

3.3 Data processing and experimental environment

In this study, the dataset provided by the IUGC Challenge was used, containing
delivery ultrasound images with annotated keypoints and AoP parameters. To
prepare the data for training, several preprocessing steps were applied. First, all
images were uniformly resized from their original resolution to 256 x256, ensur-
ing consistency with the U-Net input requirements. The corresponding keypoint
labels were then mapped to this resized coordinate system, and target heatmaps
of 64x64 were generated using a Gaussian kernel to provide smooth supervi-
sion signals. In addition, pixel intensities were normalized to stabilize network
training and improve convergence. The dataset was divided into training and
validation subsets in an 8:2 ratio, with a batch size of 8. To handle potential
issues such as missing images or corrupted labels, a custom filtering mecha-
nism was integrated into the data loader to exclude invalid samples dynamically.
These preprocessing operations—resizing, normalization, label transformation,
heatmap generation, and data integrity checks—together established a robust
and standardized input pipeline, providing a reliable foundation for supervised
fine-tuning[12] and ensuring that the pre-trained encoder could be effectively
leveraged for accurate keypoint localization and AoP prediction.

3.4 Experimental Results

The experimental results indicate that when using ResNet as the baseline, all er-
ror metrics were relatively high. After introducing the U-Net architecture, which
leverages skip connections to restore spatial details, metrics such as MSE and
APD showed noticeable improvement. By further applying the complete training
pipeline implemented in this study—including Gaussian heatmap supervision,
MSE loss, dynamic learning rate scheduling, early stopping, and invalid sample
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Table 1. Experimental environment configuration.

System Windows 11

CPU Intel(R) Core(TM) i7-14650HX (2.20 GHz)
RAM 16 x 4GB/s

GPU (number and type) [NVIDIA GeForce RTX 4060 16G

CUDA version 11.7

Programming language |Python 3.9

Deep learning framework|PyTorch (Torch 2.0.1)

filtering—significant performance gains were achieved even without loading self-
supervised weights, reducing MSE to 343.8 and APD to 19.65. Building on this,
the incorporation of two-stage self-supervised pre-training (combining MoCo v2
with golden sequence selection) further enhanced geometric localization per-
formance, bringing APD and AOPMAE down to 18.90 and 6.97, respectively.
This demonstrates that self-supervised learning effectively strengthens feature
representation and spatial relationship modeling. Overall, the trend in results
is highly consistent with the code implementation: architectural improvements
lead to foundational gains, a stable training pipeline substantially reduces errors,
and self-supervised pre-training further refines the accuracy of both keypoint lo-
calization and angle prediction.

Table 2. Performance comparison of different methods.

Model MSE MAE | APD |AOP MAE
Resnet 626.9202 | 17.9708 | 28.7208 8.1679
Unet 571.4269 | 17.1102 | 27.6144 9.7752
U-Net w/o SSL 343.7685 |11.6983| 19.6536 7.5685
Ours (SSL-FetalBioNet)|313.5583| 12.1833 [18.8999 6.9679

4 Conclusion

In this keypoint detection task, our SSL-FetalBioNet model delivered strong
performance on the validation set, achieving perfect detection (Missing Rate:
0.0000) across all 100 samples. The model attained a mean absolute error of 12.06
pixels and an average point distance of 18.73 pixels in localization tasks, while
angular prediction achieved a mean absolute error of 7.00 degrees. Detection
accuracy varied across anatomical structures, with errors of 11.37 pixels for PS1,
15.95 pixels for PS2, and 28.86 pixels for the tangency point. With an average
inference time of 24.34 milliseconds per image, the proposed self-supervised U-
Net framework demonstrates both efficiency and reliability in fetal ultrasound
keypoint detection, showing particular strength in angle estimation and offering
promising support for clinical biometric applications.
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