
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOGITS REPLAY + MOCLIP: STABILIZED, LOW-COST
POST-TRAINING WITH MINIMAL FORGETTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) often face a trade-off in post-training: improve-
ments on specialized domains frequently come at the expense of general capabil-
ities. Existing solutions attempt to mitigate this tension via regularization, selec-
tive parameter updates, or data-centric replay, but each imposes significant costs
in computation, data access, or adaptability. Recent work has shown that training
signals can be compressed to subsets of logits without severe accuracy loss, sug-
gesting a path toward efficient adaptation. However, naı̈ve truncation destabilizzes
optimization and exacerbates forgetting.
We introduce Logits Replay + MoClip, a two-stage framework that compresses
supervision in the logit space and stabilizes optimization at the update level. In
Stage 0, we record dynamic Top-K token subsets that cover a probability thresh-
old, always including the gold label. In Stage 1, we replay these compact subsets
to compute exact renormalized losses, avoiding full softmax computation and im-
plicitly regularizing. To ensure stability, we design MoClip, an optimizer that
caps gradient–momentum rotation and applies an arctan 2-based rescaling of up-
dates. Empirically, our method improves domain performance on Communica-
tion Technology (CT) and NL2SQL tasks while mitigating forgetting on general
benchmarks (MMLU, BBH, GPQA, MATH), and reduces training cost by over
40%. Together, these contributions offer a scalable, architecture-agnostic path for
domain adaptation of LLMs without sacrificing generalization.

1 INTRODUCTION

Fine-tuning large language models (LLMs) on domain-specific corpora often triggers notable degra-
dation of general capabilities: gains in the new domain are offset by losses in general reasoning or
knowledge(Lin et al., 2024; Kemker et al., 2018). This see-saw effect is well documented in con-
tinual learning and LLM post-training (Kirkpatrick et al., 2017; Aljundi et al., 2018; Zenke et al.,
2017; Rebuffi et al., 2017; Javed & White, 2019; Mallya et al., 2018b; Ke et al., 2023; Hui et al.,
2025). Existing remedies fall into three categories. Regularization-based approaches such as knowl-
edge distillation (Hinton et al., 2015), Learning without Forgetting (Li & Hoiem, 2018; Mallya
et al., 2018a; Aljundi et al., 2018; Yang et al., 2025), Classifier-Projection Regularization(Cha et al.,
2021), and RecAdam (Chen et al., 2020) constrain updates toward the base model but reduce spe-
cialization. Parameter-selective methods, including MoFO (Chen et al., 2025), restrict updates to
high-momentum weights to retain prior knowledge, yet sacrifice full plasticity. Similarly, parameter-
efficient tuning methods like LoRA(Hu et al., 2021) have been shown to forget less than full fine-
tuning but also underperform in-domain, acting as a form of implicit regularization(Biderman et al.,
2024). Data-centric strategies, such as Baichuan4-Finance (Zhang et al., 2025) or SSR (Huang
et al., 2024), preserve generality through replay or synthetic instance generation, but still require
extra data or base model resources.

Recent work has explored optimizer-level stabilization and logit-level supervision. Torque-Aware
Momentum (TAM) (Malviya et al., 2024) damps updates based on gradient–momentum angles,
while AdaMuon (Si et al., 2025) adaptively rescales momentum. The Kimi K2 model (Team et al.,
2025) introduced MuonClip and QK-Clip to prevent loss spikes in long-context training(Liu et al.,
2025). These efforts highlight two promising directions: constraining optimization geometry and
reusing model predictions. Yet, none unifies both perspectives in a lightweight, domain-agnostic
framework.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this work, we introduce Logits Replay + MoClip, a two-stage framework for efficient and stable
LLM adaptation. First, Stage 0 records dynamic Top-K logits per position, producing compact,
entropy-adaptive candidate sets; Stage 1 replays these subsets to compute exact cross-entropy on
restricted vocabularies, reducing cost and avoiding noisy gradients from low-probability tokens.
The efficiency gain comes from computing Stage 1 loss only on the Top-K vocabulary, eliminating
nearly all softmax-related FLOPs. Second, to stabilize training under sparse supervision, we design
MoClip, an optimizer that (i) caps gradient–momentum angles to enforce smooth update directions
and (ii) applies arctan 2-based rescaling to bound step sizes without relying on ϵ. Compared to prior
approaches, our method differs from MoFO by updating all parameters, from TAM by enforcing a
hard geometry cap rather than soft damping, and from Baichuan4-Finance by avoiding external data
replay. Extensive experiments show that Logits Replay + MoClip improves specialization on tele-
com QA and NL2SQL, preserves general reasoning performance, and reduces training cost by over
40%. Overall, this provides a balanced trade-off between plasticity and stability in post-training.

2 METHOD

Figure 1: Overview of the Logits Replay + MoClip
framework.

Our training framework consists of two
sequential stages: (1) Logits Replay Data
Collection (Stage 0), and (2) Replay
Fine-Tuning with MoClip (Stage 1). In
Stage 0, we extract and save a compact,
uncertainty-adaptive set of model predic-
tions for each training example, which
will serve as training targets in Stage 1.
Stage 1 then fine-tunes the model on this
reduced target space using our modified
optimizer.

Dynamic Top-K selection (Stage 0).
Let zt ∈ R|V| be the logits at position t
and pt = softmax(zt) the probabilities.
Sort tokens by pt in descending order to obtain (i1, i2, . . .) with pt(i1) ≥ pt(i2) ≥ Given a
cumulative-mass threshold τ ∈ (0, 1) and an upper cap Kmax, define

K⋆
t = min

{
k ∈ N :

k∑
j=1

pt(ij) ≥ τ
}
, Kt = min

(
K⋆

t , Kmax

)
. (1)

We set Kmax=200 (following Baichuan) and construct the per-position candidate set
St = { i1, . . . , iKt

} ∪ {xt}, (2)
which always includes the gold token xt (if xt /∈ {i1, . . . , iKt

} we append it). In case of ties at
the cutoff, we break by descending pt and then by token id to ensure determinism. This dynamic
Top-K adapts to local entropy: confident positions yield small Kt, while ambiguous ones allow
larger sets up to Kmax. Storing indices (and optionally the corresponding logits) for St enables
exact, renormalized cross-entropy during replay without recomputing the full softmax.

Algorithm 1 Logits Replay Fine-Tuning (Stage 1) with MoClip

1: Stage 0 – Logits Collection: For each sequence X = (x1, . . . , xn), run a forward pass to obtain
logits zt at selected positions t ∈ TX (random / last-token / bucket-based).

2: Compute pt = softmax(zt); construct St via dynamic Top-K with threshold τ and cap
Kmax=200; always include xt.

3: Store only indices (and optionally logits) for St.
4: Stage 1 – Replay Fine-Tuning: For stored (X, t, St), compute logits restricted to St and the

exact loss

Lt = − log
exp(z̃t[xt])∑
j∈St

exp(z̃t[j])
, (3)

i.e., softmax renormalized over St. Accumulate gradients and update with MoClip.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 MOCLIP OPTIMIZER (MOMENTUM-CLIPPED ADAM).

MoClip Optimizer (Momentum Clipped Adam): We modify the AdamW optimizer in two ways to
improve stability:

1. Gradient–Momentum Angle Clipping: Let mt be the current momentum (first moment esti-
mate) and gt the current gradient (batch-averaged). We compute the angle

ϕt = ∠(mt−1, gt) (4)

between the previous momentum vector mt−1 and the new gradient gt. If ϕt > ∆max (a chosen
threshold, e.g. 45◦), we rotate the gradient component to limit the direction change. Specifically, we
decompose gt into g∥ (parallel to mt−1) and g⊥ (orthogonal to mt−1). We then cap the perpendicular
component such that the resulting angle ϕ′

t is exactly ∆max. In practice, this means replacing

g′t = g∥ + min
(
|g⊥|, tan(∆max) · |g∥|

)
· g⊥
|g⊥|

. (5)

If ϕt ≤ ∆max, we leave gt unchanged. This ensures update direction smoothness: MoClip will not
suddenly flip or turn the update direction by more than ∆max from one step to the next. By contrast,
vanilla Adam has no direct mechanism to prevent such oscillations, and TAM would continuously
dampen misaligned updates rather than enforce a strict cap.

2. Atan2-Based Update Scaling: We update the second moment vt as in Adam (moving average of
g2t) and form the usual bias-corrected estimates m̂t and v̂t. However, instead of the standard update

∆θt = −α
m̂t√
v̂t + ϵ

, (6)

we define a scale factor st = f(m̂t, v̂t) using an arctan 2 formulation (Everett et al., 2024). One
simple choice is

st =
|m̂t|√
v̂t

(7)

for the magnitude (with ∠(st) = 0, so that st is a positive scalar). Then take

∆θt = −α · m̂t

|m̂t|
· tan−1

(
|m̂t|√
v̂t

)
. (8)

In effect, for each parameter or each layer, we bound the ratio |m̂t|√
v̂t

by using arctan, which ap-
proaches π/2 as its argument goes to infinity. This eliminates the dependence on a fixed ϵ and
guarantees the update magnitude cannot blow up due to tiny v̂t. Our implementation aligns with the
Adam-atan2. (Everett et al., 2024), and we found it removes the need to tune ϵ for stability. After
computing ∆θt, we also apply standard weight decay (as in AdamW) to θ (Kingma & Ba, 2017;
Loshchilov & Hutter, 2019).

The combination of these two modifications yields MoClip. Intuitively, the angle clip addresses
the direction of the update (making sure we don’t zig-zag destructively), while the atan2 scaling
addresses the magnitude (making sure a vanishing variance vt doesn’t lead to an explosively large
step). MoClip can be seen as a drop-in replacement for AdamW – it introduces one additional
hyperparameter ∆max (we use 45◦ by default) and uses ϵ = 0 (since it’s not needed). It can be
applied to any fine-tuning scenario; here we leverage it to ensure our Logits Replay training (Stage 1)
remains smooth even if the training signal (restricted vocab) might cause uneven gradients.

2.2 COMPUTATIONAL COST BENEFITS:

Stage 0 requires a forward pass over the training data, which is comparable to one epoch of inference.
Stage 1 then fine-tunes on the same data but with faster per-step computation. Concretely, during
Stage 1 we compute the softmax and its gradients only over the dynamic Top-K subset, rather than
the full vocabulary. This removes more than 98% of the softmax- and gradient-related FLOPs in
the output layer, so the wall-clock gain comes from cheaper updates per step rather than from using
fewer update steps.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Domain & general benchmarks on Qwen3-4B/8B. Bars show 4B (solid) and 8B
(hatched) across three groups: CT (DataComm, Wireless, CloudCore), NL2SQL (Birds, Spider),
and General (MMLU, BBH, GPQA, MATH). Dynamic Top-K + MoClip consistently improves do-
main scores over AdamW and remains competitive or better on general tasks. Vertical dashed lines
separate task groups.

If |St|/|V| = r (ratio of restricted vocab to full vocab), we roughly save (1 − r) fraction of the
softmax FLOPs in the forward/backward pass for each token. For example, with |V| = 50,000 and
K = 100 (plus the gold token, so |St| ≈ 101), r ≈ 0.002, saving 99.8% of the softmax-related
computation. In practice, other parts of the model (attention, MLPs) dominate total FLOPs, so the
end-to-end speedup is smaller; however, our experiments show that overall training time is reduced
by ∼ 40% for comparable convergence. Moreover, by storing only top-K indices and logits, the
memory footprint is modest – much smaller than storing full logits or embedding activations for
methods like knowledge distillation. We also emphasize that Stage 0 and Stage 1 can be decoupled in
time: one could collect logits once and reuse them for multiple fine-tuning runs (or hyperparameter
tuning) without rerunning forward passes, further amortizing the cost.

3 EXPERIMENTS

We conduct comprehensive experiments to evaluate three aspects of our approach: (1) Domain spe-
cialization on CT datasets (DataComm, Wireless, CloudCore), (2) NL2SQL generalization on Spi-
der and Birds, and (3) Retention of general capabilities on reasoning benchmarks (MMLU, BBH,
GPQA, MATH), as well as (4) Training stability and efficiency gains from Logits Replay and Mo-
Clip. Unless otherwise noted, we fine-tune the Qwen3 family models (4B and 8B parameter variants)
on the union of domain (DataComm, Wireless, CloudCore) and NL2SQL (Spider, Birds) training
data, and report results across all three evaluation tracks.

Key hyperparameters are as follows: Dynamic Top-K with threshold τ and cap Kmax=200; in
our runs the resulting median |St| was ≈ 100 (gold token always included); selection strategy =
bucket-based (5 buckets by token confidence); MoClip ∆max = 45◦; learning rate 1.25 × 10−6;
and 1 replay epoch for Stage 1. All baselines are trained with the same number of token updates for
fairness. Results are averaged over 3 random seeds, and we report mean ± std where applicable.

Experiments were conducted on Ascend 910B3 processors (64 GB memory). For Qwen3-4B, we
used 4 devices with tensor parallel size 4 and pipeline parallel size 1. For Qwen3-8B, we used 8
devices with tensor parallel size 4 and pipeline parallel size 2. The HCCL backend was employed
with hybrid parallelism, global batch size 16, and sequence length 4,096 tokens.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1 DOMAIN SPECIALIZATION VS. BASELINES

We compare our Logits Replay + MoClip fine-tuning against several baselines. Training is con-
ducted on domain-specific data (DataComm, Wireless, CloudCore) as well as the NL2SQL datasets
Spider and Birds. Evaluation covers three aspects: (1) Domain Specialization on DataComm,
Wireless, and CloudCore; (2) NL2SQL Generalization on Spider and Birds; and (3) General Ca-
pabilities on reasoning benchmarks including MMLU, BBH, GPQA, and MATH.

Baseline methods include standard AdamW fine-tuning (on full data), MoFO (Chen et al., 2025),
TAM-enhanced fine-tuning (Malviya et al., 2024) (with AdamW + TAM damping), AdaMuon (Si
et al., 2025), and a variant of MuonClip as used in Kimi’s post-training (Team et al., 2025) (we
simulate QK-Clip by gradient clipping on attention layers). For a fair comparison, all optimizers
run for the same number of update steps on the same data; MoFO is set to update the top 20%
momentum parameters each step (a value we tuned for best stability/performance trade-off).

Table 1: Domain performance on CT (DataComm, Wireless, CloudCore) and NL2SQL (Birds,
Spider). Bold indicates the best score; numbers in parentheses indicate the difference from AdamW
(SFT).

Qwen3-4B

Method DataComm ↑ Wireless ↑ CloudCore ↑ Birds ↑ Spider

AdamW (SFT) 54.12 44.58 45.27 72.31 79.88
MoFO 53.64 (-0.48) 44.02 (-0.56) 44.83 (-0.44) 70.87 (-1.44) 79.52 (-0.36)
TAM (AdamW+TAM) 53.77 (-0.35) 44.86 (+0.28) 45.36 (+0.09) 71.82 (-0.49) 80.94 (+1.06)
AdaMuon 53.95 (-0.17) 45.03 (+0.45) 45.62 (+0.35) 71.96 (-0.35) 81.24 (+1.36)
MuonClip 53.82 (-0.30) 44.91 (+0.33) 45.49 (+0.22) 71.65 (-0.66) 80.73 (+0.85)
Replay (HQ subset) 54.85 (+0.73) 45.39 (+0.81) 46.18(+0.91) 72.73 (+0.42) 80.91 (+1.03)
AdaMuon + Replay 54.63 (+0.51) 45.42 (+0.84) 46.15 (+0.88) 72.84 (+0.53) 81.56 (+1.68)
Dynamic Top-K 54.76 (+0.64) 45.51 (+0.93) 46.18 (+0.91) 72.91 (+0.60) 80.95 (+1.07)
Dyn. Top-K+MoClip 55.19 (+1.07) 45.93 (+1.35) 46.61 (+1.34) 73.38 (+1.07) 81.12 (+1.24)

Qwen3-8B

Method DataComm ↑ Wireless CloudCore ↑ Birds ↑ Spider ↑
AdamW (SFT) 56.08 39.82 41.46 75.18 81.02
MoFO 55.61 (-0.47) 39.25 (-0.57) 41.02 (-0.44) 74.43 (-0.75) 80.73 (-0.29)
TAM (AdamW+TAM) 55.73 (-0.35) 40.76 (+0.94) 41.91 (+0.45) 76.09 (+0.91) 81.65 (+0.63)
AdaMuon 55.88 (-0.20) 41.09 (+1.27) 42.63 (+1.17) 76.33 (+1.15) 82.11 (+1.09)
MuonClip 55.67 (-0.41) 40.88 (+1.06) 41.83 (+0.37) 76.04 (+0.86) 81.58 (+0.56)
Replay (HQ subset) 56.93 (+0.85) 40.91 (+1.09) 42.47 (+1.01) 76.54 (+1.36) 82.03 (+1.01)
AdaMuon + Replay 56.76 (+0.68) 41.48 (+1.66) 42.84 (+1.38) 76.62 (+1.44) 82.31 (+1.29)
Dynamic Top-K 56.81 (+0.73) 42.21 (+2.39) 42.08 (+0.62) 76.86 (+1.68) 81.92 (+0.90)
Dyn. Top-K+MoClip 57.24 (+1.16) 41.77 (+1.95) 43.05 (+1.59) 77.41 (+2.23) 82.57 (+1.55)

Results on CT QA. As summarized in Fig. 2 (CT block), on Qwen3-4B our Dynamic Top-K
+ MoClip achieves the best scores across all three sub-domains (55.19/45.93/46.61), surpass-
ing AdamW (54.12/44.58/45.27). MoFO trails (53.64/44.02/44.83), indicating that restrict-
ing active parameters harms specialization, while TAM and AdaMuon narrow the gap but re-
main lower. The same pattern holds for Qwen3-8B, where Dynamic Top-K + MoClip reaches
57.24/41.77/43.05 vs. AdamW’s 56.08/39.82/41.46. Notably, adding replay-based baselines (Re-
play and AdaMuon+Replay) improves over AdamW but still falls short of our method, confirming
that our logits-level replay can match—and slightly exceed—the benefit of full data replay.

Results on NL2SQL. In the NL2SQL block, Dynamic Top-K + MoClip again leads. On Qwen3-
4B it achieves 73.38 (Birds) and 81.12 (Spider), improving over AdamW (72.31/79.88). MoFO is
lower (70.87/79.52), while TAM and AdaMuon offer moderate gains. On Qwen3-8B, our method
reaches 77.41/82.57 vs. AdamW’s 75.18/81.02. We attribute the gains to bucket-based Top-K
selection, which captures both high-frequency SQL tokens and rare schema terms, coupled with
MoClip’s stabilization of decoder updates. Replay-based baselines also raise NL2SQL accuracy,
though Dynamic Top-K + MoClip remains the strongest across both datasets and model sizes.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2 RETENTION OF GENERAL CAPABILITIES

A key claim of our work is that we mitigate forgetting of the model’s original capabilities. To
verify this, we evaluate on four general benchmarks unrelated to fine-tuning domains: MMLU-
Pro (professional exams), BBH (reasoning and commonsense), GPQA (broad knowledge, F1), and
MATH (competition problems). We compare fine-tuned models against the base model, aiming for
performance close to the base (higher = less forgetting).

Table 2: General benchmark results on Qwen3-4B and Qwen3-8B. Values are accuracy/F1.

Qwen3-4B Qwen3-8B
Method MMLU BBH GPQA (F1) MATH MMLU BBH GPQA (F1) MATH

Base (no tuning) 59.83 71.62 51.17 93.41 64.72 74.55 51.88 94.12
AdamW (SFT) 55.14 68.37 47.28 85.23 60.11 70.42 48.55 86.34
MoFO 59.27 71.12 50.84 91.18 64.01 74.10 52.40 92.33
TAM 57.42 70.08 49.53 88.87 62.34 72.85 50.31 90.15
AdaMuon 58.13 70.59 50.12 90.14 63.12 73.21 50.92 91.24
MuonClip 57.79 70.32 49.88 89.73 62.88 73.02 50.65 90.88
Replay (HQ subset) 58.74 72.02 49.42 91.98 64.15 75.24 50.70 93.10
AdaMuon + Replay 59.72 72.63 49.75 92.59 64.36 75.42 50.98 93.25
Dyn. Top-K 58.90 71.81 48.80 91.80 63.80 75.23 49.80 92.90
Dyn. Top-K +
MoClip 59.62 72.20 49.51 92.33 64.21 75.65 50.14 93.32

Results on General Benchmarks. Standard fine-tuning with AdamW suffers significant drops on
many general tasks. For instance, on Qwen3-4B, the AdamW fine-tuned model drops from 59.8 to
55.1 on MMLU and from 93.4 to 85.2 on MATH, confirming the notable degradation of general
capabilities effect. A similar trend is seen on Qwen3-8B: MMLU drops from 64.7 to 60.1, and
MATH from 94.1 to 86.3.

Our Logits Replay + MoClip approach mitigates most of this degradation. On Qwen3-4B, it raises
MMLU from AdamW’s 55.1 to 59.6 and keeps MATH at 92.3, only slightly below the base model.
On Qwen3-8B, our method improves MMLU to 64.2 and preserves MATH at 93.3, again much
closer to the base than AdamW. On BBH and GPQA, performance remains close to base (within
1–2 points), and in some cases (e.g., BBH) even slightly exceeds it, whereas AdamW loses 3–5
points.

Replay-based baselines behave as expected: Replay (HQ subset) improves retention by reintroduc-
ing general-domain gradients, and AdaMuon + Replay provides the strongest retention among all
baselines due to the synergy between adaptive momentum scaling and data replay. However, both
baselines require access to external general-domain text, while our method does not rely on any
pretraining data. Despite this constraint, Logits Replay + MoClip matches or closely approaches
their retention while outperforming them on domain specialization, achieving a favorable stability–
plasticity trade-off without requiring any access to pretraining corpora.

Table 3: Distance to the base model and perplexity change base-model validation set (Qwen3-4B
and Qwen3-8B). Lower is better. Bold indicates the best score

.

Method Qwen3-4B Qwen3-8B
Rel. L2 dist. (%) ↓ ∆PPL ↓ Rel. L2 dist. (%) ↓ ∆PPL ↓

AdamW (SFT) 5.21 0.85 4.98 0.81
MoFO 3.12 0.10 2.95 0.09
TAM 4.57 0.42 4.33 0.40
AdaMuon 4.01 0.33 3.87 0.31
MuonClip 4.18 0.36 3.92 0.34
Dyn. Top-K + MoClip 3.39 0.18 3.21 0.16

MoFO is the strongest baseline in terms of parameter-space retention, consistently staying closest
to the base model solution (e.g., 59.3 on 4B MMLU vs. 59.8 base, and 92.3 on 8B MATH vs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

94.1 base). Replay-based methods also retain well, but do so by reintroducing general-domain data
rather than minimizing parameter drift. TAM and AdaMuon provide a middle ground: they alleviate
forgetting better than AdamW (e.g., on Qwen3-8B, TAM keeps MMLU at 62.3 and AdaMuon at
63.1 vs. AdamW’s 60.1), but they still lag behind our logits replay setup.

We also measure the distance from the base model in weight space to quantify forgetting. Following
MoFO (Chen et al., 2025), we compute |θfinetune − θbase|2/|θ|2 and additionally track the change in
perplexity on a base-model validation set.

As shown in Table 3, AdamW fine-tuning produces the largest deviation from the base model
weights, with 5.21% distance and a +0.85 PPL increase on Qwen3-4B, and similar values (4.98%,
+0.81) on Qwen3-8B. MoFO remains the closest to the initialization, with distances of only 3.12%
(4B) and 2.95% (8B), and nearly no increase in baseline validation PPL.

Our Logits Replay + MoClip method substantially narrows the gap relative to AdamW: 3.39% dis-
tance and +0.18 PPL on 4B, and 3.21% with +0.16 on 8B. These values are much closer to MoFO
than to AdamW, aligning with the retention results. TAM and AdaMuon fall in between, with 4.57%
and 4.01% (4B), and 4.33% and 3.87% (8B), respectively.

Overall, these metrics reinforce that our method strikes a good compromise: it remains close to the
base model solution (like MoFO) while still allowing full plasticity to adapt to new tasks, which ex-
plains why it preserves general abilities better than AdamW while outperforming MoFO on domain
specialization.

3.3 TRAINING STABILITY AND EFFICIENCY

We assess how MoClip stabilizes training and improves efficiency. The efficiency gains come from
reducing per-step computation in Stage 1 by operating only on dynamic Top-K vocabularies, which
removes most softmax- and gradient-related FLOPs in the output layer, rather than from using fewer
optimization steps. AdamW often exhibited loss spikes (e.g., sudden jumps on NL2SQL at ∼40% of
training), while MoFO reduced but did not eliminate such variance. TAM and AdaMuon smoothed
trajectories further, with AdaMuon yielding the fewest spikes on Qwen3-4B (0.8).

Figure 3: Stability (loss variance, gradient-norm CV, spike count) and efficiency (step and epoch
time) on Qwen3-4B and Qwen3-8B. Lower is better for stability metrics and time.

Our MoClip achieved the lowest loss variance (0.05 vs. 0.12 for AdamW) and the most consistent
gradient norms (0.09 vs. 0.18), while keeping spike counts close to AdaMuon (0.9 vs. 0.8). On
Qwen3-8B, MoClip again struck the best balance, cutting loss variance to 0.07 and gradient-norm
CV to 0.08, with ∼1 spike on average. On efficiency, logits replay reduced per-step time from
0.81s (AdamW) to 0.51s (37% faster), with Stage 0 collection costing 0.21s per batch. Overall, one
epoch of AdamW required 4.02h, whereas our two-stage framework cost 3.56h in total. Moreover,
convergence occurred in 2 epochs versus 3 for AdamW, cutting wall-clock training time from ∼12h
to ∼3.6h (70% savings). Memory overhead remained negligible (5% of full logits storage), and
MoClip’s extra computation was minimal.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

3.4 ABLATION STUDIES

We perform ablations to understand the contribution of each component and the sensitivity to hy-
perparameters.

Effect of Logits Selection Strategy. We compared three Stage 0 strategies: random, last-token,
and bucket-based. As visualized in Fig. 4A, bucket sampling (our default) provides consistent gains
across all five tasks, with the largest lifts on NL2SQL, while keeping CT subsets balanced. Table 4
reports exact numbers on 4B. Random selection often missed rare tokens, which reduced NL2SQL
accuracy by about 1 point. Last-token selection helped slightly on tasks where end-of-sequence is
critical (e.g., +0.4 on DataComm), but it underperformed on NL2SQL by nearly 2 points, since in-
termediate positions also matter. Bucket sampling, which groups tokens by confidence quartiles and
samples uniformly, consistently yielded the most stable training curves. Each batch contained a mix
of easy and hard predictions, avoiding bursts of difficult examples that could destabilize AdamW.
Overall, the bucket approach provided the strongest performance and stability, and we recommend
it for general use.

Table 4: Ablation of Stage-0 position strategy on Qwen3-4B (Top-K = 200).

Strategy DataComm ↑ Wireless ↑ CloudCore ↑ Birds ↑ Spider ↑
Random 54.27 44.36 45.01 71.15 79.42
Last-token 54.62 44.75 45.38 70.39 79.88
Bucket (ours) 55.19 45.93 46.61 73.38 81.24

Figure 4: Ablation overview. (A) Stage-0 position strategy (Random / Last-token / Bucket) on
4B across five tasks: bucket sampling consistently lifts all metrics, especially NL2SQL. (B1) Pareto
scatter of Loss std vs. NL2SQL avg; marker size reflects retention. (B2) Birds/Spider (bars, left axis)
and MMLU-Pro retention (line, right axis) across ∆max, with the recommended [45◦, 60◦] shaded.
(C) 8B ablation summary: per-method CT Avg (DataComm/Wireless/CloudCore) and NL2SQL Avg
(Birds/Spider) as bars; right axis overlays retention (%) and loss variance. Our Dyn. Top-K +
MoClip attains the best domain averages with strong retention and lowest variance.

Ablating Logits Replay. On 8B, Fig. 4C aggregates domain averages (bars) and retention/loss
variance (lines): Dyn. Top-K + MoClip yields the best CT and NL2SQL averages with strong re-
tention and the lowest loss variance. The per-task breakdown appears in Table 6. To isolate MoClip’s
effect, we also ran full softmax fine-tuning with MoClip (no logits replay). As shown in the table, this
setup improved forgetting somewhat (retention ≈ 90% vs. 85% for AdamW) and stabilized training,
but domain accuracy was nearly identical to AdamW. We further tested logits replay with AdamW
(no MoClip): this configuration achieved ∼ 92% retention, better than vanilla AdamW, but suffered
occasional instability when K was small or during later epochs. These comparisons suggest that

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

logits replay is the primary driver for preserving general knowledge, while MoClip is critical for
stable training. The two together yield the best overall outcome.

Table 5: Effect of ∆max on stability and accuracy (Qwen3-4B and Qwen3-8B).

Qwen3-4B
∆max DataComm Wireless CloudCore Birds Spider MMLU-Pro Ret. (%) Loss std

30◦ 54.91 45.22 46.05 72.14 80.72 96.5 0.047
45◦ 55.19 45.93 46.61 73.38 81.24 96.3 0.052
60◦ 55.07 45.81 46.47 73.05 81.02 95.8 0.054
90◦ 54.82 45.47 46.18 72.41 80.56 94.7 0.061

Qwen3-8B
∆max DataComm Wireless CloudCore Birds Spider MMLU-Pro Ret. (%) Loss std

30◦ 57.05 41.92 42.85 77.10 82.31 96.4 0.045
45◦ 57.24 41.77 43.05 77.41 82.57 96.2 0.048
60◦ 57.17 41.66 42.90 77.24 82.47 95.8 0.051
90◦ 56.84 41.35 42.68 76.86 82.05 94.8 0.058

Table 6: Qwen3-8B ablation summary. Higher is better for domain and retention; lower is better for
loss std.

Method DataComm Wireless CloudCore Birds Spider Retention (%) Loss std

AdamW (SFT) 56.08 39.82 41.46 75.18 81.02 84.8 0.112
AdamW +
MoClip (SFT) 56.05 39.90 41.52 75.10 81.13 89.8 0.078
MoFO 55.61 39.25 41.02 74.43 80.73 97.8 0.091
TAM 55.73 40.76 41.91 76.09 81.65 93.7 0.075
AdaMuon 55.88 41.09 42.08 76.33 81.92 94.5 0.072
Dyn. Top-K 56.70 41.20 42.31 76.50 81.47 92.1 0.095
Dyn. Top-K
+ MoClip 57.24 42.21 43.05 77.41 82.57 96.2 0.048

4 CONCLUSION

We presented Logits Replay + MoClip, a two-stage framework for efficient and stable LLM fine-
tuning. By compressing supervision into dynamic Top-K subsets, the method reuses the model’s
predictive uncertainty as an adaptive regularizer, reducing notable degradation of general capabil-
ities without requiring pre-training data or external corpora. By introducing MoClip, which caps
momentum rotation and rescales updates via an arctan 2 rule, training remains smooth and robust
under sparse logit supervision. Across CT and NL2SQL tasks, our approach outperforms standard
fine-tuning and parameter-selective baselines in domain accuracy, while retaining performance on
MMLU, BBH, GPQA, and MATH close to the base model. Efficiency gains of over 40% further
highlight its scalability.

Beyond empirical gains, our theoretical analysis (see Appendix D for detailed proofs) shows that
restricted logits introduce a controllable bias linked to coverage thresholds, while MoClip provides
principled stability guarantees through bounded and directionally consistent updates. Together, these
insights establish a solid foundation for understanding why the method succeeds across diverse
settings.

Overall, Logits Replay + MoClip demonstrates that effective LLM adaptation does not need to rely
on costly data replay or intrusive architectural changes. It provides a lightweight, architecture-
agnostic recipe for balancing specialization and retention, a challenge central to long-term deploy-
ment of foundation models. Looking forward, we envision extensions to parameter-efficient tuning,
multi-modal scenarios, and continual learning pipelines, where striking the right balance between
plasticity and stability will remain a decisive factor for practical adoption.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), 2018.

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Connor
Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and John P.
Cunningham. Lora learns less and forgets less, 2024. URL https://arxiv.org/abs/
2405.09673.

Sungmin Cha, Hsiang Hsu, Taebaek Hwang, Flavio P. Calmon, and Taesup Moon. Cpr: Classifier-
projection regularization for continual learning, 2021. URL https://arxiv.org/abs/
2006.07326.

Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che, Ting Liu, and Xiangzhan Yu. Recall and
learn: Fine-tuning deep pretrained language models with less forgetting, 2020. URL https:
//arxiv.org/abs/2004.12651.

Yupeng Chen, Senmiao Wang, Yushun Zhang, Zhihang, Haozhe Zhang, Weijian Sun, Tian Ding,
and Ruoyu Sun. Mofo: Momentum-filtered optimizer for mitigating forgetting in llm fine-tuning,
2025. URL https://arxiv.org/abs/2407.20999.

Eric Nuertey Coleman, Luigi Quarantiello, Ziyue Liu, Qinwen Yang, Samrat Mukherjee, Julio Hur-
tado, and Vincenzo Lomonaco. Parameter-efficient continual fine-tuning: A survey, 2025. URL
https://arxiv.org/abs/2504.13822.

Katie Everett, Lechao Xiao, Mitchell Wortsman, Alexander A. Alemi, Roman Novak, Peter J.
Liu, Izzeddin Gur, Jascha Sohl-Dickstein, Leslie Pack Kaelbling, Jaehoon Lee, and Jeffrey
Pennington. Scaling exponents across parameterizations and optimizers, 2024. URL https:
//arxiv.org/abs/2407.05872.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization, 2021. URL https://arxiv.org/abs/2010.
01412.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
URL https://arxiv.org/abs/1503.02531.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Jianheng Huang, Leyang Cui, Ante Wang, Chengyi Yang, Xinting Liao, Linfeng Song, Junfeng Yao,
and Jinsong Su. Mitigating catastrophic forgetting in large language models with self-synthesized
rehearsal, 2024. URL https://arxiv.org/abs/2403.01244.

Tingfeng Hui, Zhenyu Zhang, Shuohuan Wang, Weiran Xu, Yu Sun, and HuaA Wu. Hft: Half fine-
tuning for large language models. In Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 12791–12819. Association for Com-
putational Linguistics, 2025. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.626.
URL https://aclanthology.org/2025.acl-long.626/.

Khurram Javed and Martha White. Meta-learning representations for continual learning. Curran
Associates Inc., Red Hook, NY, USA, 2019.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, Gyuhak Kim, and Bing Liu. Continual pre-
training of language models, 2023. URL https://arxiv.org/abs/2302.03241.

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan. Measuring
catastrophic forgetting in neural networks. Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1), Apr. 2018. doi: 10.1609/aaai.v32i1.11651. URL https://ojs.aaai.
org/index.php/AAAI/article/view/11651.

10

https://arxiv.org/abs/2405.09673
https://arxiv.org/abs/2405.09673
https://arxiv.org/abs/2006.07326
https://arxiv.org/abs/2006.07326
https://arxiv.org/abs/2004.12651
https://arxiv.org/abs/2004.12651
https://arxiv.org/abs/2407.20999
https://arxiv.org/abs/2504.13822
https://arxiv.org/abs/2407.05872
https://arxiv.org/abs/2407.05872
https://arxiv.org/abs/2010.01412
https://arxiv.org/abs/2010.01412
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2403.01244
https://aclanthology.org/2025.acl-long.626/
https://arxiv.org/abs/2302.03241
https://ojs.aaai.org/index.php/AAAI/article/view/11651
https://ojs.aaai.org/index.php/AAAI/article/view/11651

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Has-
sabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic for-
getting in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–
3526, 2017. doi: 10.1073/pnas.1611835114. URL https://www.pnas.org/doi/abs/
10.1073/pnas.1611835114.

Hongyu Li, Liang Ding, Meng Fang, and Dacheng Tao. Revisiting catastrophic forgetting in large
language model tuning. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings
of the Association for Computational Linguistics: EMNLP 2024, pp. 4297–4308, Miami, Florida,
USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-emnlp.249. URL https://aclanthology.org/2024.findings-emnlp.
249/.

Jingyao Li, Senqiao Yang, Sitong Wu, Han Shi, Chuanyang Zheng, Hong Xu, and Jiaya Jia. Logits-
based finetuning, 2025. URL https://arxiv.org/abs/2505.24461.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(12):2935–2947, 2018. doi: 10.1109/TPAMI.2017.2773081.

Yong Lin, Hangyu Lin, Wei Xiong, Shizhe Diao, Jianmeng Liu, Jipeng Zhang, Rui Pan, Haoxiang
Wang, Wenbin Hu, Hanning Zhang, et al. Mitigating the alignment tax of rlhf, 2024. URL
https://arxiv.org/abs/2309.06256.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin
Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training, 2025. URL https://
arxiv.org/abs/2502.16982.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Arun Mallya, Dillon Davis, editor=”Ferrari Vittorio Lazebnik, Svetlana”, Martial Hebert, Cristian
Sminchisescu, and Yair Weiss. Piggyback: Adapting a single network to multiple tasks by learn-
ing to mask weights. In Computer Vision – ECCV 2018, pp. 72–88, Cham, 2018a. Springer
International Publishing.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to mul-
tiple tasks by learning to mask weights, 2018b. URL https://arxiv.org/abs/1801.
06519.

Pranshu Malviya, Goncalo Mordido, Aristide Baratin, Reza Babanezhad Harikandeh,
Gintare Karolina Dziugaite, Razvan Pascanu, and Sarath Chandar. Torque-aware momentum,
2024. URL https://arxiv.org/abs/2412.18790.

Chunyi Peng, Zhipeng Xu, Zhenghao Liu, Yishan Li, Yukun Yan, Shuo Wang, Zhiyuan Liu, Yu Gu,
Minghe Yu, Ge Yu, and Maosong Sun. Learning to route queries across knowledge bases for step-
wise retrieval-augmented reasoning, 2025. URL https://arxiv.org/abs/2505.22095.

Fuli Qiao and Mehrdad Mahdavi. Learn more, but bother less: parameter efficient continual learning.
Advances in Neural Information Processing Systems, 37:97476–97498, 2024.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. icarl:
Incremental classifier and representation learning. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 5533–5542, 2017. doi: 10.1109/CVPR.2017.587.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay, 2017. URL https://arxiv.org/abs/1705.08690.

Chongjie Si, Debing Zhang, and Wei Shen. Adamuon: Adaptive muon optimizer, 2025. URL
https://arxiv.org/abs/2507.11005.

11

https://arxiv.org/abs/1412.6980
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
https://aclanthology.org/2024.findings-emnlp.249/
https://aclanthology.org/2024.findings-emnlp.249/
https://arxiv.org/abs/2505.24461
https://arxiv.org/abs/2309.06256
https://arxiv.org/abs/2502.16982
https://arxiv.org/abs/2502.16982
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1801.06519
https://arxiv.org/abs/1801.06519
https://arxiv.org/abs/2412.18790
https://arxiv.org/abs/2505.22095
https://arxiv.org/abs/1705.08690
https://arxiv.org/abs/2507.11005

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shezheng Song, Hao Xu, Jun Ma, Shasha Li, Long Peng, Qian Wan, Xiaodong Liu, and Jie Yu. How
to alleviate catastrophic forgetting in llms finetuning? hierarchical layer-wise and element-wise
regularization, 2025. URL https://arxiv.org/abs/2501.13669.

Mengying Sun, Jing Xing, Huijun Wang, Bin Chen, and Jiayu Zhou. Mocl: Data-driven molecular
fingerprint via knowledge-aware contrastive learning from molecular graph, 2022. URL https:
//arxiv.org/abs/2106.04509.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence, 2025. URL
https://arxiv.org/abs/2507.20534.

Mingyang Wang, Heike Adel, Lukas Lange, Jannik Strötgen, and Hinrich Schütze. Rehearsal-
free modular and compositional continual learning for language models, 2024. URL https:
//arxiv.org/abs/2404.00790.

Qi Wang and Jinjia Zhou. Topkd: Top-scaled knowledge distillation, 2025. URL https://
arxiv.org/abs/2508.04539.

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
Xuanjing Huang. Orthogonal subspace learning for language model continual learning, 2023.
URL https://arxiv.org/abs/2310.14152.

Tongtong Wu, Linhao Luo, Yuan-Fang Li, Shirui Pan, Thuy-Trang Vu, and Gholamreza Haffari.
Continual learning for large language models: A survey, 2024. URL https://arxiv.org/
abs/2402.01364.

Jing Yang, Xinyu Zhou, Yao He, Qinglang Li, Zhidong Su, Xiaoli Ruan, and Changfu
Zhang. Effective generative replay with strong memory for continual learning. Knowledge-
Based Systems, 319:113477, 2025. ISSN 0950-7051. doi: https://doi.org/10.1016/j.knosys.
2025.113477. URL https://www.sciencedirect.com/science/article/pii/
S0950705125005234.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence,
2017. URL https://arxiv.org/abs/1703.04200.

Hanyu Zhang, Boyu Qiu, Yuhao Feng, Shuqi Li, Qian Ma, Xiyuan Zhang, Qiang Ju, Dong Yan,
and Jian Xie. Baichuan4-finance technical report, 2025. URL https://arxiv.org/abs/
2412.15270.

Junhao Zheng, Xidi Cai, Shengjie Qiu, and Qianli Ma. Spurious forgetting in continual learning
of language models. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=ScI7IlKGdI.

Vytenis Šliogeris, Povilas Daniušis, and Artūras Nakvosas. Full-parameter continual pretraining of
gemma2: Insights into fluency and domain knowledge, 2025. URL https://arxiv.org/
abs/2505.05946.

12

https://arxiv.org/abs/2501.13669
https://arxiv.org/abs/2106.04509
https://arxiv.org/abs/2106.04509
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2404.00790
https://arxiv.org/abs/2404.00790
https://arxiv.org/abs/2508.04539
https://arxiv.org/abs/2508.04539
https://arxiv.org/abs/2310.14152
https://arxiv.org/abs/2402.01364
https://arxiv.org/abs/2402.01364
https://www.sciencedirect.com/science/article/pii/S0950705125005234
https://www.sciencedirect.com/science/article/pii/S0950705125005234
https://arxiv.org/abs/1703.04200
https://arxiv.org/abs/2412.15270
https://arxiv.org/abs/2412.15270
https://openreview.net/forum?id=ScI7IlKGdI
https://arxiv.org/abs/2505.05946
https://arxiv.org/abs/2505.05946

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ACKNOWLEDGEMENTS

The authors used GPT–4o to assist with minor language polishing and grammar checking; all sub-
stantive writing and analysis were conducted by the authors.

B EXTENDED RELATED WORK

B.1 CATASTROPHIC FORGETTING IN LLM FINE-TUNING

Fine-tuning large language models (LLMs) on new domains often incurs catastrophic forgetting—
a sharp drop in performance on previously learned tasks (Zheng et al., 2025). This “alignment
tax” is evident in RLHF (reinforcement learning from human feedback), where aligning to human
preferences can erode base model capabilities (Lin et al., 2024). It shows that RLHF introduces
a reward–forgetting trade-off, and they dub the lost base knowledge the alignment tax. Mitigating
forgetting without sacrificing new-task gains is thus critical for continual LLM training (Li et al.,
2024). Recent analyses attribute forgetting to weight interference (new gradients overwriting old
knowledge), distribution shift (specialized fine-tuning data pulling the model away from its base-
model optimum), and sharp loss landscapes where small updates push it out of basins that supported
earlier skills (Wu et al., 2024). Therefore, research has turned to techniques that encourage parame-
ter updates to preserve prior knowledge or find flatter minima, enabling models to specialize without
losing generality (Zenke et al., 2017; Šliogeris et al., 2025).

B.2 REGULARIZATION-BASED MITIGATION

One classic line of defense is regularization, adding constraints during fine-tuning to discourage
changes that would harm old capabilities. Weight-consolidation methods like Elastic Weight Con-
solidation (EWC) penalize moving weights deemed important to prior tasks (estimated via Fisher
information) (Song et al., 2025). Similarly, Synaptic Intelligence (SI) accumulates an online impor-
tance measure and slows updates to crucial weights (Wang et al., 2024). By selectively constraining
parameters, these approaches let the model “remember” without access to the original training data.
However, they can over-constrain learning and require costly importance calculations for very large
models (Wang et al., 2023). Another avenue is functional regularization via knowledge distillation.
Learning without Forgetting (LwF) and related techniques preserve old model behavior by mak-
ing the fine-tuned model mimic the original model’s logits on a reference set (Qiao & Mahdavi,
2024). Instead of freezing weights, the new model is explicitly trained to match the old model’s
output distribution, thus retaining prior functions. For instance, RecAdam (Chen et al., 2020) in-
troduced a “recall” loss term pulling the fine-tuned weights back toward the base model weights,
balancing new learning and old knowledge. Classifier-Projection Regularization (Cha et al., 2021)
projected new-task classifier weights onto the subspace of the old classifier, effectively reusing the
base model feature space to reduce forgetting. These regularization approaches have proven effec-
tive in smaller models, but with LLMs they sometimes hinder full adaptation – the fine-tuned model
might remain too close to the original, limiting specialization (Coleman et al., 2025). In practice,
a mix of strategies is used: (Lin et al., 2024) find that applying a KL-divergence penalty during
RLHF fine-tuning can partially mitigate forgetting, but the best results came from model averaging
(interpolating weights before vs. after fine-tuning) to recover a Pareto-optimal balance.

B.3 PARAMETER-SELECTIVE AND EFFICIENT TUNING

Another line of work restricts which parameters are updated. (Chen et al., 2025) proposed MoFO,
updating only high-momentum weights. Half Fine-Tuning (HFT) (Hui et al., 2025) freezes half
of the parameters to anchor prior knowledge, reducing forgetting while accelerating training.
Parameter-efficient fine-tuning (PEFT) methods such as LoRA (Hu et al., 2021) add trainable low-
rank adapters; although LoRA underperforms full fine-tuning in-domain, it forgets less (Biderman
et al., 2024). Extensions like O-LoRA and CLoRA enforce orthogonality between task-specific up-
dates, further reducing interference. Modular methods learn to route between task-specific modules,
achieving near-zero forgetting at the cost of complexity. Other modular methods train separate small
modules per task and learn to route between them at inference (Peng et al., 2025) or even compose
them for transfer (Sun et al., 2022). These approaches report nearly zero forgetting since each task’s

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

parameters are isolated. The downside is that the model’s size grows with each task (unless one
merges modules post-hoc) and extra routing logic is needed at runtime. Nonetheless, parameter-
selective tuning – from freezing certain layers to adding task-specific modules – has proven highly
effective in retaining prior capabilities (Biderman et al., 2024).

B.4 REHEARSAL AND DATA REPLAY STRATEGIES

Data-centric approaches tackle forgetting by re-introducing examples of the original domains dur-
ing fine-tuning. The simplest form is experience replay, intermixing some of the earlier task data
with the new training data. This keeps the model’s gradients grounded in previous knowledge. For
instance, the Baichuan4-Finance project continually pre-trained a base LLM on financial texts while
also periodically sampling general data, thus maintaining general language capability. They imple-
mented a “domain self-constraint” training objective: when training on domain-specific data, a term
is added to preserve performance on a reference general corpus. Concretely, Baichuan4-Finance
uses the base model (Baichuan4-Turbo) as a reference and samples its top 200 predictions for each
token to compute a distillation loss on general text, alongside the standard loss on financial text
(Zhang et al., 2025).

When original data cannot be used, researchers turn to synthetic replay. Generative replay was
pioneered in vision (Shin et al., 2017) by training a generative model to sample pseudo-data from
old tasks. In the LLM setting, (Huang et al., 2024) propose Self-Synthesized Rehearsal (SSR) to
avoid requiring any real past data. SSR uses the model itself to generate pseudo-training examples
representative of what it knew before. Initially, the base LLM is prompted (via in-context learning)
to produce synthetic inputs from its knowledge.

B.5 OPTIMIZER-LEVEL STABILIZATION TECHNIQUES

Beyond data and parameter constraints, a newer line of work focuses on the optimization process
itself to improve stability. These methods modify the optimizer or training dynamics so that catas-
trophic shifts are less likely even when the model is fully fine-tuned on new data. One approach is to
bias training toward flatter minima, as sharp, narrow optima tend to correspond to brittle memoriza-
tion that forgets previous tasks. Sharpness-Aware Minimization (SAM) (Foret et al., 2021) achieves
this by adding a small worst-case perturbation to the weights at each step and minimizing the loss in
that neighborhood.

Torque-Aware Momentum (TAM) (Malviya et al., 2024) damps updates when gradients misalign
with momentum. AdaMuon (Si et al., 2025) combines Adam-style adaptivity with Muon’s orthog-
onal updates, achieving stable convergence. The Kimi K2 model (Team et al., 2025) introduced
MuonClip with QK-Clip to eliminate loss spikes in long-context training (Liu et al., 2025). These
optimizers are architecture-agnostic and add little cost, but overly aggressive damping can hinder
adaptation.

B.6 LOGIT-BASED SUPERVISION AND KNOWLEDGE DISTILLATION

Finally, a notable thread of related work leverages the model’s own predictions (logits) as a form of
rich supervision to guide fine-tuning. Knowledge distillation was first popularized by Hinton (Hin-
ton et al., 2015) as a compression technique, but it also serves as a continual learning regularizer.
Learning without Forgetting (Li & Hoiem, 2018) demonstrated that using a model’s original logits
on old-task examples as “soft targets” during new-task training can preserve its previous perfor-
mance without storing any model weights or data.

In LLMs, logit-based methods reuse the model’s own predictions as rich supervision. Wang & Zhou
(2025) (TopKD) show that focusing on top-K teacher logits yields better student generalization than
mimicking full distributions. Notably, Li recently proposed Logits-Based Fine-Tuning for LLMs in
a different context – they augment supervised fine-tuning by combining ground-truth labels with
teacher logits to enrich the training targets (Li et al., 2025). By preserving “linguistic diversity”
(multiple plausible next tokens) along with correctness, their method saw large gains on mathemat-
ical reasoning benchmarks. These studies highlight the value of compressed logit supervision. Our
Stage 0 Logits Replay follows this direction, recording dynamic Top-K subsets as efficient knowl-
edge distillation, combined with MoClip for stability.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C COMPARISON TO TEACHER-BASED LOGITS METHODS

Teacher-based continual learning methods, such as top-K distillation and KL-to-reference ob-
jectives (e.g., Baichuan4-Finance), maintain a frozen teacher model and optimize an auxiliary
KL(pteacher∥pstudent) loss at each training step. This provides strong retention but requires an addi-
tional forward pass through the teacher and can overly constrain plasticity on domain tasks. Our dy-
namic Top-K Logits Replay can be viewed as a compute-efficient, data-free analogue: Stage 0 stores
the base model’s own logits once, and Stage 1 reuses them to compute exact renormalized cross-
entropy without per-step teacher calls. Empirically, a fixed-logits variant following this paradigm
improves retention but underperforms dynamic Top-K Replay on CT and NL2SQL, supporting the
practical advantages of our design.

D THEORETICAL ANALYSIS: DETAILED STATEMENTS AND PROOFS

We formalize two aspects of our approach: (i) the optimization stability of MoClip and (ii) the gra-
dient bias induced by training with a restricted, renormalized vocabulary. We work under standard
stochastic smooth optimization assumptions and make all constants explicit.

D.1 PRELIMINARIES AND ASSUMPTIONS

Let f(θ) = E(X,t)[Lt(θ)] be the population objective, where Lt is the per-position cross-entropy
loss. Throughout we assume:
Assumption 1 (Smoothness and bounded variance). f is L-smooth: ∥∇f(θ)−∇f(θ′)∥2 ≤ L∥θ−
θ′∥2. Stochastic gradients satisfy E[gt | θt] = ∇f(θt) and E∥gt −∇f(θt)∥22 ≤ σ2.

Assumption 2 (Softmax notation). For logits z ∈ R|V|, p(j) = exp(zj)/
∑

k exp(zk) is the full
softmax; y = ex is the one-hot label. For a candidate set S ⊂ V with x ∈ S, define restricted,
renormalized probabilities p̃(j) = exp(zj)∑

k∈S exp(zk)
if j ∈ S and 0 otherwise. Let the outside mass be

ρ :=
∑

j /∈S p(j) ∈ [0, 1); then p̃(j) = p(j)
1−ρ for j ∈ S.

Assumption 3 (MoClip update). MoClip forms a momentum estimate m̂t and second-moment v̂t
(as in Adam/AdamW), then (i) caps the angle between gt and mt−1 by ∆max ∈ (0, π/2) to obtain
g′t, and (ii) applies an elementwise arctan 2 rescaling:

∆θt(i) = −α · m̂t(i)

|m̂t(i)|
arctan

(
|m̂t(i)|√
v̂t(i)

)
, ∀i ∈ [d], (9)

followed by decoupled weight decay (as in AdamW). This guarantees bounded updates per coordi-
nate and angle-aligned directions across steps.

D.2 BIAS OF RESTRICTED, RENORMALIZED CROSS-ENTROPY

We first quantify the gradient bias introduced by training with the restricted, renormalized set S,
assuming x ∈ S (our Stage 0 guarantee).
Lemma 1 (Logit-space gradient forms). For full softmax-CE, the logit gradient is gfullz = p−y. For
restricted, renormalized CE over S,

gSz (j) =

{
p̃(j)− y(j), j ∈ S,

0, j /∈ S.
(10)

Hence the logit-space bias ∆gz := gSz − gfullz satisfies

∆gz(j) =

{
ρ

1−ρ p(j), j ∈ S,

− p(j), j /∈ S.
(11)

Proof. By definition, gfullz = p − y. For j ∈ S, gSz (j) = p̃(j) − y(j) = p(j)
1−ρ − y(j); for j /∈ S,

gSz (j) = 0− y(j) = 0 since y(j) = 0 and x ∈ S. Subtracting yields the stated cases.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proposition 1 (Bias magnitude in ℓ1 and ℓ2). Under Assumption 2, the logit-space bias satisfies
∥∆gz∥1 = 2ρ, ∥∆gz∥2 ≤ 2ρ. (12)

Proof. Using Lemma 1,

∥∆gz∥1 =
∑
j∈S

ρ

1− ρ
p(j) +

∑
j /∈S

p(j) =
ρ

1− ρ
(1− ρ) + ρ = 2ρ. (13)

Then ∥∆gz∥2 ≤ ∥∆gz∥1 by norm monotonicity.

Remark 1 (Exact ℓ2 form). In fact,

∥∆gz∥22 =
∑
j∈S

(
ρ

1−ρp(j)
)2

+
∑
j /∈S

p(j)2, (14)

so the ℓ2 bias can be much smaller than 2ρ if probability mass is dispersed.
Proposition 2 (Parameter-space bias via Jacobian). Let Jt = ∂zt/∂θ be the Jacobian at (X, t). The
parameter-space bias is

∆gθ = J⊤
t ∆gz, so ∥∆gθ∥2 ≤ 2 ∥Jt∥2 ρ. (15)

Corollary 1 (Bias control via mass threshold). If S is chosen as the smallest set whose cumulative
mass exceeds τ (with upper cap Kmax) and x ∈ S, then ρ ≤ 1− τ and

∥∆gz∥1 ≤ 2(1− τ), ∥∆gθ∥2 ≤ 2 ∥Jt∥2 (1− τ). (16)
Thus selecting larger τ directly tightens worst-case bias.
Remark 2 (Distributional perspective). Since ∥p− p̃∥1 = 2ρ (because p̃ renormalizes p on S), the
gradient bias bounds align with the total variation between p and p̃. This connects Stage 0 coverage
to Stage 1 gradient fidelity.

D.3 STABILITY PROPERTIES OF MOCLIP

We now formalize the two core properties of MoClip: (i) a lower bound on directional alignment
(progress) due to angle capping, and (ii) a per-coordinate step bound due to arctan 2 scaling.
Lemma 2 (Angular cap implies cosine lower bound). Let mt−1 ̸= 0 be the previous momentum and
g′t the angle-capped gradient with ∠(mt−1, g

′
t) ≤ ∆max. Then

⟨mt−1, g
′
t⟩

∥mt−1∥2 ∥g′t∥2
≥ cos(∆max). (17)

Remark 3 (Intuition). MoClip guarantees that even after clipping, each update makes at least
cos(∆max) progress along the momentum direction, preventing destructive zig-zags.
Lemma 3 (Per-coordinate and global step bounds with arctan 2). With the update in Assumption 3,

∥∆θt∥∞ ≤ α
π

2
, ∥∆θt∥2 ≤ α

π

2

√
d, (18)

where d is the parameter dimension.
Remark 4 (Intuition). This ensures per-coordinate stability, capping extreme updates regardless of
how small v̂t becomes — a principled replacement for Adam’s heuristic ϵ term.
Proposition 3 (One-step expected descent). Under Assumption 1 and Lemmas 2–3, there exist ex-
plicit constants

c1(∆max) = cos(∆max)/2, c2(L, d) = O(Ld), (19)
such that

E
[
f(θt+1)

∣∣ θt] ≤ f(θt)− α c1(∆max) ∥∇f(θt)∥2 + α2 c2(L, d). (20)
Corollary 2 (Convergence to a noise/curvature neighborhood). With a sufficiently small constant
stepsize α or a diminishing schedule {αt},

lim sup
T→∞

1

T

T∑
t=1

E∥∇f(θt)∥2 ≤ c2(L, d)

c1(∆max)
α. (21)

In particular, smaller ∆max (larger cos(∆max)) improves the directional-progress constant c1, while
excessively small ∆max can slow progress due to over-constrained steps. Empirically, ∆max ∈
[45◦, 60◦] balances the trade-off.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Relation to TAM (qualitative). TAM continuously damps updates as the gradient–momentum
angle grows, while MoClip imposes a hard cutoff beyond ∆max. Thus MoClip directly controls
directional variance, whereas TAM retains small contributions from large-angle components. Our
empirical results mirror this geometry.

D.4 PUTTING THE PIECES TOGETHER

Proposition 4 (Descent with biased gradients). Let g̃t be the restricted-loss gradient and assume
the bias satisfies E∥g̃t − ∇f(θt)∥2 ≤ εt, where, by Proposition 2, εt ≤ 2 ∥Jt∥2 (1 − τ) in worst
case. Then the one-step inequality of Proposition 3 holds with an additional O(α εt) term, so that

E
[
f(θt+1)

]
≤ E

[
f(θt)

]
− α

(
c1E∥∇f(θt)∥2 − C εt

)
+ α2c2,

for some constant C independent of t. If supt εt is small (e.g., large τ), the same neighborhood
convergence conclusion as Corollary 2 holds, with a slightly larger radius.
Corollary 3 (Guidelines implied by the bounds). (i) Choosing a large mass threshold τ (subject
to Kmax) makes ρ ≤ 1 − τ small, thereby reducing gradient bias (Proposition 2) and preserving
full-softmax behavior. (ii) Choosing ∆max within a moderate range ensures a favorable c1(∆max)
while avoiding over-constrained steps, which aligns with our empirical choice 45◦∼60◦.

TAKEAWAY

Our analysis shows that the proposed Logits Replay + MoClip framework is not only empirically
effective but also theoretically justified:

• Training on restricted vocabularies introduces a gradient bias proportional to the outside
mass ρ (Proposition 1); by selecting a sufficiently large coverage threshold τ , this bias can
be made arbitrarily small (Corollary 1).

• MoClip guarantees stability: angle clipping enforces a minimum alignment with past mo-
mentum (Lemma 2), while arctan 2 scaling caps each update’s magnitude (Lemma 3).
Together these yield provable descent bounds (Proposition 3).

• When combining the two, we obtain convergence to a small neighborhood whose size
depends jointly on the bias level (1 − τ) and stability constants (∆max). This explains the
empirical trade-off: larger τ reduces bias, and moderate ∆max ensures smooth yet plastic
updates (Corollaries 2 and 3).

In summary, the theory supports our claim that Logits Replay + MoClip balances plasticity (domain
adaptation) and stability (retention of general skills) in a principled way: compressed supervision
limits overhead without destabilizing optimization, while MoClip prevents gradient noise from am-
plifying under restricted signals.

E MOCLIP HYPERPARAMETERS.

Fig. 4B1 and Fig. 4B2 show that ∆max ∈ [45◦, 60◦] balances accuracy (Birds/Spider) and stability
(Loss std), with high MMLU retention on the right axis.

Table 5 further quantifies this effect on Qwen3-4B. Smaller caps (e.g., 30◦) produce the lowest loss
variance and the highest retention, but slightly underperform 45◦ on CT and NL2SQL. Larger caps
(90◦) behave similarly to unconstrained AdamW, with weaker stability and increased forgetting.
Repeating the sweep on Qwen3-8B yields nearly identical patterns: ∆max ∈ [45◦, 60◦] is consis-
tently strong across all metrics, and 45◦ is either optimal or within 0.2 points of the best result. This
indicates that MoClip introduces only one additional hyperparameter with a wide, robust region; a
single default choice of 45◦ generalizes reliably across model sizes and domains.

We also compared MoClip against a TAM-style implementation (scaling updates by cos(ϕt)). TAM
provides strong stability but gradually accumulates damped gradients, effectively reducing learning
rate over long horizons and resulting in ∼1 point lower task accuracy on average. TAM occasionally
retains slightly more general knowledge (about +1% MMLU in one run), consistent with its stronger
suppression of misaligned directions. MoClip, in contrast, allows full plasticity within the allowed

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

angular region and performs better on fine-tuning tasks, while remaining simpler to tune. Both
optimizers are stable; MoClip is chosen for its accuracy advantage.

Lastly, for the stable scaling mechanism, we tried removing it (i.e., using AdamW with ϵ = 10−8

inside MoClip). We observed one instance of a loss spike when ϵ was very small (10−8) and none
when ϵ = 10−6. The arctan 2 mechanism gave us confidence to set ϵ = 0 and not worry about this;
it did not noticeably change task metrics but provided a safety guard.

Hyperparameter sweeps (added per reviewer request). For all baselines, we performed light
sweeps over the key hyperparameters shown in Table 7. Where a three-point grid was used (e.g.,
learning rate), the selected value is an interior point. For two-point grids (Adam betas, gradient
clip), we follow standard LLM fine-tuning practice, as these ranges cover nearly all practically
useful settings. All baselines share the same fixed training configuration (batch size, max sequence
length, update steps). Replay baselines differ only by the replay data source.

Table 7: Hyperparameter sweep ranges and selected values for all baselines.

Tunable hyperparameters (swept) Fixed training settings

Hyperparameter Sweep values Selected Setting Value

Learning rate {3×10−6, 1×10−6, 5×10−7} 1×10−6 Global batch size 128
Weight decay {0.01, 0.001} 0.01 Max sequence length 8192
Gradient clip {0.5, 1.0} 1.0 Update steps 150
Adam betas {(0.9, 0.95), (0.9, 0.98)} (0.9,0.95) Finetuning mode full-parameter

F ADDITIONAL CLARIFICATIONS

CT and NL2SQL as evaluation workloads. The CT and NL2SQL datasets used in our experi-
ments are not intended as canonical OOD benchmarks. Instead, they represent the types of domain-
shifted workloads that arise in practical post-training pipelines, where the target distribution differs
substantially from the general-purpose pretraining corpus. Our goal is therefore to study continual-
adaptation techniques under realistic conditions in which domain specialization can impact general
capabilities. While extending to additional model families (e.g., Llama, Mistral) would further vali-
date generality, we leave this for future work.

Meaning of the removed epsilon. Here, the removed ϵ refers to the standard AdamW denomina-
tor constant added inside the square root. MoClip still uses the usual learning rate schedule; only
the ϵ-based safety term is eliminated because the arctan 2 formulation ensures bounded updates.

Staleness of Stage 0 logits. Although Stage 0 logits are collected before fine-tuning, they remain
effective anchors in Stage 1. The goal of replay is not to approximate the current model but to
preserve the predictive structure of the base model. Using static logits is analogous to fixed-teacher
distillation and avoids the cost of repeatedly querying a frozen teacher. Empirically, we find that
dynamic Top-K replay maintains high retention even though the logits are collected only once.

18

	Introduction
	Method
	MoClip Optimizer (Momentum-Clipped Adam).
	Computational Cost Benefits:

	Experiments
	Domain Specialization vs. Baselines
	Retention of General Capabilities
	Training Stability and Efficiency
	Ablation Studies

	Conclusion
	Acknowledgements
	Extended Related Work
	Catastrophic Forgetting in LLM Fine-Tuning
	Regularization-Based Mitigation
	Parameter-Selective and Efficient Tuning
	Rehearsal and Data Replay Strategies
	Optimizer-Level Stabilization Techniques
	Logit-Based Supervision and Knowledge Distillation

	Comparison to Teacher-Based Logits Methods
	Theoretical Analysis: Detailed Statements and Proofs
	Preliminaries and Assumptions
	Bias of Restricted, Renormalized Cross-Entropy
	Stability Properties of MoClip
	Putting the Pieces Together

	MoClip Hyperparameters.
	Additional Clarifications

