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ABSTRACT

Large language models (LLMs) often face a trade-off in post-training: improve-
ments on specialized domains frequently come at the expense of general capabil-
ities. Existing solutions attempt to mitigate this tension via regularization, selec-
tive parameter updates, or data-centric replay, but each imposes significant costs
in computation, data access, or adaptability. Recent work has shown that training
signals can be compressed to subsets of logits without severe accuracy loss, sug-
gesting a path toward efficient adaptation. However, naı̈ve truncation destabilizzes
optimization and exacerbates forgetting.
We introduce Logits Replay + MoClip, a two-stage framework that compresses
supervision in the logit space and stabilizes optimization at the update level. In
Stage 0, we record dynamic Top-K token subsets that cover a probability thresh-
old, always including the gold label. In Stage 1, we replay these compact subsets
to compute exact renormalized losses, avoiding full softmax computation and im-
plicitly regularizing. To ensure stability, we design MoClip, an optimizer that
caps gradient–momentum rotation and applies an arctan 2-based rescaling of up-
dates. Empirically, our method improves domain performance on Communica-
tion Technology (CT) and NL2SQL tasks while mitigating forgetting on general
benchmarks (MMLU, BBH, GPQA, MATH), and reduces training cost by over
40%. Together, these contributions offer a scalable, architecture-agnostic path for
domain adaptation of LLMs without sacrificing generalization.

1 INTRODUCTION

Fine-tuning large language models (LLMs) on domain-specific corpora often triggers notable degra-
dation of general capabilities: gains in the new domain are offset by losses in general reasoning or
knowledge(Lin et al., 2024; Kemker et al., 2018). This see-saw effect is well documented in con-
tinual learning and LLM post-training (Kirkpatrick et al., 2017; Aljundi et al., 2018; Zenke et al.,
2017; Rebuffi et al., 2017; Javed & White, 2019; Mallya et al., 2018b; Ke et al., 2023; Hui et al.,
2025). Existing remedies fall into three categories. Regularization-based approaches such as knowl-
edge distillation (Hinton et al., 2015), Learning without Forgetting (Li & Hoiem, 2018; Mallya
et al., 2018a; Aljundi et al., 2018; Yang et al., 2025), Classifier-Projection Regularization(Cha et al.,
2021), and RecAdam (Chen et al., 2020) constrain updates toward the base model but reduce spe-
cialization. Parameter-selective methods, including MoFO (Chen et al., 2025), restrict updates to
high-momentum weights to retain prior knowledge, yet sacrifice full plasticity. Similarly, parameter-
efficient tuning methods like LoRA(Hu et al., 2021) have been shown to forget less than full fine-
tuning but also underperform in-domain, acting as a form of implicit regularization(Biderman et al.,
2024). Data-centric strategies, such as Baichuan4-Finance (Zhang et al., 2025) or SSR (Huang
et al., 2024), preserve generality through replay or synthetic instance generation, but still require
extra data or base model resources.

Recent work has explored optimizer-level stabilization and logit-level supervision. Torque-Aware
Momentum (TAM) (Malviya et al., 2024) damps updates based on gradient–momentum angles,
while AdaMuon (Si et al., 2025) adaptively rescales momentum. The Kimi K2 model (Team et al.,
2025) introduced MuonClip and QK-Clip to prevent loss spikes in long-context training(Liu et al.,
2025). These efforts highlight two promising directions: constraining optimization geometry and
reusing model predictions. Yet, none unifies both perspectives in a lightweight, domain-agnostic
framework.
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In this work, we introduce Logits Replay + MoClip, a two-stage framework for efficient and stable
LLM adaptation. First, Stage 0 records dynamic Top-K logits per position, producing compact,
entropy-adaptive candidate sets; Stage 1 replays these subsets to compute exact cross-entropy on
restricted vocabularies, reducing cost and avoiding noisy gradients from low-probability tokens.
The efficiency gain comes from computing Stage 1 loss only on the Top-K vocabulary, eliminating
nearly all softmax-related FLOPs. Second, to stabilize training under sparse supervision, we design
MoClip, an optimizer that (i) caps gradient–momentum angles to enforce smooth update directions
and (ii) applies arctan 2-based rescaling to bound step sizes without relying on ϵ. Compared to prior
approaches, our method differs from MoFO by updating all parameters, from TAM by enforcing a
hard geometry cap rather than soft damping, and from Baichuan4-Finance by avoiding external data
replay. Extensive experiments show that Logits Replay + MoClip improves specialization on tele-
com QA and NL2SQL, preserves general reasoning performance, and reduces training cost by over
40%. Overall, this provides a balanced trade-off between plasticity and stability in post-training.

2 METHOD

Figure 1: Overview of the Logits Replay + MoClip
framework.

Our training framework consists of two
sequential stages: (1) Logits Replay Data
Collection (Stage 0), and (2) Replay
Fine-Tuning with MoClip (Stage 1). In
Stage 0, we extract and save a compact,
uncertainty-adaptive set of model predic-
tions for each training example, which
will serve as training targets in Stage 1.
Stage 1 then fine-tunes the model on this
reduced target space using our modified
optimizer.

Dynamic Top-K selection (Stage 0).
Let zt ∈ R|V| be the logits at position t
and pt = softmax(zt) the probabilities.
Sort tokens by pt in descending order to obtain (i1, i2, . . . ) with pt(i1) ≥ pt(i2) ≥ . . . . Given a
cumulative-mass threshold τ ∈ (0, 1) and an upper cap Kmax, define

K⋆
t = min

{
k ∈ N :

k∑
j=1

pt(ij) ≥ τ
}
, Kt = min

(
K⋆

t , Kmax

)
. (1)

We set Kmax=200 (following Baichuan) and construct the per-position candidate set
St = { i1, . . . , iKt

} ∪ {xt}, (2)
which always includes the gold token xt (if xt /∈ {i1, . . . , iKt

} we append it). In case of ties at
the cutoff, we break by descending pt and then by token id to ensure determinism. This dynamic
Top-K adapts to local entropy: confident positions yield small Kt, while ambiguous ones allow
larger sets up to Kmax. Storing indices (and optionally the corresponding logits) for St enables
exact, renormalized cross-entropy during replay without recomputing the full softmax.

Algorithm 1 Logits Replay Fine-Tuning (Stage 1) with MoClip

1: Stage 0 – Logits Collection: For each sequence X = (x1, . . . , xn), run a forward pass to obtain
logits zt at selected positions t ∈ TX (random / last-token / bucket-based).

2: Compute pt = softmax(zt); construct St via dynamic Top-K with threshold τ and cap
Kmax=200; always include xt.

3: Store only indices (and optionally logits) for St.
4: Stage 1 – Replay Fine-Tuning: For stored (X, t, St), compute logits restricted to St and the

exact loss

Lt = − log
exp(z̃t[xt])∑
j∈St

exp(z̃t[j])
, (3)

i.e., softmax renormalized over St. Accumulate gradients and update with MoClip.

2
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2.1 MOCLIP OPTIMIZER (MOMENTUM-CLIPPED ADAM).

MoClip Optimizer (Momentum Clipped Adam): We modify the AdamW optimizer in two ways to
improve stability:

1. Gradient–Momentum Angle Clipping: Let mt be the current momentum (first moment esti-
mate) and gt the current gradient (batch-averaged). We compute the angle

ϕt = ∠(mt−1, gt) (4)

between the previous momentum vector mt−1 and the new gradient gt. If ϕt > ∆max (a chosen
threshold, e.g. 45◦), we rotate the gradient component to limit the direction change. Specifically, we
decompose gt into g∥ (parallel to mt−1) and g⊥ (orthogonal to mt−1). We then cap the perpendicular
component such that the resulting angle ϕ′

t is exactly ∆max. In practice, this means replacing

g′t = g∥ + min
(
|g⊥|, tan(∆max) · |g∥|

)
· g⊥
|g⊥|

. (5)

If ϕt ≤ ∆max, we leave gt unchanged. This ensures update direction smoothness: MoClip will not
suddenly flip or turn the update direction by more than ∆max from one step to the next. By contrast,
vanilla Adam has no direct mechanism to prevent such oscillations, and TAM would continuously
dampen misaligned updates rather than enforce a strict cap.

2. Atan2-Based Update Scaling: We update the second moment vt as in Adam (moving average of
g2t ) and form the usual bias-corrected estimates m̂t and v̂t. However, instead of the standard update

∆θt = −α
m̂t√
v̂t + ϵ

, (6)

we define a scale factor st = f(m̂t, v̂t) using an arctan 2 formulation (Everett et al., 2024). One
simple choice is

st =
|m̂t|√
v̂t

(7)

for the magnitude (with ∠(st) = 0, so that st is a positive scalar). Then take

∆θt = −α · m̂t

|m̂t|
· tan−1

(
|m̂t|√
v̂t

)
. (8)

In effect, for each parameter or each layer, we bound the ratio |m̂t|√
v̂t

by using arctan, which ap-
proaches π/2 as its argument goes to infinity. This eliminates the dependence on a fixed ϵ and
guarantees the update magnitude cannot blow up due to tiny v̂t. Our implementation aligns with the
Adam-atan2. (Everett et al., 2024), and we found it removes the need to tune ϵ for stability. After
computing ∆θt, we also apply standard weight decay (as in AdamW) to θ (Kingma & Ba, 2017;
Loshchilov & Hutter, 2019).

The combination of these two modifications yields MoClip. Intuitively, the angle clip addresses
the direction of the update (making sure we don’t zig-zag destructively), while the atan2 scaling
addresses the magnitude (making sure a vanishing variance vt doesn’t lead to an explosively large
step). MoClip can be seen as a drop-in replacement for AdamW – it introduces one additional
hyperparameter ∆max (we use 45◦ by default) and uses ϵ = 0 (since it’s not needed). It can be
applied to any fine-tuning scenario; here we leverage it to ensure our Logits Replay training (Stage 1)
remains smooth even if the training signal (restricted vocab) might cause uneven gradients.

2.2 COMPUTATIONAL COST BENEFITS:

Stage 0 requires a forward pass over the training data, which is comparable to one epoch of inference.
Stage 1 then fine-tunes on the same data but with faster per-step computation. Concretely, during
Stage 1 we compute the softmax and its gradients only over the dynamic Top-K subset, rather than
the full vocabulary. This removes more than 98% of the softmax- and gradient-related FLOPs in
the output layer, so the wall-clock gain comes from cheaper updates per step rather than from using
fewer update steps.

3
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Figure 2: Domain & general benchmarks on Qwen3-4B/8B. Bars show 4B (solid) and 8B
(hatched) across three groups: CT (DataComm, Wireless, CloudCore), NL2SQL (Birds, Spider),
and General (MMLU, BBH, GPQA, MATH). Dynamic Top-K + MoClip consistently improves do-
main scores over AdamW and remains competitive or better on general tasks. Vertical dashed lines
separate task groups.

If |St|/|V| = r (ratio of restricted vocab to full vocab), we roughly save (1 − r) fraction of the
softmax FLOPs in the forward/backward pass for each token. For example, with |V| = 50,000 and
K = 100 (plus the gold token, so |St| ≈ 101), r ≈ 0.002, saving 99.8% of the softmax-related
computation. In practice, other parts of the model (attention, MLPs) dominate total FLOPs, so the
end-to-end speedup is smaller; however, our experiments show that overall training time is reduced
by ∼ 40% for comparable convergence. Moreover, by storing only top-K indices and logits, the
memory footprint is modest – much smaller than storing full logits or embedding activations for
methods like knowledge distillation. We also emphasize that Stage 0 and Stage 1 can be decoupled in
time: one could collect logits once and reuse them for multiple fine-tuning runs (or hyperparameter
tuning) without rerunning forward passes, further amortizing the cost.

3 EXPERIMENTS

We conduct comprehensive experiments to evaluate three aspects of our approach: (1) Domain spe-
cialization on CT datasets (DataComm, Wireless, CloudCore), (2) NL2SQL generalization on Spi-
der and Birds, and (3) Retention of general capabilities on reasoning benchmarks (MMLU, BBH,
GPQA, MATH), as well as (4) Training stability and efficiency gains from Logits Replay and Mo-
Clip. Unless otherwise noted, we fine-tune the Qwen3 family models (4B and 8B parameter variants)
on the union of domain (DataComm, Wireless, CloudCore) and NL2SQL (Spider, Birds) training
data, and report results across all three evaluation tracks.

Key hyperparameters are as follows: Dynamic Top-K with threshold τ and cap Kmax=200; in
our runs the resulting median |St| was ≈ 100 (gold token always included); selection strategy =
bucket-based (5 buckets by token confidence); MoClip ∆max = 45◦; learning rate 1.25 × 10−6;
and 1 replay epoch for Stage 1. All baselines are trained with the same number of token updates for
fairness. Results are averaged over 3 random seeds, and we report mean ± std where applicable.

Experiments were conducted on Ascend 910B3 processors (64 GB memory). For Qwen3-4B, we
used 4 devices with tensor parallel size 4 and pipeline parallel size 1. For Qwen3-8B, we used 8
devices with tensor parallel size 4 and pipeline parallel size 2. The HCCL backend was employed
with hybrid parallelism, global batch size 16, and sequence length 4,096 tokens.
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3.1 DOMAIN SPECIALIZATION VS. BASELINES

We compare our Logits Replay + MoClip fine-tuning against several baselines. Training is con-
ducted on domain-specific data (DataComm, Wireless, CloudCore) as well as the NL2SQL datasets
Spider and Birds. Evaluation covers three aspects: (1) Domain Specialization on DataComm,
Wireless, and CloudCore; (2) NL2SQL Generalization on Spider and Birds; and (3) General Ca-
pabilities on reasoning benchmarks including MMLU, BBH, GPQA, and MATH.

Baseline methods include standard AdamW fine-tuning (on full data), MoFO (Chen et al., 2025),
TAM-enhanced fine-tuning (Malviya et al., 2024) (with AdamW + TAM damping), AdaMuon (Si
et al., 2025), and a variant of MuonClip as used in Kimi’s post-training (Team et al., 2025) (we
simulate QK-Clip by gradient clipping on attention layers). For a fair comparison, all optimizers
run for the same number of update steps on the same data; MoFO is set to update the top 20%
momentum parameters each step (a value we tuned for best stability/performance trade-off).

Table 1: Domain performance on CT (DataComm, Wireless, CloudCore) and NL2SQL (Birds,
Spider). Bold indicates the best score; numbers in parentheses indicate the difference from AdamW
(SFT).

Qwen3-4B

Method DataComm ↑ Wireless ↑ CloudCore ↑ Birds ↑ Spider

AdamW (SFT) 54.12 44.58 45.27 72.31 79.88
MoFO 53.64 (-0.48) 44.02 (-0.56) 44.83 (-0.44) 70.87 (-1.44) 79.52 (-0.36)
TAM (AdamW+TAM) 53.77 (-0.35) 44.86 (+0.28) 45.36 (+0.09) 71.82 (-0.49) 80.94 (+1.06)
AdaMuon 53.95 (-0.17) 45.03 (+0.45) 45.62 (+0.35) 71.96 (-0.35) 81.24 (+1.36)
MuonClip 53.82 (-0.30) 44.91 (+0.33) 45.49 (+0.22) 71.65 (-0.66) 80.73 (+0.85)
Replay (HQ subset) 54.85 (+0.73) 45.39 (+0.81) 46.18(+0.91) 72.73 (+0.42) 80.91 (+1.03)
AdaMuon + Replay 54.63 (+0.51) 45.42 (+0.84) 46.15 (+0.88) 72.84 (+0.53) 81.56 (+1.68)
Dynamic Top-K 54.76 (+0.64) 45.51 (+0.93) 46.18 (+0.91) 72.91 (+0.60) 80.95 (+1.07)
Dyn. Top-K+MoClip 55.19 (+1.07) 45.93 (+1.35) 46.61 (+1.34) 73.38 (+1.07) 81.12 (+1.24)

Qwen3-8B

Method DataComm ↑ Wireless CloudCore ↑ Birds ↑ Spider ↑
AdamW (SFT) 56.08 39.82 41.46 75.18 81.02
MoFO 55.61 (-0.47) 39.25 (-0.57) 41.02 (-0.44) 74.43 (-0.75) 80.73 (-0.29)
TAM (AdamW+TAM) 55.73 (-0.35) 40.76 (+0.94) 41.91 (+0.45) 76.09 (+0.91) 81.65 (+0.63)
AdaMuon 55.88 (-0.20) 41.09 (+1.27) 42.63 (+1.17) 76.33 (+1.15) 82.11 (+1.09)
MuonClip 55.67 (-0.41) 40.88 (+1.06) 41.83 (+0.37) 76.04 (+0.86) 81.58 (+0.56)
Replay (HQ subset) 56.93 (+0.85) 40.91 (+1.09) 42.47 (+1.01) 76.54 (+1.36) 82.03 (+1.01)
AdaMuon + Replay 56.76 (+0.68) 41.48 (+1.66) 42.84 (+1.38) 76.62 (+1.44) 82.31 (+1.29)
Dynamic Top-K 56.81 (+0.73) 42.21 (+2.39) 42.08 (+0.62) 76.86 (+1.68) 81.92 (+0.90)
Dyn. Top-K+MoClip 57.24 (+1.16) 41.77 (+1.95) 43.05 (+1.59) 77.41 (+2.23) 82.57 (+1.55)

Results on CT QA. As summarized in Fig. 2 (CT block), on Qwen3-4B our Dynamic Top-K
+ MoClip achieves the best scores across all three sub-domains (55.19/45.93/46.61), surpass-
ing AdamW (54.12/44.58/45.27). MoFO trails (53.64/44.02/44.83), indicating that restrict-
ing active parameters harms specialization, while TAM and AdaMuon narrow the gap but re-
main lower. The same pattern holds for Qwen3-8B, where Dynamic Top-K + MoClip reaches
57.24/41.77/43.05 vs. AdamW’s 56.08/39.82/41.46. Notably, adding replay-based baselines (Re-
play and AdaMuon+Replay) improves over AdamW but still falls short of our method, confirming
that our logits-level replay can match—and slightly exceed—the benefit of full data replay.

Results on NL2SQL. In the NL2SQL block, Dynamic Top-K + MoClip again leads. On Qwen3-
4B it achieves 73.38 (Birds) and 81.12 (Spider), improving over AdamW (72.31/79.88). MoFO is
lower (70.87/79.52), while TAM and AdaMuon offer moderate gains. On Qwen3-8B, our method
reaches 77.41/82.57 vs. AdamW’s 75.18/81.02. We attribute the gains to bucket-based Top-K
selection, which captures both high-frequency SQL tokens and rare schema terms, coupled with
MoClip’s stabilization of decoder updates. Replay-based baselines also raise NL2SQL accuracy,
though Dynamic Top-K + MoClip remains the strongest across both datasets and model sizes.
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3.2 RETENTION OF GENERAL CAPABILITIES

A key claim of our work is that we mitigate forgetting of the model’s original capabilities. To
verify this, we evaluate on four general benchmarks unrelated to fine-tuning domains: MMLU-
Pro (professional exams), BBH (reasoning and commonsense), GPQA (broad knowledge, F1), and
MATH (competition problems). We compare fine-tuned models against the base model, aiming for
performance close to the base (higher = less forgetting).

Table 2: General benchmark results on Qwen3-4B and Qwen3-8B. Values are accuracy/F1.

Qwen3-4B Qwen3-8B
Method MMLU BBH GPQA (F1) MATH MMLU BBH GPQA (F1) MATH

Base (no tuning) 59.83 71.62 51.17 93.41 64.72 74.55 51.88 94.12
AdamW (SFT) 55.14 68.37 47.28 85.23 60.11 70.42 48.55 86.34
MoFO 59.27 71.12 50.84 91.18 64.01 74.10 52.40 92.33
TAM 57.42 70.08 49.53 88.87 62.34 72.85 50.31 90.15
AdaMuon 58.13 70.59 50.12 90.14 63.12 73.21 50.92 91.24
MuonClip 57.79 70.32 49.88 89.73 62.88 73.02 50.65 90.88
Replay (HQ subset) 58.74 72.02 49.42 91.98 64.15 75.24 50.70 93.10
AdaMuon + Replay 59.72 72.63 49.75 92.59 64.36 75.42 50.98 93.25
Dyn. Top-K 58.90 71.81 48.80 91.80 63.80 75.23 49.80 92.90
Dyn. Top-K +
MoClip 59.62 72.20 49.51 92.33 64.21 75.65 50.14 93.32

Results on General Benchmarks. Standard fine-tuning with AdamW suffers significant drops on
many general tasks. For instance, on Qwen3-4B, the AdamW fine-tuned model drops from 59.8 to
55.1 on MMLU and from 93.4 to 85.2 on MATH, confirming the notable degradation of general
capabilities effect. A similar trend is seen on Qwen3-8B: MMLU drops from 64.7 to 60.1, and
MATH from 94.1 to 86.3.

Our Logits Replay + MoClip approach mitigates most of this degradation. On Qwen3-4B, it raises
MMLU from AdamW’s 55.1 to 59.6 and keeps MATH at 92.3, only slightly below the base model.
On Qwen3-8B, our method improves MMLU to 64.2 and preserves MATH at 93.3, again much
closer to the base than AdamW. On BBH and GPQA, performance remains close to base (within
1–2 points), and in some cases (e.g., BBH) even slightly exceeds it, whereas AdamW loses 3–5
points.

Replay-based baselines behave as expected: Replay (HQ subset) improves retention by reintroduc-
ing general-domain gradients, and AdaMuon + Replay provides the strongest retention among all
baselines due to the synergy between adaptive momentum scaling and data replay. However, both
baselines require access to external general-domain text, while our method does not rely on any
pretraining data. Despite this constraint, Logits Replay + MoClip matches or closely approaches
their retention while outperforming them on domain specialization, achieving a favorable stability–
plasticity trade-off without requiring any access to pretraining corpora.

Table 3: Distance to the base model and perplexity change base-model validation set (Qwen3-4B
and Qwen3-8B). Lower is better. Bold indicates the best score

.

Method Qwen3-4B Qwen3-8B
Rel. L2 dist. (%) ↓ ∆PPL ↓ Rel. L2 dist. (%) ↓ ∆PPL ↓

AdamW (SFT) 5.21 0.85 4.98 0.81
MoFO 3.12 0.10 2.95 0.09
TAM 4.57 0.42 4.33 0.40
AdaMuon 4.01 0.33 3.87 0.31
MuonClip 4.18 0.36 3.92 0.34
Dyn. Top-K + MoClip 3.39 0.18 3.21 0.16

MoFO is the strongest baseline in terms of parameter-space retention, consistently staying closest
to the base model solution (e.g., 59.3 on 4B MMLU vs. 59.8 base, and 92.3 on 8B MATH vs.
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94.1 base). Replay-based methods also retain well, but do so by reintroducing general-domain data
rather than minimizing parameter drift. TAM and AdaMuon provide a middle ground: they alleviate
forgetting better than AdamW (e.g., on Qwen3-8B, TAM keeps MMLU at 62.3 and AdaMuon at
63.1 vs. AdamW’s 60.1), but they still lag behind our logits replay setup.

We also measure the distance from the base model in weight space to quantify forgetting. Following
MoFO (Chen et al., 2025), we compute |θfinetune − θbase|2/|θ|2 and additionally track the change in
perplexity on a base-model validation set.

As shown in Table 3, AdamW fine-tuning produces the largest deviation from the base model
weights, with 5.21% distance and a +0.85 PPL increase on Qwen3-4B, and similar values (4.98%,
+0.81) on Qwen3-8B. MoFO remains the closest to the initialization, with distances of only 3.12%
(4B) and 2.95% (8B), and nearly no increase in baseline validation PPL.

Our Logits Replay + MoClip method substantially narrows the gap relative to AdamW: 3.39% dis-
tance and +0.18 PPL on 4B, and 3.21% with +0.16 on 8B. These values are much closer to MoFO
than to AdamW, aligning with the retention results. TAM and AdaMuon fall in between, with 4.57%
and 4.01% (4B), and 4.33% and 3.87% (8B), respectively.

Overall, these metrics reinforce that our method strikes a good compromise: it remains close to the
base model solution (like MoFO) while still allowing full plasticity to adapt to new tasks, which ex-
plains why it preserves general abilities better than AdamW while outperforming MoFO on domain
specialization.

3.3 TRAINING STABILITY AND EFFICIENCY

We assess how MoClip stabilizes training and improves efficiency. The efficiency gains come from
reducing per-step computation in Stage 1 by operating only on dynamic Top-K vocabularies, which
removes most softmax- and gradient-related FLOPs in the output layer, rather than from using fewer
optimization steps. AdamW often exhibited loss spikes (e.g., sudden jumps on NL2SQL at ∼40% of
training), while MoFO reduced but did not eliminate such variance. TAM and AdaMuon smoothed
trajectories further, with AdaMuon yielding the fewest spikes on Qwen3-4B (0.8).

Figure 3: Stability (loss variance, gradient-norm CV, spike count) and efficiency (step and epoch
time) on Qwen3-4B and Qwen3-8B. Lower is better for stability metrics and time.

Our MoClip achieved the lowest loss variance (0.05 vs. 0.12 for AdamW) and the most consistent
gradient norms (0.09 vs. 0.18), while keeping spike counts close to AdaMuon (0.9 vs. 0.8). On
Qwen3-8B, MoClip again struck the best balance, cutting loss variance to 0.07 and gradient-norm
CV to 0.08, with ∼1 spike on average. On efficiency, logits replay reduced per-step time from
0.81s (AdamW) to 0.51s (37% faster), with Stage 0 collection costing 0.21s per batch. Overall, one
epoch of AdamW required 4.02h, whereas our two-stage framework cost 3.56h in total. Moreover,
convergence occurred in 2 epochs versus 3 for AdamW, cutting wall-clock training time from ∼12h
to ∼3.6h (70% savings). Memory overhead remained negligible (5% of full logits storage), and
MoClip’s extra computation was minimal.
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3.4 ABLATION STUDIES

We perform ablations to understand the contribution of each component and the sensitivity to hy-
perparameters.

Effect of Logits Selection Strategy. We compared three Stage 0 strategies: random, last-token,
and bucket-based. As visualized in Fig. 4A, bucket sampling (our default) provides consistent gains
across all five tasks, with the largest lifts on NL2SQL, while keeping CT subsets balanced. Table 4
reports exact numbers on 4B. Random selection often missed rare tokens, which reduced NL2SQL
accuracy by about 1 point. Last-token selection helped slightly on tasks where end-of-sequence is
critical (e.g., +0.4 on DataComm), but it underperformed on NL2SQL by nearly 2 points, since in-
termediate positions also matter. Bucket sampling, which groups tokens by confidence quartiles and
samples uniformly, consistently yielded the most stable training curves. Each batch contained a mix
of easy and hard predictions, avoiding bursts of difficult examples that could destabilize AdamW.
Overall, the bucket approach provided the strongest performance and stability, and we recommend
it for general use.

Table 4: Ablation of Stage-0 position strategy on Qwen3-4B (Top-K = 200).

Strategy DataComm ↑ Wireless ↑ CloudCore ↑ Birds ↑ Spider ↑
Random 54.27 44.36 45.01 71.15 79.42
Last-token 54.62 44.75 45.38 70.39 79.88
Bucket (ours) 55.19 45.93 46.61 73.38 81.24

Figure 4: Ablation overview. (A) Stage-0 position strategy (Random / Last-token / Bucket) on
4B across five tasks: bucket sampling consistently lifts all metrics, especially NL2SQL. (B1) Pareto
scatter of Loss std vs. NL2SQL avg; marker size reflects retention. (B2) Birds/Spider (bars, left axis)
and MMLU-Pro retention (line, right axis) across ∆max, with the recommended [45◦, 60◦] shaded.
(C) 8B ablation summary: per-method CT Avg (DataComm/Wireless/CloudCore) and NL2SQL Avg
(Birds/Spider) as bars; right axis overlays retention (%) and loss variance. Our Dyn. Top-K +
MoClip attains the best domain averages with strong retention and lowest variance.

Ablating Logits Replay. On 8B, Fig. 4C aggregates domain averages (bars) and retention/loss
variance (lines): Dyn. Top-K + MoClip yields the best CT and NL2SQL averages with strong re-
tention and the lowest loss variance. The per-task breakdown appears in Table 6. To isolate MoClip’s
effect, we also ran full softmax fine-tuning with MoClip (no logits replay). As shown in the table, this
setup improved forgetting somewhat (retention ≈ 90% vs. 85% for AdamW) and stabilized training,
but domain accuracy was nearly identical to AdamW. We further tested logits replay with AdamW
(no MoClip): this configuration achieved ∼ 92% retention, better than vanilla AdamW, but suffered
occasional instability when K was small or during later epochs. These comparisons suggest that
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logits replay is the primary driver for preserving general knowledge, while MoClip is critical for
stable training. The two together yield the best overall outcome.

Table 5: Effect of ∆max on stability and accuracy (Qwen3-4B and Qwen3-8B).

Qwen3-4B
∆max DataComm Wireless CloudCore Birds Spider MMLU-Pro Ret. (%) Loss std

30◦ 54.91 45.22 46.05 72.14 80.72 96.5 0.047
45◦ 55.19 45.93 46.61 73.38 81.24 96.3 0.052
60◦ 55.07 45.81 46.47 73.05 81.02 95.8 0.054
90◦ 54.82 45.47 46.18 72.41 80.56 94.7 0.061

Qwen3-8B
∆max DataComm Wireless CloudCore Birds Spider MMLU-Pro Ret. (%) Loss std

30◦ 57.05 41.92 42.85 77.10 82.31 96.4 0.045
45◦ 57.24 41.77 43.05 77.41 82.57 96.2 0.048
60◦ 57.17 41.66 42.90 77.24 82.47 95.8 0.051
90◦ 56.84 41.35 42.68 76.86 82.05 94.8 0.058

Table 6: Qwen3-8B ablation summary. Higher is better for domain and retention; lower is better for
loss std.

Method DataComm Wireless CloudCore Birds Spider Retention (%) Loss std

AdamW (SFT) 56.08 39.82 41.46 75.18 81.02 84.8 0.112
AdamW +
MoClip (SFT) 56.05 39.90 41.52 75.10 81.13 89.8 0.078
MoFO 55.61 39.25 41.02 74.43 80.73 97.8 0.091
TAM 55.73 40.76 41.91 76.09 81.65 93.7 0.075
AdaMuon 55.88 41.09 42.08 76.33 81.92 94.5 0.072
Dyn. Top-K 56.70 41.20 42.31 76.50 81.47 92.1 0.095
Dyn. Top-K
+ MoClip 57.24 42.21 43.05 77.41 82.57 96.2 0.048

4 CONCLUSION

We presented Logits Replay + MoClip, a two-stage framework for efficient and stable LLM fine-
tuning. By compressing supervision into dynamic Top-K subsets, the method reuses the model’s
predictive uncertainty as an adaptive regularizer, reducing notable degradation of general capabil-
ities without requiring pre-training data or external corpora. By introducing MoClip, which caps
momentum rotation and rescales updates via an arctan 2 rule, training remains smooth and robust
under sparse logit supervision. Across CT and NL2SQL tasks, our approach outperforms standard
fine-tuning and parameter-selective baselines in domain accuracy, while retaining performance on
MMLU, BBH, GPQA, and MATH close to the base model. Efficiency gains of over 40% further
highlight its scalability.

Beyond empirical gains, our theoretical analysis (see Appendix D for detailed proofs) shows that
restricted logits introduce a controllable bias linked to coverage thresholds, while MoClip provides
principled stability guarantees through bounded and directionally consistent updates. Together, these
insights establish a solid foundation for understanding why the method succeeds across diverse
settings.

Overall, Logits Replay + MoClip demonstrates that effective LLM adaptation does not need to rely
on costly data replay or intrusive architectural changes. It provides a lightweight, architecture-
agnostic recipe for balancing specialization and retention, a challenge central to long-term deploy-
ment of foundation models. Looking forward, we envision extensions to parameter-efficient tuning,
multi-modal scenarios, and continual learning pipelines, where striking the right balance between
plasticity and stability will remain a decisive factor for practical adoption.
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B EXTENDED RELATED WORK

B.1 CATASTROPHIC FORGETTING IN LLM FINE-TUNING

Fine-tuning large language models (LLMs) on new domains often incurs catastrophic forgetting—
a sharp drop in performance on previously learned tasks (Zheng et al., 2025). This “alignment
tax” is evident in RLHF (reinforcement learning from human feedback), where aligning to human
preferences can erode base model capabilities (Lin et al., 2024). It shows that RLHF introduces
a reward–forgetting trade-off, and they dub the lost base knowledge the alignment tax. Mitigating
forgetting without sacrificing new-task gains is thus critical for continual LLM training (Li et al.,
2024). Recent analyses attribute forgetting to weight interference (new gradients overwriting old
knowledge), distribution shift (specialized fine-tuning data pulling the model away from its base-
model optimum), and sharp loss landscapes where small updates push it out of basins that supported
earlier skills (Wu et al., 2024). Therefore, research has turned to techniques that encourage parame-
ter updates to preserve prior knowledge or find flatter minima, enabling models to specialize without
losing generality (Zenke et al., 2017; Šliogeris et al., 2025).

B.2 REGULARIZATION-BASED MITIGATION

One classic line of defense is regularization, adding constraints during fine-tuning to discourage
changes that would harm old capabilities. Weight-consolidation methods like Elastic Weight Con-
solidation (EWC) penalize moving weights deemed important to prior tasks (estimated via Fisher
information) (Song et al., 2025). Similarly, Synaptic Intelligence (SI) accumulates an online impor-
tance measure and slows updates to crucial weights (Wang et al., 2024). By selectively constraining
parameters, these approaches let the model “remember” without access to the original training data.
However, they can over-constrain learning and require costly importance calculations for very large
models (Wang et al., 2023). Another avenue is functional regularization via knowledge distillation.
Learning without Forgetting (LwF) and related techniques preserve old model behavior by mak-
ing the fine-tuned model mimic the original model’s logits on a reference set (Qiao & Mahdavi,
2024). Instead of freezing weights, the new model is explicitly trained to match the old model’s
output distribution, thus retaining prior functions. For instance, RecAdam (Chen et al., 2020) in-
troduced a “recall” loss term pulling the fine-tuned weights back toward the base model weights,
balancing new learning and old knowledge. Classifier-Projection Regularization (Cha et al., 2021)
projected new-task classifier weights onto the subspace of the old classifier, effectively reusing the
base model feature space to reduce forgetting. These regularization approaches have proven effec-
tive in smaller models, but with LLMs they sometimes hinder full adaptation – the fine-tuned model
might remain too close to the original, limiting specialization (Coleman et al., 2025). In practice,
a mix of strategies is used: (Lin et al., 2024) find that applying a KL-divergence penalty during
RLHF fine-tuning can partially mitigate forgetting, but the best results came from model averaging
(interpolating weights before vs. after fine-tuning) to recover a Pareto-optimal balance.

B.3 PARAMETER-SELECTIVE AND EFFICIENT TUNING

Another line of work restricts which parameters are updated. (Chen et al., 2025) proposed MoFO,
updating only high-momentum weights. Half Fine-Tuning (HFT) (Hui et al., 2025) freezes half
of the parameters to anchor prior knowledge, reducing forgetting while accelerating training.
Parameter-efficient fine-tuning (PEFT) methods such as LoRA (Hu et al., 2021) add trainable low-
rank adapters; although LoRA underperforms full fine-tuning in-domain, it forgets less (Biderman
et al., 2024). Extensions like O-LoRA and CLoRA enforce orthogonality between task-specific up-
dates, further reducing interference. Modular methods learn to route between task-specific modules,
achieving near-zero forgetting at the cost of complexity. Other modular methods train separate small
modules per task and learn to route between them at inference (Peng et al., 2025) or even compose
them for transfer (Sun et al., 2022). These approaches report nearly zero forgetting since each task’s
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parameters are isolated. The downside is that the model’s size grows with each task (unless one
merges modules post-hoc) and extra routing logic is needed at runtime. Nonetheless, parameter-
selective tuning – from freezing certain layers to adding task-specific modules – has proven highly
effective in retaining prior capabilities (Biderman et al., 2024).

B.4 REHEARSAL AND DATA REPLAY STRATEGIES

Data-centric approaches tackle forgetting by re-introducing examples of the original domains dur-
ing fine-tuning. The simplest form is experience replay, intermixing some of the earlier task data
with the new training data. This keeps the model’s gradients grounded in previous knowledge. For
instance, the Baichuan4-Finance project continually pre-trained a base LLM on financial texts while
also periodically sampling general data, thus maintaining general language capability. They imple-
mented a “domain self-constraint” training objective: when training on domain-specific data, a term
is added to preserve performance on a reference general corpus. Concretely, Baichuan4-Finance
uses the base model (Baichuan4-Turbo) as a reference and samples its top 200 predictions for each
token to compute a distillation loss on general text, alongside the standard loss on financial text
(Zhang et al., 2025).

When original data cannot be used, researchers turn to synthetic replay. Generative replay was
pioneered in vision (Shin et al., 2017) by training a generative model to sample pseudo-data from
old tasks. In the LLM setting, (Huang et al., 2024) propose Self-Synthesized Rehearsal (SSR) to
avoid requiring any real past data. SSR uses the model itself to generate pseudo-training examples
representative of what it knew before. Initially, the base LLM is prompted (via in-context learning)
to produce synthetic inputs from its knowledge.

B.5 OPTIMIZER-LEVEL STABILIZATION TECHNIQUES

Beyond data and parameter constraints, a newer line of work focuses on the optimization process
itself to improve stability. These methods modify the optimizer or training dynamics so that catas-
trophic shifts are less likely even when the model is fully fine-tuned on new data. One approach is to
bias training toward flatter minima, as sharp, narrow optima tend to correspond to brittle memoriza-
tion that forgets previous tasks. Sharpness-Aware Minimization (SAM) (Foret et al., 2021) achieves
this by adding a small worst-case perturbation to the weights at each step and minimizing the loss in
that neighborhood.

Torque-Aware Momentum (TAM) (Malviya et al., 2024) damps updates when gradients misalign
with momentum. AdaMuon (Si et al., 2025) combines Adam-style adaptivity with Muon’s orthog-
onal updates, achieving stable convergence. The Kimi K2 model (Team et al., 2025) introduced
MuonClip with QK-Clip to eliminate loss spikes in long-context training (Liu et al., 2025). These
optimizers are architecture-agnostic and add little cost, but overly aggressive damping can hinder
adaptation.

B.6 LOGIT-BASED SUPERVISION AND KNOWLEDGE DISTILLATION

Finally, a notable thread of related work leverages the model’s own predictions (logits) as a form of
rich supervision to guide fine-tuning. Knowledge distillation was first popularized by Hinton (Hin-
ton et al., 2015) as a compression technique, but it also serves as a continual learning regularizer.
Learning without Forgetting (Li & Hoiem, 2018) demonstrated that using a model’s original logits
on old-task examples as “soft targets” during new-task training can preserve its previous perfor-
mance without storing any model weights or data.

In LLMs, logit-based methods reuse the model’s own predictions as rich supervision. Wang & Zhou
(2025) (TopKD) show that focusing on top-K teacher logits yields better student generalization than
mimicking full distributions. Notably, Li recently proposed Logits-Based Fine-Tuning for LLMs in
a different context – they augment supervised fine-tuning by combining ground-truth labels with
teacher logits to enrich the training targets (Li et al., 2025). By preserving “linguistic diversity”
(multiple plausible next tokens) along with correctness, their method saw large gains on mathemat-
ical reasoning benchmarks. These studies highlight the value of compressed logit supervision. Our
Stage 0 Logits Replay follows this direction, recording dynamic Top-K subsets as efficient knowl-
edge distillation, combined with MoClip for stability.
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C COMPARISON TO TEACHER-BASED LOGITS METHODS

Teacher-based continual learning methods, such as top-K distillation and KL-to-reference ob-
jectives (e.g., Baichuan4-Finance), maintain a frozen teacher model and optimize an auxiliary
KL(pteacher∥pstudent) loss at each training step. This provides strong retention but requires an addi-
tional forward pass through the teacher and can overly constrain plasticity on domain tasks. Our dy-
namic Top-K Logits Replay can be viewed as a compute-efficient, data-free analogue: Stage 0 stores
the base model’s own logits once, and Stage 1 reuses them to compute exact renormalized cross-
entropy without per-step teacher calls. Empirically, a fixed-logits variant following this paradigm
improves retention but underperforms dynamic Top-K Replay on CT and NL2SQL, supporting the
practical advantages of our design.

D THEORETICAL ANALYSIS: DETAILED STATEMENTS AND PROOFS

We formalize two aspects of our approach: (i) the optimization stability of MoClip and (ii) the gra-
dient bias induced by training with a restricted, renormalized vocabulary. We work under standard
stochastic smooth optimization assumptions and make all constants explicit.

D.1 PRELIMINARIES AND ASSUMPTIONS

Let f(θ) = E(X,t)[Lt(θ)] be the population objective, where Lt is the per-position cross-entropy
loss. Throughout we assume:
Assumption 1 (Smoothness and bounded variance). f is L-smooth: ∥∇f(θ)−∇f(θ′)∥2 ≤ L∥θ−
θ′∥2. Stochastic gradients satisfy E[gt | θt] = ∇f(θt) and E∥gt −∇f(θt)∥22 ≤ σ2.

Assumption 2 (Softmax notation). For logits z ∈ R|V|, p(j) = exp(zj)/
∑

k exp(zk) is the full
softmax; y = ex is the one-hot label. For a candidate set S ⊂ V with x ∈ S, define restricted,
renormalized probabilities p̃(j) = exp(zj)∑

k∈S exp(zk)
if j ∈ S and 0 otherwise. Let the outside mass be

ρ :=
∑

j /∈S p(j) ∈ [0, 1); then p̃(j) = p(j)
1−ρ for j ∈ S.

Assumption 3 (MoClip update). MoClip forms a momentum estimate m̂t and second-moment v̂t
(as in Adam/AdamW), then (i) caps the angle between gt and mt−1 by ∆max ∈ (0, π/2) to obtain
g′t, and (ii) applies an elementwise arctan 2 rescaling:

∆θt(i) = −α · m̂t(i)

|m̂t(i)|
arctan

(
|m̂t(i)|√
v̂t(i)

)
, ∀i ∈ [d], (9)

followed by decoupled weight decay (as in AdamW). This guarantees bounded updates per coordi-
nate and angle-aligned directions across steps.

D.2 BIAS OF RESTRICTED, RENORMALIZED CROSS-ENTROPY

We first quantify the gradient bias introduced by training with the restricted, renormalized set S,
assuming x ∈ S (our Stage 0 guarantee).
Lemma 1 (Logit-space gradient forms). For full softmax-CE, the logit gradient is gfullz = p−y. For
restricted, renormalized CE over S,

gSz (j) =

{
p̃(j)− y(j), j ∈ S,

0, j /∈ S.
(10)

Hence the logit-space bias ∆gz := gSz − gfullz satisfies

∆gz(j) =

{
ρ

1−ρ p(j), j ∈ S,

− p(j), j /∈ S.
(11)

Proof. By definition, gfullz = p − y. For j ∈ S, gSz (j) = p̃(j) − y(j) = p(j)
1−ρ − y(j); for j /∈ S,

gSz (j) = 0− y(j) = 0 since y(j) = 0 and x ∈ S. Subtracting yields the stated cases.
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Proposition 1 (Bias magnitude in ℓ1 and ℓ2). Under Assumption 2, the logit-space bias satisfies
∥∆gz∥1 = 2ρ, ∥∆gz∥2 ≤ 2ρ. (12)

Proof. Using Lemma 1,

∥∆gz∥1 =
∑
j∈S

ρ

1− ρ
p(j) +

∑
j /∈S

p(j) =
ρ

1− ρ
(1− ρ) + ρ = 2ρ. (13)

Then ∥∆gz∥2 ≤ ∥∆gz∥1 by norm monotonicity.

Remark 1 (Exact ℓ2 form). In fact,

∥∆gz∥22 =
∑
j∈S

(
ρ

1−ρp(j)
)2

+
∑
j /∈S

p(j)2, (14)

so the ℓ2 bias can be much smaller than 2ρ if probability mass is dispersed.
Proposition 2 (Parameter-space bias via Jacobian). Let Jt = ∂zt/∂θ be the Jacobian at (X, t). The
parameter-space bias is

∆gθ = J⊤
t ∆gz, so ∥∆gθ∥2 ≤ 2 ∥Jt∥2 ρ. (15)

Corollary 1 (Bias control via mass threshold). If S is chosen as the smallest set whose cumulative
mass exceeds τ (with upper cap Kmax) and x ∈ S, then ρ ≤ 1− τ and

∥∆gz∥1 ≤ 2(1− τ), ∥∆gθ∥2 ≤ 2 ∥Jt∥2 (1− τ). (16)
Thus selecting larger τ directly tightens worst-case bias.
Remark 2 (Distributional perspective). Since ∥p− p̃∥1 = 2ρ (because p̃ renormalizes p on S), the
gradient bias bounds align with the total variation between p and p̃. This connects Stage 0 coverage
to Stage 1 gradient fidelity.

D.3 STABILITY PROPERTIES OF MOCLIP

We now formalize the two core properties of MoClip: (i) a lower bound on directional alignment
(progress) due to angle capping, and (ii) a per-coordinate step bound due to arctan 2 scaling.
Lemma 2 (Angular cap implies cosine lower bound). Let mt−1 ̸= 0 be the previous momentum and
g′t the angle-capped gradient with ∠(mt−1, g

′
t) ≤ ∆max. Then

⟨mt−1, g
′
t⟩

∥mt−1∥2 ∥g′t∥2
≥ cos(∆max). (17)

Remark 3 (Intuition). MoClip guarantees that even after clipping, each update makes at least
cos(∆max) progress along the momentum direction, preventing destructive zig-zags.
Lemma 3 (Per-coordinate and global step bounds with arctan 2). With the update in Assumption 3,

∥∆θt∥∞ ≤ α
π

2
, ∥∆θt∥2 ≤ α

π

2

√
d, (18)

where d is the parameter dimension.
Remark 4 (Intuition). This ensures per-coordinate stability, capping extreme updates regardless of
how small v̂t becomes — a principled replacement for Adam’s heuristic ϵ term.
Proposition 3 (One-step expected descent). Under Assumption 1 and Lemmas 2–3, there exist ex-
plicit constants

c1(∆max) = cos(∆max)/2, c2(L, d) = O(Ld), (19)
such that

E
[
f(θt+1)

∣∣ θt] ≤ f(θt)− α c1(∆max) ∥∇f(θt)∥2 + α2 c2(L, d). (20)
Corollary 2 (Convergence to a noise/curvature neighborhood). With a sufficiently small constant
stepsize α or a diminishing schedule {αt},

lim sup
T→∞

1

T

T∑
t=1

E∥∇f(θt)∥2 ≤ c2(L, d)

c1(∆max)
α. (21)

In particular, smaller ∆max (larger cos(∆max)) improves the directional-progress constant c1, while
excessively small ∆max can slow progress due to over-constrained steps. Empirically, ∆max ∈
[45◦, 60◦] balances the trade-off.
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Relation to TAM (qualitative). TAM continuously damps updates as the gradient–momentum
angle grows, while MoClip imposes a hard cutoff beyond ∆max. Thus MoClip directly controls
directional variance, whereas TAM retains small contributions from large-angle components. Our
empirical results mirror this geometry.

D.4 PUTTING THE PIECES TOGETHER

Proposition 4 (Descent with biased gradients). Let g̃t be the restricted-loss gradient and assume
the bias satisfies E∥g̃t − ∇f(θt)∥2 ≤ εt, where, by Proposition 2, εt ≤ 2 ∥Jt∥2 (1 − τ) in worst
case. Then the one-step inequality of Proposition 3 holds with an additional O(α εt) term, so that

E
[
f(θt+1)

]
≤ E

[
f(θt)

]
− α

(
c1E∥∇f(θt)∥2 − C εt

)
+ α2c2,

for some constant C independent of t. If supt εt is small (e.g., large τ ), the same neighborhood
convergence conclusion as Corollary 2 holds, with a slightly larger radius.
Corollary 3 (Guidelines implied by the bounds). (i) Choosing a large mass threshold τ (subject
to Kmax) makes ρ ≤ 1 − τ small, thereby reducing gradient bias (Proposition 2) and preserving
full-softmax behavior. (ii) Choosing ∆max within a moderate range ensures a favorable c1(∆max)
while avoiding over-constrained steps, which aligns with our empirical choice 45◦∼60◦.

TAKEAWAY

Our analysis shows that the proposed Logits Replay + MoClip framework is not only empirically
effective but also theoretically justified:

• Training on restricted vocabularies introduces a gradient bias proportional to the outside
mass ρ (Proposition 1); by selecting a sufficiently large coverage threshold τ , this bias can
be made arbitrarily small (Corollary 1).

• MoClip guarantees stability: angle clipping enforces a minimum alignment with past mo-
mentum (Lemma 2), while arctan 2 scaling caps each update’s magnitude (Lemma 3).
Together these yield provable descent bounds (Proposition 3).

• When combining the two, we obtain convergence to a small neighborhood whose size
depends jointly on the bias level (1 − τ ) and stability constants (∆max). This explains the
empirical trade-off: larger τ reduces bias, and moderate ∆max ensures smooth yet plastic
updates (Corollaries 2 and 3).

In summary, the theory supports our claim that Logits Replay + MoClip balances plasticity (domain
adaptation) and stability (retention of general skills) in a principled way: compressed supervision
limits overhead without destabilizing optimization, while MoClip prevents gradient noise from am-
plifying under restricted signals.

E MOCLIP HYPERPARAMETERS.

Fig. 4B1 and Fig. 4B2 show that ∆max ∈ [45◦, 60◦] balances accuracy (Birds/Spider) and stability
(Loss std), with high MMLU retention on the right axis.

Table 5 further quantifies this effect on Qwen3-4B. Smaller caps (e.g., 30◦) produce the lowest loss
variance and the highest retention, but slightly underperform 45◦ on CT and NL2SQL. Larger caps
(90◦) behave similarly to unconstrained AdamW, with weaker stability and increased forgetting.
Repeating the sweep on Qwen3-8B yields nearly identical patterns: ∆max ∈ [45◦, 60◦] is consis-
tently strong across all metrics, and 45◦ is either optimal or within 0.2 points of the best result. This
indicates that MoClip introduces only one additional hyperparameter with a wide, robust region; a
single default choice of 45◦ generalizes reliably across model sizes and domains.

We also compared MoClip against a TAM-style implementation (scaling updates by cos(ϕt)). TAM
provides strong stability but gradually accumulates damped gradients, effectively reducing learning
rate over long horizons and resulting in ∼1 point lower task accuracy on average. TAM occasionally
retains slightly more general knowledge (about +1% MMLU in one run), consistent with its stronger
suppression of misaligned directions. MoClip, in contrast, allows full plasticity within the allowed
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angular region and performs better on fine-tuning tasks, while remaining simpler to tune. Both
optimizers are stable; MoClip is chosen for its accuracy advantage.

Lastly, for the stable scaling mechanism, we tried removing it (i.e., using AdamW with ϵ = 10−8

inside MoClip). We observed one instance of a loss spike when ϵ was very small (10−8) and none
when ϵ = 10−6. The arctan 2 mechanism gave us confidence to set ϵ = 0 and not worry about this;
it did not noticeably change task metrics but provided a safety guard.

Hyperparameter sweeps (added per reviewer request). For all baselines, we performed light
sweeps over the key hyperparameters shown in Table 7. Where a three-point grid was used (e.g.,
learning rate), the selected value is an interior point. For two-point grids (Adam betas, gradient
clip), we follow standard LLM fine-tuning practice, as these ranges cover nearly all practically
useful settings. All baselines share the same fixed training configuration (batch size, max sequence
length, update steps). Replay baselines differ only by the replay data source.

Table 7: Hyperparameter sweep ranges and selected values for all baselines.

Tunable hyperparameters (swept) Fixed training settings

Hyperparameter Sweep values Selected Setting Value

Learning rate {3×10−6, 1×10−6, 5×10−7} 1×10−6 Global batch size 128
Weight decay {0.01, 0.001} 0.01 Max sequence length 8192
Gradient clip {0.5, 1.0} 1.0 Update steps 150
Adam betas {(0.9, 0.95), (0.9, 0.98)} (0.9,0.95) Finetuning mode full-parameter

F ADDITIONAL CLARIFICATIONS

CT and NL2SQL as evaluation workloads. The CT and NL2SQL datasets used in our experi-
ments are not intended as canonical OOD benchmarks. Instead, they represent the types of domain-
shifted workloads that arise in practical post-training pipelines, where the target distribution differs
substantially from the general-purpose pretraining corpus. Our goal is therefore to study continual-
adaptation techniques under realistic conditions in which domain specialization can impact general
capabilities. While extending to additional model families (e.g., Llama, Mistral) would further vali-
date generality, we leave this for future work.

Meaning of the removed epsilon. Here, the removed ϵ refers to the standard AdamW denomina-
tor constant added inside the square root. MoClip still uses the usual learning rate schedule; only
the ϵ-based safety term is eliminated because the arctan 2 formulation ensures bounded updates.

Staleness of Stage 0 logits. Although Stage 0 logits are collected before fine-tuning, they remain
effective anchors in Stage 1. The goal of replay is not to approximate the current model but to
preserve the predictive structure of the base model. Using static logits is analogous to fixed-teacher
distillation and avoids the cost of repeatedly querying a frozen teacher. Empirically, we find that
dynamic Top-K replay maintains high retention even though the logits are collected only once.
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