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Abstract

Large Language Models (LLMs) have demon-001
strated impressive performance across a wide002
range of applications; however, assessing their003
reasoning capabilities remains a significant004
challenge. In this paper, we introduce a frame-005
work grounded in group and symmetry princi-006
ples, which have played a crucial role in fields007
such as physics and mathematics, and offer an-008
other way to evaluate their capabilities. While009
the proposed framework is general, to show-010
case the benefits of employing these properties,011
we focus on arithmetic reasoning and investi-012
gate the performance of these models on four013
group properties: closure, identity, inverse, and014
associativity. Our findings reveal that LLMs015
studied in this work struggle to preserve group016
properties across different test regimes. In the017
closure test, we observe biases towards spe-018
cific outputs and an abrupt degradation in their019
performance from 100% to 0% after a specific020
sequence length. They also perform poorly in021
the identity test, which represents adding irrel-022
evant information in the context, and show sen-023
sitivity when subjected to inverse test, which024
examines the robustness of the model with re-025
spect to negation. In addition, we demonstrate026
that breaking down problems into smaller steps027
helps LLMs in the associativity test that we028
have conducted. To support these tests we have029
developed a synthetic dataset which will be re-030
leased.031

1 Introduction032

Large Language Models (LLMs) have shown re-033

markable capabilities across various domains, serv-034

ing as the foundation for numerous applications035

(Anil et al., 2023; Bubeck et al., 2023; OpenAI,036

2023; Brown et al., 2020; Kojima et al., 2022;037

Chowdhery et al., 2022; Saparov and He, 2022).038

Additionally, several studies have explored vari-039

ous aspects of the reasoning capabilities of LLMs040

showing significant performance improvements041

compared to previous domain specific models (Ko-042

jima et al., 2022; Wang et al., 2022; Mukherjee043

et al., 2023; Mitra et al., 2023; Shen et al., 2023).044

These studies have highlighted LLMs being able to045

understand and solve complex problems. Despite046

comprehensive evaluation on various benchmarks,047

LLMs still might fail in unpredictable ways. In this048

work, we propose a simple yet helpful framework 049

to study LLMs behavior from a different perspec- 050

tive grounded in group and symmetry principles. 051

Group and symmetry principles which made sig- 052

nificant contributions to numerous fields, such as 053

physics, mathematics, and chemistry (Sarlet and 054

Cantrijn, 1981; Jaffé and Orchin, 2002; Hargit- 055

tai and Hargittai, 2009; Fujita, 2012; Gazizov and 056

Ibragimov, 1998; Weyl, 2015; Polak and Trivers, 057

1994). These principles are foundation for under- 058

standing the fundamental structure of laws and 059

the behavior of complex systems. For instance, 060

in physics, group and symmetry principles have 061

played a pivotal role in shaping modern physics 062

by offering profound insights into the fundamen- 063

tal structure of physical laws and the behavior of 064

physical systems. Noether’s theorem serves as a 065

prime example, stating that every differentiable 066

symmetry of the action of a physical system with 067

conservative forces has a corresponding conser- 068

vation law (Kosmann-Schwarzbach et al., 2011; 069

Brading and Brown, 2003). As another example, 070

temporal translation symmetry states that the laws 071

of physics remain unchanged over time. This in- 072

variance of physical laws under time translation 073

leads to the conservation of energy. This principle 074

is essential to our understanding of various phys- 075

ical phenomena and is widely applied across nu- 076

merous disciplines, including mechanics, thermo- 077

dynamics, and electromagnetism (Gildener, 1976; 078

Aharonov et al., 1964; Sasa and Yokokura, 2016; 079

Lewis, 1930). Other group and symmetry princi- 080

ples in physics, including translation, rotation, and 081

gauge symmetries, have contributed to the discov- 082

ery of conservation laws and the formulation of 083

fundamental theories like the Standard Model of 084

particle physics (Weinberg, 1969; Feynman and 085

Weinberg, 1999). These principles have also been 086

instrumental in understanding the behavior of com- 087

plex systems, such as condensed matter systems 088

and cosmological models (Zee, 2010; Anderson, 089

1972). 090

Exploring the role of group and symmetry prin- 091

ciples in LLMs can lead to: 092

• Alternative Perspective to Measure LLMs’ Per- 093

formance: Investigating the role of symmetry in 094

LLMs can provide new strategies for evaluating 095

1



their performance, potentially leading to better096

learning methods. The significance of symmetry097

principles and group properties in these domains098

can be exemplified by the Winoground task and099

dataset (Thrush et al., 2022), which evaluates100

the ability of vision and language models to con-101

duct visio-linguistic compositional reasoning by102

matching images with captions containing identi-103

cal sets of words in different orders. For example,104

given an image and two captions, ‘an old person105

helping a young person’ and ‘a young person106

helping an old person’ a model that understands107

the non-symmetric nature of these sentences and108

leverages group properties can provide the cor-109

rect answer (Thrush et al., 2022; Lin et al., 2023).110

By connecting the role of symmetry and group111

properties in LLMs to the reasoning capabilities112

required for tasks like Winoground, we can de-113

velop a more comprehensive understanding of114

model performance and devise improved learn-115

ing methods.116

• Insights for Interpretability: Studying group117

properties and symmetry principles in LLMs118

can lead to more interpretable models, similar119

to the insights gained from saliency maps. This120

method is based on the idea that if a minor per-121

turbation in the input does not alter the meaning122

but results in a different output, the perturbed123

portion of the input is crucial for the model’s124

prediction (Simonyan et al., 2013; Sundararajan125

et al., 2017; Zeiler and Fergus, 2014). These126

principles help uncover hidden relationships and127

structures within the data, thereby facilitating im-128

proved decision-making and trust in the model’s129

predictions. For example, in an identity test, in-130

troducing various symmetries, such as inverse131

symmetry, to perturb the input query causes the132

output result to change. This is similar to ob-133

taining a saliency map by perturbing the prompt134

query and feeding it to the LLM. While saliency135

maps and symmetry principles share similarities136

in their focus on understanding the importance137

of different input elements, their approaches dif-138

fer. Saliency maps rely on perturbations to iden-139

tify crucial input components, whereas symmetry140

principles and group properties delve into the in-141

herent structure and relationships within the data.142

Group properties investigate the algebraic struc-143

tures governing the interactions between data144

elements, such as the presence of an identity145

element, the existence of inverses, and the as-146

sociative property. In addition, symmetry prin- 147

ciples examine how certain aspects of the data 148

remain unchanged or exhibit similar patterns un- 149

der specific transformations, including rotations, 150

reflections, and translations. By combining these 151

approaches, a more comprehensive understand- 152

ing of the data’s underlying organization can be 153

achieved. 154

• Robustness, Reliability: Analyzing the influence 155

of group properties on LLMs can aid in designing 156

ensemble strategies that combine the predictions 157

of multiple LLM’s outputs, to enhance overall ro- 158

bustness and generalization. Additionally, it can 159

help to better examine the confidence of LLM’s 160

output. For instance, using the closure, inverse, 161

identity, and associativity tests, we observe that 162

LLMs studied in this work fail for sequences 163

longer than 15 elements, and the confidence level 164

decreases as we increase the length of the se- 165

quence in the simple addition task. 166

• Generalization across Domains: Incorporating 167

symmetry and group properties into LLMs can 168

improve their generalization capabilities across 169

various domains such as chemistry. For example, 170

for a language model that is trained to predict 171

the products of a reaction A+B → C +D, by 172

understanding that the reaction B + A should 173

have a similar prediction as A + B due to the 174

symmetric nature of the reactants, the model can 175

leverage this knowledge to improve its perfor- 176

mance on reaction prediction tasks. The under- 177

standing of symmetry and group properties in 178

this case allows the language model to recognize 179

the invariance of reaction outcomes under differ- 180

ent reactant orders, leading to more consistent 181

predictions of chemical reactions. 182

Our primary focus in this study is to assess per- 183

formance of LLMs in arithmetic reasoning tasks 184

using these principles. Our goal is NOT to show 185

that they have good or bad performance in arith- 186

metic operations as this has already been studied in 187

previous studies (Kojima et al., 2022; Mitra et al., 188

2023; Wang et al., 2022), but to use them as scenar- 189

ios to show the added value of using group proper- 190

ties for analysis. We investigate the performance 191

of GPT-4 and GPT-3.5 on four group properties: 192

closure, identity, inverse, and associativity. Our 193

main findings are: 194

• Language models studied in this work exhibit 195

significant sensitivity to the identity test. For 196
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instance, GPT-4 achieves a 100% accuracy rate197

in the closure test for sequences involving the198

addition of ones, with lengths varying from 5199

to 35. However, when we assess the identity200

test by incorporating zeros into the input, even201

at a smallest proportion of 25% of the sequence202

length, GPT-4’s accuracy experiences a consider-203

able decline, approaching zero.204

A similar pattern is observed in GPT-3.5. A good205

analogy for the identity test is introducing irrele-206

vance to the input of natural language. Consider207

the following example from the GSM-IC dataset208

(Shi et al., 2023):209

Original Problem:
Q: Elsa has 5 apples. Anna has 2 more ap-
ples than Elsa. How many apples do they
have together?

Problem with Irrelevant Context:
Q: Elsa has 5 apples. Anna has 2 more ap-
ples than Elsa. Liz has 4 peaches. How
many apples do they have together?

The authors in (Shi et al., 2023) demonstrate that210

even with a variety of prompting techniques on211

the GSM-IC dataset the models are all sensitive212

to irrelevant information in the input. By lever-213

aging group properties, specifically identity test,214

we can assess the robustness of the model in a215

more controlled and cost effective manner.216

• In the identity test, we observed that the accuracy217

of models such as GPT-4 and GPT-3.5 decreases218

when zeros are inserted into the summation of219

ones. The performance decline follows this order:220

adding irrelevant information randomly, insertion221

in the middle, adding irrelevant information at222

the beginning, and lastly, at the end. Our results223

align with (Liu et al., 2023), which demonstrated224

that changing the position of relevant informa-225

tion within the input context of language models226

leads to variations in performance. This find-227

ing suggests that introducing irrelevant elements228

at various positions within natural language se-229

quences can pose a significant challenge for mod-230

els like GPT-4 or GPT-3.5. However, employing231

group properties and simple tests, such as addi-232

tion, can aid in validating and identifying these233

issues early on with less computation costs.234

• In our analysis of the inverse properties within235

group properties, we found that the LLMs inves-236

tigated in this work display sensitivity when sub-237

jected to inverse tests. Our inverse test consists 238

of adding negative ones to the sum of ones, yield- 239

ing a final result of zero. Inverse properties bear 240

resemblance to the introduction of negation in 241

natural language. Similarly, the study by (Truong 242

et al., 2023) highlights that LLMs exhibit mul- 243

tiple limitations in handling negation, including 244

an inability to reason effectively under negation. 245

By implementing the test framework proposed 246

in this study, these issues can be identified in 247

advance in a given LLM. 248

• In the associativity test, we decompose each sum- 249

mation into smaller steps for the model to process. 250

Our findings indicate that GPT-4 demonstrates a 251

significant improvement in performing addition 252

tasks compared to GPT-3.5 when problems are 253

broken down into smaller components. Our re- 254

sults highlight the importance of decomposing 255

problems into smaller, more manageable pieces 256

that can be effectively solved by the model which 257

is reported using more complex tasks in (Kojima 258

et al., 2022). By employing group analysis, it 259

is possible to identify and address these issues 260

through the implementation of straightforward 261

tests proposed in this work. 262

2 Symmetry in LLMs 263

Symmetry and invariance are fundamental concepts 264

in understanding the behavior of systems (Good- 265

man et al., 2009). An object or quantity is said to 266

be invariant if it remains unchanged under trans- 267

formations (Kosmann-Schwarzbach et al., 2011). 268

Consider an arbitrary quantity F = F (A,B,C, ...) 269

that depends on different quantities. If we trans- 270

form A,B,C, ... to their respective primed vari- 271

ables A′, B′, C ′, ..., and we have 272

F (A′, B′, C ′, ...) = F (A,B,C, ...) (1) 273

then F is said to be invariant under the given 274

transformation. 275

Invariance can also be described through the con- 276

cept of symmetry. A system is symmetric if it re- 277

mains the same after a transformation or class of 278

transformations. For instance, a physical system is 279

symmetric under rotations if it can be rotated in any 280

direction and remains unchanged. The set of all 281

transformations that leave a given object invariant 282

is called a symmetry group (Olver, 1995; Goodman 283

et al., 2009). 284

Throughout this paper, we will use the following 285

symmetries to investigate the capabilities of LLMs: 286
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Translation Symmetry: This type of symmetry287

refers to the invariance of a system or pattern under288

a spatial transformation, such as shifting or slid-289

ing. In the context of LLMs, translation symmetry290

can help us understand how the models respond291

to changes in the position of elements within a292

sequence (Weyl, 2015).293

Random Swapping Symmetry: Also known294

as permutation symmetry, this concept involves295

the invariance of a system or pattern under the296

exchange of its elements. In our study, we will use297

random swapping symmetry to analyze how LLMs298

handle rearrangements of input elements, providing299

insights into their robustness and generalization300

capabilities (French and Rickles, 2003).301

Inverse Symmetry: This type of symmetry is302

characterized by the invariance of a system or pat-303

tern under an operation that reverses its elements304

or their order. In the context of LLMs, we will305

explore how the models perform when presented306

with inputs that have been transformed using in-307

verse symmetry, shedding light on their ability to308

recognize and process different representations of309

the same information (Morandi et al., 1990).310

To better understand the implications of these311

symmetries, we can examine them within the con-312

text of group theory. A group is a set G and binary313

operator ‘◦’ that satisfies closure, identity, inverses,314

and associativity (Aschbacher, 2000; de La Harpe,315

2000). A group is a set G and operator ◦ such that:316

• Closure: G is closed under ◦; i.e., if a, b ∈ G,317

then a ◦ b ∈ G.318

• Identity: There exists an identity element e ∈ G;319

i.e., for all a ∈ G we have a ◦ e = e ◦ a = a.320

• Inverses: Every element a ∈ G has an inverse321

in G; i.e., for all a ∈ G, there exists an element322

a′ ∈ G such that a ◦ a′ = a′ ◦ a = e.323

• Associativity: The operator ◦ acts associatively;324

i.e., for all a, b, c ∈ G, a ◦ (b ◦ c) = (a ◦ b) ◦ c.325

Group principles are essential in the laws of na-326

ture, as they encapsulate regularities that remain327

consistent regardless of specific dynamics. These328

principles impart structure and coherence to natural329

laws, enabling a better understanding of physical330

events and the discovery of the laws themselves.331

(Schwichtenberg, 2018; Lax, 2001; Tung, 1985;332

Bishop, 1993; Golubitsky and Stewart, 2003).333

Our goal is to conduct a comprehensive analysis334

for a given LLM to determine whether they main-335

tain group properties and symmetry principles. In336

this investigation, we will cover a broad spectrum337

of symmetries, including but not limited to rota- 338

tional, translation, scaling, swapping, and inverse 339

symmetries. Incorporating group properties and 340

symmetry principles can help LLMs better under- 341

stand and process structure and relationships. The 342

following are some examples of how these con- 343

cepts can enhance LLMs’ performance in various 344

tasks: 345

• Paraphrasing: Understanding the symmetries in 346

linguistic structures can help LLMs generate 347

more accurate and diverse paraphrases. For ex- 348

ample, given the sentence ‘Cats are great pets.’, 349

an LLM aware of subject-object symmetry might 350

generate a paraphrase like ‘Great pets are cats.’ 351

• Text Classification: By identifying symmetries 352

in text features, LLMs can better classify doc- 353

uments according to their topics, sentiment, or 354

authorship. For instance, recognizing symme- 355

try in word patterns and distributions could help 356

LLMs differentiate between news articles and 357

opinion pieces. 358

Examining group properties can help us under- 359

stand the fundamental characteristics of the LLMs 360

and potentially improve their performance in rea- 361

soning tasks due to the following factors: 362

• Identifying patterns: By leveraging group proper- 363

ties, LLMs can effectively identify and analyze 364

underlying patterns and relationships within a 365

problem, enhancing their problem-solving capa- 366

bilities. For instance, the set of even numbers can 367

be considered as a group, which enables an LLM 368

to unveil underlying connections and patterns 369

among them. For instance, it can determine that 370

the sum of two even numbers is always even. By 371

recognizing these patterns, the LLM can make 372

accurate predictions and solve problems related 373

to number sets and arithmetic operations more 374

efficiently. 375

• Comprehending problem structure: Investigating 376

group properties can potentially contribute to ad- 377

dress complex reasoning tasks more efficiently. 378

For instance, recognizing the group properties of 379

integers under addition operator allows LLMs to 380

devise strategic approaches to solve arithmetic 381

tasks. When solving for the sum of a series of 382

integers, the LLM can employ associativity to re- 383

arrange terms, thereby simplifying the problem. 384

Additionally, recognizing the role of identity el- 385

ements and inverses can help the LLM quickly 386
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identify shortcuts or eliminate unnecessary calcu-387

lations, leading to more efficient problem-solving388

and accurate results.389

• Reliable solutions: The utilization of group prop-390

erties in reasoning tasks contributes to the gen-391

eration of solutions that are both accurate and392

reliable, ensuring high-quality outcomes. For in-393

stance, if an LLM preserves the group properties394

of addition on a list of integers, it suggests that395

the LLM has a good understanding of the concept396

of addition operation.397

Our contributions in this work are:398

• An alternative evaluation perspective: Symmetry399

and group principles as tools for evaluating and400

understanding LLMs offer a different angle for401

evaluation, and can provide new insights about402

the inner workings of LLMs, helping to identify403

their strengths and weaknesses.404

• Dataset: We have developed a synthetic dataset405

specifically designed to evaluate the performance406

of LLMs in terms of group principles. This407

dataset allows us to systematically test LLMs’408

abilities to in terms of group principles.409

3 Experiments410

3.1 Group of Addition on a List of Integers411

Throughout the paper, we use the addition operator412

as the running example example to demonstrate413

our framework. We evaluate whether a given LLM414

maintains the group properties of integer addition.415

We propose the following experimental approach.416

Closure Test

1. Create a list of integers, such as [1, 2, 3].

2. Calculate the sum of the list, which in this case is 6.

3. Apply a symmetry operation to the list, such as swapping the first
and last elements. This results in a new list like [3, 2, 1].

4. Request the LLM to calculate the sum of the modified list.

5. If the LLM consistently yields the same integer result as the origi-
nal list (6 in this example), it implies that the LLM preserves the
closure property of the group.

417

Identity Test

1. Append zeroes to the list, resulting in a new list like [1, 2, 3, 0, 0].

2. Calculate the sum of the new list, which should be the same as the
original list (in this case, 6).

3. Perform a symmetry operation on the new list, such as reversing it
to get [0, 0, 3, 2, 1].

4. Ask the LLM to compute the sum of the modified list.

5. If the LLM consistently produces the same sum as the original list
(6 in this example), it suggests that the LLM preserves the identity
property of the group.

418
Inverse Test

1. Generate a new list where each integer is replaced by its negation,
resulting in a list like [-1, -2, -3].

2. Perform a symmetry operation on the new list, such as swapping
the first and last elements to get [-3, -2, -1].

3. Ask the LLM to compute the sum of the two lists ([1, 2, 3] and
[-3, -2, -1]).

4. If the LLM consistently produces a sum of 0, it suggests that the
LLM preserves the inverse property of the group.

419
Associativity Test

1. Split the list into sublists in different ways, for example, [[1], [2,
3]] and [[1, 3], [2]].

2. Perform a symmetry operation on each sublist, such as reversing
each sublist. This results in new arrangements like [[1], [3, 2]]
and [[3, 1], [2]].

3. Ask the LLM to compute the sum for each arrangement.

4. If the LLM consistently produces the same result for all arrange-
ments (6 in this example, which is the sum of the original list), it
suggests that the LLM preserves the associativity property of the
group.

420

These tests ensure to check if a given LLM not 421

only understands the concept of addition and the 422

associated group properties but also the symmetries 423

inherent in the operation. 424

3.2 Results 425

We present the results of our experiments on the 426

summation group. The summation of integer val- 427

ues forms a group because the sum of any two 428

integers is also an integer, thereby satisfying the 429

closure property. The identity element in this group 430

is zero, and the inverse of a value is its negative 431

counterpart. Furthermore, the summation of inte- 432

gers preserves the associativity property. To assess 433

the group properties using the summation opera- 434

tor, we work with a set of simple arithmetic ex- 435

pressions containing only the elements one, zero 436

(serving as the identity element), and negative one 437

(acting as the inverse element). We then proceed 438

to investigate all the group properties within these 439

expressions. Initially, we compared our findings 440

with other open-source language models, such as 441

LLAMA-2. However, the performance of these 442
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models was significantly lower than that of GPT-443

3.5 and GPT-4-32k, leading us to concentrate on444

the latter for our analysis. For a more detailed ex-445

ploration of our experiments with small language446

models (SLMs), please see Appendix 5. Addition-447

ally, a simple example of group theory and symme-448

try in vision models is provided in Appendix 5. We449

have conducted each experiment 10 times and have450

reported the average accuracy.451

3.3 Closure Test452

For the closure test, we have examined a set of453

elements consisting solely of ones, combined using454

the summation operation. We have created sets of455

varying lengths and test expressions ranging from456

a summation of five ones (1 + 1 + 1 + 1 + 1) to a457

sum of 150 ones.458

The results are presented in Figure 1. The x-axis459

displays varying lengths of expressions consisting460

of repeated ones in summation, while the y-axis461

represents the accuracy of the two LLMs, GPT-4-462

32k and GPT-3.5. The color indicates the average463

accuracy over 10 runs for each test. It becomes464

evident that GPT-3.5 and GPT-4-32k provide ac-465

curate results for sums of ones up to 35 elements;466

however, their performance declines beyond this467

point, failing to maintain closure properties. This468

observation suggests that LLMs’ capabilities for469

performing summation are significantly limited be-470

yond a certain sequence length. Another insight471

from Figure 1 is that these LLMs can accurately472

compute sums for 50 and 100 ones. However, fur-473

ther analysis reveals that they predominantly return474

values of 100 and 50 when the actual values are475

around and not exactly 100 and 50, respectively,476

indicating a significant bias towards these values.477

Figure 2 showcases the frequency of GPT-4-32k478

outputting 100 (blue) and 50 (red) when the ground479

truth ranges from 5 to 150 for closure test expres-480

sions which represents a bias towards these values.481

Additionally, this experiment demonstrates that,482

due to these biases, repeating the experiment will483

not improve the results. For the ablation study,484

please refer to Appendix 5.485

3.4 Identity Test486

In our identity test, zero is the identity element for487

the summation of integers of ones. For this test, we488

will first add different proportions of zeros to our489

summation expressions. We will choose the ratios490

of [0.25, 0.5, 0.75, 1] for adding zeros with respect491

to the expression length. For example, for the ratio492

Figure 1: Closure test: Average accuracy of GPT-4-32k and
GPT-3.5 for sums of ones. The x-axis illustrates the varying
lengths of expressions composed of summations of repeated
ones. The y-axis denotes the accuracy of the two LLMs, GPT-
4-32k and GPT-3.5. The color represents the average accuracy
obtained from 10 runs for each test.
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Figure 2: Number of times GPT-4-32k outputs 100 (blue)
and 50 (red) compared to ground truth for closure expres-
sions. This visualization emphasizes the biases in the LLMs’
responses and offers a deeper insight into their limitations
when handling summation tasks.

of 0.5 and the expression 1+1+1+1+1, we will 493

modify it to 1+ 1+ 1+1+1+0+0. By passing 494

these expressions, we can investigate if and to what 495

extent LLMs studied in this work can preserve the 496

identity test. 497

In our experiment, we can also apply different 498

symmetries to each expression. We apply inverse, 499

random swapping, and translation symmetry. For 500

the inverse symmetry, we will place zeros from 501

the end of the sequence to the beginning, and for 502

the translation symmetry, we will shift all the ze- 503

ros to the middle of the expressions. For random 504

swapping, we will swap the zeros randomly. Then, 505

we provide these expressions as input to the LLMs. 506

For example, for the expression 1+1+1+1+1, we 507

pass the following expressions to LLMs to examine 508

their identity preservation test: 509
• 1 + 1 + 1 + 1 + 1 + 0 + 0 (adding identity elements) 510

• 0 + 0 + 1 + 1 + 1 + 1 + 1 (inverse symmetry) 511

• 1+0+1+1+1+1+0 (random swapping symmetry) 512
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• 1 + 1 + 0 + 0 + 1 + 1 + 1 (translation symmetry)513

Figure 3 presents the results of these expressions514

with different lengths ranging from 5 to 150 and515

displays the accuracy of each LLM on each of these516

tests with different ratios of adding zeros. Altering517

the expressions using different symmetries changes518

the results and deteriorates the accuracy in many519

cases. The accuracy of these models degrades for520

various symmetric expression variations beyond a521

sequence length of 5.522

3.5 Inverse Test523

To test the inverse properties of a group, we add524

the negative values of each expression to the ex-525

pression itself and examine different variations of526

the expression. We then test different modifica-527

tions of the expression using symmetry principles,528

such as inverse, random swapping, and translation529

symmetry. For inverse symmetry, we add the in-530

verse element to the beginning of the expression.531

For translation symmetry, we add the inverse ele-532

ment to the middle of the expression. For random533

swapping, we add the inverse elements to random534

positions within the expression. For example, to535

test the inverse properties, we modify the expres-536

sion 1+1+1+1+1 to the following variations, with537

the expectation that the ground truth for each ex-538

pression should be zero:539
• 1 + 1 + 1 + 1 + 1 − 1 − 1 − 1 − 1(adding inverse540

elements)541

• −1−1−1−1−1+1+1+1+1+1(inverse symmetry)542

• 1+1−1+1−1−1+1−1−1+1(random swapping543
symmetry)544

• 1 + 1 + 1 − 1 − 1 − 1 − 1 − 1 + 1 + 1(translation545
symmetry)546

There is a caveat here: if LLMs are biased to-547

wards zeros, this might affect the results. However,548

this is not a significant concern, as we are not re-549

lying solely on this experiment to understand how550

inverse properties impact these models. We could551

test these expressions by changing them in a way552

that the summation is non-zero, for example to553

1+1+1+1+1-1-1 or 1+1+1+1+1-1. However, for554

simplicity, we will only consider adding the same555

number of negative ones to each expression in this556

experiment. Figure 4 shows the result of our exper-557

iment for the inverse properties. We can observe558

from the figure that the LLM’s outputs for some559

of these expressions fail early on, while for oth-560

ers, it returns accurate results. This suggests that561

the model’s performance may be influenced by the562

complexity or structure of the expressions.563

3.6 Associativity Test 564

In this section we investigate the group’s associativ- 565

ity properties. This test is crucial because if LLMs 566

can understand associativity properties, it implies 567

that they can simplify problems by decomposing 568

them down into smaller components and solving 569

them. Another benefit of analyzing this property 570

is we can mitigate possible biases for example in a 571

case like the summation of values near 100 where 572

LLMs produce an incorrect output of 100, the asso- 573

ciativity properties can be used to break down the 574

problem into smaller components and mitigate the 575

effect of biases toward these values. 576

For the associativity test, the expressions from 577

the closure test have been broken down into smaller 578

components. We have decomposed the original 579

expression into smaller segments with ratios of 3/8 580

and 5/8, referred to as test 1, and into segments 581

with ratios of 1/4 and 3/4, referred to as test 2. For 582

each ratio, the query is divided into two segments 583

and each segment has been passed to the LLM 584

to obtain the result. Then, the outputs of the two 585

segments are provided and the LLM is queried to 586

obtain the final result. For example, for the query 587

1 + 1 + 1 + 1 + 1 + 1 with test 2, we break it 588

down into two segments: 1 and 1 + 1 + 1 + 1, and 589

pass each one to the model. Suppose the LLMs’ 590

output for each query is 1 and 4; then, we will pass 591

1 + 4 to the LLMs one last time to obtain the final 592

result. We will repeat each experiment 10 times 593

and report the average accuracy. Figure 5 shows 594

the results of the associativity test. We can derive 595

several insights from this experiment: 596

• Breaking down problems into smaller sub se- 597

quences improves the accuracy of LLMs. 598

• Segmenting and breaking down problems using 599

test 1 yields better results for LLMs. This is 600

reasonable since the other test creates shorter and 601

longer segments, with the longer ones being more 602

difficult for LLMs to solve, leading to a higher 603

number of incorrect answers overall. 604

• LLMs fail to preserve associativity beyond a cer- 605

tain point, as they also fail the closure test. 606

4 Conclusion and Future Work 607

In this study, we introduced a framework for test- 608

ing the behavior of large language models based 609

on group and symmetry principles. Our experi- 610

ments involved GPT-4 and GPT-3.5, examining 611
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Figure 3: Identity Test. The average accuracy of GPT-4-32k and GPT-3.5 when evaluating sums of ones with varying expression
lengths and applying different symmetries. The x-axis represents the expression lengths, while the y-axis indicates the accuracy
for GPT-4-32k and GPT-3.5 under various symmetry conditions. The color intensity signifies the average accuracy obtained
from 10 runs for each test.

Figure 4: Inverse Test. The average accuracy of GPT-4-
32k and GPT-3.5 when evaluating sums of ones and their
inverses for various lengths. The x-axis represents the ex-
pression lengths, while the y-axis indicates the accuracy for
GPT-4-32k and GPT-3.5 under various inverse symmetry con-
ditions. The color intensity signifies the average accuracy
obtained from 10 runs for each test.

their performance on four group properties: clo-612

sure, identity, inverse, and associativity. The results613

indicated that they face challenges in maintaining614

group properties under various circumstances. We615

also showed that similar behavior is observed for616

small language models like Llama2, Mistral, Vi-617

cuna and Phi2. The models showed significant618

performance drop across all tests, which might619

be attributed to the insufficient memory retention620

with respect to context. For example, after a se-621

quence length of 15 for identity test and sequence622

Figure 5: Associativity Test. The average accuracy of GPT-4-
32k and GPT-3.5 for the associativity test for test 1 (top) and
test 2 (bottom). The x-axis represents the expression lengths,
while the y-axis indicates the accuracy for GPT-4-32k and
GPT-3.5. The color intensity signifies the average accuracy
obtained from 10 runs for each test.

length of 50 for closure, performance becomes 623

0%. We conducted tests with both open-weight 624

and closed-weight models, finding that although 625

different tokenizers may contribute to the problem, 626

the root cause could extend beyond better tokeniza- 627

tion strategies. A good direction for future work is 628

exploring whether these tests can provide insights 629

and be used as a predictor for model’s performance 630

on real-world language understanding and genera- 631

tion tasks. 632

8



5 Limitations633

One key limitation is that we have not explored why634

models perform worse with longer text sequences635

or why they seem to favor certain numbers. Under-636

standing these patterns is critical for making LLMs637

work better and more dependably. To address these638

gaps, our future work will specifically target the639

underlying mechanisms that contribute to perfor-640

mance degradation in extended sequences and the641

emergence of numerical biases. Moreover, it is im-642

portant to expand the scope of our investigations to643

encompass a more diverse set of models. A com-644

parative analysis across a spectrum of LLMs will645

provide valuable insights into the varied behaviors646

and capabilities of these models, thereby enrich-647

ing our understanding of their general performance648

characteristics.649
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Appendix: Experiments on SLM 814

In the appendix we show some of our experiments 815

with smaller language models. Our initial tests 3 816

presented challenges for smaller language models 817

like Mistral-7B-Instruct. For example, in the iden- 818

tity test with a sequence length of five, the model 819

had trouble generating the accurate ground truth as 820

shown in Table 1. 821

Test Ground Truth Mistral-7B-Instruct

Identity Test 5 [6, 6, 7, 5, 6]
Translation Symmetry 5 [4, 5, 4, 4, 4]
Inverse Symmetry 5 [6, 6, 6, 6, 6]
Random Swapping 5 [6, 6, 6, 6, 6]

Table 1: Mistral-7B-Instruct output for the identity test
with a ground truth of 5, as described in Experiment 3.

As a result, we designed simpler tests specifi- 822

cally tailored for these models. In this study, we 823

develop and release a dataset containing arithmetic 824

questions embedded within natural language texts 825

10
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set in real-life scenarios. We focus on testing both826

smaller and larger models with this dataset, as the827

required reasoning involves only a few steps. The828

objective of the experiment is to apply group and829

symmetry principles to evaluate the language mod-830

els’ ability to solve arithmetic problems accurately.831

Furthermore, this experiment emphasizes the prac-832

tical application of group and symmetry principles,833

aiming to uncover biases and limitations within834

these models.835

The gray boxes showcase a selection of exam-836

ples from this dataset.837

• After creating the questions, we use the ran-838

dom swapping symmetry technique to shuffle839

the middle sentences of each question in the840

dataset, while keeping the first and last sen-841

tences in their original positions. By utilizing842

the random swapping symmetry technique,843

we aim to investigate its effect on the language844

model’s performance. For each question, we845

generate 5 different random permutations of846

the sentences in the text and report the aver-847

age accuracy as the performance metric. This848

approach allows us to assess the model’s abil-849

ity to adapt to varying sentence structures and850

maintain its problem-solving capabilities.851

• In the second part of the experiment, we intro-852

duce adding irrelevant information to the ques-853

tions to further evaluate the model’s capabili-854

ties. For each question, we generate additional855

sentences, , with one example showcased in856

the purple box titled ’Irrelevant information’857

(see 5). We then shuffle the middle sentences858

of each question in the dataset, along with the859

irrelevant sentences. We provide the modified860

input to the model and perform five iterations861

to calculate the average accuracy as a perfor-862

mance metric. The results can be found in863

Table 2.864

By applying the random swapping symme-865

try technique, we observed that the Mistral-7B-866

Instruct language model’s output, indicated in867

blue, consistently exhibited missing or skipped868

parts shown in red in the same location across all869

shuffled versions for some of the questions in the870

dataset.871

Mistral-7B-Instruct, Version 1872

Samantha has 2 stuffed animals. Then, she received one

more stuffed animal from her friend. Next, her aunt

gave her one more stuffed animal. Then, she won a

stuffed animal at a school event. She bought a stuffed

animal from her favorite store. Later, she found one

more stuffed animal in her toy box. She also bought

one stuffed animal from the mall. Her brother gave

her another stuffed animal. After that, her dad bought

her another stuffed animal.Then she borrowed another

stuffed animal from her sister. Finally, she got one more

stuffed animal as a gift from her neighbor. How many

stuffed animals does Samantha have now?

Mistral-7B-Instruct output: Samantha started

with 2 stuffed animals. After receiving one from her

friend, her aunt gave her one, she won one, bought one,

found one, bought one, received one from her brother,

received one from his dad, and received one from her

neighbor, Samantha now has a total of 11 stuffed animals 873

Mistral-7B-Instruct, Version 2

Samantha has 2 stuffed animals. Then, she received one

more stuffed animal from her friend. Her brother gave

her another stuffed animal. Then, she won a stuffed

animal at a school event. She also bought one stuffed an-

imal from the mall. Then she borrowed another stuffed

animal from her sister. Next, her aunt gave her one more

stuffed animal. She bought a stuffed animal from her

favorite store. Later, she found one more stuffed animal

in her toy box. After that, her dad bought her another

stuffed animal. Finally, she got one more stuffed animal

as a gift from her neighbor. How many stuffed animals

does Samantha have now?

Mistral-7B-Instruct output: Samantha started

with 2 stuffed animals, then she received 1, her brother

gave her 1, she won 1, bought 1, borrowed 1, received 1,

bought 1, found 1, and received 1 from neighbor, making

a total of 11 stuffed animals.

Mistral-7B-Instruct, Version 1 874
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Emily has two puzzles. Then, she received
one more puzzle from her friend. Next, her
aunt gave her one more puzzle. Then, she
won a puzzle at a school event. She bought
a puzzle from her favorite store. Then she
borrowed another puzzle from her sister. Later,
she found one more puzzle in her toy box. She
also bought one puzzle from the mall. Her
brother gave her another puzzle. After that,
her mom bought her another puzzle. Finally,
she got one more puzzle as a gift from her
neighbor. How many puzzles does Emily have
now?

Mistral-7B-Instruct output: Emily started with

two puzzles. She received one puzzle from her friend,

one from her aunt, won one at a school event, bought one,

borrowed one from her sister, found one, bought one at

the mall, received one from her brother, and received

one as a gift from her neighbor. In total, Emily now has

13 puzzles.875

Mistral-7B-Instruct, Version 2

Emily has two puzzles. She bought a puzzle
from her favorite store. Then, she received
one more puzzle from her friend. Her brother
gave her another puzzle. After that, her mom
bought her another puzzle. Later, she found
one more puzzle in her toy box. Next, her
aunt gave her one more puzzle. Then, she won
a puzzle at a school event. She also bought
one puzzle from the mall. Then she borrowed
another puzzle from her sister. Finally, she got
one more puzzle as a gift from her neighbor.
How many puzzles does Emily have now?

Mistral-7B-Instruct output: Emily has a total

of 13 puzzles now. She got one from her favorite store,

one from her friend, one from her brother, one from her

mom, one from her toy box, one from her aunt, one from

the school event, one from the mall, and one from her

neighbor.

We observed that the Llama-2-7B-chat model ex-876

hibits similar behavior, where the language model877

skips some of the context of input query, leading to878

incorrect answers.879

Llama-2-7B-chat880

Samantha has one stuffed animal. Next, her
aunt gave her one more stuffed animal. She
got one more from her closest friend. After
that, her dad bought her another stuffed ani-
mal. Later, she found one more stuffed animal
in her toy box. Then, she won a stuffed ani-
mal at a school event. She also bought one
stuffed animal from the mall. Her brother
gave her another stuffed animal. Then she
borrowed another stuffed animal from her sis-
ter. Then, she received one more stuffed an-
imal from her friend. She bought a stuffed
animal from her favorite store. Finally, she
got one more stuffed animal as a gift from
her neighbor. How many stuffed animals does
Samantha have now?

Llama-2-7B-chat output: Answer: Samantha

has 10 stuffed animals. Explanation: 1. She had one

stuffed animal to start with. 2. Her aunt gave her one

more, so she has 2 stuffed animals now. 3. Her closest

friend gave her one more, so she has 3 stuffed animals

now. 4. Her dad bought her another, so she has 4 stuffed

animals now. 5. She found one more in her toy box,

so she has 5 stuffed animals now. 6. She won one at

a school event, so she has 6 stuffed animals now. 7.

She bought one from the mall, so she has 7 stuffed

animals now. 8. Her brother gave her another, so she has

8 stuffed animals now. 9. She borrowed one from her

sister, so she has 9 stuffed animals now. 10. She received

one more from her friend, so she has 10 stuffed animals

now. Therefore, Samantha has 10 stuffed animals in

total. 881

One implication of group and symmetry principles 882

in this scenario is that by utilizing the output of the 883

language model, we can identify the missing parts 884

and potentially address inconsistencies in the out- 885

put of language model which could lead to further 886

improvements in the model’s performance and a 887

deeper understanding of the underlying patterns. 888

Table 2 shows the accuracy of different models 889

on the for this dataset. Additionally, we introduce 890

irrelevant information to each question using GPT4 891

model and calculate the accuracy of different mod- 892

els. For instance, in the case of question 5 within 893

the box, we incorporate the following irrelevant 894

information: 895
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Irrelevant information
Samantha is a young girl with a passion for collecting

stuffed animals. She grew up in a loving family with her

parents, brother, and sister, who all supported her hobby.

Samantha is known for her kind and caring nature, often

sharing her stuffed animals with her friends and family.

She enjoys visiting different stores and events to find

unique and special stuffed animals to add to her collection.

Samantha’s love for stuffed animals has also inspired her

to volunteer at a local children’s hospital, where she brings

joy to the patients by sharing her collection with them.
896

Model Permutation Irrelevancy

Mistral-7B-Instruct 26.6% 18%
Mistral-7B-Instruct + COT 33.3% 24%

Llama-2-7B-chat 6.89% 1.96%
Llama-2-7B-chat + COT 47.45% 5%

GPT4 16.6% 42%
GPT4 + COT 100% 80%

Table 2: Comparison of language model accuracy, high-
lighting the impact of question permutation and the
introduction of irrelevant information on model perfor-
mance.

Another observation we made was that employ-897

ing a chain of thought and step-by-step thinking898

improves the performance of the model, as demon-899

strated in (Kojima et al., 2022). However, intro-900

ducing irrelevant information to the question still901

negatively impacts the performance of language902

models like GPT-4-COT, resulting in a 20% de-903

crease.904

The accuracy of GPT-4 increased when irrele-905

vant information was added to the question. Upon906

further investigation, we discovered that GPT-4,907

when presented with irrelevant information, gener-908

ated answers that were closer to step-by-step think-909

ing.910

Appendix: Application of Symmetry911

Principles in GPT-4v Model Use Cases912

In another experiment, we utilized GPT-4v to find913

the behaviour of GPT4-v under permutation sym-914

metry. In this experiment, given a query figure we915

ask GPT4-v to compare it with another two figures916

using the following prompt.917

Prompt

Please rate the similarity between the query fig-
ure and Figure 1 and Figure 2 using the follow-
ing scale: 1 - Very similar or almost identical,
2 - Similar with minor differences, 3 - Mod-
erately similar with noticeable differences, 4
- Not very similar with significant differences,
5 - Not similar or completely different. Pro-
vide your response as a list, with the first value
indicating the similarity to Figure 1 and the sec-
ond value indicating the similarity to Figure 2.
Also, explain your reasoning. This is the query
figure: [query.png]. Here are the two figures:
[Figure1.png][Figure2.png]

918

We conducted two tests to explore GPT-4v’s lim- 919

itations in using group and symmetry principles. 920

In both tests, we compared the query figure to Fig- 921

ure 1 and Figure 2, with one of the figures being 922

identical to the query figure and the other being 923

different. In the first test, Figure 1 was identical to 924

the query figure, while in the second test, Figure 2 925

was identical. 926

We found that in first setting that Figure 1 is 927

identical to query figure the GPT4-v response was: 928

First Setting: GPT4-v response

Figure 1 is very similar or almost identical to
the query figure, with closely matching patterns,
amplitudes, and frequencies of the waves and
only minor variations. In contrast, Figure 2
has significant differences, displaying a distinct
wave pattern with more pronounced peaks and
troughs, as well as differing wave amplitudes,
indicating a substantial difference in the data
represented.

929

However, for the second test, where Figure 2 930

was identical to the query figure, the response was: 931

Second Setting: GPT4-v response

Figure 1 exhibits a similar overall pattern and
amplitude to the query figure, with only mi-
nor differences in specific peaks and troughs.
Conversely, Figure 2 has a noticeably different
pattern, especially in the latter half of the figure,
where the peaks and troughs do not align as
closely with the query figure.

932

In another case, all three figures were exactly 933

the same, and this was the response provided by 934
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GPT-4v:935

Second Setting: GPT4-v response

Figure 1 is more similar to the query figure.
Both figures have the same pattern and shape,
while Figure 2 has a slightly different pattern
and shape.

936

Upon examining figure permutations, we found937

that the GPT-4v model’s responses can vary sig-938

nificantly, highlighting its sensitivity to figure ar-939

rangement. By employing symmetry and group940

principles, we can better understand these inconsis-941

tencies and improve the model’s performance.942

Appendix: Ablation Study943

To investigate whether there is a bias towards spe-944

cific points like 100 and 50, and to ensure that this945

is not solely related to the number 1s used in the946

study, we also experimented with substituting 1s947

with words such as ‘apples’, ‘oranges’, and ‘ba-948

nanas’. We asked the language models to count the949

number of these items within the ranges [40− 60]950

and [90− 110], and The predictions obtained when951

substituting ones with ‘apples’ are illustrated in952

Figure 6. Similar behavior was observed for other953

cases as well. Red dots represent incorrect predic-954

tions, while blue dots indicate correct predictions.955

As can be seen, the language model frequently956

predicts incorrectly for values around 100 and 50,957

exhibiting a bias towards these values.958

30 40 50 60 70 80 90 100 11050 100
Large Language Model Answers

40

50

60

70

80
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110
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ou
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 Tr

ut
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Figure 6: Scatter plot of GPT-4-32k predictions for closure
test expressions using various items, illustrating the bias to-
wards values 50 and 100. Red dots represent incorrect predic-
tions, while blue dots indicate correct predictions. The plot
demonstrates the model’s tendency to predict 50 and 100 more
frequently, even when the actual values are slightly different.
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