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Interactive Distance Field Mapping and Planning to
Enable Human-Robot Collaboration
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Abstract—Robot manipulation in human-robot collaborative
applications require scene representations that are kept up-to-
date and facilitate safe motions in dynamic scenes. We present
an interactive distance field mapping and planning (IDMP)
framework that handles dynamic objects and collision avoidance
through an efficient representation. We define interactive mapping
and planning as the process of creating and updating the repre-
sentation of the scene online while simultaneously planning and
adapting the robot’s actions based on that representation. Given
depth sensor data, our framework builds a continuous field that
allows to query the distance and gradient to the closest obstacle at
any required position. The key aspect of this work is an efficient
Gaussian Process field that performs incremental updates and
implicitly handles dynamic objects with a simple and elegant
formulation based on a temporary latent model. Accompanying
video, code, and datasets are made publicly available3.

Index Terms—Interactive Mapping and Planning, Euclidean
Distance Fields, Gaussian Process, Human-Robot Collaboration.

I. INTRODUCTION

Robot manipulation in human-robot collaboration (HRC)
and other applications of robots in the field call for interactive
representations to deal with dynamic and evolving scenes. For
true collaboration in industrial settings, humans and robots
physically share the same space, e.g. working jointly and
simultaneously on the assembly of a product. Euclidean Dis-
tance Field (EDF) representations [1], [2], [3], [4], [5] that aim
to fulfil some of the above-mentioned requirements have been
proposed in the robotics literature. These representations have
the ability to dynamically update the changes in the scene via
the so-called free space carving method. This type of method
performs expensive ray-casting and progressive integration of
the Truncated Signed Distance Field (TSDF) to update the
map, resulting in free space that is only gradually cleared when
objects move in the scene.

This paper presents an interactive distance field mapping
and planning (IDMP) framework aimed at dynamic scenes
common in human-robot collaboration scenarios (see Fig. 1 as
an example). We propose to build and maintain an up-to-date
distance and gradient field using a Gaussian-Process-based
method capable of integrating depth sensor measurements
following our previous work in [6], [7]. Here, we present a
simple and elegant method for dynamic updates and fusion of
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Fig. 1: Interactive generation of a distance and gradient field
in an HRC setting. Coloured point cloud map of the scene and
one horizontal slice of the field.

our Gaussian Process (GP) distance field by querying distances
and gradients from a temporary latent GP distance field gen-
erated with only the points of the current frame. We name this
latent representation the “Frustum Field”. The Frustum Field
is able to deal with the discrepancy in the distance between
surface points that move in the current frame without the need
for ray-tracing. It also allows coherent fusion with a previously
mapped distance and gradient field. The fused representation
is continuous allowing querying of surface normals and the
Euclidean distance to the nearest surface and its gradient at an
arbitrary spatial resolution. These properties, through a single
unified representation, facilitate various downstream robot
manipulation tasks, such as 6D object pose estimation, motion
planning and grasp pose generation [8]. We experimentally
evaluate IDMP’s performance in both static and dynamic
scenes and benchmark it against state-of-the-art algorithms.
The key contributions of our proposed framework are:

• A novel dynamic update and fusion method for GP-based
distance and gradient fields. This method is based on a
latent representation named Frustum Field that enables
dealing with static, moving, and new points.

• An interactive distance field mapping and planning
(IDMP) framework that generates a continuous Euclidean
distance and gradient field online, and is integrated with
a gradient-based planner for 3D collision-free navigation.

• An efficient open-sourced ROS-based implementation of
the full IDMP framework.

II. PROPOSED FRAMEWORK

A. Gaussian Process Distance Field

We use the so-called reverting GP distance field originally
presented in [7] to build a distance and gradient field. Consider
a surface S in a Euclidean space RD, and a set of discrete
observations of S as y = {yj}Jj=1 ∈ R taken at locations
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X = {xj}Jj=1 ∈ RD. By modelling the occupancy o(x) :
RD 7→ R of the space with a GP as o ∼ GP (0, k(x,x′)), it is
possible to infer the surface occupancy ô(x∗) at any location
in the space. We arbitrarily define the occupied area to be
equal to 1. Therefore, y is equal to 1 for the GP inference:

ô(x∗) = kx∗X

(
KXX + σ2

oI
)−1

1. (1)

The distance field d̂(x∗) given any location x∗ is obtained by
applying a reverting function r to the occupancy field as

d̂(x∗) = r (ô (x∗)) . (2)

Considering the square exponential kernel k (x,x′) =

σ2 exp
(
−∥x−x′∥2

2l2

)
, substituting the reverting function of

square exponential kernel into Eq. 2 gives us:

d̂(x∗) =

√
−2l2 log

(
ô (x∗)

σ2

)
. (3)

We apply the linear operator of GP [9] to infer the gradient
along with the distance field without the normal as input.
Applying the linear operator to Eq. 1:

∇ô (x∗) = ∇kx∗X

(
KXX + σ2

oI
)−1

1, (4)

Computing the gradient of Eq. 3 with respect to the distance
shows that the gradient of d̂(x∗) aligns directionally with
the gradient of ô(x∗), albeit subject to a scaling factor. This
implies that ∇d̂(x∗) ≈ ∇ô(x∗) in term of direction.

B. Framework Overview

Fig. 2: System diagram of IDMP.

Given depth data in the form of pointclouds P{i} and sensor
poses TCi , we first model the temporary latent Frustum Field
(blue) with a GP using only P{i} as training points. All prior
training points P{0,...,i−1} in the Fused Field (yellow) (another
GP) are then passed to the Frustum Field. Given the sensor
pose, the Frustum Field selects from P{0,...,i−1} the points
that are within the frustum area Pf{0,...,i−1} and returns the
inferred values d̂f and ∇d̂f to the Fused Field. These distances
and gradients are used to perform fusion and dynamic update
by updating the training points that model the Fused Field.
The path planner then queries d̂o and ∇d̂o at the locations Po

to adapt its motion plans in response to a changing map.

C. Frustum Field
We use P{i} as a set of observations to model the Frustum

Field via Eq. 1 and apply the reverting function to obtain the
distance field. The Frustum Field is then inferred via Eq. 3.
By using the linear operator of GP for gradient inference, we
employ Eq. 4 to infer the gradients along with the distance.
After the Frustum Field is modelled, we query the distance
and gradient from the points Pf{0,...,i−1} to pass them to the
Fused Field for the interactive updates.

Fig. 3: A simplified illustration of the proposed method.

D. Fused Field
Before the update, the Fused Field is modelled based on

P{0,...,i−1}. After the fusion and dynamic update it is modelled
using P{0,...,i}. There are three key processes performed at
every frame: adjusting points for fusion, removing points
for dynamic updates, and inserting points for measurements
in new areas. Fig. 3 illustrates the way points are selected
given the Frustum Field. The top figure shows the points
P{0,...,i−1} before the update. The middle figure shows the
Frustum Field and the points involved in the three processes.
Red and yellow crosses are the new measurements P{i}. The
coloured background is the Frustum Field modelled using
P{i}. Circles coloured in red and pink are the prior training
points of the Fused Field located in the frustum, denoted
as Pf{0,...,i−1}. Note that we use the sensor pose to select
Pf{0,...,i−1} ⊂ P{0,...,i−1}. We then query the Frustum Field
to infer d̂f and gradient ∇d̂f to perform the fusion and
dynamic update. An advantage of this approach is that we
only query the Frustum Field once to perform the three further
processes described as follows.

1) Fusion: Let us denote the prior training points within
the frustum as Pa{0,...,i−1} ⊂ Pf{0,...,i−1} (red circles) and
corresponding distances and gradients as d̂a, ∇d̂a. A threshold
η on the distance value is then used to indicate if Pa{0,...,i−1}
are relatively close to the surface given the current Frustum
Field. For each point pa{0,...,i−1} in Pa{0,...,i−1}, the fusion
is performed by updating its position through the distance to
the surface d̂a in the direction of the gradient ∇d̂a as:

p̂a = pa − d̂a∇d̂a. (5)

Note that d̂a and ∇d̂a are the result of simply querying the
Frustum Field. No data association nor iteration is required
as GP distance inference produces directly the distance to the
surface and it is accurate through our reverting GP model.
After the fusion, Pa{0,...,i−1} is replaced by P̂a{0,...,i−1} as
the training point of the Fused Field. Note that since we have
P̂a{0,...,i−1}, we do not need to include new points in the
overlapping area (red crosses) into the Fused Field.

2) Dynamic Update: Let us denote the prior training points
to-be-removed as Pm{0,...,i−1} ⊂ Pf{0,...,i−1} (pink circles).
Note that in this case and without loss of generality, capturing
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measurements behind Pf{0,...,i−1} implies that the points
Pf{0,...,i−1} have moved and are not in the scene anymore.
The Frustum Field distance values d̂m for these points are
bigger than η as they are relatively far away from the current
captured measurements, which means the object has moved.
We then eliminate from the training set the removed points
Pm{0,...,i−1} of the Fused Field.

3) New Points Insertion: Let us denote the points in P{i}
that are outside of the overlapping area as Pn{i} (yellow
crosses). These points are directly added to the Fused Field
training set. Points outside the overlapping area in the Fused
Field remain the same (grey circles).

III. EVALUATION

We evaluate and benchmark the proposed mapping approach
in static and dynamic scenes. We also show the planning
performance in the presence of a dynamic object.

A. Mapping Results
1) Static Scene: Fig. 1 presents qualitative results where

IDMP queries are visualised. For every point in space, a
distance (colour) and direction (arrow) away from the closest
obstacle can be computed online and on-demand. The queries
are taken using a regular grid on a plane parallel to the table.
Note that because of the continuous nature of IDMP, the
query points can be located anywhere in space and are neither
constrained to be on a plane or a regular grid nor bound to a
specific spatial resolution.

(a) Distances (b) Gradients

Fig. 4: Evaluation using the Cow & Lady dataset: (a) RMSE
for distances; (b) cosine similarity for gradients (1.0 means
perfect alignment with ground truth).

To compare IDMP’s distance field accuracy to Voxblox [1]
and FIESTA [2], we compute the RMSE for each framework
while varying the spatial resolution. For Voxblox/FIESTA, this
corresponds to the voxel size. For IDMP we query at a regular
grid that corresponds to the centre of each voxel. Figure 4a
shows our experimental results. The accuracy for Voxblox
and FIESTA decreases with increasing spatial resolution. In
contrast, IDMP’s accuracy remains constant and there is no
requirement to pre-set a certain resolution illustrating the
advantage of using a continuous representation. The evaluation
of gradients is presented in Fig. 4b. This figure shows the mean
of the cosine similarities between the computed gradients and
the ground truth. Both IDMP and FIESTA perform better than
Voxblox for all voxel sizes and resolutions. FIESTA shows
slightly better performance than IDMP in some cases; how-
ever, at the cost of higher variability. In terms of computation
time for IDMP, updating the GP takes on average 250ms per
frame for this scene while the query step takes 2µs per point.

2) Dynamic Scene: We evaluate how each framework han-
dles dynamic scenes with moving objects. Fig. 5a shows a
Gazebo scene with a ball rolling on the table from left to
right. The last three subfigures show the surface points at
the end of the run for the three frameworks. Both FIESTA
and Voxblox show artefacts due to the progressive weighting
and integration while IDMP does not. IDMP results in the
best RMSE of 2.6cm which is more than a factor of 2 better
than FIESTA/Voxblox. Updating the GP for a scene of this
size takes on average 50ms per frame while the query step
takes 2µs per point. Only the time for processing the frame is
dependent on the size of the scene whereas the time needed
for the query remains constant.

(a) Gazebo (b) IDMP (c) FIESTA (d) Voxblox

Fig. 5: Evaluation of a dynamic scene: (a) setup in simulation;
(b) to (d) show the fused surface points at the end of the run.
Colours indicate the height of the points.

B. Motion Planning in Dynamic Scenes
In this experiment, we demonstrate that our method is able

to facilitate safe motion planning of a robot arm in the presence
of dynamic obstacles which is useful for close-proximity
human-robot collaboration tasks, see Fig. 6. Here, we utilise
the Covariant Hamiltonian optimisation-based motion plan-
ner (CHOMP) [10], a gradient-based trajectory optimisation
method that iteratively perturbs a given initial trajectory away
from obstacles. Due to a) the ability of our framework to
compute updated gradients analytically and b) the need to
only query the points Po the motion planner requires, we
can continuously replan online. The computation time for the
query is approximately 6.4ms (3190 points at 2µs/point).

(a) Original planned trajectory (no
obstacle encountered).

(b) Modified trajectory due to dy-
namic obstacle.

Fig. 6: Re-planning in the presence of a dynamic obstacle.
CHOMP approximates the manipulator via 29 spheres.

IV. CONCLUSION

In this paper, we presented an efficient interactive mapping
and planning framework named IDMP. Going forward, we
aim to further explore IDMP’s capabilities, such as multi-
resolution sampling and mapping uncertainty, for enhancing
motion planning, particularly for manipulation tasks in HRC
applications.
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