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ABSTRACT

We introduce EA3D, an Event-Augmented 3D Diffusion framework for general-
izable novel view synthesis from event streams and sparse RGB inputs. Existing
approaches either rely solely on RGB frames for generalizable synthesis, which
limits their robustness under rapid camera motion, or require per-scene optimization
to exploit event data, undermining scalability. EA3D addresses these limitations by
jointly leveraging the complementary strengths of asynchronous events and RGB
imagery. At its core lies a learnable EA-Renderer, which constructs view-dependent
3D features within target camera frustums by fusing appearance cues from RGB
frames with geometric structure extracted from adaptively sliced event voxels.
These features condition a 3D-informed diffusion model, enabling high-fidelity and
temporally consistent novel view generation along arbitrary camera trajectories.
To further enhance scalability and generalization, we develop the Event-DL3DV
dataset, a large-scale 3D benchmark pairing diverse synthetic event streams with
photorealistic multi-view RGB images and depth maps. Extensive experiments
on both real-world and synthetic event data demonstrate that EA3D consistently
outperforms optimization-based and generalizable baselines, achieving superior
fidelity and cross-scene generalization.

1 INTRODUCTION

Novel view synthesis and 3D scene reconstruction are fundamental tasks in computer vision, with
broad applications in robotics (Rosinol et al., 2023; Zhu et al., 2022; Yen-Chen et al., 2021), au-
tonomous driving (Yan et al., 2024; Lindström et al., 2024; Chen et al., 2025b), scene understand-
ing (Kerr et al., 2023; Liu et al., 2023a; 2024b), and beyond. Recent advances in Neural Radiance
Fields (NeRFs) (Mildenhall et al., 2020) and 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) have
substantially improved the photorealism of novel-view rendering by learning dense and continuous
scene representations. Despite their success, these approaches often struggle under high-speed motion
and fail to generalize to new scenarios, primarily due to their dependence on densely sampled RGB
frames and the need for per-scene optimization.

In novel view synthesis under fast camera motion, two major challenges undermine the performance of
traditional NeRF- and 3DGS-based methods. First, rapid motion often limits the number of available
training views, leading to an under-constrained reconstruction problem and causing overfitting to
training views or convergence to trivial solutions. Second, large inter-frame distance caused by
fast camera motion violates the smooth motion assumptions underlying feature matching, often
resulting in unreliable initialization of camera poses in SfM pipelines (Schonberger & Frahm, 2016),
which subsequently affects the optimization of NeRF (Mildenhall et al., 2020) or 3DGS (Kerbl et al.,
2023). To address these challenges, recent works (Klenk et al., 2023; Rudnev et al., 2023; Xiong
et al., 2024; Han et al., 2024; Cannici & Scaramuzza, 2024a; Qi et al., 2023; Yu et al., 2024a; Feng
et al., 2025; Low & Lee, 2023; Cannici & Scaramuzza, 2024b; Bhattacharya et al., 2024; Hwang
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et al., 2023; Zahid et al., 2025; Yin et al., 2024; Liao et al., 2024) have explored the use of event
cameras for novel view synthesis. Event streams captured by event cameras provide temporally
dense, low-latency geometric cues that remain robust under fast motion and challenging lighting
conditions, making them highly complementary to conventional frame-based cameras. In particular,
several methods (Liao et al., 2024; Klenk et al., 2023; Xiong et al., 2024) demonstrate that fusing
sparse RGB frames with continuous event streams enables accurate 3D reconstruction and novel view
synthesis under fast camera motion. However, these approaches still rely on optimization-based 3D
representations (Mildenhall et al., 2020; Kerbl et al., 2023), limiting their generalization to unseen
environments. On the other hand, generalizable novel view synthesis methods (Yu et al., 2021; Xu
et al., 2024b; Rockwell et al., 2021; Chen et al., 2024b; Liu et al., 2024a; Yu et al., 2025c; Jin et al.,
2024) learn strong priors over 3D structure and appearance from large-scale multi-view datasets (Ling
et al., 2024; Zhou et al., 2018; Reizenstein et al., 2021b; Yu et al., 2023b). However, their performance
often deteriorates in the presence of wide-baseline input views.

To address these challenges, we propose EA3D, an Event-Augmented 3D Diffusion model for
generalizable novel view synthesis from sparse RGB frames and continuous event streams. Our
model consists of two main components: Firstly, drawing inspiration from cost volume-based novel
view synthesis methods (Xu et al., 2024b; Chen et al., 2021; Liu et al., 2024c), we learn an Event-
Augmented Feature Renderer (EA-Renderer) to generate 3D features for each target view along the
novel trajectory, projecting both the appearance information from the RGB frames and the occlusion-
resilient geometry information from the unposed event streams into target camera frustums. Secondly,
we train a 3D-informed diffusion model conditioned on the 3D features, iteratively decoding these
3D features into consistent and photorealistic novel views. To support large-scale training and
encourage strong generalization ability of our model, we introduce the Event-DL3DV dataset, a
large-scale multi-view dataset consisting of real-world novel view sequences (Ling et al., 2024),
diverse simulated event streams with randomized contrast thresholds, and per-view depth maps. Our
model is trained end-to-end on the curated dataset and generalizes well to real-world event streams
without requiring per-scene optimization.

Our main contributions are summarized as follows:

• We propose EA3D, the first generalizable framework for high-fidelity novel view synthesis
from event streams and sparse RGB frames. To enable large-scale training and improve
generalization across diverse scenes, we also introduce Event-DL3DV, a large-scale 3D
dataset that pairs synthetic events with photorealistic multi-view RGB images and depth
maps.

• We conduct extensive evaluations on both real-world event data and in-the-wild scenes,
showing that EA3D consistently outperforms optimization-based and generalizable baselines,
and demonstrates strong generalization across diverse scenarios.

2 RELATED WORKS

2.1 EVENT CAMERAS

Event cameras are bio-inspired sensors that offer high dynamic range and microsecond-level temporal
resolution, making them well-suited for computer vision tasks in challenging conditions such as fast
motion (Gallego et al., 2020; Brandli et al., 2014; Messikommer et al., 2025; Lin et al., 2023; Weng
et al., 2021; Wan et al., 2025; Tulyakov et al., 2021a; Bardow et al., 2016; Pan et al., 2020; Zhu et al.,
2019; Sun et al., 2022; Xu et al., 2024c). In novel view synthesis, recent studies demonstrate the
effectiveness of event streams to improve performance under rapid motion (Klenk et al., 2023; Rudnev
et al., 2023; Xiong et al., 2024; Han et al., 2024; Qi et al., 2023; Yu et al., 2024a; Feng et al., 2025).
Notably, E-NeRF (Klenk et al., 2023), EF-3DGS (Liao et al., 2024) and Event3DGS (Xiong et al.,
2024) achieve promising results by leveraging event streams and RGB frames for photorealistic novel
view synthesis under fast camera motion. In addition, several recent works integrate event streams
with 3DGS or related 3D reconstruction pipelines to address real-time rendering and motion blur.
EventSplat incorporates event data into 3DGS to achieve real-time rendering from fast-moving event
cameras (Yura et al., 2025). E2GS uses event streams to enhance 3DGS in the presence of motion
blur and challenging illumination (Deguchi et al., 2024). DiET-GS combines events with diffusion
priors to reconstruct sharp 3DGS scenes from heavily motion-blurred images (Lee & Lee, 2025),
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while DeblurSplat employs events in an SfM-free pipeline for robust 3DGS-based deblurring (Li
et al., 2025). EGS-SLAM leverages events to improve the robustness of RGB-D Gaussian Splatting
SLAM under fast motion (Chen et al., 2025a), and E3 NeRF exploits event streams to build efficient
NeRFs from blurry images (Qi et al., 2024). However, these approaches still rely on optimizing
a separate scene-specific representation and are not designed to serve as a general, training-free
generative prior for event-augmented novel view synthesis across diverse scenes. In parallel, event
cameras have advanced video frame interpolation (VFI), especially under large motion and motion
blur where traditional RGB-based methods struggle. By capturing fine-grained motion cues, event
streams help infer intermediate frames based on sparse frames more accurately (Tulyakov et al.,
2021b; Paikin et al., 2021; He et al., 2022; Weng et al., 2023; Kim et al., 2023; Ma et al., 2024).
Recently, generative approaches have further enhanced realism and generalization. EGVD (Zhang
et al., 2025) introduced an event-guided video diffusion model for handling large motions, while
others (Chen et al., 2024a) repurposed pretrained diffusion models for event-based interpolation.
These methods focus on interpolating frames strictly along the event camera trajectory, and lack the
ability to synthesize novel views from unseen views. Compared with above methods, our method
enables high-quality novel view synthesis along flexible camera trajectories, and demonstrates strong
generalization across diverse scenes.

2.2 DIFFUSION MODEL-BASED NOVEL VIEW SYNTHESIS

Diffusion models (Ho et al., 2020; Song et al., 2021; Rombach et al., 2022b) have shown strong
potential for novel view synthesis from sparse inputs. GeNVS (Chan et al., 2023) and Zero-1-to-3 (Liu
et al., 2023b) learn pose-conditioned diffusion models on large-scale datasets (Reizenstein et al.,
2021a; Deitke et al., 2023; Chang et al., 2015), but are limited to specific categories (Watson et al.,
2023) or synthetic scenes. While ZeroNVS (Sargent et al., 2024) and ReconFusion (Wu et al., 2024b)
improve generation diversity, they are built on image diffusion models that synthesize each frame
independently without explicitly modeling inter-frame dependencies, and therefore cannot enforce
temporal consistency especially under large camera motions. Other works (Zhang et al., 2024; Chung
et al., 2023; Shriram et al., 2024) refine warped depth-based views using pre-trained T2I diffusion
models (Rombach et al., 2022a), often introducing artifacts in the inpainted region. More recently,
video diffusion models have been explored for consistent novel view synthesis (Wang et al., 2024; Xu
et al., 2024a; He et al., 2024; Sun et al., 2024). Several works employ point-based representations to
guide novel view synthesis (You et al., 2025; Yu et al., 2025c;a). Others employ ray-map–conditioned
video diffusion pipelines (He et al., 2024; Xu et al., 2024a; Gao et al., 2024; Wu et al., 2024a; Yu
et al., 2023a; 2024b; Zhou et al., 2025; Yu et al., 2025b; Ma et al., 2025). Although these models
learn strong priors from large-scale multi-view datasets, their inability to leverage event data limits
performance in challenging fast-motion and motion-blur scenarios.

3 METHOD

As shown in Fig. 1, EA3D consists of two key components. First, given a novel view camera trajectory,
an Event-Augmented Feature Renderer (EA-Renderer) projects the continuous event streams and the
sparse RGB frames into 3D features for each target camera frustum. Second, a 3D-aware diffusion
model takes the resulting 3D features as input and synthesizes photorealistic novel views. Below
we describe the core components of our method. More details about model architecture and dataset
curation are provided in Appendix A.

3.1 EVENT-AUGMENTED FEATURE RENDERER

The event stream captured during fast camera motion provides dense and temporally continuous
geometric prior of the 3D scene. However, event stream inherently lacks appearance information
such as color and texture. In contrast, conventional RGB frames contain rich appearance content but
offer only sparse and incomplete geometric cues, especially in the presence of fast camera motion.
To synthesize photorealistic novel views, we propose a learnable EA-Renderer that unifies both
modalities into a consistent, 3D-aware feature representation. Without loss of generality, taking novel
view synthesis from two RGB frames (It0 , It1) and the continuous event stream E(t0, t1) captured in
between as an example, where the general multi-view case can be naturally decomposed into a set of
two-view subproblems. Given a novel-view camera trajectory {Ti}Ni=1 between the two frames, the
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Figure 1: Overview of EA3D. Given a set of sparse RGB frames and continuous event streams, we
learn an Event-Augmented Feature Renderer (EA-Renderer) to construct view-dependent 3D features
by projecting both appearance cues from RGB frames and occlusion-resilient geometry features from
adaptively sliced event voxel grids into each target camera frustum. These 3D features are then passed
into a conditional video diffusion model as 3D conditions, facilitating photorealistic and consistent
novel view synthesis.

EA-Renderer renders along a camera trajectory and produces a sequence of 3D features F3D aligned
with the target camera frustums. The EA-Renderer is structured in three stages: Appearance Feature
Extraction, Event Feature Extraction and Feature Fusion.

Appearance Feature Extraction Given a pair of RGB frames (It0 , It1), we first obtain their
camera parameters and depths using an off-the-shelf multi-view stereo model (Wang et al., 2025).
These RGB frames are then projected into each camera frustum of the novel view trajectory {Ti}Ni=1,
producing a sequence of view projections {Pi}Ni=1, which are then passed through an appearance
encoder Eappr, resulting view-wise appearance feature maps:

{Fi
appr}Ni=1 = Eappr({Pi}Ni=1). (1)

These appearance features contain rich texture information. However, due to large view baselines and
occlusions between the RGB frames, they fail to capture the complete scene geometry. Therefore, we
further introduce geometry cues derived from the event streams.

Event Feature Extraction The continuous event stream offers microsecond-level latency and an
extremely high temporal resolution, which provides temporally dense, occlusion-resilient observations
of the 3D scene. To extract geometric information from the event stream, we adopt a voxel grid-based
event representation (Gallego et al., 2020) and leverage an adaptive slicing strategy to obtain event
voxel grids. Specifically, we first partition the continuous event stream E(t0, t1) into N temporal
segments. For each segment, we construct two temporally overlapping slices: a short slice containing
m events to preserve short-term scene information, and a long slice containing 2m events to capture
longer temporal context. To ensure sufficient voxel density under the non-uniform event stream, the
time duration of each slice is adaptively adjusted until the required number of events is accumulated.
The resulting N short slices and N long slices are then combined along the channel dimension,
yielding a temporally enriched event voxel grid {Ei}Ni=1. We then learn an event encoder Eevent to
project the event voxel grid into event features:

Fevent = Eevent({Ei}Ni=1). (2)

The resulting event features Fevent encode structural continuity and occlusion-resilient geometry.
However, since obtaining accurate poses and depths for event streams is non-trivial, directly projecting
them into the target camera frustum along the novel view trajectory is challenging. In addition, event
features inherently lack appearance cues such as color and texture. To address these issues, we
introduce a feature fusion module to integrate the event features with appearance features.
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Feature Fusion We learn a cross-attention layer to fuse the un-posed event features with the posed
appearance features. For each appearance feature Fi

appr in the novel view trajectory, we map Fi
appr

into query matrix and map the entire event features Fevent into key and value matrices, then computing
attention map to obtain the final 3D features:

{F3D}Ni=1 = {Attention(Q(Fi
appr),K(Fevent), V (Fevent))}Ni=1. (3)

The resulting {F3D}Ni=1 project occlusion-resilient geometry priors and appearance information into
each target camera frustums of the novel view trajectory, serving as strong 3D prior to guide the
diffusion model to generate high-quality novel views.

3.2 3D-AWARE DIFFUSION MODEL

As shown in Fig. 1, given a novel-view camera trajectory {Ti}Ni=1, we first render the 3D features F3D
using our EA-Renderer. We then learn a conditional distribution I ∼ p(I | F3D) to map these features
into high-quality novel-view {Ii}Ni=1. To encourage 3D consistency in novel view synthesis, we model
the conditional distribution using a video diffusion model conditioned on F3D. Our implementation
builds upon the open-sourced image-to-video generation variant of CogVideoX (Yang et al., 2024),
which adopts Diffusion Transformers with 3D self-attention for spatio-temporally coherent image-to-
video generation, making it highly suitable for our setting.

Originally, CogVideoX is designed to take a single input image of shape H ×W × 3 and generate
a video of shape N × H × W × 3. To match the temporal length of the target video, the input
image is temporally padded to construct a condition video of shape N × H × W × 3, which is
then passed through the 3D VAE encoder of CogVideoX to obtain a condition feature with a shape
of N

4 × H
8 × W

8 × C. This condition feature is concatenated with sampled Gaussian noise and
transformed into tokens via a patch embedding layer. The tokens are then iteratively refined by
Diffusion Transformer (DiT) blocks (Peebles & Xie, 2023) during the denoising process. Finally, the
clean latent is unpatchified and decoded by the VAE decoder to reconstruct the output video.

To adapt CogVideoX (Yang et al., 2024) for the novel view synthesis task, we replace its original
image-based condition feature with 3D features F3D rendered by our EA-Renderer. In this adaptation,
we also repurpose the space-time VAE encoder from CogVideoX as our appearance encoder Eappr
to reduce the domain gap and facilitate convergence during training. Since the 3D VAE encoder
of CogVideoX includes a temporal compression mechanism, the number of output appearance
features Fappr exactly reduced to N

4 . Consequently, the final output 3D feature F3D has a shape of
N
4 × H

8 × W
8 ×C. It is then concatenated with Gaussian noise and patchified with a newly initialized

patch embedding layer to form tokens matching the original input size of the DiT blocks. The noisy
tokens are subsequently denoised by the DiT blocks, and finally unpatchified and decoded by the
VAE decoder to reconstruct the novel views {Ii}Ni=1.

3.3 TRAINING DETAILS

The model is trained end-to-end using a combination of diffusion loss and a reconstruction loss, both
weighted equally. For the diffusion loss, we adopt the standard noise schedule and loss formulation
from CogVideoX (Yang et al., 2024), enabling compatibility with pretrained weights and stable
convergence in the 3D-aware generation setting:

Ldiffusion = EI,F3D,t,ϵ,[∥ϵ− ϵθ(I, t,F3D)∥22]. (4)
To further stabilize training and accelerate convergence, we impose a reconstruction loss between
the 3D features F3D rendered from EA-Renderer and the ground-truth novel view features Eappr(I)
obtained from the 3D VAE encoder of CogVideoX (Yang et al., 2024):

Lrecon = ∥F3D − Eappr(I)∥22 . (5)
During training, we jointly optimize the event encoder and the feature fusion module in the EA-
Renderer, as well as the patch embedding layer and the DiT blocks in the video diffusion model. The
training resolution is fixed at 384× 672, with a novel view sequence length of 49 frames. The event
stream is sliced by uniformly sampling m ∈ [1× 105, 3× 105], which enhances robustness to event
stream fluctuations. Training is conducted for 12,000 iterations using a mini-batch size of 8 across 8
GPUs (each with 80 GB of memory), with a learning rate set to 1× 10−5.

5



Published as a conference paper at ICLR 2026

Input1

Input2

GT Ours ViewCrafter

NVS-SolverE-NeRFEvent3DGS

Input1

Input2

GT Ours ViewCrafter

NVS-SolverE-NeRFEvent3DGS

Input1

Input2

GT Ours ViewCrafter

NVS-SolverE-NeRFEvent3DGS

Figure 2: Qualitative comparison on in-the-wild scenes. We show results on the challenging 2-view
input setting with large view baselines. ViewCrafter (Yu et al., 2025c) and NVS-Solver (You et al.,
2025) exhibit visible artifacts and geometry degradation. In contrast, our method reconstructs sharper
textures and more complete geometry by leveraging temporally dense geometric priors from events.

Table 1: Quantitative comparison on in-the-wild scenes. We evaluate our model on the
DL3DV (Ling et al., 2024) and Tanks-and-Temples (Knapitsch et al., 2017) (T&T) benchmarks under
2, 4, and 6 input views.

Method 2 Views 4 Views 6 Views

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

D
L3

D
V

E-NeRF (Klenk et al., 2023) 18.01 0.627 0.314 22.97 0.720 0.233 25.19 0.778 0.212
Event3DGS (Han et al., 2024) 16.84 0.505 0.431 22.10 0.715 0.263 25.26 0.800 0.189

ViewCrafter (Yu et al., 2025c) 19.10 0.698 0.324 20.78 0.737 0.261 22.51 0.732 0.230
NVS-Solver (You et al., 2025) 17.75 0.633 0.340 21.83 0.702 0.277 22.18 0.725 0.241
Ours 22.82 0.732 0.251 24.80 0.793 0.186 25.41 0.830 0.166

T&
T

E-NeRF (Klenk et al., 2023) 22.96 0.651 0.302 25.46 0.748 0.241 26.21 0.787 0.212
Event3DGS (Han et al., 2024) 22.42 0.632 0.319 25.54 0.754 0.237 26.32 0.791 0.206

ViewCrafter (Yu et al., 2025c) 18.24 0.607 0.289 22.26 0.754 0.251 22.87 0.793 0.213
NVS-Solver (You et al., 2025) 17.68 0.615 0.313 20.57 0.688 0.296 20.85 0.721 0.269
Ours 23.50 0.756 0.218 24.77 0.780 0.183 25.84 0.831 0.165
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4 EXPERIMENTS

We begin by summarizing the evaluation setup in Sec. 4.1. Sec. 4.2 then reports quantitative and
qualitative comparisons on the benchmarks. Sec. 4.3 presents ablation studies validating our model
design and training losses. Appendix B.2 reports additional runtime and memory analysis, while
Appendix B.3–B.7 present further ablations on robustness to trajectory misalignment, motion blur,
contrast thresholds, and additional perceptual comparisons.

4.1 EXPERIMENTAL SETTING

Comparison Baselines We compare our method against both optimization-based methods and
RGB-only generalizable novel view synthesis approaches. For optimization-based baselines, we
include Event3DGS (Han et al., 2024), which integrates asynchronous event streams into the 3DGS
optimization. It can also be adapted to incorporate RGB frames as additional supervision for colored
novel view synthesis. We also compare with E-NeRF (Klenk et al., 2023), which extends NeRF-based
novel view synthesis to event cameras by reconstructing continuous radiance fields from temporally
aggregated event streams. E-NeRF supports hybrid supervision and can generate photorealistic views
by incorporating sparse RGB frames during training. For RGB-only generalizable baselines, we
include NVS-Solver (You et al., 2025), a method that utilizes a video diffusion model (Blattmann et al.,
2023) to inpaint depth-warped views for novel view synthesis. We also compare with ViewCrafter (Yu
et al., 2025c), which integrates point-based 3D reconstruction with a video diffusion model, enabling
novel view generation from sparse RGB inputs with explicit camera pose control.

Evaluation Data We first evaluate our model on in-the-wild scenes to assess its generalization
ability across diverse environments. Then, we conduct experiments on datasets containing real event
data to verify the robustness of our model under real-world event inputs. For the in-the-wild scene
comparison, we use 140 test scenes from the DL3DV benchmark (Ling et al., 2024) that do not overlap
with our training data, as well as 10 scenes from the Tanks-and-Temples (T&T) (Knapitsch et al.,
2017) dataset, for both qualitative and quantitative evaluation. For the real event data comparison,
since there are no existing novel view synthesis benchmarks that include both sharp RGB frames and
event data, we filter out 7 static sequences from the DSEC (Gehrig et al., 2021) dataset that contains
both sharp RGB frames and real-captured event data for evaluation.

Evaluation Setting Given a test novel view sequence from the evaluation dataset, we experiment
with novel view synthesis under 2, 4, and 6 input views. For the optimization-based baselines
E-NeRF (Klenk et al., 2023) and Event3DGS (Han et al., 2024), since they are designed to synthesize
novel views along the event camera trajectory, we follow their original setting and simulate event
streams directly from the ground truth novel view sequence using vid2e (Hu et al., 2021) to ensure
their rendered novel views align with ground truth. In contrast, our method is designed to support
novel view synthesis along flexible camera trajectories without requiring strict alignment to the event
camera trajectory. To verify this capability, we sample sparse frames that do not overlap with the
ground truth views from the test sequence, and use vid2e to simulate event streams based on these
sampled frames. As a result, the simulated event stream used in our method is misaligned with the
ground truth novel views, posing a more general and challenging setting. For fairness, all simulations
are performed with the same contrast threshold range and event simulator configuration.

4.2 COMPARISON RESULTS

In-the-wild Scene Comparison We evaluate our method on DL3DV (Ling et al., 2024) and Tanks-
and-Temples (T&T) (Knapitsch et al., 2017), under 2, 4, and 6 input views. Table 1 reports the
quantitative results. Compared to the optimization-based baselines (E-NeRF (Klenk et al., 2023)
and Event3DGS (Han et al., 2024)), our generalizable model achieves the highest performance in
the most challenging 2-view setting. For 4-view and 6-view inputs, our model achieves comparable
or better results, demonstrating the strong generalization ability of our method across different
scenes. Compared to generalizable RGB-only baselines (ViewCrafter (Yu et al., 2025c) and NVS-
Solver (You et al., 2025)), our method consistently outperforms these methods across all settings,
which confirms the effectiveness of our event-augmented design in enhancing generation fidelity
under large viewpoint changes. For qualitative comparison, Fig. 2 visualizes representative synthesis
results. It can be found that results of ViewCrafter (Yu et al., 2025c) and NVS-Solver (You et al.,
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Figure 3: Qualitative comparison on real event data. Our method produces sharper textures and
more complete geometry compared to both optimization-based and RGB-only baselines, demonstrat-
ing its robustness under real-world event inputs.

Table 2: Quantitative comparison on real event data. We report performance under 2, 4, and 6
input views on the DSEC dataset (Gehrig et al., 2021).

Method 2 Views 4 Views 6 Views

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
E-NeRF (Klenk et al., 2023) 15.52 0.622 0.503 22.03 0.763 0.369 23.25 0.816 0.345
Event3DGS (Han et al., 2024) 14.63 0.605 0.518 21.46 0.745 0.377 22.98 0.802 0.361

ViewCrafter (Yu et al., 2025c) 18.71 0.684 0.279 21.65 0.752 0.232 22.50 0.785 0.261
NVS-Solver (You et al., 2025) 18.68 0.689 0.283 21.49 0.736 0.247 21.61 0.777 0.252
Ours 24.89 0.792 0.211 26.31 0.827 0.195 26.87 0.835 0.177

2025) suffer from structural distortions and texture inconsistencies under large viewpoint changes.
E-NeRF (Klenk et al., 2023) and Event3DGS (Han et al., 2024) also suffer from artifacts introduced
by the optimization process. In comparison, our method produces more complete geometry and
sharper textures, demonstrating the benefits of incorporating temporally dense event information into
novel view synthesis.

Real Event Data Comparison To evaluate the robustness of our method under real-world event
streams, we conduct experiments on static driving scenes selected from the DSEC dataset (Gehrig
et al., 2021), which provides synchronized event data and sharp RGB frames. Quantitative results
under 2, 4, and 6 input views are summarized in Table 2. Our method achieves the best performance
across all metrics and view settings. Qualitative results are visualized in Fig. 3, where our method
generates more accurate spatial layouts compared to the baselines. These results highlight our model’s
ability to generalize from simulated to real event data.

4.3 ABLATION STUDY

To ablate our model design choices and training losses, we conduct a series of experiments on the
Tanks-and-Temples (Knapitsch et al., 2017) dataset and real event data from the DSEC (Gehrig et al.,
2021) dataset under the challenging 2-view input setting.
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Table 3: Quantitative ablation on model design and training loss. Experiments are conducted
under the challenging 2-view setting on the Tanks-and-Temples (Knapitsch et al., 2017) benchmark
and real event data from the DSEC (Gehrig et al., 2021) dataset.

Model Variant T&T Real Event Data

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
w/o Geometry Feature 18.87 0.631 0.285 18.90 0.672 0.275
w/o Reconstruction Loss 20.39 0.670 0.271 19.82 0.651 0.280
w/o Adaptive Slicing 22.96 0.724 0.235 23.06 0.778 0.248
Ours 23.50 0.756 0.218 24.85 0.789 0.215

GT w/o Geometry Feature Oursw/o Recon. Loss w/o Adaptive Slicing

Figure 4: Qualitative ablation on the model design and training loss. Experiment conducted under
the challenging 2-view setting.

Effectiveness of Geometry Features from Event Streams Firstly, to verify the importance
of geometry features extracted from event streams, we train an ablated variant of our model by
removing the event encoder and the feature fusion module, feeding only the appearance features
into the diffusion model. As shown in Table 3 and Fig. 4, the performance drops significantly in the
challenging 2-view setting, where the appearance features alone provide insufficient geometric cues
to resolve occlusions and maintain structural consistency.

Figure 5: Ablation on the effectiveness of geometry features
extracted from event streams under increasing view range.

In addition, to validate the effective-
ness of geometry features under large-
baseline conditions where appearance
features alone provide little to no vis-
ible overlap, we compare the perfor-
mance change between our full model
and the ablated variant without ge-
ometry features. Specifically, we de-
fine the view range as the number of
frames between the two input views
selected from the test sequence. To
simulate increasingly challenging conditions, we progressively enlarge this inter-frame distance by
increasing the number of intermediate frames between the two inputs. Starting from the basic view
range adopted in Table 3, we expand the test view range to 1.5×, 2×, 2.5×, and 3× of the base view
range, thereby creating scenarios with decreasing appearance overlap and greater geometric ambiguity.
The results are visualized in Fig. 5, showing that by incorporating geometry features extracted from
event streams, our model maintains more stable performance as the view range increases.

Effectiveness of Adaptive Event Slicing We evaluate the effectiveness of the adaptive slicing
strategy in event feature extraction by comparing it with a naive fixed-duration slicing baseline. As
shown in Table 3 and Fig. 4, incorporating adaptive slicing improves novel view synthesis quality
and reduces artifacts in the generated results.

Ablation on Reconstruction Loss To assess the impact of the reconstruction loss Lrecon, we
conduct an ablation study by training our model using only the diffusion loss Ldiffusion. As shown in
Table 3 and Fig. 4, removing Lrecon leads to noticeable degradation in both structural consistency and
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perceptual quality. This demonstrates that explicitly supervising the EA-Renderer helps align the
feature space and improve generation fidelity.

5 CONCLUSION

We presented EA3D, a generalizable framework that unifies event streams and sparse RGB frames for
high-fidelity novel view synthesis. By introducing a learnable Event-Augmented Feature Renderer
(EA-Renderer) and conditioning a 3D-informed diffusion model on fused 3D features, our method
effectively captures both geometric continuity from events and appearance richness from RGB inputs.
To support large-scale learning, we constructed the Event-DL3DV dataset, which provides RGB
images paired with simulated event streams and dense depth maps. Extensive experiments on both
synthetic and real-world benchmarks demonstrate that EA3D outperforms existing optimization-based
and generalizable methods, especially in challenging scenarios with large viewpoint baselines.

Limitations As a diffusion-based framework, our method still faces limitations in inference effi-
ciency. In addition, the model may encounter challenges when the input views are of extremely low
quality, making the initial MVS step produce inaccurate camera poses or making our model difficult
to extract appearance information across views.

REPRODUCIBILITY STATEMENT

Implementation details for EA3D are provided in Sec. 3 and Appendix A. Upon publication, we will
release the complete codebase and processed datasets to facilitate full reproducibility.
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A IMPLEMENTATION DETAILS

A.1 MODEL ARCHITECTURE

Temporal Segments

Short Slice

…

…

…

Long Slice

Figure 6: Illustration of adative event slicing.

Event Stream Processing We adopt a voxel
grid-based event representation (Gallego et al.,
2020) and leverage an adaptive slicing strategy
to obtain event voxel grids. As shown in Fig. 6,
the continuous event stream E(t0, t1) is first par-
titioned into N temporal segments. For each seg-
ment, we construct two temporally overlapping
slices: a short slice containing m events to pre-
serve short-term scene information, and a long
slice containing 2m events to capture longer
temporal context. To ensure sufficient voxel
density under the non-uniform event stream, the
time duration of each slice is adaptively adjusted until the required number of events is accumulated.
The resulting N short slices and N long slices are then combined along the channel dimension to
form a two-channel voxel input {Ei}Ni=1, where Ei ∈ RH×W×2.

Event Encoder The encoder consists of four 3D convolutional blocks with increasing channels
and spatial-temporal downsampling via kernel size 3 × 3 × 3 and stride 2 × 2 × 2, followed by
group normalization and ReLU activation of each block. The output geometry feature is a compact
representation Fevent with shape N

8 × H
8 × W

8 × C. These features encode occlusion-resilient
structure and are fused with appearance features through cross-attention for view-conditioned 3D
feature generation. We provide a visualization of the learned event features in Fig. 8. It can be
observed that the event features effectively capture the scene structure.

Feature Fusion We adopt Perceiver cross-attention (Jaegle et al., 2021) to fuse the posed appearance
features with the unposed event features for view-informed 3D feature generation. For each novel-
view appearance feature Fi

appr ∈ RH
8 ×W

8 ×C , we first flatten it into a sequence of N1 = H
8 · W

8
tokens and apply a linear layer to project it into query matrix Q. The shared event feature volume
Fevent ∈ RN

8 ×H
8 ×W

8 ×C is similarly reshaped into N2 = N
8 · H

8 · W
8 tokens and linearly projected to

K,V matrices. We then apply perceiver cross-attention to obtain the final output 3D feature, and
reshape it back to the original spatial size to obtain Fi

3D ∈ RH
8 ×W

8 ×C . Finally, we concatenate the
per-frame fused features along the temporal axis to obtain the full 3D feature F3D ∈ RN

4 ×H
8 ×W

8 ×C ,
which serves as the input to the diffusion model for temporally coherent novel view synthesis.

A.2 DATASET

We introduce Event-DL3DV, which augments the DL3DV dataset (Ling et al., 2024) with event
streams and depths. Specifically, the original DL3DV dataset contains 10,000 diverse static 3D scenes
with multi-view RGB images. For each view sequence in DL3DV, we simulate event streams using
the event simulator vid2e (Hu et al., 2021). We use the multi-view stereo model VGGT (Wang
et al., 2025) to compute per-frame depths and generate RGB projections along the estimated camera
trajectory, which are used for appearance feature extraction. In total, we generate 10,000 sequences
with event streams, ground-truth novel views and depths.

Event Threshold Augmentation During event stream simulation, the event triggering is based
on the change in log intensity at each pixel exceeding a contrast threshold, mimicking the behavior
of real event cameras. Following the stochastic simulation strategy proposed in E2VID (Rebecq
et al., 2019), we introduce randomness into the threshold selection by sampling positive and negative
thresholds from a uniform distribution U(0.05, 0.3). This enables the generation of event streams
with varying sensitivity levels and sparsity, enhancing the diversity of the training data.

Resolution Augmentation To simulate different types of event cameras with varying spatial
resolutions, we apply resolution-based augmentation to the input RGB frames before event generation.
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Figure 7: Event simulation under different contrast thresholds and resolutions. Each row
corresponds to a simulated resolution: 1024× 576, 346× 260, and 240× 180, respectively. Each
column shows the simulated events under different contrast thresholds: 0.05, 0.12, and 0.3. Lower
thresholds lead to denser event firing with more fine-grained structure, while higher thresholds
produce sparser events primarily along strong edges. To improve robustness across varying event
data quality and settings, we train our model with mixed simulated events from diverse thresholds
and resolutions.

Event
Feature

Scene
Views

Figure 8: Visualization of event features. The top row shows the RGB images of the scene, while the
bottom row shows the visualizations of the event features. The feature maps clearly reveal structural
information such as object edges and contours, indicating that the event encoder successfully captures
the geometric details of the scene.

Specifically, we resize the frames to different target resolutions prior to feeding them into the event
simulator. This allows us to generate event streams that approximate the characteristics of real
devices such as the DAVIS346 (346× 260) and DAVIS240 (240× 180). In addition, we simulate
high-resolution event streams up to 1024× 576. While event cameras with such high resolutions are
not yet common, recent sensors such as the Sony IMX636 support resolutions up to 1280× 720. We
include such high-resolution streams to increase training data diversity and improve the robustness of
the model. Examples are shown in Fig. 7.

Blur Augmentation Since the simulation process of vid2e (Hu et al., 2021) involves temporally
upsampling RGB frames to generate dense intermediate frames for event stream generation, it
naturally enables the simulation of different levels of motion blur by integrating the dense intermediate
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RGB projection Ground truth novel view Event stream (aligned) Event stream (unaligned)

Figure 9: Examples of camera trajectory augmentation. To encourage the model to synthesize
novel views beyond the constraints of the event camera trajectory, we introduce controlled temporal
augmentations to the event stream, including forward/backward time shifts and temporal reversal,
which result in unaligned event stream for training. While RGB projections provide appearance and
coarse viewpoint priors, they suffer from severe occlusions and distortions. In contrast, the event
stream, despite being unaligned and appearance-free, offers temporally dense and geometry-rich
signals. By leveraging both modalities, our model learns to generate high-quality novel views in an
event camera trajectory-agnostic manner.

Figure 10: Examples of evaluation camera trajectories. We visualize input cameras in red and test
cameras in blue; the test cameras are not constrained to the visible regions of the input views and
include substantial unseen areas.

frames (Wang et al., 2023; Zhao et al., 2024). We augment our dataset with both sharp and motion-
blurred RGB frames, allowing our model to robustly handle motion-blurred inputs.

Camera Trajectory Augmentation To encourage our model to synthesize novel views beyond the
constraints of the event camera trajectory, we augment the event stream by introducing controlled
temporal shifts. Specifically, we extend the event stream forward or backward in time relative
to the ground truth novel views, or apply temporal reversal, resulting in deliberate misalignment
between the event data and the ground truth novel views. This augmentation forces the model to rely
on trajectory-agnostic structural cues from the event stream. Examples of the event stream, RGB
projections, and ground-truth novel views are shown in Fig. 9. It can be observed that the RGB
projections provide appearance and camera viewpoint information in the target views, but suffer from
substantial occlusions and spatial distortions. In contrast, the event stream, despite being unaligned
with the ground-truth novel views and lacking color information, offers clear and temporally dense
geometric cues of the scene structure. By leveraging both modalities to train the model, our model
is able to synthesize high-quality novel views that preserve both appearance fidelity and structural
consistency.

B MORE EXPERIMENTS

B.1 DETAILED EVALUATION SETTINGS

For the in-the-wild scene comparison, we use 140 test scenes from the DL3DV benchmark (Ling et al.,
2024) that do not overlap with our training data, as well as 10 scenes from the Tanks-and-Temples
(T&T) (Knapitsch et al., 2017) dataset, with an event simulation contrast threshold of 0.2. For the
real event data comparison, since there are no existing novel view synthesis benchmarks that include
both sharp RGB frames and event data, we filter out 7 static sequences from the DSEC (Gehrig et al.,
2021) driving scene dataset that contains both sharp RGB frames and real-captured event data for
evaluation. Given a test novel view sequence from the evaluation dataset, we conduct experiments
under 2, 4, and 6 input view settings. We define the view range as the number of frames between two

19



Published as a conference paper at ICLR 2026

Table 4: Computation cost comparison with the baselines.

Method Upstream MVS Time (h) Memory (GB)

Infer. Opt. Total Infer. Opt.

E-NeRF (Klenk et al., 2023) COLMAP (300+ s) 0.12 3.50 3.62 20 26
Event3DGS (Han et al., 2024) COLMAP (300+ s) 0.0002 0.80 0.8002 3 12
NVS-Solver (You et al., 2025) COLMAP + DA (300+ s) 0.18 0 0.18 21 0
ViewCrafter (Yu et al., 2025c) DUSt3R (5 s) 0.06 0 0.06 24 0
Ours VGGT (1 s) 0.03 0 0.03 28 0

Table 5: Ablation on robustness of our method to motion-blurred input.

Method PSNR ↑ SSIM ↑ LPIPS ↓
NVS-Solver (You et al., 2025) 16.25 0.539 0.407
ViewCrafter (Yu et al., 2025c) 16.96 0.580 0.391
Ours w/o event feature 17.62 0.629 0.355
Ours 21.54 0.713 0.230

input views selected from the test sequence. Specifically, the view range for the 2-view setting is 400
frames on DL3DV, 300 frames on Tanks-and-Temples, and 50 frames on DSEC. As shown in Fig. 10,
the test views are not limited to visible regions between the input views but also cover substantial
unseen regions.

B.2 OPTIMIZATION AND INFERENCE TIME COMPARISON

We report the per-scene optimization time, inference time, and GPU memory usage of all baselines
on a single NVIDIA A100 GPU (40 GB) in Table 4. Although our method employs a diffusion model
during inference, it still achieves substantially lower overall runtime compared to optimization-based
baselines, owing to its optimization-free design. Moreover, our inference pipeline generates 49 frames
in a single forward pass, while each evaluation sequence contains fewer target views than the number
of frames produced. As a result, the runtime remains identical across the 2-, 4-, and 6-view input
settings.

B.3 ROBUSTNESS TO OUT-OF-TRAJECTORY EVENT STREAM

In this experiment, we investigate the robustness of EA3D against varying degrees of misalignment
between the novel view synthesis trajectory and the event camera trajectory. This analysis is essential
for assessing the general applicability of our method to unconstrained real-world scenarios, where
the precise camera poses of event data are often unavailable and do not align with the target novel
view trajectory. To this end, we perform a controlled ablation by introducing deviations between the
novel view trajectory and the event camera trajectory.

Specifically, we construct a series of synthetic event sequences where the event camera poses are
perturbed away from the novel view trajectory by varying amounts. The degree of mismatch is
quantified using the Absolute Trajectory Error (ATE), computed as the average Euclidean distance
between the event camera poses and the corresponding novel view poses. We normalize the ATE to
range from [0, 1] for clarity. We evaluate EA3D’s novel view synthesis performance under increasing
levels of ATE between event camera trajectory and novel view trajectory, while keeping the RGB
inputs and target views fixed. As shown in Fig. 11, thanks to our training strategy, the PSNR remains
relatively stable even when the event and novel view trajectories are significantly misaligned. These
results demonstrate that our EA3D does not rely on precise correspondence between the event camera
trajectory and the novel view trajectory. Instead, the model effectively distills trajectory-agnostic
geometric cues from the event stream, enabling robust synthesis across diverse and unaligned camera
trajectory.
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Figure 11: Ablation on robustness to misalign-
ment between novel view trajectory and event
camera trajectory.

Figure 12: Ablation on robustness to different
Contrast Threshold.

Table 6: Ablation on robustness of our method to fast motion.

Method PSNR ↑ SSIM ↑ LPIPS ↓
NVS-Solver (You et al., 2025) 16.56 0.547 0.381
ViewCrafter (Yu et al., 2025c) 16.81 0.573 0.384
Ours w/o event feature 17.10 0.615 0.367
Ours 22.05 0.725 0.221

B.4 ROBUSTNESS TO MOTION BLUR

Our Event-DL3DV dataset is simulated with the vid2e event generator (Hu et al., 2021), which
temporally upsamples the RGB frames before integrating them to synthesize event streams. The
intermediate frame accumulation naturally produces realistic motion blur, and we therefore expose
EA3D to both sharp and blurred RGB inputs during training so that the model remains reliable when
motion blur is present at test time. To quantify the benefit of event guidance under motion blur, we
evaluate on the EvDeblurNeRF-DAVIS dataset (Cannici & Scaramuzza, 2024b), which provides real
event streams aligned with motion-blurred RGB images. We compare our full model with RGB-only
baselines (NVS-Solver, ViewCrafter, and an EA3D variant without event features) under the 2-view
input setting. As shown in Table 5, incorporating events substantially improves reconstruction fidelity
in motion blur scenarios.

B.5 ROBUSTNESS TO FAST MOTION

To further demonstrate the advantage of using event cameras over standard 3D generative models
under fast camera motion, we additionally conduct a comparison on 10 drone-captured sequences
with rapid motion from the M3ED (Chaney et al., 2023) dataset. As shown in Table 6, incorporating
events substantially improves novel view synthesis quality in these fast-motion scenarios.

B.6 ROBUSTNESS TO CONTRAST THRESHOLD

To evaluate the robustness of EA3D to different Contrast Threshold, we conduct an ablation study.
Specifically, we vary the Contrast Threshold from 0.05 to 0.3 using event simulator (Hu et al., 2021).
As shown in Fig. 12, EA3D maintains stable PSNR performance across all Contrast Threshold
settings, with only minor fluctuations as the threshold varies. We attribute this robustness to our
training strategy, which incorporates a diverse set of simulated event streams generated with thresholds
sampled from a wide range, thereby enabling the model to generalize across diverse event streams.

B.7 GENERATIVE ABILITY EVALUATION

Since EA3D leverages event observations that are inaccessible to purely RGB-based methods, we
further evaluate perceptual quality metrics that do not require aligned ground-truth, using FID on the
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Figure 13: FID comparison (lower is better) on Tanks-and-Temples under varying input views.

Table 7: Comparison with event-based frame interpolation methods.

Method PSNR ↑ SSIM ↑ LPIPS ↓
VDM-EVFI (Chen et al., 2024a) 18.36 0.665 0.350
Ours 22.05 0.725 0.221

Tanks-and-Temples dataset. As shown in Fig. 13, we compare EA3D against RGB-based generative
NVS methods, NVS-Solver (You et al., 2025) and ViewCrafter (Yu et al., 2025c), under 2-, 4-, and
6-view input settings. Across all settings, EA3D achieves consistently lower FID scores than both
baselines, highlighting its superior generative capability.

B.8 COMPARISON WITH EVENT-BASED FRAME INTERPOLATION METHODS

To further validate the effectiveness of our method in leveraging event data for novel view synthesis
under fast camera motion, we compare EA3D with the event-based frame interpolation method VDM-
EVFI (Chen et al., 2024a) on 10 drone-captured sequences with fast motion from the M3ED (Chaney
et al., 2023) dataset. As shown in Table 7, EA3D consistently achieves higher novel-view synthesis
quality than VDM-EVFI.

C BROADER IMPACT

Event-augmented novel view synthesis has the potential to advance a wide range of downstream
applications that require reliable 3D reconstruction in high-speed camera motion or from sparse
captured data. The asynchronous and low-latency nature of event streams makes them particularly
well-suited for scenarios involving rapid motion or limited imaging bandwidth. As such, our EA3D
has the potential to benefit fields such as 3D mapping in autonomous aerial or ground robots,
emergency response in visually degraded conditions, and minimally invasive medical imaging where
traditional camera systems may face physical or temporal constraints. In addition, the ability to
generate coherent 3D scenes from few input views aligns with the growing demand for lightweight
sensing in edge devices and wearable systems. It can also support content creation and virtual
environment modeling in AR/VR settings, reducing the reliance on dense multi-camera rigs. We
encourage responsible use of this technology and recommend that its deployment follow ethical
and legal guidelines, especially in surveillance-adjacent or sensitive applications. To support further
research, we will release both our codebase and the dataset to the community. In addition, we are
developing robust watermarking mechanisms to ensure the traceability and integrity of novel views
synthesized by our model.
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