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ABSTRACT

Goal-Conditioned Reinforcement Learning (GCRL) is about learning to reach pre-
defined goal states. GCRL in the real world is crucial for adaptive robotics. Ex-
isting GCRL methods, however, suffer from low sample efficiency and high cost
of collecting real-world data. Here we introduce the Compositional Optimality
Equation (COE) for a widely used class of deterministic environments in which
the reward is obtained only upon reaching a goal state. COE presents a novel
alternative to the standard Bellman Optimality Equation, leading to more sample-
efficient update rules. The Bellman update uses the immediate reward and the
bootstrapped estimate of the best next state. Our COE-based update rule, however,
uses the best composition of two bootstrapped estimates in an arbitrary intermedi-
ate subgoal state. In tabular settings, the new update rule guarantees convergence
to the optimal value function exponentially faster than the Bellman update! COE
can also be used to derive compositional variants of conventional (deep) RL. In
particular, our COE-based version of DDPG is more sample-efficient than DDPG
in the continuous grid world.

1 INTRODUCTION

Reinforcement Learning (RL) in the real world
(for robotics etc.) remains difficult (Sünderhauf
et al., 2018). A major obstacle is the low sample
efficiency of most RL algorithms, compounded
by the high cost of data acquisition. Here we
focus on goal-conditional RL (GCRL), where a
reward is received upon reaching a specified up-
front goal (Kaelbling, 1993; Schaul et al., 2015;
Schmidhuber, 1990a). We propose a GCRL
method to improve sample efficiency in an im-
portant class of deterministic environments with
a sparse reward received upon reaching a speci-
fied upfront goal (Kaelbling, 1993; Schaul et al.,
2015; Schmidhuber, 1990a).

Dist. to
the goal

#steps to
Opt. Value

#steps to
Opt. Policy

VI COE-VI VI COE-VI

Empirical results
2 2 1 2 1
10 10 4 6.33 4
25 25 5 19.8 5
50 50 6 38.14 6

Theoretical guarantees
100 100 7 100 7
1000 1000 10 1000 10
10000 10000 14 10000 14

Table 1: Learning speed of COE Value Iteration
(COE-VI) compared to Value Iteration (VI) on
the gridworld environment (See section 6.1).

When goals are distant and widely distributed across the space (Gupta et al., 2019; Hoang et al.,
2021; Park et al., 2023), credit for reaching them should be rapidly assigned across long-time lags
to relevant, previously executed actions. To achieve this, multi-step methods estimate the value of a
policy after unrolling the trajectory for a chosen number of steps. (Precup, 2000; Schulman et al.,
2015) These methods, however, have been shown to suffer from high variance (Cortes et al., 2010).

Multi-step methods construct value targets from rewards observed during a rollout and from the
estimated value of the state achieved at the end of the rollout. This can be seen as a combination of a
Monte-Carlo estimate obtained through the rollout with bootstrapping in estimating the value of the
last achieved state. Here, we propose an alternative approach that uses two bootstrapped estimated
values–from the current state to a subgoal, and from the subgoal to the goal–to design updates.
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To facilitate quick propagation of the value estimates, we revisit the foundation of all RL algorithms
- the Bellman Optimality Equation (Sutton & Barto, 2018), and propose an alternative optimality
equation. This new equation leverages assumptions about goal-conditioned environments and de-
composes a problem into subproblems more efficiently than the Bellman equation. Consequently,
its value iteration counterpart exhibits a theoretically provable, exponentially faster convergence rate
in tabular environments. We call it the Compositional Optimality Equation (COE) because it allows
for arbitrary compositions of bootstrapped value estimates. With the COE, we derive methods anal-
ogous to widely adapted Deep RL algorithms, DQN and DDPG.

The primary benefit of employing the COE and consequent algorithms is a more efficient value prop-
agation achieved by selecting a more uniform decomposition than the traditional Bellman equation.
The Bellman equation divides the value estimates into two parts - a one-step reward r and the boot-
strapped estimation of the value gathered throughout the rest of the rollout V (s′). This is particularly
applicable in scenarios where the final state is unknown or where it is unclear whether a final state
even exists. However, to be accurate, it requires the bootstrapped value V (s′) also to be accurate.
In general, if the distance from the state to the goal is d, then accurate bootstrapped estimates of
distance d−1 are needed for the Bellman estimate to be accurate, leading to linear time propagation
of the value estimates.

In this paper, we derive a method tailored for GCRL that enables exponentially faster convergence
rate in terms of number of updates of the value function for tabular environments. Our method, by
imposing hierarchical inductive bias into the value function, is able to utilise long-distance informa-
tion in the update. As a result, it is able to propagate the values significantly faster than the Bellman
update. We extend this result to model-free algorithms with function approximators and empirically
demonstrate its convergence in a continuous gridworld environment with stochastic elements.

To summarize, our contributions are:

1. We derive the new Compositional Optimality Equation for Goal-Conditioned Reinforce-
ment Learning and prove that it is satisfied by the optimal value function.

2. From the Compositional Optimality Equation we derive Compositional Value iteration and
prove its convergence as well as the fact that the time required to achieve the optimal policy
is only logarithmic compared to the linear time of standard Value Iteration. This results in
a significantly faster sample efficiency and handling much more distant goals.

3. We generalize Compositional Value Iteration to State-Action value function to apply it
to model-free scenarios, from which we derive analogous versions of leading algorithms
for continuous state spaces with discrete action space (DQN) and continuous action space
(DDPG).

4. We empirically demonstrate the sample efficiency benefits of Compositional Value Iteration
and Compositional DDPG on gridworld and continuous gridworld environments, respec-
tively.

2 RELATED WORK

Deep Reinforcement Learning (RL)(Sutton & Barto, 2018) has emerged as a powerful paradigm
for training intelligent agents across a wide variety of applications, ranging from gaming (Mnih
et al., 2015; Silver et al., 2017; Vinyals et al., 2019) to natural language processing(Christiano et al.,
2017; Ouyang et al., 2022) and robotics (Levine et al., 2016; Popov et al., 2017; Rajeswaran et al.,
2017). However, training Reinforcement learning agents continues to be a challenging endeavor due
to its substantial energy consumption and intensive computational requirements. These challenges
amplify when RL is applied in real-life scenarios, where each sample is considerably more costly
compared to simulated samples (Sünderhauf et al., 2018; Pan et al., 2017; Liu et al., 2021).

To alleviate the training costs for real-life robots and RL agents, a series of research papers have
proposed strategies to improve sample efficiency. Mai et al. (2022); Dearden et al. (1998) leverage
uncertainty to better utilize information from the value functions, while Liu et al. (2023); Faccio
et al. (2022); Guo et al. (2021); Arjona-Medina et al. (2019) tackle the credit assignment problem
by explicitly identifying crucial states. Wang et al. (2022) propose an alternative to the Bellman
Equation, aiming for rapid credit assignment in the context of multi-step off-policy RL. Our method
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does not involve multi-step updates; instead, it applies value function compositions. Sample effi-
ciency is also related to the problem of exploration in RL (Amin et al., 2021; Schmidhuber, 1991b;
Thrun, 1992; Sutton, 1995)

In goal-reaching tasks (Kaelbling, 1993; Schaul et al., 2015; Schmidhuber, 1990a; Andrychowicz
et al., 2017), goals are typically distant and widely distributed. Thus, efficient information propaga-
tion is crucial to perform well in such environments—a challenge known as the long-horizons prob-
lem (Gupta et al., 2019; Ghosh et al., 2017). Park et al. (2023), like us, addresses the long-horizons
problem by creating a flat policy from a single value function. However, it does not introduce a
hierarchical inductive bias in the value function to accelerate value propagation.

Our method is closely related to hierarchical RL(Schmidhuber, 1990b; Schmidhuber & Wahnsiedler,
1993; Dayan & Hinton, 1993; Wiering & Schmidhuber, 1997; Schmidhuber, 1991a; Parr & Russell,
1997). Hierarchical RL generates subgoals to aid in problem-solving—after identifying a subgoal,
it focuses on reaching the subgoal, thereby forming a hierarchical policy (Dietterich, 2000). In
contrast, our method employs a flat policy, utilizing subgoals solely for more efficient information
propagation through better problem decomposition. In this context, the closest related work to ours is
given by Kaelbling (1993); Dhiman et al. (2018). Our formulation, however, allows us to generalize
the algorithm into the deep RL case. Our algorithm can be easily integrated with offline hierarchical
methods (Zawalski et al., 2022). A line of work focuses on composing value functions in entropy-
regularized reinforcement learning. It has been demonstrated that composing value functions in
this setting can approximately solve the intersection of tasks (Haarnoja et al., 2018). Similarly,
policies are often hierarchical, offering the benefit of using composed functions to solve new tasks
without additional learning (Van Niekerk et al., 2019). In contrast, our approach seeks to utilize the
composition of value functions for more efficient training, while maintaining a flat policy structure.

3 BACKGROUND

We use the formulation from Sutton & Barto (2018). A discrete-time Markov Decision Process
(MDP) is a tupleM = (S,A, T , r, γ,D), where S denotes the state space, A represents the action
space, T (s′|s, a) is the density function of the probability distribution for transitioning from state
s to state s′ after selecting action a. The function r(s) is the reward associated with each state
(contrary to the most widely used r(s, a)), while γ ∈ (0, 1) is the discount factor and D describes
the distribution over initial states. A policy is a distribution on the space of actions conditioned on
the state, represented by π(a|s). The policy interacts with the environment by sampling an action
for each given state and applying this action, along with the state, to the transition function.

The value function for a given state s under policy π is denoted by Vπ(s) = E[
∑∞

i=0 γ
tRt+i+1|St =

s], defined as the expected discounted sum of rewards collected with policy π from state s. Ex-
panding the summation within the expectation for the value function gives us the Bellman expecta-
tion equation Vπ(s) = Eπ[Rt+1 + γvπ(St+1)|St = s] =

∑
a∈A π(a|s)

∑
s′∈S T (s′|s, a)r(s′) +

γE[Vπ(St+1)|St = s].

The optimal value function is defined as V ∗(s) = supπ Vπ(s). The optimal policy π∗ is any policy
π that ∀s ∈ S Vπ(s) = V ∗(s). For an optimal value function, we also have the Bellman optimality
equation V ∗(s) = maxa E[Rt+1+γV ∗(St+1)|St = s,At = a]. Analogously, the Q-value function,
defined on state-action pairs, is represented as Qπ(s, a) = E[

∑∞
i=0 γ

tRt+i+1|St = s|St = s,At =
a].

In goal-conditioned RL, S takes on a particular structure, SS × SG, where SS is the original state
space, and SG is the goal space, where the transition function is assumed to maintain the goal
constant throughout the episode. In other words, each transition changes the original state, but the
goal is chosen only at the beginning of the episode. Whenever referring to a goal-conditioned state, it
will be unpacked into the actual state s and goal g. This formulation allows us to easily generalize the
MDP to the goal-conditioned scenario by treating the (s, g) pair like an extended state. For example
r(s) : S → R becomes r(s, g) : SS × SG → R. In a goal-reaching environment, r(s, g) usually
has the form of r(s, g) = 1{s=g}, or a linear transformation thereof. For convenience, we assume
that r(s, g) = γ1{s=g}. Other definitions, such as Vπ(s, g) = E[

∑∞
i=0 γ

tRt+i+1|St = s,G = g]
also follow this generalization to (state, goal) pairs. We also assume that the environment terminates
after reaching the goal state.
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4 METHOD

Smart decomposition of large problems into subproblems forms the foundation of efficient algo-
rithms. With this principle in mind, we investigate the classic Bellman Optimality Equation and
propose a more efficient, adaptive decomposition method.

The Bellman equation decomposes the value function into two parts: the reward obtained at the im-
mediate next step, and the expected discounted reward gathered over all subsequent steps (γV (s′)).
This intuitive formulation makes learning possible even in scenarios with infinite episodes. How-
ever, methods based on the direct application of the Bellman optimality equation necessitate accu-
rate estimates for neighboring states to obtain a reliable estimate for the updated states. Therefore,
information propagates linearly in terms of loop iterations or target network updates.

A viable strategy to increase the speed of information propagation is employing multi-step updates
that roll out the Bellman equation beyond a single step and use nearer estimates for the update. How-
ever, multi-step methods, when applied with off-policy algorithms (Sutton, 1988; Precup, 2000),
suffer from high-variance (Cortes et al., 2010). Methods, such as Harutyunyan et al. (2016); Munos
et al. (2016), have been proposed to reduce the variance of multi-step methods. We propose an alter-
native approach that uses the philosophy of multi-step methods but, by bootstrapping, avoids high
variance related to the sampled rollout.

In the context of goal-conditioned RL, the agent knows the goal it is trying to reach from the start
of the episode. We leverage this information to derive a method that significantly accelerates in-
formation propagation, achieved by revisiting the Bellman equation. Our Compositional Optimality
Equation also partitions the problem into two subproblems that are connected by an interim state
that we call a subgoal. Unlike the Bellman optimality equation, our intermediate states (subgoals)
do not have to be adjacent to the state being updated. Therefore, they can segment the trajectory into
more equidistant parts, thereby enabling exponentially faster value propagation.

4.1 COMPOSITIONAL OPTIMALITY EQUATION

We focus on Goal-conditioned RL. We make the assumption that the state space is the same as
the goal space, denoted as SS = SG. Recall the extended state space S = SS × SG. Assume
that the underlying MDP is deterministic. In other words, T is not a distribution, but a function
T : S × A → S . Let Πopt represent the set of all deterministic policies that are optimal, such that
∀s,g∈S,π∈ΠoptVπ(s, g) = V ∗(s, g). Moreover, Πopt is not empty as a global optimal policy always
exists. Let Tπ(s, g) denote a trajectory (a set of visited states) of π when run on state s and goal g.

A state subg is called a subgoal of (s, g) if there exists a deterministic optimal policy that visits subg
on the way from s to g. In other words, subg is a subgoal from s to g if it is on some optimal path
from s to g. Formally:

subg is a subgoal from s to g ⇐⇒ subg ∈
⋃

π∈Πopt

Tπ(s, g).

We define SUBG(s,g) =
⋃

π∈Πopt
Tπ(s, g) as the set of subgoals from s to g.

An alternative way to define the same set SUBG involves value functions instead of trajectories.
Specifically:

SUBGV (s, g) = {s′ ∈ SS : V ∗(s, g) = V ∗(s, s′)V ∗(s′, g)}.

Lemma 1: Equivalence of definitions:

SUBG(s, g) = SUBGV (s, g).

Proof First, we demonstrate why, in Goal-conditioned deterministic environments, we can exam-
ine distance functions instead of value functions.

Let dπ(s, g) be a random variable representing a distance from s to g under policy π measured as
the number of steps needed to reach g from s, and∞ if g will never be reached under π from s. In
other words, if Tπ(s, g) is a sample rollout of π from s to g, then dπ(s, g) = |Tπ(s, g)| − 1. We also
define d(s, g) := minπ dπ(s, g) as the optimal distance from s to g.
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Directly from the definition we have

Vπ(s, g) = E[

∞∑
i=0

γtRt+i+1|St = s] = E[

∞∑
t=0

γtγ1{t=dπ(s,g)−1}] = E[γdπ(s,g)].

Since we operate on deterministic environments and focus on deterministic policies, Vπ(s, g) =
γdπ(s,g). Thus, V ∗(s, g) = maxπ Vπ(s, g) = γminπ dπ(s,g) = γd(s,g).

To show that SUBG(s, g) = SUBGV (s, g) we must demonstrate:

V ∗(s, g) = V ∗(s, subg)V ∗(subg, g) ⇐⇒ ∃π∈Πopt
subg ∈ Tπ(s, g).

Starting with the left-to-right implication. Let π be a deterministic, optimal policy. Then from the
assumption we have that Vπ(s, g) = Vπ(s, subg)Vπ(subg, g), which is equivalent to dπ(s, g) =
dπ(s, subg) + dπ(subg, g). Therefore, subg must belong to Tπ(s, g), as otherwise dπ(s, g) ≤
dπ(s, subg) contradicts the sum of distances. Thus, π is the policy from Πopt such that subg ∈
Tπ(s, g)

The proof in the opposite direction is also straightforward. Let π be a policy that satis-
fies the right-hand side assumptions, with π ∈ Πopt such that subg ∈ Tπ(s, g). Note that
Tπ(s, subg)

⋃
Tπ(subg, g) does not necessarily have to be equal to Tπ(s, g). However, because π

is optimal everywhere, we must have dπ(s, g) = dπ(s, subg) + dπ(subg, g) for subg is in Tπ(s, g).
Otherwise, π would not be optimal at (s, subg) or at (subg, g). Therefore, V ∗(s, g) = Vπ(s, g) =
γdπ(s,subg)+dπ(subg,g) = Vπ(s, subg)Vπ(subg, g) = V ∗(s, subg)V ∗(subg, g).

Triangle inequality The decomposition of the value function into the product of values at any
state (not necessarily optimal) satisfies the triangle inequality.

∀s′V ∗(s, g) ≥ V ∗(s, s′)V ∗(s′, g). (1)

This emerges from the triangle inequality of distances expressed in the exponential form: V ∗(s, g) =

γd(s,g) ≥ γd(s,s′)+d(s′,g) = γd(s,s′)γd(s′,g) = V ∗(s, s′)V ∗(s′, g).

Consequently, we obtain an alternative optimality equation.

Compositional Optimality Equation

V ∗(s, g) = V ∗(s, subg)V ∗(subg, g) for any subg ∈ SUBG(s, g) = max
subg∈S

V ∗(s, subg)V ∗(subg, g)

We base our algorithm for subgoal discovery and an alternative update rule on this equation.

4.2 COE-VALUE ITERATION

The new optimality equation enables the definition of a new Compositional update rule for value
iteration.

Algorithm 1 Generalized Compositional Value Iteration
1: Initialize V = 0
2: for s ∈ S, a ∈ A do
3: V (s, T (s, a)) = γ
4: V (s, s) = 1
5: end for
6: repeat
7: for s ∈ S, g ∈ S do
8: subg ← ProduceSubgoal
9: V2(s, g)← V (s, subg)V (subg, g)

10: end for
11: V ← V2

12: until convergence
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Value iteration as a special case of Generalized Compositional Value Iteration If ProduceSub-
goal yields subg ← argmaxa∈A V (s, T (s, a))V (T (s, a), g) then it is equivalent to the standard
Bellman iteration.

COE-Value iteration COE-Value Iteration (COE-VI) is achieved when for ProduceSubgoal we
select subg ← argmaxsubg∈S V (s, subg)V (subg, g). Therefore, for COE-Value Iteration, lines 6
and 7 can be rewritten shortly as V2 ← maxsubg∈S V (s, subg)V (subg, g).

For COE-VI, it is necessary that the value estimates are initialized with values smaller than the
optimal values because V (s, g) can not decrease after an iteration of COE-VI. As a consequence,
apart from the values that we a priori know, we initialize the value function estimate with zeros.

4.2.1 PROOF OF CONVERGENCE OF COMPOSITIONAL VALUE ITERATION

Let V k(s, g) be the estimate of V ∗(s, g) after k steps. We will show by induction that after k
iterations of the algorithm, all pairs of states that are closer to each other than 2k have already
reached optimal value function as their V k(s, g) estimates. We will also show that all estimates are
smaller than or equal to the optimal value function. In other words, after k iterations we have two
conditions satisfied: 1) ∀(s,g):d(s,g)≤2k : V k(s, g) = V ∗(s, g) and 2) ∀(s,g)V k(s, g) ≤ V ∗(s, g).

After 0 iterations (upon the first time visiting line 7), we have ∀(s,g):d(s,g)=1V
0(s, g) = γ and

∀(s,g):d(s,g)=0, also ∀(s,g):d(s,g)>1V
0(s, g) = 0 ≤ V ∗(s, g),∀sV 0(s, s) = 1 ≤ V ∗(s, s). Thus, the

base of the induction is satisfied.

Now for the k’th step, assume that our assumption holds for k−1. First, ∀s,gV k−1(s, g) ≤ V ∗(s, g),
so as a consequence of triangle inequality 1 after the update V will also satisfy V k(s, g) ≤ V ∗(s, g).

Let us consider (s, g) : d(s, g) ≤ 2k. Then, let us choose a subgoal from some optimal trajectory
that is in the middle, such that d(s, subg) ≤ 2k−1 and d(subg, g) ≤ 2k−1. From our assumption
V k−1(s, subg) = V ∗(s, subg), V k−1(subg, g) = V ∗(subg, g). Therefore if subg is selected for
an update, we will have V k−1(s, subg)V k−1(subg, g) = V ∗(s, subg)V ∗(subg, g) = V ∗(s, g).
However, as we are maximizing over all possible subgoal states, it follows that V k(s, g) ≥ V ∗(s, g),
since we have to choose a state that yields a product at least as large as subg.

In summary, V k(s, g) ≥ V ∗(s, g), but also V k(s, g) ≤ V ∗(s, g). So V k(s, g) = V ∗(s, g) for any
(s, g), such that d(s, g) ≤ 2k which proves the inductive step.

5 GENERALIZATION TO DEEP RL

Analogously to how popular Deep RL algorithms are derived from the Bellman Optimality Equation,
it is possible to derive COE-based equivalents. In this section, we describe the process of obtaining
deep RL algorithms from our tabular COE Value Iteration algorithm (refer to algorithm 1). We
provide examples with pseudocode for COE-DDPG and COE-DQN, detailed further in appendix A.

5.1 ACTION-VALUE FUNCTION

Transitioning from a planning approach to a model-free learning algorithm requires generalizing the
previously introduced equation. This generalization involves adapting it into a state-action value
function update capable of directly utilizing experience samples.

Given that our environment is deterministic, the relationship Qπ(s, a) = r(s′) + (1 − d)γVπ(s
′)

holds, where s′ = T (s, a), and the boolean value d is equal to 1 when the episode ends.

The definition of optimal trajectories can be subtle. In the expression Q(s, a, g), commit-
ting to the action a might lead to inconsistencies if the discovered subgoal that maximizes
V (s, subg)V (subg, g) does not entail selecting action a. Therefore, it is necessary to use optimal
trajectories from state s to goal g that select a as the initial action. In deterministic environments,
this expression can be simplified with V (s′, subg), where s′ = T (s, a). Nonetheless, to ensure
our update remains model-free, we condition our subgoal generator function, ProduceSubgoal, on
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action a as well. The new declaration becomes ProduceSubgoal: S ×A× S → S:

Q(s, a, g)← Q(s, a, subg)max
a2

Q(subg, a2, g) for subg in optimal trajectories from s′ to g

5.2 SUBGOAL GENERATOR

The main difference between Bellman-based algorithms and COE-based algorithms is their boot-
strapped estimator. Traditional algorithms following the Bellman style decompose rewards into
immediate next steps combined with an estimate of the remaining rewards. Contrarily, COE-based
algorithms utilize two bootstrapped estimates of subproblem values, as described above.

A critical aspect of the algorithm is the decomposition of the problem, specifically in selecting an
appropriate subgoal. In gridworld scenarios, this selection is guided by the maximization of the
product of value estimates. The state that maximizes this product is chosen as the subgoal, and its
estimate is subsequently used for the update. However, in continuous state environments, attempting
direct maximization is infeasible due to the extensive nature of the space, which could lead to an
extreme overestimation bias, as mentioned by Van Hasselt et al. (2016). To tackle this, we introduce
a separate neural network aimed at predicting the state where the product of value functions is
maximized.

We call this network the Generator, denoted as G : SS × A × SG → SS , as it generates a sub-
goal state based on the current state, action and goal. The Generator is parametrized by θg . The
generator is trained by maximizing the state-action version of the product of values defined in COE
4.1. Therefore, at each step, the generator is updated via gradient ascent according to the following
gradient expression (Symbols defined as in A):

∇θg

1

|B|
∑

(s,a,r,s′,g,d)∈B

(1− d)Q(s′, a, subg)Q(subg, π(subg, g), g) where subg = G(s, a, g),

where d is the flag signalizing whether s′ is terminal.

5.3 GROUNDING UPDATE

In the Algorithm 1, the initialization with V (s, T (s, a)) = γ is crucial for the algorithm to work.
It actually gives the algorithm information about the environment dynamics as well as works as a
basis for the induction from which all combined values between pairs of states and goals are derived
in the proof 4.2.1.

To mimic this basis for composition in deep RL, we create the so-called "Grounding Update". We
train the value function to equal γ for the transitions from the experience replay buffer with the next
state as a goal. Therefore, at each step, apart from the standard COE update, we also perform the
grounding update by taking a step in the direction of descent with the following gradient:

∇θq

1

|B|
∑

(s,a,r,s′,g,d)∈B

(Q(s, a, s′)− γ).

5.4 BELLMAN GENERATOR INITIALIZATION

It is possible to simulate Bellman-style estimates with COE-based methods. For this to occur, the
problem must be decomposed into the immediate next step and the remainder, akin to Bellman-
based updates. In other words, the selected subgoal state must be equal to the next visited state.
More formally, in situations where the generator satisfies G(s, a, g) ≈ T (s, a) and that grounding
update is well fitted (Q(s, a, s′) ≈ γ), COE-based estimates approximate Bellman-based estimates:

Q(s, a, g) = Q(s, a,G(s, a, g))max
a′

Q(G(s, a, g), a′, g) ≈ Q(s, a, s′)max
a′

Q(s′, a′, g) ≈ γmax
a′

Q(s′, a′, g)

where s′ = T (s, a, g).
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Mean Min Max

COE-DDPG 19.125 11 35

DDPG 32.187 24 38

Relative gain 40.6% 54.2% 7.9%

Table 2: Comparison of sample efficiency of COE-DDPG with DDPG on the continuous gridworld.
The table is a summary of 32 runs per algorithm. For each run, we calculate the first epoch in
which all episodes were solved. Relative gain is the percentage difference between COE-DDPG and
DDPG. Both average-case and best-case are significantly better for COE-DDPG than DDPG.

Figure 1: Detailed histogram of results shown in Table 2 comparing sample efficiency of COE-
DDPG with DDPG on the continuous gridworld environment. The distribution corresponding to
COE-DDPG is shifted to the left in comparison to DDPG. The plot also shows that similar worst-
case results are caused by outliers in the COE-DDPG runs.

We exploit this fact to stabilize the training at the beginning when value functions are not reliable
enough for subgoal selection. Specifically, we initialize the generator so that the update at the
start is the same as the Bellman update. As training progresses, the generator diverges into more
distant areas, enabling the utilization of COE’s efficiency benefits. With this perspective, the subgoal
generator can be viewed as a generalization of the world model (Ha & Schmidhuber, 2018).

6 EXPERIMENTS

In this section, we describe the experimental setup used to demonstrate the empirical results of our
algorithm, together with the implementation details.1 We compare the sample efficiency of COE
Value iteration with Bellman Value Iteration, and COE-DDPG with DDPG. We evaluate them on
gridworld environments - discrete gridworld for value iteration and continuous gridworld for DDPG.
Our results in both settings show that our COE-based algorithms are superior to their Bellman coun-
terparts in terms of the number of updates required to solve the environment.

6.1 GRIDWORLD

We evaluate our COE Value Iteration (COE-VI) on a two-dimensional gridworld of size 50×50 and
compare it to standard Value Iteration (VI). For each generated board, each position is designated
as a wall with a probability of 0.3, and as a floor tile otherwise. Subsequently, we sample the start
state and the goal state uniformly from all floor positions. Next, we check algorithmically whether
the goal is reachable from the start state. If not, then we repeat the sampling procedure. If it is,
then the RL agent receives it as a task. Our results are consistent with theoretical derivations and
confirm that COE Value Iteration is exponentially faster in terms of the number of updates. The
results are presented in Table 1. Notice that COE-VI requires fewer updates to solve a problem with
a state-to-goal distance of 10000 than VI requires to solve one of distance 25. The number of steps

1For reproducibility purposes, we will publish the code upon acceptance.
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necessary to learn to reach the goal at a distance d with COE-VI is exactly ⌈log2(d)⌉, whereas for
standard VI, it is d.

6.2 CONTINUOUS GRIDWORLD

To evaluate the sample efficiency of Deep RL methods derived from COE, we compare COE-DDPG
with DDPG in a continuous gridworld environment. Continuous gridworld also has elements of
stochasticity which allow us to validate that despite theoretical results limited to deterministic en-
vironments the algorithm can still work in a stochastic setting. The continuous gridworld used for
the comparison has a state space of [−20, 20]2, and an action space of [−1, 1]2. In each episode, the
start and the goal states are uniformly sampled from the state space. A small centralized Gaussian
noise with a standard deviation of 0.1 is added to the action at each step. The goal is considered
achieved if the distance between the player’s position and the goal position is less than 0.5.

For our agent, we use COE-DDPG (A).We compare the results of COE-DDPG to the standard
DDPG (Lillicrap et al., 2015). All models—policy, state-action value functions, and generator—are
dense neural networks. Both the policy and generator contain three hidden layers, whereas the
value function has four. All models have the same hidden dimension of 512. The generator and
policy employ the tanh activation function with suitable scaling. For the value function, the sigmoid
activation function is used. The learning rates, denoted as lrq, lrπ, lrG are consistent and set to
10−5. All models are trained with the Adam optimizer (Kingma & Ba, 2014).

To evaluate the performance, we execute 32 experiments for each algorithm and study the conver-
gence speed of both. Training starts with 50,000 explorative steps. During this phase, the agent
interacts with the environment using a randomly initialized policy without improvement, solely col-
lecting data for the experience replay buffer, which has a capacity of 50, 000. Subsequently, the
initial epoch of training begins. This epoch comprises 3000 network update steps and 5000 steps
of interaction with the environment, accumulating data for the experience replay (Lin, 1992). Each
episode is limited to 50 steps, after which it is truncated. We measure the number of epochs nec-
essary to solve the problem. Specifically, we record the initial epoch that achieves a 100% success
rate across its episodes.

The results are shown in Table 2. On average, COE-DDPG proves to be 40.6% faster than its
conventional counterpart, with the fastest run being 54.2% faster than the original. In the least
favorable scenarios, the advantage is smaller, although closer inspection reveals that these least
favorable runs are outliers for COE-DDPG. A more in-depth view of the distribution of runs can be
seen in Figure 1. This Figure indicates that the distribution associated with COE-DDPG is distinctly
shifted to the left.

While we observe significant improvements from using COE-DDPG over using standard DDPG in
this setting, they do not match the exponential speedup witnessed in the discrete case. This disparity
results from three factors. First, due to their smoothness, neural networks propagate value updates
into nearby states, mitigating the exponential speedup effect. Next, in a discrete environment, the
update encompasses all states. In contrast, in a continuous setting, the variance introduced by the
generator increases the variance of the entire method. Finally, the discrete algorithm assumes that
the values are initialized at 0. This assumption is problematic in function approximation as it may
lead to either vanishing gradients or other complex formulations.

7 LIMITATIONS AND FUTURE WORK

Our novel alternative to the Bellman Optimality Equation allows for a more uniform decomposi-
tion of values, thereby leading to significantly more sample-efficient algorithms. Our experiments
demonstrate a significant speed-up through usage of COE rather than the standard Bellman update.
However, in its current form, COE may not be very practical in very complex real-world environ-
ments, due to several issues: (1) we assume identical state and goal spaces; (2) our theoretical
derivation is limited to deterministic MDPs; (3) there are no results for partially observable environ-
ments; (4) the direct operation on states becomes infeasible in higher dimensions. Extending COE’s
applicability to real-world environments is a promising direction for future research.
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A COE-BASED ALGORITHMS

Algorithm 2 COE-DQN
1: Input: Q-function parameters θq , generator parameters θg , empty replay buffer D
2: Set target parameters equal to main parameters θq,t ← θq, θg,t ← θg
3: repeat
4: Observe state s and goal g and select action a = maxa Qθq,t(s, a, g)
5: Execute a in the environment
6: Observe next state s′, reward r, goal g, and done signal d to indicate whether s′ is terminal
7: Store (s, a, r, s′, g, d) in replay buffer D
8: if s′ is terminal, reset environment state.
9: if it’s time to update then

10: if first time updated then
11: Initialize generator with Bellman Generator Initialization (See 5.4)
12: end if
13: for however many updates do
14: Randomly sample a batch of transitions, B = {(s, a, r, s′, g, d)} from D
15: Generate a subgoal for the update subg = Gθg,t(s, a)
16: Compute targets

y(s, a, subg, g) = Qθq,t(s, a, subg)max
a′

Qθq,t(subg, a
′, g)

17: Update Q-function by one step of gradient descent using

∇θq

1

|B|
∑

s,a,r,s′,g,d)∈B

(Qθq (s, a, g)− y(s, a, subg, g))

18: Update the generator by one step of gradient ascent using

∇θg

1

|B|
∑

(s,g)∈B

(1−d)Qθq,t(s
′, a, subg)max

a′
Qθq,t(subg, a

′, g) where subg = Gθg (s, a)

19: Update the Q-function by one step of gradient descent on next states from the batch

∇θq

1

|B|
∑

s,a,s′)∈B

(Qθq (s, a, s
′)− γ)

20: Update target networks
21: end for
22: end if
23: until convergence
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Algorithm 3 COE-DDPG
1: Input: initial policy parameters θp, Q-function parameters θq , generator parameters θg , empty

replay buffer D
2: Set target parameters equal to main parameters θp,t ← θp, θq,t ← θq, θg,t ← θg
3: repeat
4: Observe state s and goal g and select action a = clip(µθp(s, g) + ϵ, aLow, aHigh), where

ϵ ∼ N
5: Execute a in the environment
6: Observe next state s′, reward r, goal g, and done signal d to indicate whether s′ is terminal
7: Store (s, a, r, s′, g, d) in replay buffer D
8: if s′ is terminal, reset environment state.
9: if it’s time to update then

10: if first time updated then
11: Initialize generator with Bellman Generator Initialization (See 5.4)
12: end if
13: for however many updates do
14: Randomly sample a batch of transitions, B = {(s, a, r, s′, g, d)} from D
15: Generate a subgoal for the update subg = Gθg,t(s, a)
16: Compute targets

y(s, a, subg, g) = Qθq,t(s, a, subg)Qθq,t(subg, µθp,t(subg, g), g)

17: Update Q-function by one step of gradient descent using

∇θq

1

|B|
∑

s,a,r,s′,g,d)∈B

(Qθq (s, a, g)− y(s, a, subg, g))

18: Update policy by one step of gradient ascent using

∇θp

1

|B|
∑

(s,g)∈B

Qθq (s, µθp , g)

19: Update the generator by one step of gradient ascent using

∇θg

1

|B|
∑

(s,g)∈B

(1−d)Qθq,t(s
′, a, subg)Qθq,t(subg, µθp,t(subg, g), g) where subg = Gθg (s, a)

20: Update the Q-function by one step of gradient descent on next states from the batch

∇θq

1

|B|
∑

s,a,s′)∈B

(Qθq (s, a, s
′)− γ)

21: Update target networks
22: end for
23: end if
24: until convergence
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