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Abstract

In stochastic optimization, a widely used approach for handling large samples sequentially is
the stochastic gradient algorithm (SGD). However, a key limitation of SGD is that its step
size sequence remains uniform across all gradient directions, which can lead to poor perfor-
mance in practice, particularly for ill-conditioned problems. To address this issue, adaptive
gradient algorithms, such as Adagrad and stochastic Newton methods, have been developed.
These algorithms adapt the step size to each gradient direction, providing significant ad-
vantages in such challenging settings. This paper focuses on the non-asymptotic analysis of
these adaptive gradient algorithms for strongly convex objective functions. The theoretical
results are further applied to practical examples, including linear regression and regularized
generalized linear models, using both Adagrad and stochastic Newton algorithms.

Keywords: Non asymptotic analysis; Online estimation; Adaptive gradient algorithm; Adagrad; Stochastic
Newton algorithm.

1 Introduction

A usual problem in stochastic optimization is to estimate the minimizer 6 of a convex functional G : R — R

of the form
G(h) =E[g(X, h)]

where g : X x R? — R, and X is an X-valued random variable. This framework encompasses numerous
classical problems, such as linear and logistic regression (Bach)|2014)), or the estimation of geometric medians
and quantiles (Cardot et al.; [2013; 2015; |(Godichon-Baggionil, [2016]) to nam a few.Various methods have been
developed to solve this optimization problem, generally categorized into iterative and recursive approaches.
Iterative methods involve approximating the minimizer of an empirical function derived from the sample
using convex optimization techniques (Boyd & Vandenberghel 2004), or more advanced refinements like
mini-batch algorithms (Konecny et al., 2015). While effective, these methods face scalability issues with
large datasets and are unsuitable for sequential data. In contrast, recursive methods adapt naturally to
sequential data and are computationally efficient.

Among recursive methods, the stochastic gradient algorithm (SGD) (Robbins & Monrol |1951)) and its aver-
aged version (Ruppert, 1988; Polyak & Juditsky), [1992)) are particularly well-known. Given sequential data

X1,..., X0, Xn+1,. .., the stochastic gradient algorithm (6,,),>0 and its averaged version (6,,),>0 are defined
recursively for all n > 0 by

0n+1 - 977, - 771—&-1th (Xn+17 on) 5 §n+1 - on +

n + 2 (0n+1 - on)
where (v,,) is a positive step sequence converging to 0. These algorithms have been extensively studied, with
asymptotic results in works like (Pelletier] |1998;|2000]) and non-asymptotic results focusing on quadratic mean
convergence (Bach & Moulines| 2013} |Gadat & Panloup, [2017; |Gower et al., |2019)). Averaged estimates are
particularly appealing as they achieve asymptotic efficiency under regularity conditions, often attaining the
Cramer-Rao bound (up to negligible terms).
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Despite these advantages, a significant limitation of SGD lies in its step size sequence (7, ), which cannot
adapt to varying gradient directions, leading to suboptimal performance in ill-conditioned problems. This
issue has motivated the development of adaptive stochastic gradient algorithms. These methods take the
form:

en-‘rl = 9n - ’Yn—i-lAnvhg (Xn+17 en)

where (4,,) is a sequence of (random) matrices which enables the descent step to be adapted in each coordi-
nate. Prominent examples include Adagrad (Duchi et al.,|2011)), which effectively standardizes the gradient,
and stochastic Newton algorithms that use estimates of the inverse Hessian (Bercu et al., |2020; Boyer &
Godichon-Baggionil 2020)). These methods are particularly advantageous when the Hessian has eigenvalues
of different magnitudes.

While asymptotic properties of adaptive methods are well-studied (e.g., (Leluc & Portier, 2020; |Gadat
& Gavra, 2020))), non-asymptotic results remain less explored. Notable exceptions include high-probability
bounds for Kalman recursions in logistic regression (De Vilmarest & Wintenberger} 2021) and L? convergence
rates for Adagrad and Adam (Défossez et al., 2020)). Furthermore, Bercu et al. (2021) obtain the rate of
convergence in quadratic mean of stochastic Gauss-Newton algorithms for optimal transport. However, these
results often assume uniformly bounded gradients, a condition violated in cases such as linear regression.

This paper addresses these gaps by focusing on non-asymptotic convergence rates for strongly convex func-
tions with unbounded gradients. Our contributions include: (i) establishing convergence rates for adaptive
methods when A,, may diverge, with a controlled divergence bound, (ii) deriving standard convergence
rates under the additional assumption that A, has uniformly bounded fourth-order moments, (iii) provid-
ing a general framework for analyzing the convergence of stochastic Newton and Adagrad algorithms, with
applications to linear regression and ridge-regularized generalized linear models.

The paper is organized as follows: Section [2] introduces the general framework. Section [3] presents the
algorithms and theoretical convergence results. Applications to linear regression and generalized linear
models are detailed in Sections [4] and [5] respectively. Proofs are provided in Section [f] and the Appendix.

2 Framework

In what follows, we consider a random variable X taking values in a measurable space X and fix d > 2. We
focus on the estimation of the minimizer 6 of a strongly convex function G : R? — R defined for all h € R?
by

G(h) :=E[g(X,h)],

with g : X x R* — R. Let us suppose from now on that the following assumptions are fulfilled:

(A1) For almost every z € X with respect to the distribution of X, the functional g(x,.) is differentiable
on R?. Moreover, there exist p > 2 and non-negative constants C’l(p ), C’Q(p ) such that for all h € R4,

E[IVag (X, W] < P+ |In - 0]

(A2) The functional G is twice continuously differentiable.

(A3) The Hessian of G is uniformly bounded on R¢, i.e there is a positive constant Ly such that for all
h € R?,

V2G(n)|| , < Lva

O;

where ||.||op is the usual spectral norm for matrices.

A4) There exists © > 0 such that the functional G is u-strongly convex : for all h, b’ € R?
( j 2 gly ; ;

GW) = G(h) = VG (W =)+ £ [1 = h|%
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Remark in particular that Assumption (A3) ensures that the gradient of G is Lyg-Lipschitz. Assumption
(A4) ensures existence and uniqueness of the minimizer §. Note that these assumptions are usual for
obtaining the L? rates of convergence of the stochastic gradient algorithms and their averaged versions
(Bach & Moulines, [2013} |Gower et al.| [2019).

3 Adaptive stochastic gradient algorithms

3.1 The algorithms

Let X4,...,Xn, Xn+1,... be an i.i.d sequence of random variables with the same distribution as X. Then,
an adaptive stochastic gradient algorithm is defined recursively for all n > 0 by

9n+1 - en - ’Yn+1Ath9 (Xn—i-lven) 3

where 6 is arbitrarily chosen, v, = c¢yn™" with ¢, > 0, v € (0,1) and A, is a sequence of symmetric and
positive matrices such that there is a filtration (F,), - satisfying:

e Foralln >0, A, is F,-measurable.

e X,,+1 is independent of F,.
Typically, one can consider A, only depending on Xi,...,X,,0p,...,0, and consider the filtration
generated by the sample, ie F, = o(Xi,...,X,). Considering A, diagonal with (An)k’k =

—-1/2
(ﬁ_l <ak+2?=1 Vg (Xi,Qi_l)ii)) leads to Adagrad algorithm (Duchi et al) 2011). The case
where A, is a recursive estimate of the inverse of the Hessian corresponds then to the stochastic New-
ton algorithm (Bercu et al.l [2020; [Boyer & Godichon-Baggioni, 2020|), while the case where A, =

1
n%_l ((Ao + 30 Vig (X, 0i-1) Vig (X, 91_1)T)) corresponds to the stochastic Gauss-Newton algo-

rithm (Cénac et al.l [2020; Bercu et al., 2021)).

3.2 Convergence results

3.2.1 A first convergence result

In order to obtain a first rate of convergence of the estimates, let us now introduce some assumptions on the
sequence of random matrices (A4;),~(:

(H1 ) One can control the smallest and largest eigenvalues of A,:
(H1a) There exist (vp)n>0, Ao > 0 and ¢, ¢ > 0 such that
IP P\min (An) § AOt] S vn+1tq(n + 1)767

for 0 < t < 1, with (vu41(n + 1)7%),>0 decreasing.

If o < 1/2, one also assumes the stronger hypothesis of the existence of A, = \y(n+ 1)~ with
Ay > 0, X <~ such that for all n > 0,

>\min (An) Z )‘{n .

(H1b) There exists a sequence 3, = cgn® for n > 0 with ¢g > 0 and 0 < 8 < 7if vy < 1/2 0r
0< B <vy—1/2if v > 1/2 such that for all n > 0,

||An||op S ﬁn+1~
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Remark that the case 6 = 0 is allowed in (H1a) and that one can always choose § in the allowed range of
(H1b). In most cases and especially for Adagrad and stochastic Newton algorithm, (H1a) is easily verified.
The presence of the decreasing term v, in (H1a) takes into account a general phenomenon (usually implied
by Rosenthal inequality) that error contributions from higher moments of X, albeit dominant for small n,
fade as n goes to infinity. Concerning (H1b), some counter-examples showing that the estimates possibly
diverge in the case where this last assumption is not fulfilled are given in Appendix [F] meaning that this
assumption is unfortunately crucial. Up to our knowledge, it is still an open problem to know whether such
assumption can be lifted in the specific case of the linear or logistic regression. Anyway, an easy way to
corroborate it is to replace the random matrices A,, by

min { |4, B |

o [Anllop "

and one can directly check that ||A"Hop < Bp+1. Similar adjustment can be used to ensure (H1a) in the
case v < 1/2.

Let us consider the case of Newton’s method, and especially the case where the estimates of the Hes-
sian are of the form H, = n%_l (HO +ZZ=1 akékq)g) and which can be so recursively invert with the
help of Riccati/Shermann-Morrisson’s formula (see Bercu et al.| (2020); Boyer & Godichon-Baggioni| (2020);
Godichon-Baggioni et al.| (2022))), Assumption (H1b) can also be enforced by considering the following
version of the estimate of the Hessian

£ 1 - cg T
Hn = Hn + ﬁ ﬁekek
k=1

where ey, is the k-th (modulo d) canonical vector (see Bercu et al.| (2021)); |Godichon-Baggioni et al.| (2022))).
We can now obtain a first rate of convergence of the estimates. For the sake of simplicity, let us now denote
the risk error by V,, := G (6,) — G(#). Note that since G is p strongly convex, one has ||6,, — 0]|* < %Vn.
Theorem 3.1. Suppose Assumptions (A1) to (A4) and (H1) hold. Then, for all n > 1 and for any
A <min{y—28,1—~},

E[V,] < exp (_Cw,u)\onl_(ﬂ“’)(l _ e(n))) (Kfl) + Kl(}) max k/,'y—2B—6/2—(q/2+1))\\/,U—k>

1<k<n-+1

+ K= 0720-% 4 gD = (002

with e(n) = o(1) given in equation and Kfl), Kf,l), Kgl), K:gl) constants respectively given in equation
and equation [21]

In the particular case where 6/2 > v — 28 (which happens as soon as § > 1), one can simply set A\ = 0
in the above formula : we will see that it is the case for the generalized linear model with the stochastic
Newton algorithm. However, for Adagrad algorithms, one can not avoid using first A > 0, since A,, depends
on Vg(X,-) rather than V2g(X,-) (while the expectation of the latter is bounded on R? the one of the
former is generally unbounded). To get rid of this weaker statement, we will need the following equivalent
of Theorem [3.1] for higher moments.

Proposition 3.1. Suppose that Assumptions (A1) with p > 2, (A2) to (A3) and (H1) hold. Then for
any 2 <p’ <p and any A < min{y — 25,1 — v},

| < <_ =) (1 _ ) (1" 1" y—28-A—2=2 (54qN), T
E[Vn } < exp | —cypAon 1-€'(n)) Ky ' +K; 1§1]£1Sa,7>l<+1k v,

+ Kél/)n_p/(,y_Qﬂ_)\) + Kﬁgl/)vﬁj (n I 1)_]}—171’ (5+q)\)7

with € (n), K{ll), KS/), K2(1,) and Kéll) constants respectively given in equation@, equation @ and equa-
tion [70.
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3.2.2 Convergence when A, has bounded moments

In order to get a better rate of convergence, let us now introduce some new assumptions on the sequence of
random matrices (A,):

(H2a) The random matrices A4,, admit uniformly bounded second order moments. There exists Cis > 0
such that for all n > 0:

E[I4.1°] < ¢3.

(H2b) The random matrices A,, admit uniformly bounded fourth order moments. There exists C's > 0
(which can be taken equal to the one of (H2a), up to increasing the latter) such that for all n > 0:

E[l4.1'] < c3.

For a simpler statement, we assume here and in the next paragraph that ¢ > 0 in (H1a), although similar
bound would hold in full generality.

Theorem 3.2. Suppose Assumptions (A1) to (A4) for some p > 2, (H1) and (H2a) hold with § > 0.
Then, for all n > 0,

1- (2 2) =Ll o p=lg
E[V,.] < exp (—cypuron' =7 (1 — &(n))) - <K1 + K | pax vy kY725 )

p=1 (p—1)

2) & _
—i—Ké )an/QJn

IS4 K 9(,2)71_'*,
where e(n) = o(1) is given in equation and K£2),K1(,2),K§2),K§2) are constants respectively given in
equation [25, equation[20 and equation [27

Finally, in order to get the rate of convergence in quadratic mean of stochastic Newton estimates, we now
give the L? rate of convergence of G (6,,) when v > 1/2.

Proposition 3.2. Suppose Assumptions (A1) to (A4) for some p > 2, (H1) and (H2b) hold with v >
1/2,6 >0 and B <~y —1/2. Then

3 ’ ’ p=2 p—2
2 _° 1— (2) (2" IR
E[V;?] <exp ( 2c7A0un ) <K1 + K | pax vy k )

+ K0 Kol 2P0 = 6,

with K{Q/), Kflj), K2(2l), K§2/) constants respectively given in 6quati0n equatz’on and equation .

- 5(p—2)
In other words, one has M,, = O (n mm{z% g } . Hence, for ¢ large enough (namely § > %’Y), the

main contribution comes from the second term of the latter bound, i.e we obtain the good rate of convergence

O(n=7).
3.2.3 Convergence results for stochastic Newton algorithms

Let us now focus on the rate of convergence of stochastic Newton algorithm. To this end, let us set H :=
V2@G(#) and suppose from now that the following assumptions are also fulfilled:

(A1’) There exists Ly, > 0 such that for all h € R9,
E[IVhg (X,1) = Vg (X,0)|*] < Loy [Ih - 0] (1)

(A5) There is a non negative constant Ls such that for all h € R?,

IVG(h) = V2G(0) (0 = 1) < Ls |h— 0]
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(H3) The estimate A,, converges to H~!: there is a decreasing positive sequence (v An)p>o Such that for
aln >0, B

E ([ 40— HP] < van.

Observe that assumption (A1) is often called expected smoothness in the literature (Bach & Moulines),2013)
and is satisfied in most of examples such as linear and logistic regressions (Bach & Moulines, 2013} [Bach),
2014) or the estimation of geometric quantiles and medians (Cardot et al.l |2013)) among others. Concerning
(A5), under (A3), it is satisfied as soon as the Hessian is Lipschitz on a neighborhood of §. For instance,
in the case of the linear regression, Ls = 0. Finally, Assumption (H3) is satisfied if having a first rate of
convergence of the estimates of 6 (thanks to Theorem [3.2| or Proposition [3.2| for instance) leads to a first rate
of convergence of A,,, which is often verified in practice (see Boyer & Godichon-Baggioni| (2020) for instance,
see also Lemma in the specific case of the linear regression).

Theorem 3.3. Suppose Assumptions (A1’), (A1) to (A5), and (H1) to (H3) hold with v > 1/2, § > 0
and B <~y —1/2. Then,

E [||9n - 9||2} < e zean'”” (KP) +KP max (k + mdk)
3 1 N, K (3)
+7’l_7 2 +'YC,YT7“(H_ YH™ ) +7+K2, VAn/2 +dLn/2j

where X is the covariance matriz of X, Ki(?’), 1 = 1,1,2,2" are defined in equation equation and
equation [30, and dy. only depending on My, and va i is given in equation [29

Recall that M, is given by Proposition Remark from equation 29| that dy < C(vax + My) for some
constant C' > 0. The latter results can be further simplified if we also assume a sufficiently large exponent
0 in (H1a).

. . 2
Corollary 3.1. Suppose Assumptions (A1°), (A1) to (A5), and (H1) to (H3) hold withy > 1/2, § > p%
and B <~y —1/2. Then,

K@) , )
E [Hon - oﬂ <n~7 (23%7 Tr(H'SH) 4 =2 + K vy + KS) Tz

~
)

I

with Ki(SI), 1= 1...2" given in equation and equation .

1
ny’

Then, if v4 , converges to 0, we obtain the usual rate of convergence
3.2.4 Convergence results for adaptive gradient (Adagrad)
Recall that the Adagrad algorithm amounts to specify d initial parameters a1, ...,aq € R, and choose 4,

diagonal with
1

\/ (0 + X0 0 (Vag (X, 60)%)

The original Adagrad algorithm would then amount to take v = 1/2. To guarantee non-degeneracy of the
matrices (Ay)n>0, we assume some minimal fluctuation of the gradient at the minimizer 6.

(An) ik = Ok (2)

(A6) There is @ > 0 such that for all 1 <14 <d,

E[(Vhg(X.0)}] > a. (3)
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(A6’) There is a > 0 such that for all h € R and 1 <i < d,

E[(Vig(X.h)}] > o @)

Remark that (A6°) is much stronger as (A6). However, the former is often satisfied, as it is the case for
the linear regression with noise. Then, we consider the following modification of A,: (A, ) = (Ay)gx for
k # k' and

min{anﬁ,(Tn)kk}, ify>1/2

ATL = _— ’
() max {min {egn”, (An)ik} s Agn ™ } , ify<1/2

(5)

for 1 < k < d, where 8, = cgn” with 8 < min{y/2,1/4} and N < 7 (where \j and cs > 0 are chosen
arbitrarily).

We then have the following convergence result for the mean quadratic distance. We only state the result for
v < 1/2, but a similar statement holds for 1/2 < v < 1 with different constants.
Theorem 3.4. Suppose Assumptions (A1), (A1) to (A4) and (A6) are satisfied for v < 1/2 and B8 <

min (8_4(%%, 1/4). Then, with (Ap)n>1 given in equation@,

% Y B - (p=1) o f2(0-7)v(v—28)p
E (6. — 60]%] < K§4) exp (—cypAon' =7 (1 —&(n))) + K§4) log(n + 1)%117 7 min{ 7= 1}

+ K’é‘l)n*”’,
with €(n) given in equation vp, = volog(n + 1), with vy, C& and o given in equation 85, equation

and equation with p’ = 2(%_”?);0. In addition, K§4), K§4) and K?(fl) are given in equation . If (A6’) is

satisfied, the same conclusion holds for B < 1/4 with Cs given in equatz’on taking p' = 2(%_;’)]9,
In the special case where v = 1/2, which corresponds to the usual Adagrad algorithm, we get

E [||6, — 0]1%] < KW exp (—cypurovn (1 —e(n)))

1 4 _(1-48)(p—1) 4
+ o (K§ Vlog(n + 1)nt/2~ =35 4 K >>,
; 1 _ (1-48)(p-1) ; 1-8
and we so achieve the usual rate of convergence 7 s soon as 1/2 & < 0, i.e as soon as p > 41745.

Remark that the advantage of using Adagrad algorithm compared to a standard stochastic gradient algorithm
does not appear in the bounds of Theorem Since Adagrad algorithm amounts to a regularization of the
gradient descent by a diagonal matrix, not much can be deduced in full generality. However, one expects
better bounds to hold in the case where the Hessian matrix at the minimizer is also diagonal. For example in
practice, the parameter 5 should be tuned in such a way that cﬁnﬁ >> Amin(H) ™! at the time n of interest,
where Apin(H) is the smallest eigenvalue of the Hessian at the minimizer : the influence of such a choice
of the parameter 8 would appear in the first term of the bound of Theorem in the case of a diagonal
Hessian at the minimizer.

4 Application to linear model

Let us now consider the linear model Y = X760 + ¢ where X € R? and € is a centered random real variable
independent from X. We suppose from now on that E [XX*] is positive. Then, 6 is the unique minimizer
of the functional G : R? — R defined for all h € R? by

G(h) = %IE [(Y - XTh)Q} .

If X admits a second order moment, the function G is twice continuously differentiable with VG(h) =
-E [(Y — XTh) X] and V2G(h) = E [XXT].
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4.1 Stochastic Newton algorithm
The stochastic Newton algorithm is defined recursively for all n > 0 by (Boyer & Godichon-Baggioni, |2020))
9n+1 = 9n + ’Yn+1§r:1 (Yn+1 - Xg+19n> Xn+1 (6)

where S, = P (mSO +> 0, XZ-XZ»T) with Sy positive, m > 1 and (o,)>0 a deterministic modulating

sequence satisfying, for some 0 < a_ < ay and a > 0,

@
a_ <a,<a;, and |a,—1]<—=, n>0.
n
The parameter m > 1 reflects the expected quality of the initial approximation of the Hessian at the
minimizer by Sp. The usual stochastic Newton algorithm corresponds to the choice m =1, a,, = 1. Build
then a regularized version by setting

o min (155 Ber)

—1
n ~_1H n
157l

with 3, = csgn?. Remark that 5’;-51-1 can be easily updated with only O (d2) operations using Sherman

Morrison (or Ricatti’s) formula. More precisely, considering S,, = (n 4+ 1)S,,, one has
St1 =8, = (1+ X7,’1L“+1S7’71Xn)71 Sy X1 XSt

Then, one can easily update S'n_and S,,. We call regularized stochastic Newton algorithm the algorithm
equation |§| with S,, replaced by S,,.

In order to avoid singularities in the estimation of the Hessian, we will assume in the sequel that the
distribution of X is non-degenerate on R?. Formally, this amounts to suppose the existence of a constant
Ly > 0 such that for any h € S, \/E[RXXTh] < LygE HXThH We can now rewrite Theorem
for the regularized algorithm as follows:

Theorem 4.1. [Regularized Stochastic Newton] Suppose that there is p > 2 such that X and e respectively
admit a moment of order 4p and 2p. Suppose also that there is a positive constant Lyjx such that for any
he St JEhXXTh) < LyxE HXThH. Then, for any 1/2 < v < 1, the regularized algorithm (0,,)n>0

satisfies the mean quadratic error

B (16, — 017] < et (KE o K {2 o i+ 1))
K2(3l)' 3
+n77 (23”%E (] Tr(H™Y) + =22+ K302 + de%) :

nYy
where Ko jin, K2(:’3,)lin7Kl(?l)ime?,)lin’ d, are given by equation while vy ., is defined in equation .

max{ p;? -,y
n

Observe that n7d,, = O (1}> and vy, = O (n_l), and since p > 4, these terms are both

negligible. Using this theorem, it is possible to prove a non-asymptotic quadratic concentration bound for
the convergence of the original stochastic Newton algorithm, at the cost of imposing a sub-gaussian decay
on the tail of X. Namely, following (Vershynin, 2018, Sec. 2.5), we say that X is sub-gaussian if there exists
¢ > 0 such that

P(IX| > 1] < 2exp(—#2/c)

for all t > 0, and we then define the sub-gaussian norm ||.X||,, of X as
| X |, = inf {t > 0,E [exp(|| X|?/t?)] < 2}.

Remark that any gaussian distributed or bounded random variable is sub-gaussian. Under a sub-gaussian
hypothesis for X, we then have the following concentration bound.
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Corollary 4.1 (Original stochastic Newton). Suppose that X is sub-gaussian with sub-gaussian norm
I X/lgs > 0 and € admits moments of order 2p, p > 2. Suppose also that there is a positive constant
Lyx such that for any h € S, \/JE[hXXTh] < Ly xE HXThH. Then, for any 1/2 <~ < 1, we have for
all § > 0 and n > ¢y, with ¢y only depending on Sy, d, v and the second moment of X,

1 R _
P (|6, — 0| > 9) 36—2 n 12 E €] Tr(HY) + Gy (e zen'! E[VP¥/P + n)} + Con™ 27,

with ¢, C1,Cy depending on the parameters of the algorithm, Ly, the first 4p moments of X and || X ||y, ,
and the first 2p moments of €.

In view of the central limit theorem proven in|Boyer & Godichon-Baggioni (2020)), this non-asymptotic bound
is optimal in the fluctuation regime up to the numerical constant 24*7 and the error terms.

4.2 Adagrad algorithm
For linear model, we define Adagrad algorithm for all n > 0 by
0n+1 - en + ’Yn+1D;1 (YnJrl - Xg+10n) Xn+1,

with D,, diagonal with, for v < 1/2,

n=p8

= . 2 n
(Dy)kr = min ¢ max ;, ? (ak + Z Yit1 — 1_;,_191‘) (Xi+1)k) ) 7/\76

where 0 < 8 < (y — X')/2 for some a; > 0 and if v > 1/2,

_ n=h 2
(Dn)rr = max o ? ar + Z Yig1 — X510:) (Xig1)r) )
for some 0 < 8 < —1/2. The usual Adagrad algorithm is done with v = 1/2, which yields for us
(Yn+1 - XZ+1071) (Xn—i-l)k

] n 2 n ’ ’
min {max{w \/ ak + 315, (( 1 — X100 )( z+1)k) }’ k,\21/2}
Note that a first convergence analysis yields that almost surely there exists ng > 0 such that for n > ny,

(Yn+1 - Xg+19n) (Xn+1)k
2
Ve + X073 ((Yies — X7,6) (X))

which is the usual Adagrad algorithm. We can then rewrite Theorem as follows (remark that we only
state the result for v < 1/2, but a similar statement holds for 1/2 <~ < 1 with different constants).

(9n+1)k = (en)k +

(9n+1)k = (en)k +

)

Theorem 4.2. Suppose that there is p > 2 such that X and ¢ admit a moment of order 2p. Then, for
v <1/2 and B < 1/4, we have

E [Hoﬂ - 9”2] S Ki‘??n exp ( C"/)‘mln)‘o lin T ht (1 - E?Lidlgzjn))

(p=1) . [20—v)v(v=28)p
— min - ,1 ada ~
P { 2—y } —+ 3,linn R

+ Kgylgn log(n + 1)%n

where €292 = o(1) is given in equatz’on and Kf”llfn, Kgff;‘n Kgfffn are given by equation equation and

n,lin

equation [57)

Observe that in the case Where v =1/2, the \F rate of convergence is achieved as soon as (p—1)(1—-43)/3 >

1/2, i.e as soon as p > 5 (1 4ﬁ)



Under review as submission to TMLR

5 Application to generalized linear models

The framework of the linear regression can be easily generalized to the more general setting of finite dimen-
sional linear models. Let £ : Y x Y — R be a cost function on some domain ) C R. The general learning
problem is to solve the minimization problem

argminE [((Y, f(X))],
fer

with (X,Y) ~ P and F is a given class of measurable functions from X' to Y, where X is a measurable space.
In the case of finite dimensional linear models, Y = R and F = {hT(I>(-), h e Rm}, with @ : X — R™ a known
design function (remark that the setting can be easily generalized to the case ) = RP and ® : X — R™ and
h € My, ,(R)). Then, assuming that ¢ is convex and adding a regularization term on 6, the minimization
problem turns into the framework of this paper with

G(h)=E[g(Z,h)],

with Z = (Y, ®(X)) := (Y, X) and for all h € M,, ,(R), g(Z,h) = £(Y,hT X). In what follows, let us suppose
from now that the cost function ¢ is twice differentiable for the second variable and that there is a positive
constant Ly; such that for all h € R¢ )

Vi (Y HTR)| < Lo )

where V2/(.,.) is the second order derivative with respect to the second variable. Remark that such a
bound is generally assumed if we require that |[V2G(h)|lop < Lye < +oo for all b € R%. This is for
example satisfied when £(y,y) = f(y — v') with sup, |f”(y)| < +oo. For example, in the simplest case of
the logistic regression, we consider a couple of random variables (X,Y) lying in R? x {~1,1}, ® = I; and
(y,y’) = log(1 + exp(—yy')), and we indeed have for all h and Y € {—1,1}

1 1

VY, hTX) = . <1.
Wiy, ) 1+exp(hTX) 1+exp(—hTX) ~

There are then two main cases to deal with the convexity of the minimization problem : either assume strong
convexity or use a regularization. The first consists in assuming that the functional h — E [6 (Y, h'X )] is
strongly convex, which is in particular verified when there exists o > 0 such that

inf Vil(y,y') > a. (8)
y'€R
and E [X X T} is positive. This case is called the elliptic case in the sequel and the results are very analogous
to the ones for the linear regression and are thus not repeated. We will then focus on the regularized

case. Without uniform lower bound on V#£{(y,y’), one needs a regularization term, yielding the following
regularized minimization problem

argminE [£(Y, (0,07 X))] + Mk (9)
OcR™ 2

for some ¢ > 0. In what follows, we suppose that the minimizer exists and we denote it by 6.
5.1 Stochastic Newton algorithm
The stochastic Newton algorithm is defined recursively for all n > 0 by

Ons1 = On — Yns15n (Val Va1, 07 X011) Xog1 + 06,) ,

where, using the trick introduced in Bercu et al. (2021) and developed in |Godichon-Baggioni et al.| (2022),
Sy, is the natural recursive estimate of the Hessian given by

n—1 n
_ 1 od
Sn = n+1 ; Vil(Yig, <9i,Xi+1>)Xi+1XiT+1 + " ;6i[d]+1ezfd]+1, (10)

10
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with i[d] denoting ¢ modulo d. Remark . that one can easily update the inverse using the Riccati’s formula
used twice, i.e considering S,, = (n + 1)S,, and

— _ _ -1 4_ _
Sni% = Sn t— V%LE(Y,L_H, <9na Xn+1>) (1 + vié(Yn+1a <0na Xn+1>)Xg+1Sn 1Xn+1) Sn 1Xn+1Xz;+1Sn !
-1
-1 T -1 -1 T -1
Sn+1 = Sn+% —od (1 + O'de(n+1)[d]+1sn+%e(n+1)[d]+1) Sn+%e(”+1)[d]+1e(n+1)[d]+1Sn+%’

one has ?;Jlrl =(n+ Q)S;ir In what follows, let us suppose that the following assumptions hold:

1 ere is Ly2y, > 0 such that the function h —— ) is Ly2r-Lispchitz wit
GLM1) Th L 0 h that the f h E [V (Y,hTX) XXT L Lispch h
respect to the spectral norm.

(GLMZ2) There is p > 2 such that X admits a moment of order 2p and such that there is a positive constant
L, satisfying for all 0 < a < 2p

E |||Vl (v, X70,) X + 00, |*] < Lz
Remark that Assumption (GLM1) is verified when for all y, V2/(y,.) is Lipschitz and X admits a third

order moment, which can be easily verified for the logistic regression for instance. Assumption (GLM2) is
verified when the random variable V¢ (Y, X76,) X admits a moment of order 2p.

Theorem 5.1. Suppose Assumptions (GLM1) and (GLMZ2) hold. Then,

1—

E 60 — 0 ]°] < emdm (Ki:”éLm K\ gpar max (k + 1>de.,GLM)

(3)
K.
+ n~7 (23+’yc’y Tr (HOTlZUHt;l) + % + Kéi)GLM’Ul’n/z + n’ydln/2J,GLM> )

where Hy = E [V3L (Y, X70,) XXT] 014, So = B [ (Val (Y, XT0,) X +00,) (Val (Y, X76,) X + 06,)" |,

Kl(?g;LM, Kl(?),)GLM7 K;%LM, Ké?))GLM, dn,crLm are defined in equations equation @ equation and equa-
tiOn@ and vy, s defined in Proposition @

Remark that n7d|,/2).qLm = O(n~ min(v,1-)) " see Section
5.2 Adagrad algorithm

For generalized linear model, Adagrad algorithm is defined for all n > 0 by
Ont1 = 0n — Yns1Dy ' Vil (Vg 0 Xos1) X,

where D,, is diagonal and for v > 1/2,

B TL_B 1 n—1 )
(Dn)kk = max o\ n¥l ar + Z (Vi (Yig1,0F Xi1) (Xig1)r + 0 (0:)r) )
i=0
for some 0 < <y —1/2, and for v < 1/2,
_ ) niﬁ 1 n—1 - N n/\/
(Dy) gk = min { max P\ Pl + ; (Vil (Yig1, 0T Xis1) (Xig1) + 0 (0:)r) N

where 0 < 8 < (y — X)/2 and aj > 0. The usual Adagrad algorithm is done with v = 1/2, which yields for
us

vhZ (Yn+1a GZXn-&-l) (Xn+1)k + U(en)k
min {maX {ni;l“? \/ak + Z?:_ol (vhé (Yi+1,«9iTXi+1) (Xit1)e + 0'('92‘)/6)2} , nk/;&l/z }

(en—&-l)k = (Qn)k +

11
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Like the linear regression, the general linear model needs minimal randomness to ensure the expected rate
of convergence of Adagrad. Indeed, in the extreme case of a deterministic sequence (X,,Y,)n>0, Ada-
grad algorithm may diverge in the unfortunate situation where V¢ (Yi+1,91TXi+1) (Xi+1)r vanishes or
remains very small. Such behavior can be averted by requiring at the minimizer 6, a minimal variance for
Vit (Y, HZX) (X)) forall 1 <k <d.

(GLM3) There is a positive constant o, > 0 such that for all 1 < k <d

Var [Vl (Y, X"0,) (X)i] > ao.

Remark that )
Var [Vl (Y, X70,) (X)x] = E [|vh£ (Y, X70,) (X)k + o (65)x| } : (11)

so that (GLM3) can be seen as a mirror assumption to (GLM2). We should stress that the existence of
such a, is almost automatic when a minimal randomness between X and Y is assumed. Indeed, having
Vil (Y, 0T X ) X} deterministic would imply an analytic relation between Y and X. The main computational
issue is to estimate a concrete value of ;. An example dealing with the logistic regression is given in Section

[El

When (GLMS3) is assumed, one can show using Theorem that there exists almost surely ng > n such
that for n > ng,

vhZ (Yn-‘rla az:Xn-‘rl) (Xn—i-l)k + O'(en)k

(0n+1)k = (0n)k +
\/ak + 30 (Vil (Yig1, 07 Xigr) (Xiv1)r + 0 (0:)x)

27

so that we recover the usual Adagrad algorithm for large n. We can then rewrite Theorem [3.4] as follows
(remark that we only state the result for v < 1/2, but a similar statement holds for 1/2 < v < 1 with
different constants).
Theorem 5.2. Suppose Assumptions (GLM1), (GLM2) and (GLMS3) hold. Then, assuming thaty < 1/2
. 1—~)~2
and § < min (8_4(%;7%, 1/4), we have
E {Hen — 90||2} < Kf"’lc‘;lLMeXp (—C,YO'S\O,GLMTLI_’Y(l — E(?’L))

(p—1) _ 2(1—)v(y—=28)p
- 1 _
ot min{ BRG] + K§GLum ™",

K3%, log(n +1)% n

where e(n) = o(1), K{%, v, K5, and K§%;  have explicit formulas depending on the parameters of the
model.

We do not specify the exact value of the constants here, since they can easily be obtained along the lines of

previous results. Once again, when v = 1/2, the ﬁ rate of convergence is achieved as soon as p > 2(51%44%).

6 Proofs

Throughout our proofs, to alleviate notations, we will denote by the same way ||.|| the Euclidean norm of R?
and the spectral norm for square matrices. In addition, we will regularly use the following technical result
from (Godichon-Baggioni et al., 2021, Proposition A.5).

Proposition 6.1. Let ()i>1, ()i>1, and (v)i>1 be some positive and decreasing sequences and let (8;)>0,
satisfying the following:

e The sequence §; follows the recursive relation:
0 < (1 — 2wy + mye) 0r—1 + e, (12)

with g > 0 and w > 0.

12
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o Let v, and ny converge to 0.

o Lettg=inf{t>1:m <w}, and let us suppose that for allt >ty + 1, one has wy; < 1.

Then, for allt € N, we have the upper bound:

t t

Vi 1

< _ . v ) il

sew| e e (23] (v 2 2) + 5 e e
j= i=

t/2

with the convention that ) ,'" =0 if t/2 < t,.

Moreover, we denote by Cy,C}, Ca, Ch constants such that for all h € R9,

E[IVag (X RIP] < CrtCallh =07, E[[Wag (X, 1)|1*] < €1 +Cylh—o]*. (13)

6.1 Proof of Theorem 3.1]

Remark that thanks to a Taylor’s expansion of the gradient, denoting V,, = G (0,) — G(f) and g;, ., =
th (XnJrla gn)a

L
T \ye 2 2
Vir1 £V = 741 VG (6,) An9;+1 + 2 %21+1 | An |l H94L+1H

LVG

<Vi—"m1VG (en)T Angpir + —— 2+15 +1 ||9n+1|| (14)

where we used Hypothesis (H1b) on the last line. Then, taking the conditional expectation, thanks to
assumption (A1), and since ||6,, — 0||> < %Vn,

CyL CiL
we 2mn+1) Vi = 041VG (0n)" AnVG (B) + =041 B

E Va1 1] < (

Furthermore, since Assumption (A4) implies that G(h) — G(0) < o= |[VG(h)||? for h € R?, it comes

= 2u

VG (0n)" 4,V G (0,) > Amin (An) VG (6,)]]
> 20 1Vl (A) >N
- 2)\71#‘/71 - ]‘)\min(An)</\n2>\n‘u‘/n7 (15)

with A\, = A\g(n 4+ 1)* with 0 < XA < 1 —~. Applying Cauchy-Schwarz yields

E|VG (0,)" AyVG (6,)] >2MpE [Vy] — 2200/ E[V2] VP Amin (An) < An]

>2A0 i [Vi] = 2200tV /P Amin (An) < Al

with V2 > sup,,»o E[V;?] calculated later. Then, Assumption (H1a) gives P [Amin (An) < An] < vpy1(n +
1)79=9* := 9, so that

CyL
E Vo] < (1 —2pAo(n + 1) Yn+1 + QMVG 721+1%21+1> E[Vy]

CiLve 2

+2X0(n + 1) AV Y1V, +

13
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In order to apply Proposition let us denote

(16)

CQLVGC%C-Y 2v—28 2A=28-2
Cpy =max{ ————— ,

jz s (o) 7T ey 7

the last upper bound being added so that the terms of equation [I7] below satisfy the third condition of
Proposition Set 7, = cwn’o‘*”), and remark that

E [Vn+1] < (1 - 2#)\0:}/”4,_1 + CM (n + 1)2ﬁ+)\77’?n+1) E [Vn] + 2/\O,U‘/\/ Un:)/n+1

CiLve

+ (n+ 1))\%-&-163-4-1%—&-1- (17)

Then, since 2y — 28 — 1 # 1, with the help of Proposition [6.1] and an integral test for convergence to get

n 28—2 (+26-2y)F n - 1-2771 1— 1—
Zk:lkB ’Y§1+n\2fy—T—l\andZt:Ln/2jt‘yZ T n 'VZn ’YfOI"}/G(O,l),

(1+28-2v)7"
E[V,] < exp (—cvu)\onl_(M"Y)) exp <2CM67 ( n)) .

1+
2y — 28 — 1

CILVGC’\/C% CiLvc

21F% i\

n)\ﬁi/zf}/n/% (18)

/\OMV ~N—=2B—=X\_ /=
(E (Vo] + 4 o lrgnlggnk Vo + Cr

) + 2V fOna +
where we recall that v, = v, 41(n 4+ 1)7°7% > P [A\pnin (4,) < A,]. Remark that

kY282 o = Vorri(k + 1)w—25—k(;€ + 1)—(5+q/\)/2 =1k + 1)'y—2ﬁ—5/2—(11/2+1)/\7

so that maxo<g<n(k + 1)7 72872 /0), = max)<pcpyy k772079/27(0/24DA /50 Hence, we get

p(1+28-27)*
E [Vn] S exp (—cvu)\onlf(AJ”)) exp <ZCMC»Y <1 + m

AopV —28-5/2—(q/24 1)\ /— CiLvae,ch
<E [Vo] +4 Cuy 1§11?27§+1 K Vi Cu
2
i 21+(5+q>\)/2v\/mn7(5+q>\)/2 1 91—28-2-1 Cilvgeycs 262

1o

where V is defined in Lemma Hence, as long as v+ A + (1 + 28 — 2vy)* < 1 ,which is satisfied since
A < min{y — 23,1 — v}, we have

E[V,] < exp (—c,yy/\onl’(/””)(l - 5'(n)) (K{l) + K , dnax k7255/2(Q/2+1))‘\/@)

+ Kél)n—(’y—%f—)\) + Kél)\/Wn_(M'qA)/Q,

with .
20 — 14X+ (14+28-27)

e'(n) = 1" 1+ , (19)

110 12y —26 - 1]

C1Lvygec? /
kW = (B[ + 1VEa S ) K :4/\0HV7 (20)
CM CM
where C)y is given in equation [I6] and V' in Lemma [6.1] and
2

Kél) _ 27_25_A_1C1chcvcﬁ’ K?El) _ ol +(E+aN) /2y, (21)

Ko

14
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Lemma 6.1. Suppose Assumption (A1) for p > 2 and (H1b) hold. Then, for alln >0, if v > 1/2 then

E[VP] < e 57251 max {1,E [V2]} := VP

and if v < 1/2 then

1—~v—X' 1—2~428

2 by v 2 7
cychap \ Y —2B—X cocZan\ v=28=x
( > p) ( > p)

PEA PHAG

2 2 .
L—vy=XN 1—2y+23 T

+cegap | 1+

|
<
ki

E[VP] <exp | —puAjey | 1+

with ay given in equation @ and a, is given by equatz’on@ forp>2.

The proof of this Lemma is given in Section

6.2 Proof of Theorem

Remark that thanks to Assumption (H1b), one has

2 Colve CoLlyg
E 140l lghsaI* 7] < € 4]+ =5 A Vi < O A 8710 = 5 Vi

Moreover, with the help of Assumption (H2a),

CsoL
E (140 llghsa '] < 1C% + 810 =7V

leading as in the proof of Theorem [3.1] to

CoLva
E Vo] < (1 = 200 Vn+1 + 2#v TQL+1%2L+1> E [Va] + 2M0Vn41#E [1x,00(40) <A Vi

C1LvcC%

+ 2 ’Y’I'L-i-l .

Using Holder inequality with p yields then

p-1 p=1
E [Ly(amy<rn Vel < P [Lapncan<n]) 7 EVIYP <6,7 V,
with @, = v,41(n +1)7% and V, given in Lemma Considering Cjs defined by

CoL CQC 2y—28 =28
cM:maX{mf”,(m)w = }
1

one has
p—1
E[Vig1] < (1 —2uAoYn+1 + Cur(n + 1)2ﬂ*7'yn+1) E Vo] + 2206Vp0n” i1
C1LygC?
+ #S%QLH-

Then, applying Proposition [6.1 and with the help of integral tests for convergence, it comes

L n(1+26—27)"
E[V,] < exp (—copron'™ 20 1+2 ).
[ ]_exp( Cy AT )exp MCry +|27_25_1|

p—>
/\oqu maxi<ig<n k77251_1k P ClLvGC,ngv o ,pTTl
CM + CM + pvn/2

E[Vp] + 4

5 n=7. (23)

15
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Concluding as in the proof of Theorem we get

1- (2) (2) B y—28-2=Ls
E[V,] < exp (—cypudon 7(15(71)))-([(1 + Ky 1§I}1§a§+1vkp kY5 )

p=1 p—1)

(
+K§2)UU§’/2Jn g 5+K§2)n7”’,

with

e(n)

20yn 1+ n(+26-27)"
= =+ s
KA |2y —28—1|

where C)y is defined by equation 22] and

CiL C? AopV,
K§2): (E[VO]+ 1 Z«GC’Y S>7 K§/2):4 OCN P
M M
K§2) _ 21+5"levp7
K® = -1 GQlvae,Cs
Ko

6.3 Proofs of Theorem [3.3] and Corollary [3.1]
Proof of Theorem[3.3 Remark that one can rewrite
Oni1—0=0n—0 =y H gl —Yogr (A —H ') g
leading, since H is symmetric, to
[0n+1 — 9H2 <[, — 9H2 — 2741 <9:1+1, H! (On — 9)> — 2741 <(An - Hil) Q;L+1a 0 — 9>
_ 2 112 2
+ 2% [H g |+ 20050 [[An = HH| [|g7 |
First, thanks to Assumption (A3) and by Cauchy-Schwarz inequality,

(%) := ’E [Z’yn_,_l <(An — H_l) Grg1sOn — 9> \.Fn” = 2941 ’<(An — H_l) VG (6),0, — 9>‘
< 2Lyt ||[An — H7Y| 10, — 0]

Then, using Assumption (A1’), one has
(xx) :=E |:2'7721+1 [ g |]:n:| <42 T (HO'SHY) + 492 |[H Y| Loy 160 — 0]
Finally, one has
(¢ % %) = E [~2yn11 (Gayr, H (0n — 0)) [Fn] < —2vn11 110 — 01> + 2704 [|H ]| 1611165 — 6]
with, using Assumption (A5), [|6,]| := [|[VG (8,) — H (6,, — 0)|| < Ls |6, — 0]|*. Hence,
(5 %) < —29n41 (160 = 0]° + 29041 [ H Y| L5 (160 — 0],
which yields, using that [|6, — 0]* < & (6, — 0]]> + 2 [|6,, — 0||* with a = ||[H~|| Ls,
(%) < =Yg [0 = 01 + v [ L3 1160 — 0]
Furthermore,
(et ) 1= B [ 2924 [[An = BV [lgf|* 1]
<22 |[An = H Y C1+ 29241 Co || A — HP 116, — 0]
< 2yn14 || An — H_1||2 C1+ Coynra 10n — 01" + Cavi iy || An — H_1H4'

16
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As a conclusion, one has (after using Cauchy-Schwartz inequality on (x)),
—12 — —
E |[0041 = 01%] < (1= nsr + 4| H " 241 Lwg ) E [0 = 0] + 492, Tx (H'SH )

tmin (P 23+ C) E 160 — 011°] + Conb i B[ [ 4 — B[]

#2028 (40~ B 7] + 23msaLoy B 10, 01 B 14, — 1017,

leading, using Proposition With the fact that E [[|6,, — ]|*] < %E [V:2] by (A2), and (H2b) and (H3),
to

E 6041 — 01%] < (1= i1 + 4| H7*9241Lw ) E 160 = 01| + 42, Tr (H'SH)
. 1
+ Ynt1 (HH_1|‘2L§ + CQ) Tz +Covpy12° (Cfé + #4>
< V Mn'UA,n
< (1= + 4| H* 22 1Ly ) E [16, - 61°]

L2 4M,,
F Yngt - [4’yn+1Tr (H'SH™Y) + (u +02) 2

Ly
+ 2C173¢+1UA,71 + 2’)/n+1

1 L
+ CQ’Y,2L+123 (Cgv + /144> + 201’)%_;,_11}147” + 4%\/ Mn'UA,n‘| .
Finally, let us denote Cy = ¢, max {4 HH 1 H Lyg, 5 } Then, with the help of Proposition one has

- Tr(H-'SH! 1 —4 4
E [, - 0]%] < emdern' 20 2 <1E 90— o17] + £ )y, 200 *CSM”‘CMO)

Ca Ca Ca

- . LIu =2+ C L
Feten R0 (kg 1) (85 R a8 2 T )

1<k<n 12Ca Cap
L2
23t Tr (H'sH) 8 (% + Cz) 8Lvg
- T ) b L My + T My 20,2
ny 7]
2 Chey (W +CE) & 22PVCreqva g
+ . + .
n<vy nv
Finally,

E [Hon - 9||2] < e zem” (K?) +KP max di(k+ 1)7)

(3)

+n~" (23+707Tr (H_lZH_l) + =2 4 Ké?)vA,np) +djns2-

with
8Tr (H- 12 H ! 16Cy (=% 4+ C4 4C
e G by o ROUCTHC) | ACa0) gy
Ca Ca Ca
1 L2 —2 C
K g, dn=8Lm\/anA,n+8WT+2Mn, (29)

where we recall that C'4 = ¢, max {4 HH_1H2 Ly, i}v and

K = 2%210y¢, (W t+Cg)c, K = 22t10e,, (30)

17
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O
Proof of Corollary[3.1, Remark that as long as ¢ ’)1.%2 > 2+, by Proposition |3.2| and the following discussion,

L2u=2 + Cy
7= Y ot Ll )
Oglka%(n dk(k + 1) 0211?%(71 <(k’ + 1) 8Lvagy/ Mrvar +8 2 Mk)

L L2 —2
< 8 VGCVUAao\/m+8 HL u2+02w00(7)'
vy

Likewise,
227 w40 (2)
Mn/2 < a2
Hence, plugging these inequalities into Theorem yields

K , ,
E (16, - 0°] <n™ (23“%% (H'SH ) + 22— + K vg o+ K Joamsa

nYy
+ K%S/)e—%cwnlf'y ,
with

/ n (8Lvay/va,0 L2,U_2 + C
K®) =k? + kP (C\h weo (27) + 85T2woo(v) , (31)
Y

Lin~2 + Cs 92
3

; Twee (2y), K =K, K$) =220 Log/we(27). (32)

K = K 42

6.4 Proof of Theorem [3.4]

To prove this theorem, we will apply Theoremﬂ We first need to check that (A,,),>0 satisfies Assumptions
(Hla), (H1b) and (H2). Assumption (H1b) is given by construction (see equation [5)) while (H1a) is given
by the following lemma:

Lemma 6.2. Assume (A1) is satisfied for some p > 2. Then, for all0 <t <1,

P [Amin (45) < cpt] < v, %P,

d p 1
1 1" 200y Vivp
vn:c’é<<n E ak> +C7 + o -
i=1

The proof is given in Appendix [Bl Remark that E [V,?] < 400 by Lemma with (A1). Assume from now

that p > 2 and let p’ = 2(%_,7)17 and A = (1 —v)(y —28). Remark that A <1—~, A<~y —28 and p’ < p.

Hence, applying Proposition [3.1] with Ao = ¢g, 6 = 0, ¢ = 2p,

with

| < (_ 1=+ _ ¢ ) (1) (/1') v—2B8-A—2(p—p')\,,
E [Vn } < exp | —cypAon (1-€'(n)) Ky '+ K 1;]?27)5“ k v

/

i Kél’)n—p/(v—%—/\) + Kél')%% (n+ 1)—2(17—17')/\,

with € (n), K{ll), Kl(,l,), Kéll) and Kéll) respectively given in equation equation |68 and equation 70| with
Ao = cg. By the choice of A, p’ one has

py—28-X) = p2(21_,7)7(7 —2f) =2(p —p')\,

18
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so that

E [VT{’/} < K exp (fcv,ucﬁnlf((lf"’)(”*wy”)(1 g'(n )) + Kg(n +1)” 0=y =cp (33)
with 5
Ky = KO 4 K0 Ry = K 4+ K0
By strong convexity, one can so obtain a first rate of convergence of the estimates. The following lemma
enables to ensure that (H1a) is satisfied, but with a possibly better rate than with Lemma
Lemma 6.3. Assume (A1) is satisfied for some p > 2. Then,

vg log(n + 1)

P[)\min(A'n,) < ;\0] <

e
__2—v
4% 2(1-) e e Nad aieh o — 20=7)
with Ag = =P C(2<21 w) +1 and vy 1s given in equation |85 with p’ = 5— D
ad

The proof is given in Appendix [B We can also deduce from equation |33|a bound on E [||An||4] in case only
(A6) holds.

Lemma 6.4. Assume Assumptions (A1)-(A6) and (A1’) hold for some p > 2. Then, for f <

min {%, 1/4}, the sequence of random matrices (A,) defined by equation verifies

E [Il4.]1"] < Cs,
with C given in equation .

The proof is given in Appendix [B| If the stronger hypothesis (A6”) holds, an improved and simpler bound
on E [||4,]|*] can be reached, as next lemma shows.

Lemma 6.5. Assume Assumptions (A1)-(A6°) and (A1’) hold for some p > 2. Then, for f < min{y/2A
1/4}, the sequence of random matrices (A,,) defined by equatz’on@ verifies

E [l 4.]"] < Cs,
with C% given in equation .

The proof is given in Appendix [B] Theorem [3:4]is then a consequence of Theorem [3.2] whose hypotheses are
satisfied thanks to Lemma [6.2) m E 6.3| and [6.4 - or E We then have

E[V,] < exp (—cyphon' 7 (1 —e(n))) - (K(Q) + K( ) _nax vk” k7 25_5)

<j<n+1

p—1 _p=y e 20 =)y (y=28)
R S I S +K§,2)n—7

with K(Q) Kf?),K(Q) and K;g ) respectively given in equation equation and equation with § =
min {M 14, Ag given in equation v, = vplog(n + 1) with vy given in equation |85 and Cg

¥
given in equation [86| or equation [87] depending on whether (A6) or (A6”) holds. By strong convexity
- < p=l (=1 o f20-9)7(v=28)

E [||6» — HHQ} < K£4) exp (—cwu)\onl_"’ (1-&(n)))+ Kz( ) (vo log(n + 1))Tl n 7w {F=p=ea )

+ K ?(,4)71_7,
with A defined in equation

20y 1A= (@v=B)+y (1+28-27)*
f(n) = =M + = (34)
f1Xo 2y —28 -1
with
i ) 0@ o fc @
KW= (K<2) +KPw), KD =2 kD= 258 (35)
1 1 p

where vg is given in equation
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6.5 Proofs of Theorem [4.1} Corollary [4.1] and Theorem [4.2]

The proof relies on the verification of each assumption needed in Theorem

Verifying Assumptions (A1), (A1’) to (A6). First, remark that
IVhg (X, Y, D)1 < [(XTh = XT0—e) X|| < |el | X]| + X1 1 — 6] .
Then, if X and e respectively admit moments of order 4p and 2p, since € and X are independent,
E[IVhg (X, Y )| < 0(ap) + Crayy 11— 0]

with o) = 2/7'E[|e[|E[|X[]"] and C;) = 2'7'E[||[X||*"]. In a particular case, if p > 2, Assumption
(A1) is verified. Furthermore, since for all h, V2G(h) = E[XX™] is positive, (A2) to (A4) hold with
= Amin (IE [XXT]) =: Amin, Lvg = Amax (]E [XXT]) =: Amax and (AB5) holds with Ls = 0. Finally
Assumption (A1’) is verified since

E[IVag (X,Y,h) = Vag (X,Y,0)|] =E [| X" (h - 0)X|]
<E [1x]1*] I - 0]

——
:ZLVg

We can now prove Theorem

Proof of Theorem[{.1 Verifying Assumption (H1) for stochastic Newton algorithm. Let us first
check Assumption (H1) for S, = %= [mSy + > 1, X; X[].

n+m

Lemma 6.6. Suppose that X admits 4p-moments, with p > 2. Then, for A\g = m, we have
P |:)\min (ggl) < )\O] S 'Dn
with )
b= s (CUpI PE(Z7) + Calp)n /2 (B [12P])" + mP Soll” n 7).
E{][X][2])
where Z = || X||> — E[||X]|?] and Ci(p), C2(p) are numerical constants given in Rosenthal inequality, see

Pinelis (1994)).

nE[|| X))

S1Sol 7 then one can set

If moreover X is subgaussian with subgaussian norm || X ||y, and m <

o 2oy e ELXI]
" Xl )

with ¢ numeric.

[l

ﬁgn, one first needs the following control on
min(n?,||S; ||

The proof is given in Section To deal with S,, =

the behavior of Apin(Sy). Set H =E [XXT].

Proposition 6.2 (See Koltchinskii & Mendelson| (2015]), Theorem 1.5 and Theorem 3.3). Suppose that 0 <
Aminla € H := E [XXT] < A\naxla and that there exists Ly > 0 such that E [(X,1)%] < LygE[[(X, )]
for allt € S¥=1. Then, for n > cid,

1 n
P [Amin (n Z;XzX,T> <c

A .
Cy = wis — gnd c3 =
Amin ’ 8V2L2,

< 2exp (—can),

. A2 (16L 4
with ¢; = Amax (16Lar )"

1
N —
128L%
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Remark that the constant ¢, co and c3 are fairly explicit in terms of é vk and Apin. For the latter result
and Lemma and Proposition we deduce Hypothesis (H1) for S,. We will need several times the

threshold y
1 1\\7? 2|8
ng = max { c1d, 1+ — m, ————mp . 36
' { (e (aa)) ™ e (30)

Lemma 6.7. Suppose that X satisfies hypothesis of Proposition and admits 4p-moments, with p > 2.
Then, for Ag = we have

1
20 B[IX][?]

—1

P [)‘mi“ (gn ) < /\0} < oppi(n+1)772
with § = p/2, vpi1 = (n+1)? for n < ng and, for n > ng,

2L (C)E 12 + Ci(p)nt PR [1Z1P) + mP |1So|[” n/?)

B 2
v, = 2exp(—czn)n?/? + Ef)|x|2° ’

(37)

where ¢y, ¢, c3 are given in Pmposition C1(p) and Cy(p) are numerical constants depending on p and
Z =|X|P -E[IX|?].

In the case X is subgaussian with subgaussian norm || X|y,, for n > ng, one has instead

cn 2
v, = 2 |exp(—c3n) + exp <—(|I|E)[(”H)i])>} n?/?, (38)

with ¢ > 0 same as in Lemma [6.6.

The proof is given in Section [C} In particular, in the subgaussian case and for n > ng
vn = O (exp(—c'n)) (39)

for some constant ¢’ only depending on || X ||y, and E[||X||?]. As a particular case, Assumption (Hla) is
verified with a rate § = p/2 when v > 1/2.

Verifying Assumption (H2) for stochastic Newton algorithm. A straightforward deduction of the
above lemma is the following.

Lemma 6.8. Suppose that hypothesis of Proposition holds and that X admits a moment of order 4p
with p > 2. Then, for all kK > 0, we have

E |53 "] < 2654 exp(—czn) + (a—c2/2)™"

forn > cidVm and

=1 cd+2, ., 4.1"
(15511 < | 25 28|

for n < c1d vV m, with ¢y, ca, c3 given in Proposition [6.2

The proof is given in Section [C] Finally, the following proposition gives a precise bound for Assumption
(H2).

Proposition 6.3. Suppose that hypothesis of Proposition[6.9 hold and that X admits a moment of order 4p
with p > 2. Then

28 2
B 15, 1°] < max {20% (Z2) + - | 2552 s } < c3

ecs o_
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and

€cs

E[I5;14) Smax{%(“ ) T (aea/2), ["‘d”us 1H] }scé

) 1/4
for alln > 0, with Cs := max { (2% (4ﬁ> 28 + (a62/2)_2) , [01,;1%2 HSOIHF}

The proof is given in Section [C] Remark that C's = O(d).

A first convergence result. Since in the case of the linear model, one as C; = 0(2),C] = 04),Ca =
Cla), Cy = Cuy, Lva = Amaxs £ = Amin, Ao = W 0 =p/2, Propositioncan now be written as follows:

Proposition 6.4. Suppose that there is p > 2 such that X, e respectively admit moments of orders 4p
and 2p. Suppose also that there is a positive constant Lyrx such that for any h € S 1, \/E [hXXTh] <
LykE HXThH. Then, denoting Amin and Amax the smallest and largest eigenvalues of E [XXT],

3 )\Inin — ! ! =2 —b==
E[V;7] <exp —(;774”1 ’ (K1(2li)n+K](.’2l)in1<I’?<aX Vet KT ”2)
4 [|1x]°] shemt

+ Kz(Qz@)n 4 K§2h)n LZ/QQJ)/p D2 = e

with vy, given in equation[37 in the general case and in equation [38 in the subgaussian case, and

2 2
. _2y-—28 2a17l' C 2v—28 4)\ i V .
K(2 ) — eQUf}\l,lznﬁ,YfZﬂ,l <]E [%2] + Nty ’ K§,2 ) — e2aM lin 3 —35—T min ¥ p lin

1,lin i lin 2]’
AN, lin aM,linIE |:||XH }
142 2 2
(2" 2 T, B “'XH } (2" 2p/241
K2 lin = 3>\min ’ K37lin = 3 p,lin>

where, recalling the notations oy = 2'"'E {|€|t:| E [HXHt} and Cyy = 2''E [||XH2t] ,

2v—28
2)\maXC(2) 2)\2 2 92 2 3>\min k o
AM lin = MAX ( + =52 (4C(2) + Cayc cﬁ) Coy | —F——7 ey ,
Amin Ahin ! AE {|| XHQ}

min

. . L. 1672, o2 E[| X2 . 202, E[|| X|?
with Cs given by Proposztwn ai,1in = CEN2 s ( e (2) [ ] + 285 er [ ] and

E[VP] < %5 572551 max {1, E [VP]} =

p lzn
where
Co | 92 2 2 2 L)Y | 20w 40w
Qp. lin = P <>\mm + 9 + 2P~ ( )p)\max CyCp 0(4) )\?mn + Ao + )\?mn
20C 1 2 1
— —2 2p—2 (2p) —2 p—2 p
+ 2772 (p = DA ( S (0(210) LSVE s ) + 2 (20(210) 2 ( C(2p)))) - (40)

Remark that putting together the above expressions yields that, in the subgaussian case and for n > 2ng for
no defined in equation [36]

-2
Cntin = O (exp(—Cnl_'V) (E V&) + m7+(5_1)(p_2)/p‘/ﬁlm) + 073+ V2, exp (_p2p c’n>> - (41)

Verifying Assumption (H3) for stochastic Newton algorithm. Hypothesis (H3) is then a straight-
forward combination of the convergence of S,, towards H, together with Hypothesis (H2).
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Lemma 6.9. Suppose that X admits moments of order 2p with p > 4, and let suppose as well that the
distribution of X satisfies hypothesis of Proposition . Then, for n > ng (with ng defined in equation @),

2p 2/P
. U 160 (HSoII + (E[I1X]*]) )e_cg(p_m/p o [|| X ||4]
(/\minﬁn)2 (TL + m) ()\mina,CQ/2)2
2||mSo — H||7 20,
(n + m)2 (Amina_02/2)2 "’LZ()\minOé—CQ/Q)2

(42)

A AIE

(ISoll* + E[IX|]) =: vz (43)

For n < ng, we simply bound

E |

Remark that vy, = O (1) uniformly on m > 1. By Lemma (H1a) is satisfied with § = p/2. Applying

Theorem with the constants computed in the previous lemmas and proposition, we get finally,

S

- 2 2
nl _ H71H ] < max{/\2 +QC§,UH’HO} = V.

min

Llin Llin

]E |:||0n _ 9||2i| S e_%c"fnliw (Kid) + K(E”) Orgkai( dk(k + 1)7)
ny

K
o <2E @) () 22m e ) e,

with vg ,, defined by equation recalling that Apin and Apnax are the smallest and largest eigenvalues of
E[I1X "]

E [X X T], and since for the linear case one has Cy = 4c,—7— > 4c,,
o SE[H;M o 21 51 2E[¢2] Ty (H1) o)V
K, =e S TP (B[00 - 0] + +4C() (N + ) + 2210
’ Cy Cy
s x4
1 s 3 22, C
Kﬁg)hn - Te A?“ir‘ o ) dn = 8)\max\/ Cn linVH,n + 8%Cn,linv
’ C’Y min
K, =25 C e, (Aph +C4) 2, K, = 22T0pe,, (44)
and ¢y, jin and C’g are respectively defined in Propositions and O

From the asymptotic behavior of vy ,, and ¢, i, (see equation and the bound on V}, j;, in terms of E [VOp ]
given in Proposition we deduce that, for n > 2ny,

dy, = O(exp(—Cnl_'V) (E V&) + mYTtE-De-2)/pg [Vop]Z/p)

2 p—2 1
+E VPP exp (— o c'n) + n) (45)

We can deduce Corollary 1] from Theorem [£1] Remark first that we have the following rough bound on
E [V;2] for the usual stochastic Newton algorithm with adaptive matrix 4, = S;! with i, =1, m = 1.

Lemma 6.10. Let V,, = G(0,,) for the stochastic Newton algorithm with A, = S’;l. Then,

3—2v

n nP+1)—py
E[VY] < exp ((p —1)log(2)n + Clin, 3—2'y> (1 + Clin 2p> E[V{],

with Ciin,1 and Clin 2 given in equation [91}
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Proof of Corollary[{.1 Set mo = |Rlog(n)] + 1 with R > 0 to tune later, and let (6,,),,>0 be the sequence
induced by the stochastic Newton algorithm with m = 1, a,, = 1 for n > 1, initial estimated Hessian matrix
Sy and starting point 6y. Set Gy = Om,, and set 6, for the n-step of the regularized stochastic Newton
algorithm with respect to the sequence of random variables (X, 4k, €mo+k)E>1 Parameters m = mg + 1,
initial estimator of the Hessian Sy = ﬁ(&) + 30 X X, o = % and 8 =0, cg = 2¢; ' (with
co given in Proposition . Then, remark that on the event B,,, = {ainf(S'n) > co,n > 0}, 6, = Ormg+n
indeed on this event, by the choice of the previous parameters and a simple recursion,

en-‘rl :en + ancvniﬂyAnvhg((X’mo-l-n-l-l7 67rL0+k+1)7 an)

mo—+n

-1
SO + Z Xng>> vhg((XngrnJrlv 6m0+n+1)7 9m0+n)

:9m0+n + C,Y(m() +n+ ].)_’Y <
k=1

e (
=Omotn+1-
Hence, for n > my + 1, by Markov’s inequality
P([6n — 0l > €) =P ({[10n — 0ll > €} N Buno] + P [{[|6n — 0] > €} N By, ]
<P [{10n—mo — 0|l > €} N By ] + P [BS, ]
E (1o~ 01]

= 62

+P[B,]- (46)

Suppose that n > 2max(ng, mg), with ng given in equation [36 for m = mg. By Theorem and the fact
that n > 2my,

E [Hén_mo —0|*] =(n —mo)T72°Ye,E [¢*] Tr (H1)
+0 (eéwnmo)l‘” (E[||60 — 0]|*] + dn—m(n +1)7) + % + dWQJ> : (47)
Set Vo = G(6y) — G(6) and let us bound dypy2 and dy,—pp,. By Lemma and the fact that Vo = V,,,, with
Ving = G(0my) — G(0), and mg = Rlogn,
E[VF] = O (exp(Cmi ™ )EVF]) = O (exp (C"log(n)*~*") E[V)) (48)
for some constant C,C’ > 0. Hence, by equation

n

d, =0 <exp (=Cn' ) E[VF)/P + 1)

for some constant C' > 0 only depending on the first moments of X and the parameters of the algorithm.
Therefore, using the strong convexity and Lemma to bound E[[|6y — 6]|?] as in equation we finally
get, for n > 2max(ng, mg),

1 -y 0 !
0 (e—2c~<n—mo> (E01f0 = 61%] + du(n +1)7) + = + dW“)

=0 (et (mgre) + 1), (19)

with ¢ > 0 only depending on the first moments of X and the parameters of the algorithm. Finally, by
Proposition and choosing R = i—z yields

P [Brcno] < Z P [Amin (:L ZX1X2T> < 02‘| <2 Z exp (703,”)
n>mo =1 n>mo
<o

— (50)

<" — <
1 —exp(—c3) exp(—cmo) <
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for some C' > 0. Putting equation [50] and equation [47] together with equation [49] in equation (6] yields, for
n > 2max(ng, mo),

1 1 1—v ~ ].
P[0, — 0] > 6] <5 n 12 E [ Tr (H') + O <ezcn E[VF)?/P + n)]
+0(n~).

Finally, since mg = |Rlogn| + lwith R = i—z and ng = max(c1d, Cmy) for some constant C' > 0 depending
on the second moment of X, d and Sy (see equation , we deduce that n > 2max(ng, mg) as long as
n > ¢y, where ¢g is a threshold only depending on ~,d, .Sy and the second moment of X. O

Proof of Theorem[].3 Let us first prove that Assumption (A6’) is fulfilled. For all h,
E [vhg (X,Y,h) Vg (XY, h)T] —E [(Y — XTh)? XXT]
—E [¢]E [XX"] +E [(X"h - X"0)* XX
and (A’) is satisfied with o = E [€?] Ain. Hence, we have by equation
4V}
14 (1 + 0 + Cn T3
E[e2]” )2,

with V5 given by Lemma [6.1] for p = 2. Then, applying Theorem [3-4]

E “|9n - 9”2] < Kil(lifn €xXp (_C’Y)‘min)‘gjil?nnl_’y (1 - 5;1:1[(;71))

(P;l) min{ 2(17w)21(:71725)p ,1} n

E [”A’ﬂnﬂ S = Og',ada’

p—1
ada ada - ada . —v
+ K55 (Uo,lm log(n+1)) ¥ n K35,n7,

2—y

T

with )\Sﬁ‘;n = {4(;_3)1’ (C(@aw)) + 1)} and, recalling that Anjn and Apax are the smallest and
2—xy

largest eigenvalues of E [X X TL

wda QCK;lflzmnflJr(lfv)(%fﬁ)ﬂ n(1+28-27)*
En,lin - ada 1 + v —928 — 1 ’ (51)
AminAG 7y, 12y — 26 — 1]
2 C'y/\maxg 2)02 d 4)\min)\8dlq Vald_a
K = 5 | Elve] + T ede o TR hn i | (52)
Amin CM,zm CM,zm
1
d 24+3/21,ad
Zin = pr/ T3y e (53)
min
27 Amax0 (2 C2
K?fffﬁl = T r;ax fd)a S’ada. (54)
/\min)\O,lin
2(1—v) »
2(1—) 21-7) v, f;a’y
d2 2—v 0’(4(1::) )+2 2—v 0(4(21::) p) AQ(?l:J)
where vy = dM(B) + =

0(4(2177) p) +1

-

2 _
ada C(Q)Amaxcﬁc"/ ada 228 #
Ch Jin = max S W ()‘min/\o,lm) v Cy
min
and
1—~v—)' 1—2~+428
2 _ad 25N 2 _ad 28—/
- c—ycﬂa;l‘;n Y—2B—X " CWCBa;,lin Y—2B—X
PAminA() ) PAminA{)
!
—PAminAgCy | 1+ —y +cicgap | 1+ =3y 795
P —
‘/p,ada =e
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where
C 2 (2 4C 4 20 2 4C 2
aslt, =p (An(ﬁi + (2)) + 2072 (p — 1)pAZ,y <03c§ <0(4) ) R
_ _ _ 2PC 1 2 1
+ 2P 2( — 1)p)\max ( ?Yp QC%D 2 (U(gp) + /\2(2]))) +c p 2c /3 ( Oep) + 35— 2 P (2 + 1/0(21))))) , (55)
and C 2 8\2 C A2 Cu
ada 20 4/\111 X max ' (2) 8 max
a5lin = 0@) + . SO vy E 2N oS + 22 e (56)

O

6.6 Proof of Theorem

The proof relies on the verification of each Assumption in Theorem [3.3]

Verifying Assumptions (A1), (A1%) to (A6). First, remark that taking for all 0 < a < 2p, one has
E [Vl (Y, XTh) X + oh*] <22 E[[[Val (v, X705) X + 06, |]
+ 297 [|[Val (v, XTR) X = Vil (Y, X70,) X + 0 (h = 6,)]|°]
< 207G + 2°7 E (Lo | X + 0)*] [1h = 6" (57)

(a)
=:Cgsrlm

and Assumption (A1) is so verified. In a same way,
E (Vg (X,1) = Vag (X, 0,)I| < E (Ll X1 +0)?] IIh = 0 ]* < Gy I1n — 0o
and (A1) is so verified. Remark that (A2) and (A4) are satisfied by hypothesis. For (A3), one has
|E[V2¢ (Y. XTh) XXT +oL]||,, < LeiE [HXHQ] +o = Caru. (58)

Observe that Assumption (A5) is given by (GLM1) while for Assumption (A6), (GLMS3) together equa-
tion [11] which yields

E |(Vag(X,0))i] = B (|9l (¥, X700) X + (00 )i*] > a0
forall1 <k <d.

Verifying Assumption (H1). The following lemma ensures that Assumption (H1) is fulfilled.

Lemma 6.11. Assume first equation [7 and that X admits a moment of order 2p for some p > 2. In the

reqularized case defined by equationﬁ denoting Ao = m, we have
Vi

P |:)\min (?;1> < )\0] < vpar(n+1)7P/2

with

op—1 n+1 n+ 1)r/2
Vs = s <( D s+ o) P
(Lle [||X|| } + a)

v (M) (= [|T|2})”2>,

where T = Ly, (||XH2 —-E {||X||2D +o (HZ||2 — 1) and Z being a standard d-dimensional random variable
independent of X. In addition, Cy(p) and Cs(p) are given in|Pinelis (1994).
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The proof is given in Appendix
Verifying Assumption (H2). The following proposition ensures that (H2) is fulfilled.
Proposition 6.5. Considering from the regularized problem given by equation[9, one has for all n >0,

g 1
HS;1|| < 2dmax{0’ HSo_lH} . Cs,

Remark 6.1. Remark that if equatz’on@ holds for some constant a > 0 and if E [XXT] is positive, under
hypothesis of Proposition[6.3, for alln > 0 and for o = 0, one has

1 1 2 (28N, ~1/1)2 2
[||S H } < a—max 205 73 +02 ,((Cld+ 1) HSO ”) S 08707

28\*
00571 = e fort (22) st (a0 557D <t

2
with C§ , = =7 max { (20% (6273)25 + 022> , ((e1d +1) H501H)4}

A first result

Remark that one can rewrite Proposition as follows:
Proposition 6.6. Suppose there exists p > 2 such that X admits a 2p-th order moment and that there is
L, verifying

E[[Val (v, X70,)[" I1X|] + 065 < L2. (59)

Then,

3¢y0 1o ) 2) B2 452
E[V7] <exp <—4C;LM”1 7) (Kl,GLM+K1’ L | Jpex, v kY

+ KézchM”_%Y + K?(,QC;LMUEP/;J)/Z)”_([)_Q)/Q =! Un,GLM;

with v, defined in Lemma 1, Cs  defined in Lemma 5, Carm and CGLM defined in equations equatz’on
and equation

4L4 5
6 UchM+4CVLi+
g

4L§CGLM)

a1,GLM = CS oCGLM < pu

4C qpC% 202 30 \?
ap,GLM = Max { ( GLM GLM + G2LM ( CGLM + 8CGLM VCS ")) ch?g’w (40) CW}
(o2 GLM

a

2
2 2y 9 2a1,qrLmc
K\ Gpy = exp (204M,GLM27 — 1) (E Ve + I e— GLM7

, 2y 40V Gim
K%)= exp <2aM GLM ) : =
1/,GLM ’ 2y —1 an,crmCoLm

@) 227" ay ruCarmc
2,GLM = 30
2+(p—2)/2
@) _2
Kyaom = 5 Vp.GLM

. 242 2y
with V) ooy = e G C5 0 2T max {1, E [VP]} where

(2) (4) 2 (2)
C 32C 4L 8C
Ap,GLM : =P (;LM + Lz) + 2p72(p — 1)pC?;LM (C:Cgﬁ <8Li + m) + TU + pLM)

o2

210l 2 (1 Sy
2 2 2 ~2p—2 2p—1 42 GLM p—2 —2 2p—2 5 2 P —1/2 (2p)
+2°7%(p — DpCpy ( rTred, (2 PTG + - +cTrCE (2 PTELYY + po) (5 +2° CCLPM)) :
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Remark that for p > 2, v, gra = O(n~™n1:27),

Verifying Assumption (H3). We prove here that (H3) holds for general linear models. We now denote
H, = E [Vl (Y01 X) XX"] + 0l
Proposition 6.7. Suppose Assumptions (GLM1) and (GLM2) hold, then for alln >0,

16d'C%

3 =i U¢n

AC2, aq I%2., &= 1
02’ (LQW]E {HXH } JF%Z'ULGLMJF EHSO*H(QU) 1) +
=0

E[[lS7 - 2] < .

with v; gru defined in Proposition ,
We can now finish the proof of Theorem In this aim, let us first remark that for all h, A/,

E [the (4, XTh) X + oh — Vil (y, XTh') X — ah’||2} <2 (LQWIE [HXﬂ + 02) b — 1|2
Then, with the help of Theorem one has

1—v

E [0 - 0, ]°] < emte (Kf’ém + (Vg max (k+ 1)7dk,GLM)

(3)

K, (
+nY (23+"cﬂk (H 'S H, ) 4 =220 Kéi)GLMvz,np) +d|p/2),GoMs

with S i= E [ (Val (4, X70,) X +00,) (Val (3, X705) X + 06,)" | and since e, 455 > Oy g =2 ey,

el 2y 2Tr (H-12, H! 2L2y
SRR (E (10— 0,7] + U 2o M) oo ooty g 4 2200} )

C’Y C»y
1 CCE]IM B3 2 L%, 072 + 20(2)
K§f,)GLM =i STENATET dy aim = 8CGLM A/ Un GLM ULy + 8—k = GLM ) GLM, (61)
Y
K(3) _25+270(2) 4, 4 2 K(3) — 93+ 2 62
2,GLM — cimGy (074 C8,) o, 2/ 'aLm = oCy- (62)

Proof of Theorem[5.4 The proof follows exactly the same pattern as the proof of Theorem [4.2] using As-
sumption (A6) together with Lemma [6.4] to compute the constant Cs such that (H2) is satisfied. O

A Proofs of technical proposition

A.1 Proof of Proposition [3.1]

Let us recall that .
Vat1 = Vo —Yn+1 (97/1+1)T An/ VG (0n +t (Ons1 — 0n))dt
0

=:Un+1
Remark that for a > 2 and z,h € R such that x > 0 and x + h > 0, we have by Taylor’s expansion
(x+h)* < 2%+ azx®  h +2°2a(a — 1)(x*2|h|? + |n]*). (63)
This yields for a = p’, x = V,, and h = U, 11 and after conditioning on F,
E[VILIF] < V2 + 9V T E U] 7

+ 2772 = 1) (E [[Uns1 1 7] VI ™2+ E [[Una || ) (64)
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Since G is convex and VG is Lipschitz,
1
’_ T .
E |Ups1VP 1|fn] <-E {%H (9h11) An/ VG (0,) dt|]-'n} |
0

1
{E [v (Gi) " A [ (VG (02) = TG O+ 001~ 0)) dtm] ypt
0

’_ L 2 ’_

< —30+1VG (00)" AVG (00) VI ™+ T2 E (|| |* 1] 1Al V.
T p —1 LVG p’ — 1 2C2 p’

< =1 VG (0,)" A VG (0,) VE T i1 Ba i — = | Q1 " —Vy .

By strong convexity, we have
VG ()" AV G (0) VI > A (40) [IVG (0)* V'~
> 20tV Ly (A2
= 20V = 2150 Ay <r AtV
where \,, = A\o(n + 1)* with 0 < A < min{y — 28,1 — v}. Applying Hélder inequality yields then

/
p—p

E [VG (0)" Anvc;(on)] >\ uE [V,ﬂ — GE[VPP 7P (P i (An) < Aa]) 57

’

20 [V2'] = 2 (B Dhnin(40) < M) 7

with VP > sup,,~q E[V,P] given by Lemma Then, Assumption (H1a) gives P [Amin (An) < A\n] < vpi1(n+
1)79- ‘V‘ = Up, so that finally

E [Unﬂv,f/—l}
: e=p’ Lyc 2C,
< 21 AE {uvﬂ + 2o 1 VI T ” + 72 1Brn 5 (CiE [vp } +22E [v } . (65)
Furthermore, since VG is Lyg-Lipschitz, one has

1 1
/ VG (0n +t (Bry1 — 02)) dtH < LVG/ (16 — O] + £ |0nss — 0, dt
0 0

1
< Lo (102 = 01+ 30 1400 ) (66)
Hence, using (H1b) and the strong convexity of G yields
E (Unial” 1Fa] < B I Anl” 3 [ghaall” (2772 180 = 01 + 27 980 1AWl g |7 ) 175]

LY w2 PV 2PV
< 5 Y1 n+1<2p Cy T—I—CQ Tf

2P V
+ 7n+1/6n+1 (C(p) + 05 L’ ) )

Specializing the latter inequality with p’ = 2 yields then (recalling inequalities equation
E[|Unsal* 1] V2

L2 22V2 4Vv? -
< ZG ’7n+15n+1< <Clﬂ + (s 2 > + ’Yn+15n+1 <C1 + Cy—5- ) )Vf 2,
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so that

E ([ 17| + B [|Unia 1] V2

LP/Gcf , 23[)//2—1LPIG05P//2) ‘o 2p/L2VG01 5 5 =
< 9 n+16n+1 + HPZQ ’7n+1ﬁn+1vp/ + 7/1 Yot1Bns1Viy
L2VGC{ A . 'y , 22p’—1L10/G0§P'/2) 2p'—1L;0/Gcép
+ 2 /ynJranJerrf + Vrf luvp/ n+1ﬁn+1 ‘uvp/ n+1ﬁn+1
2P+ CZLVG 2 2 2C’éL2VG 4 4
T7n+1 n+1 T T'ynﬂ n+1 |-

Using the latter inequality with equation [65] in equation [64] yields then

E [VM

with P(z,y)

Ay = 2p/_3p/(p/ I)L%ch) )7 Ap’/2 _
222/ (pf — 1)L3,5Cy

I

Lva
2

Ap/—l =p
and

23p’—3L1%’GC§p’/2)

p
’ gl

/J}J

Applying now Young’s inequality, which implies aipp' —i < mp + (”7

for any t > 0 and i € {1,2,p'/2}

1/i

Ap_i:ciyplfi — (Azx
=i

(t)\nr}/n) v’

so that using the latter inequality with ¢ = (7

'Yn+1ﬂ2p
(7n+1>‘)7_1

(A/n+1)‘ )

2i—1 -
< (g1 An)ey 0 Cép Ao

gives

25p//2—3pl(p/

= Agz? +Ap//2:z:p'/2yp'/2+Ap/_1xyp'*1 +Ap/_ﬂzyp’—z +Ap/xyp’,

] <E [Vp ] — 29" yn 1 A {Vé’ ] + 2 A 1V 507 4 E (P (vai1Bai1 V)]

where

’ !/ 2
NV e

’
P ~2¢

p
B

Tn+1)7

'>Z<(’*"%>l’ )< (

MP’/Q

22p 7102L2VG

221)/ —3LgGC§p,)

4

)

s Ap—z =270 (0 = IG6C,

2p'—2 2p'—2
(o 3

1w T2
2P CQLVGCQ 2

112

i)

p/
iAT P
7

C .
,u2 vy B)

for 0 <i < p’ and a,b > 0, yields

(p/ - i)t)‘n’)’nyp,

tAnTn)

p/—i

7

P’ ’

for i € {1,2,p’/2} and using that
r-2 @i=1)p’ aa B
' p)\o 7 (n+1)—¥7+2p B+E-X

p' (y=28-2X)

/
E [P (’7721+163L+1’ Vn)] <L (]);L)‘n'ynle) (n + 1)—11 (=26-3) + (p/:u(/\n'ynJrl) + Ap’ (7n+1ﬂn+1)2) E |:V’I’€) :|

with

2p’ —1C2ﬁp
2l
A +
Ao 0

3200 2 g p,’

4p

C
L =

30

2c2 27’ ch )\

(

I)/2/l‘
3(p'—2)

AP/2

1o« —pf
e A" A
2 1

(35) s ))plil
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Putting together the previous inequalities and taking the expectation yield then

2
Apfcvcﬁ

- (n+ 1)’Y+2B+/\7n+1>\n> E [Vf]

B[V < (1 D W

;BB L / ’
+ A Yns1 <2p//ﬂ/;)p Un? + %(n + 1)—P (7—2l3—>\)> .

Then, recalling that ©,, = v, 1(n + 1)79~9 and using Proposition yields

, m) / , o .
E[VY] <exp (_Wnl—(/wv)(l—g(n)) (K1<1>+K§}) max BB G, 5 )

2 1<k<n+1
’ 7 ’ P*P/ p_p/
+ Kél )n—p (=263 Kél )vlnp/ZJ (n+1)"7 (5+q>\)7
with
4Cfv1n71+/\+7 n1+28—27*
e(n) = D) LT T
UD" Ao |2y B |
and
ms no AV
Cu Cu
where
Apeycl [ up' Mo 22 e
C); = max , cy T ,
Ao 8
and

’
P—P

RS =o' (280 j{1) = 92+ B ey,

where V}, is given in Lemma [6.1}

A.2 Proof of Proposition [3.2]

Remark that with the help of a Taylor’s expansion of GG, one has

1
Vit = Vot B = 0)" | VG (04 (601~ 6,))
0
1
Vo = s (gar)” An/ VG (O +t (01 — 0,)) dt.
0

Then, using equation [66] one has

i=(%)

1
T
Vn2+1 S V,? - 27n+1vn (9;4,1) An/ VG (9n +1 (971,+1 - an)) dt
0

1
# 2 1Al a2 (2060 = 017 + S 14l )

1=(kx)

31
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We now bound (%) and (x%). First, thanks to Assumption (H1) and since ||6,, — 0||> < %Vn, one has
AL2, O 8L ,Cy
E [(o)|Fn] < =250 0 1Al Vo + 25 AR 50 Vi
7 7
2L . CY
+ 2L2 cCivms [ 4a]" + Mf 2 | 4all* V2

8L C?

1 cy
3 4 2, L3cC1 L,
S =, T 1AR]” + A0 Vi + Y1 4]

2
2L%

+ (4Cs + Céc%c%) V2 BE AV

Then, taking the expectation with Assumption (H2b),

SLL ,C? Lo C;
,UZC)\;O 172+ICS+ B ’Yn-&-l]E [VnZ] G ! i+1cs

E[(x)] < -

_|_

22
ZG (4Cs + C’écgyC%) Vo181 E [VnQ] :

Moreover, since VG is Lyg-Lipschitz, one can check that

1 1
/ VG (0 +t (Onsr — 0n)) — VG(en)dtH SLVG/ tdtyns1 | Anll || g |
0 0

Lvg

S5 a1 1 Anll ||gnia]| -

Then, one has

E[(%)|Fa] 2 29041V (0)" 4nVG (0n) Voo = Ly [4al E [l gha | 1Fa] Vi

2L C
> 29,11VG (0,)" AV G (0,) Vi — LyarZiy | An]> C1Va, —% V21 Al V2

C11LQVG' 3 ” TLH _/J’/\O’YTL-HV 2LvcCy o

> 29,41VG (6,)" A, VG (6,) V,, 2y T 5 Va L et Vi

Furtermore, with the help of inequality equation [15]it comes
Mm+1VG (en)T ANG (0,) Vi > 2)‘Ol‘7n+1vn2 — 2 0 ¥n+114, <2 Vnz-

Then, with the help of Holder’s inequality, coupled with (H1a) for ¢ = 1, one has

7 (e CiL% 2LycCs
E[()] = 5)\0N7n+1vn2 — A op a0 2)/pr2 - ;T\VOGWELH 5 — T%%Hrl nriE [Vf]

with V), defined in Lemma and ©,, := v, (n+1)7% is the upper bound from (H1a) on P [Apmin (4,) < Aol

. 2Ly C 2L2 o\ 5 e
S I Y It S
one has
E[VZ,] < (1 - 3Xopvnsr + ann® yni1) E Vo] + ddopyn 108~ 2/PV2
+Gslv (8L;73§00 S 25%) T (72)

=iai1
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Applying Proposition it comes (with analogous calculus to the ones in the proof of Theorem |3.1)

3 2y -2
E [Vnz] < exp <_207)\0:U"n‘1_7> exp (2CLM212/8€1>
2a1¢2  8\ope, VAP =2 (p-2) 2%a,¢2
. 2 ¥ 0MC~ Vp R ) 1 —2'\/ 2~ (P 2)/p
(E (Vo] + PV e S k + TW + 3V 1n/2]

where V,, is given by Lemma and |y, /2] < vn/225 (n+41)7%. Setting

, 2v — 283 2a,¢2
K = 2ap ————— | [E[VZ] + —=2
) —exp (2 25200 (w3 + 205 2
’ 2y — 28 8oV 2
K7 =exp (2 : 2 74
1 exp aM2'Y*2B*1 an ) ( )
with aps given in equation a; given in equation @ and V,, given in Lemma and
2 2 —2)5
) _ 2%%ayc5 @) _ 22+(p—2)é/p (75)
2 Brop 7 3 r
we finally get
2 3 1y () | (@) R R
E[V;?] <exp —§cﬂ,)\0,tm K"+ Ky . rkrzl<a%<+1vk k
+ K§2) -2y 4 K(Q) EP/QJ)/P —8p=2)/p —. M.
Then, for any 0 <+ < min {2% @}, only depending on v,, and ~, we have
Weo (V') := sup Mpn" < +oc. (76)

n>1

The function wy : [O,min {27, op=2) H — R can be computed numerically, but in any case note that
Woo (V') < K(Q/) SUp;>q {t”’l exp (75)\0#151’”’)} + KQ(Z/) + Kézl), so that a function analysis yields, for ' €
[07min {27, p=2) H,

/

’ 2’)// ﬁ ’ ’
wn) < K () R, ()

We Wﬂl see in most applications that under suitable assumptions, 7’ can be equal to 2y (namely when
) > fy)
p—2

B Proofs of technical lemmas

B.1 Proof of Lemma

Observe that since the proofs are analogous, we only make the proof for p > 2, and for the case where p = 2,
if there are some differences in the proof, it will be indicated with the help of remarks.

With the help of a Taylor expansion of the functional GG, one has

1
Vn+l =V,- Tn+1 (9;+1)T An/ VG (971 +t (9n+1 - en)) dt.
0
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Then, applying the inequality

— 1)h%
(a+ h)P < aP 4 paP~ h + M max(1,2P73) (a2 + |h|P~2)

<a? +pa” " h+ p(p — 1)2P 2R (aP 7% + |h|P7?)

T

fora,a+h>0toa=V, and h = —y,41 (g;H) A, fol VG (0, +t (0,41 — 0,)) dt, one has

—_

VP S VP = pynia (1) An | VG (O 4t (Op1 — 0,)) dtVP™

0
2
T Vﬁ,Q

1
st (ghsr)” An /0 VG (O 4+t (Byr — 0)) d

+ 2P 3p(p — 1) ’

P

1
+ 2p73p(p - 1) ’ Tn+1 (g:z+1)T An/ VG (9n +t (0n+1 - an)) dt
0

Remark B.1. Observe that in the case where p = 2, one has
(a+h)? =a® 4+ 2ah + h? = a? +2a* " h + p(p — 1)2P 32 |h[P~2
the last term on the right hand-side of previous inequality can be considered equal to 0.

Recalling that since VG is Lyg-Lipschitz, one has

1
Ve V2= e (0h) Au [ VGOt 10,00 -0, vz | = )

),

1
[ VG O+t 01 = 001y ] < L (18, = 0+ 20 1401
0

which implies

+ 2772 = )L g1l (100 = 01 + 220 1Al gna|*) Vi~ =2 ()
+ 2p_2p(p - 1)L%G7£+1 Hg;z+1Hp HAn”p (||9n - 9||p + '7£+1 ”Aan ||Q;L+1Hp)} =: (% * %)
Furthermore, one has
1
(4) = —prmss (gosr)” A /0 VG (B + (O 1 — 0)) VP!
= s (ghi1) AnVG (0,) VP!

1
T _
—PYn+1 (g;ﬁ-l) An/ (VG (en +1 (0n+1 - en)) - VG (971)) dtVrf !
0
Since A, is positive and since VG is Lyg-lipschitz, taking the conditional expectation, it comes, since for
all a,b >0, ab < %a” + PTlep/(pfl) and with the help of Assumption (H1a),

_ p 2 _
E[(+)|Fn] < =p1n+1 VG (en)T AnVG (0,) VY L 5%21-5-1 ||An||2E [Hg:ﬁ-lH |‘7:n} Vi !

< —pYurthmin (An) VG 0n)I VIT + 262,102, (€1 + Co 160 — 01) V2

pCo pC1 _
< —PUYn+1 Amin (An) VP + o 2 Te i VE+ oy e Vi
pCy  Ci(p—1 Gy
< —Pﬂ7n+1)\%+117§1/2vf + (li + 7( 5 )> 721+1’Y721+1Vnp + > 721+1’7721+17
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with A/, = )\gn_’\/. We also used Assumptions (A1) on the first inequality and the fact that, by p-strong
convexity, |0, — 0> < %Vn < % VG (8,,)|I” on the third inequality. For the same reasons, one has

_ 4C" 20 4C _
E [(x)|Fn] < 2P %p(p — 1) L3¢ (Vﬁﬂﬁiﬂ (Ci + M22 Vf) + Va1 B (Iulvn 2 2V2>) vp—?

_ e
<2 (p— 1)L eVni1Brsa (20{ + ((p -2)C1 + Z 2) V”)

2C 2(p—-1)C1  4pC
+2772(p ~ DL 7i 1 B <M1+( U M) L iﬁ)%ﬁ’)

In a same way, thanks to Assumptions (A1”) and (H1), one has
9 ») C(P)
B [(x % #)[Fn] < 2°77p(p — 1)L%G7n+1ﬂn+1 P+ P —=W

_ 1
+ 2P 2p(p — VLB ol 1 By (2(1(”) + (2 - \/c§”>> v;;)

Taking the expectation on E [(*)|F,] + E[(x*)|F,] + E [(x * )| F,], applying the latter inequalities, it comes

E [Vn+1] < max{E[V}], 1} (1 —Pﬂ)\n+1%+1 <o+ ap7n+15n+1)
with
Cy, C; 9 9 405 1 4(]2
1= 2P —1)pL
ap p<u+2>+ (p—VpLyg | g (O + 2 MQ
(p)
-2 2p—2 .2p—2 ( ) 2P0y L, 2 (1 (p)
+2F (pl)pL%G<f P (Op o > cg <2 p+u 5t cy¥ . (78)

Remark B.2. Observe that in the case where p = 2, one has

SLQVGCé 2 2
2 5%

2C,  AL2 8LZ.C
=0+ 22 4 NGO VG2 L 91RO +
[ ! [

If v > 1/2, by summation,
E (V7] < e 7221 max {1, E [V} = V.
If v < 1/2, let ng be the smallest integer such that 72, 6%, 1a, > puA,Vn+1. Recording that X, =
’ cycia ﬁ
Ay(n+ 1)~ we have ng = L( = ") e J Then,

DU
no
E[VY] <exp (Z —PPAL Yn+1 + ap%%ﬂﬁiﬂ) max {1, E[V{]}
n=0
1—v—)' 1-2~v428
cyc3a, m cycda,\ v—28—\
~CpAap ~C3%p
<exp | —pppe 1+1+(W/\6) +6202a 1+1+(W/\6) =: VP
= o™ 1—y— X ATp 1—-2v+28 Cpe
B.2 Proof of Lemma
Recall  that  (Apn) = max {min {esn?, (4, )kk,} Ay ’y<1/2} with  (4,) " =
Sk . Since Amin (An) = Amin (Tn) on the event {)\min (Tn) < cﬁ}, we

Vo (@ S (a0
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have for 0 <t < 1

P [)\min (An) < tCﬁ] <P [)\min (A7n) < tCB:I

n—1
1 ) 1
< E — | .
<P [1<k<d n+1 (ak + (Vag (Xit1, 00))k) ) - c%t2]

=0

Then, Markov inequality for p > 2 and Jensen inequality yields

P | max

n—1
1 2 1
Xiy1,0; -
1<k<d\| n+1 <ak + ; (Vg (Xit1,0:),.) > > oot

<c2pt2PE [<1<k<dn+1 ( k-l-z Vg (Xit1, ) ) )) ]

d n—1 P
2p 2 !
< PR <n+1 Zak—’—zo"vhg 141,09
P
< C2pt2pn ((Z ak> + ;E {thg (Xi+1,9¢)||2p]> :

Then, using Assumption (A1) and then (A2) we get

=0

d P n—1
1
2p,2 " " L 2p
Scﬁtpn_’_l<<;ak> +nCl+CQZ:E[H91 7l ])
1 d p ,,n 1
2p,2 1" 2
Scﬁtanrl((i_Zlak) +nCl+ Z]E )

By the bound E [V}P] < V)P from Lemma we finally get

n—1
1 2 1
F 12i2a\ n+1 (“HZ(WQ(XZ-H,&M > > o

1 n—1 ) 1
P 6; — | <out?
max AT (ak+zz(2) Vhg (Xit1,0:),)" | > ot | =0

with
d p
2 1 z : / C Vp
Up = C/Bp <<n . (Zk) + Cll T . (80)

B.3 Proof of Lemma [6.3]
Set By, =& [th (X, H)i} and 97g(h) = E [Vxg(X, h)]. Then, by Jensen’s inequality for p’ > 2,

’ /

n— P n—1 p
_ —2p ’_ 1 ! ’_ ag 1
|(An)| " <277 m;vhy( 1,005 — 0pg (6:)| +20 m+n+1;3§9(9
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Hence, for any x > 0,

n—1 p /
_ 1 sy 1 22p
Pl < 3] R (™ > ] 28 |7 3 T 200 > 57
[ n p/ P
vp || 2 282 I (81)
nrl gl k9 o
Set My =0 and for n > 1,
n—1
Mn—zvhg i+1,0:)7 — 979(0;).
1=0

Then, (M,),>0 is a martingale, and thus by Burkholder’s inequality, see (Hall & Heyde, [2014, Theorem
2.10) there exists an explicit constant C) such that

n p'/2

> (M; = M;_y)?

i=1

Scp/np’/z—l iE [\Mz _ Mi_1|p’}

i=1

E [|Mn|p'} <C,E

p/
)

where we used Jensen’s inequality on the second inequality. By Assumption (A1), the strong convexity of
G and Lemma

<Cpnt'/?~ IZE“vhg 1,601 — 9ig (6:)

=0

B [(Vig (1,002~ 029 00)" | < 2B [V (X001,0007] <27 1929 (i, 00 ]

<o’ ci") 427 o R [||9 011> |

<o o) 4 2% ofF

Hence,
n—1 i ! (P ) 4 (ZJ Y p
1 1 P SO T+ 2P0y
e V i 5 - 8 - ]E Mn p . ’ 82
1; hg( i+1 ) kg< ) n+1 ‘|— (n+1)p/2 ( )
which yields for z > 0
n-1 v oy o COF) 420 OV
T 2P 2 o
P i - e r
] ;th 1,007 — g (0:)| > o | S 2 CESVE (83)
Next, by Jensen inequality,
p/

n—1
Qap 1

2 .
n+1+n+1§(6’“9(91»

1 , n—1 ,
1 <ak|p + Z |3139(9i)|p> .
i—0

Using Assumption (A1) and then strong convexity yields

A

' / PPV 74
|6139 (ei){p SC’{p) 4P 02(1’) p
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so that

' (P n-1
ag 1 2 (p/) \ak|p 2P CQ 1 p’
059 (0; <cC vPo.
n+1+n+1z(kg(Z)) R s n+1§2

2p’ /
Hence, for %55 > Cfp ),

p/ ’ ’ n—1 ’
2P 1 yo 2P 02(1’ )n o 22P o)
> oo | <P 1 lax|” + 7 E Vi > 5 — G

’ 2p/c(P/) -1 ’
| B[l

n+1l n+1

n—1

a 1

£t > Rg(0:)
1=0

D

Sn +1 z2p’ C(ZD/)
o7 T V1

_ 20 —=y)y(v=28)p

By equation and the fact that %HZ?;OIU + 1) P < o+
1 log(n+1)

1

: STz and denoting =1+ 7
‘1-%12(17@,&#1 (n+1)#m ‘1-%12“77?&#1
- »
it comes
/ " (") ,
’ (p/) n—1 p % ’I’LilE |:Vpi|
1 E |ak|p/ N 2P Cy ZVP, _ lag|” + e S ¢
n+1 Mp’ Pt i T
217/0&3’) o 10g(n—|—1) 2p/02(p/) / ) o
: fel / 1 Py K <_ Al (] _ )
ST e R ey [T 1Y e (—eophait ™1
log(n + 1
<M(p) (nt1)

2(1=7)y(v=28)
7213 P Al

(n+1)

with for n > 2

2p/C(p/) - , - oo
M(B) = H,f Kol 414 |ap + K1) exp (—cwkonl“*“)(l - s’(”))
n=0

Choosing
Yo = [2'(C) 4 1)) (84)

yields then

/

p

N M(®)log(n + 1)

T ()

n—1
ag 1 9
0iq(0;
n+1+n+1; k9(0:)

20—y v(v—=28)p :
#/\1

Putting the latter inequality with equation [8I] and equation [83] gives then

P min (An) < Ao] < 3 P[|(An) | < 2]

k=1

dor (@) 4o o) V2
dM () log(n + 1) (Ol +2C
RN =y o LU BT

vg log(n + 1)

— 20—y y(v=28)p
#/\1

(n+1)
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with )
(o ey
Vo = dM(,@) +

cP) 41
Since P [Amin (4n) < Ao] < P [Amin (An) < Ao], the result is deduced.
B.4 Proof of Lemma [6.4]

Set Ej, =E [vh (X, e)ﬂ and 92g(h) = E [V,(X, h)2]. Then

=

/ n—1 p
- -2 p ’_ 1
E |:‘(A”)kk —Ek‘ :| §2p 1E mzvhg( i+1; ) 8}@9( )
=0
a E 1 n—1 2
2p’,1E k— Lk 82 01’ - E
+ — +n+1;(kg() %)

By equation [82]

p ) C{P’) + 2p' CQ(P/) VL/
<2° z
- (n+1)p'/2

n—1
ﬁzvhg( i+1s ) — 9%9(6:)
i=0

Next, by Jensen inequality,

P

ak_Ek n—1
n+1 n—l—I; akg )

§n—1i-1<akEk +ZIE[|akg E[” D

Using Cauchy-Schwarz inequality, Assumption (A1’) and then Assumption (A1) yields

!

<E[IE[(Vag (6:, ), = Vag (0. X)) (Vag (6, X), + Vg (0. X),) 031" |

E (|29 (0) - Bi["| = E UE Vg (6, )7 = Vg (6, X0 10}

p'/2 r/2
<E [JE {(th (6, X), — Vg (97X)k)2 \91} E {(th (05, X);, + Vg (eaX)k>2 |91} ]
<o? 2R [0, — o) (20 2 + Cf 6, — o))

2p Lp /2017 /2 93p' /21 (P /2Lp /2

- ur'/2 [Vip//z} u;’ E [Vp}
210 LZ’ /QCP /2 - 2317//27105//2L%/220
Mp /2 (2 /,Lp/ (2]

where ¢; is given in equation Putting all the latter bounds together yields, using that Ej < Cf,

E 1 n—1 4
ap — L 2
0xg9(0;)) — E
n+1 +n+1;(kg( ) k)
n—1 "o’ /2.0' /2 3p’/2—1,0' /27D /2
1 2P Lo “C 2°P C5'°L

P —1 o vy “1 _ 2 Vg .

<7 |2 e HCr)+ ;:O Ve o ¢
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Hence, noting that V,, < oo by Assumption (A1’) and Lemma

E (@)% - Bl

Cpr) 4o Cz(p’) Vppl op' -1 n=1 [ op' 1P//2P'/2 93p’ /2=10P /2 P'/2
p'—1 P p'—1/ p' ' Vg 1 - 2 Vg_ ..
s2 n +n—|—1 2 (ak' +a )+§ up’/2 Vet e’ Ci ’
X . _ _[(1 Ny 2ﬁ)p/\1] .
with, by equation [33] ¢, = log(n)n 2= . Since by (A6) we have Ej > a, we deduce by
Markov’s inequality that
1 o' ——\ -2 v 2w'e
P[5 < V2] = [ < ar2] < e[|y - Bl | < 25

Hence, we have
E[(4n)] =E [1(An>kk>¢z<f‘> }*E[ (), <vE A }
<® [1m, oy B (1, <z (L

_ v’ Bn
<c n45[p>[( )kk<\/ }+*< cﬁn ¢ Jr%.

«
A-v(z—-28);
Since ¢, = O <1og(n)n[ = p/\l]), for 5 < w A 3 we have [w A 1} —48 >0
and thus
w(f) = sup é,n* < +o0,
n>1
and finally
d
An'] <D E[(An)iy] < C8
k=1
with ;L
2P cgw(B) 4
4 _ -
Cs = [ o T (86)
B.5 Proof of Lemma
First, we have by (A6)
9 1 n—1 1 n—1
E[Zn _}:Ei Vig (Xig1, 0:)2| = E[v Xii1,0)°] > a.
((An)k) n+1; ng (Xit1,0:);, n+1; ng (Xiy1,0:i);| = o
Then, as in the proof of Lemma [6.4]
n—1 n—1 2 ,4v
1 Cl + C5=%
1 0): — —— JE{ 1,0 2} 7L
n+1z(:)vh9 i+1,03) — nr1 Vg (Xiv1,0:);, < -
Hence, by Markov inequality,
n—1 2
P[((Z V) <a/2] <P Zv 0, — LZE Vg (X 9-)2} Lo
n)kk > >~ hg 2+17 n+ 1 v L hg i+1,Yi)L 4
(01 +Cy%)

<
- na?
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We deduce as in Lemma [6.4] that

-1

E {(An)i,g} <cin* P [(/Tn)kk < a/2} +

When § < 1/4, we finally get

with

\ d( +Cl+C’4NV2)
CS: a2 . (87)

C Proof of technical Lemma and Propositions for linear regression

C.1 Proof of Lemma [6.6

Remark that
S,

< nofm <m||50|| +; H&X?H) <=t <m||s0 +; ||Xi||2> :

Hence, for A > 0,

P [Amm (5;1) < )\} —P {|\§n|| > 1/>\} <P lo;‘* (m I1Soll + Zz: ||Xi||2> > )\‘1: .

Taking Ao = (2a4E [||X||2])71 yields then

P [Awin (577) < %] <P [}1 (muso +Z (1] ~ B [||X||2])) > E[|X]7]

Taking the p-power, applying Markov inequality and then Rosenthal inequality yields that

P [i <m|so|| £ (xR [|X||2])> >E [nxn?]}

(i (m;01+ >~ (- 1| })D)p> (& [nxz])p]
Z (10 — B (1)) )]

1 1
< EIXP [np (m”So +2
(CLom' B2+ Cafp)n= (B [12P])" 4 2 ol ")

<P

or—1
< -
~ (EIX2)P
with Z = || X|]2 - E [| X|?].

If X is a subgaussian with subgaussian norm || X||,,, a similar reasoning yields

P [Aun (S7) < Ao <P [‘jj <m||so|| + Z Xﬁ) > AOI]

<P [Z (I1X:01% = B[ XI]) > n(Ag /oy — E[IX]*]) —m IISolll

=1

(e for ~E[IX]2) —mSol))”
=2 p( Al XTs ) |
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with ¢ > 0 absolute constant, where we used the generalized Hoeffding inequality for sub-Gaussian random
variables and the fact that centering alters the sub-Gaussian norm by a universal constant, see (Vershynin,

2018, Theorem 2.6.2) and (Vershynin, [2018, Lemma 2.6.8). Taking Ao = (2a4E [||XH2D71 and assuming

nE[|| X ||?]
that m < 311501

yields then

P [ (51) < Ao < 2exp (_CTL(EHXHQ]))

X1,

for some numeric ¢ > 0.

C.2 Proof of Lemma

By definition of S,,, S, = gn on the event T,, = {Amin (Sn) > ﬁ} Hence, for the same )y as in Lemma
[6.6}
P [Awin (571) < 0] =P [T 0 i (5) < 20} +PIT]
P [Amin (5;1) < )\0} Y P[TY. (88)
By Lemma

P [)\min (S;l) < AO} < 0y, (89)

with @, given in Lemma Then, for n > ng, where ng is defined in equation we have n >
1 n+m —1/B no_ 1 . 1 n T

( (—)) , and thus - ——co > P In particular, on the event {)\min (5 Zi:l X X; ) > 02}, we

cpeai— n n+

Amin () =Amin <ni"m (mSo + Xn: XiXiT> )

i=1

no_ 1 & no_ 1
> Amin | = Y X X1 > ey > )
“n+m mm(ni_zl ¢ z>_n+m2_cgnﬂ

Hence, for n > ny, {)\min (% 2?21 XZ-XiT) > 02} C T, and thus by Propositionand the fact that n > ¢1d,

have

P[T;] <P [Amin <711 zn:XiXiT> < CQ] < exp(—c3n). (90)
i=1

Using equation [89] and equation [00] in equation [8§] yields then
——1
P |:>\rnin (Sn ) < A0:| < an + Qexp(—63n)

for n > ng. The statement of the lemma is then a rewriting of the latter inequality.

C.3 Proof of Lemma

Since we have

_ - 1
15,11 = min {|[S; '], But1} = min {)\min{gn)aﬂnﬂ} ;
i=1

n —K
+ Qa_Co
<”+m )
<285, exp (—c3n) + (a_ca/2)7".

Since S,, = e (mSo +>r, XZ-XZ-T) and > X; X > 0, o, > a_, we have S, > qu;LSO and thus
151 < IS < %HS&H\ for n > 1. Hence, for n < c;dVm, |55 < (CI;%Q)HSOAH and we finally get

the result.

for ¢y, ca, c3 given in Proposition [6.2) n > ¢;d V m and k > 0,

_ 1 n
E |:||S;1||n:| S/BI;-HP [Amin (n ZXZXZT> S Co
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C.4 Proof of Proposition [6.3]

Recall that 3, = cgn”. Sincefor k > 0, the map g : t — (cst?)" exp(—cst) is bounded from above by
Bk
3 (57';) , we get
o—1 ﬁﬁ —K
sup E [[|S;H]7] < 2cﬁ< ) + (a_ca/2)
n>cid ecs
Taking into account the case n < ¢1d V m yields then

_ 2 28 9 2
supE[Hs,;wgmax{ch (ﬁ) T (a_ea/2), [Cl“ IS5 ||} }
n>1

€Ccs

and

up B {1511 < m {2 s(2 ) + a2t | 25525 }

C.5 Proof of Lemma

First notice that

_H‘

~SwE| <

S |1 =Sl 1)
Under hypothesis of Proposition
P [Amin (Sn) < a_ca/2] < 2exp (—csn)
for n > c1d vV m. Since |[S;| < |57 Amin (Sn) = Amin (Sn) and thus we also have
P [Auin (Sn) <

for n > ¢1d vV m. Hence, for n > ng,
— P
n —-H H ]

I o] P
pmerrad [N

1 —= 2
<G E D Go)zo B~ HI] +
where we used on the last equality that for n > ng, S, = S, on the event {)\min(.g'n > a_ce/2)}, as in
the proof of Lemma The first summand can be bounded using Hélder inequality with % + % =1 and
¢ =p/2as

a_cy/2] < 2exp (—c3n)

——1

2
-1
- H H :| +E|: mm(§ )>a_62/2

B[t 5o enra B~ HIF] <P i (50) < acof2) VB [|5, — ] "
<2exp(—cs(p — 2)n/p)E [|[S, — H]'] .
Using the upper bound on H and the convexity inequality (a + b)? < 2P~1(aP + bP) yields the rough bound
£ (|5, - 1] <E[(15) + 1a))"" <222 (B[ I5)7] + Mwe) "
§4max{)\fnax, [Hsnmp}
Since X admits moments of order 2p, we get

1/p a+m a+n

pq1/p
E [|[S.|/" |15 + ( Z”X “H < a[1Soll + o (E[I1 X))
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We hence get

E[1y (5 aeara B — HIP] < 8exp (—es(p — 2)n/p)max (A2, 20 (I0l12 + (B [1X]>])*7) }

= 16cry exp (—c3(p — 2)n/p) (||SOH2 + (E U|X||2p])2/p) :

For the second summand, using the relation between Frobenius norm and operator norm yields

n 2

ImSo + > X X{ |
k=1

2]a, — 12

(ntm)?

B (|5, - A7) <

1 n
oF | ||—— | mS, X X' )—-H

k=1 F

= Ri + Rs.
By hypothesis, |a, — 1] < % so that by Jensen inequality the first term is bounded by

2C,
Ry < =5 (ISl + E[IX]1%))

and the second term is bounded by

2

2 2 -
Ry < m ||OénmSQ — HH?: + WE kZZ:l (Xng —E [XXT]) )
2 2 2
< g ImSo - Hlp + ——E [Ixx™ - E[xxT|[}]
2 2
< Gy o = Hlli + B [1X]"].

Putting all the above bounds together yields the bound of the statement.

C.6 Proof of Lemma [6.10]

Remark first that as in the proof of Lemma [6.1] one has

1
T
Vier < Vo = yss (9ar) " An / VG B+t (Br — b)) dt.
0

Then,

1
[ VG O+ 1601 = 0.t < Lo (180 = 01+ 21 Ll )

which implies that

Vast < Vo + Y1l Al Lve (19421 10 = O + Yol Anll - lgnal?) -
Using the fact that g/, ,; = (e + X1, (0 — 6,,))X,,+1 yields then

Va1 <Va + g1l AnllLyve (1 X1l 100 — 011 + [ell0n — 01l + 2vnt1 [ Anll - (1 Xnt1ll*(10n — 01> + €2))
2(n + DYnr1Lve | o An+1)*v2 1 Ly |
<V (1+ u* 1551 (2 + 1 X g ]1?) + + 1155 21| X1 ]*

+2le’Lye (yn+1(n+ DIISGH + 7041 (n+ 1)?[1S57)
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where we used the strong convexity of G and bounded A,, by (n+1)||S;!||. Hence, taking the square in the
above inequality and taking the expectation conditioned on F,, gives, for p > 1,

- 2(n+ Dvnt1lve | o— 1/4
E[V2,.] <2/ 11E[Vé’]<1+( D B0 551 (24 B (1] )

n 4(n+1)*y2 1 Lva

p
— 1/2
1S 21 [ Xn411%]/ )

+ 277 'E [[e?P] L (Yns1(n+ DS + 770 (n+ 1)]1552]1)"
<E[V]exp ((p — 1)10g(2) + Clin1(n + 1)*727) + Clip o (n + 1)PE27),
with
2peyLyva | (-1 g11/4 QPC%LVG 9 g71/2
Cuin =S5 (24 [1Xa |7 + 2520852 (X (1)
Chin2 =2*"'E [|e|P] L% ¢ (cy 1S5 Ml + 2 11S57211)" -
We deduce that

E[V? 1 o Crina o B v
< -1 2 inlig—o— | |1 2 1) — py .
[n]_exp((p )log(2)n + Ci ’1327>( i ’2<p+1)m) .

D Proof of technical Lemma and Propositions for generalized linear model

D.1 Proof of Lemma [6.11]

With the help of inequality equation [7} it comes

n

— 1 LVl 2 od 2 2
< X, |2
1211 < o WSoll -+ 225 2K+ 225 3

nJrl,i n—+

with Z; = ejg1. Then, a similar proof as the one of Lemma [6.7 yields that for Ao =
-1
(QLWE [||X||2} + 20) ,

i [)\min (?; 1) < )\0}

<P [”i” + 2SS (1l £ 1x07])) + 230 (120 1) > Lok [IXIP) +o]

i=1 =1

Then, by Markov inequality for p > 1, we then get

_ E[(L 1500+ £ Sy Lo (12012 = E [IX1°]) + 0 (12302 = 1))
o (527) <)< ! <L£1E[||X||%]+[o>p ! )

< (L E [i;_”lg] N )p (n_P S0P + C1(p)n* PE[|T|P] + Ca(p)n /> (E [||T||2])p/2) ’
Y o

with T = Ly, (| X[2 = E[|X]?]) + o (12]* - 1).

D.2 Proof of Proposition [6.5]

One directly has for all n > 2d

— In/dlec - n+1—4d 1
Amin (Sn) 2 (n+tl) = dn+1) =247
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and S,, > 217150 for n < 2d — 1, so that

sup HS';lH < 2d max {1,
n>1 g

s}

D.3 Proof of Proposition [6.7|

Let us denote

n—1
— 1
H(0,) =E Vil (Y, 0, X) XX ] and  H, = " (So + ) Vil (Y, (6, Xi41)) Xi+1XiT+1> :
i=0

One can decompose H,, — H (0,) as

n—1
H, —H(,) = _11_ 1 ; Vil (Yigr, (05, Xiv1)) Xig1 Xy + %HSO — H(6,)
1 n—1
a1 ; Vil (Yig1, (05, Xig1)) Xip1 X[y — H (6)
1 = 1
3 ;(H(Gi) ~ H(0,)) + = (S0~ H (6).

Let us now give a rate of convergence of each term on the right-hand side of previous equality. Set M, :=
Z;L;Ol (V%E (Yvile, 01TX7,+1) Xi+1X5_1 - H(QZ)) Since E [V}%@ (Y;;Jrl, H;TXZ+1) X1+1X£_1|.7:Z] =H (07,) 5 where
(Fi) is the o-algebra generated by the sample, i.e F; = o ((X1,Y1),...,(X;,Y;)). Then, (M,),>1 is a
martingale and thus

1

1 et LLE ||IX])*
mE {”MnHQ} < CEE ZE [H(Vi%e (Yig1, 07 Xi1) Xoa X[y — H(0))) ’ﬂ < #
i=0

n
It then remains to handle n%_l Z;:Ol (H(0;) — H (0,)). With the help of Assumption (GLM1), one has

1
n+1

2 n—1
E <o S E[IH0) — 1 0]
=0

S (H(8:) — H (6,))
1=0

L2 ) n—1 ) L2 ) n—1
<L Y TE (16— 007 < =22 v,
i=0 =0

with v; gL defined in Proposition @ Then, since

5 2
do < do < do |n
o > eiaieig —oldl| = o D eildig t ( " bJ - U) Iy
i=1 i=d| 2]
and )
d?o? - d?o? n - 2 4o
2] 5 ] <2 (a2 5 Jrat < 22
k=d| %] k=d|%]
it comes
— s 4 12, = 1 16d40?
S0 — Ho||” < - <L2vz]E {HX”ﬂ + VT?L sz‘,GLM + E”SO — H (0,) |2> T3
i=0
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Now, notice as in Lemma [6.9] that

which yields, thanks to Proposition [6.5]

dl

-1
n

R g S N(H, - §,)H;? 5

<)

|1, =5 225

)

st n[] < S sl

o2
i.e one has
2 2 n-1 42
51 g-1)?] < 2G50 (2 1, Ly 1 ,) | 16dCE,

B |5t | < 52 (LWE 101+ Z2 X v+ LS~ H G| + 2750 )
E How to verify (GLM3) for the logistic regression
Remark that 6, is the unique solution to E [Vhﬁ (Y, XTQU) X+ 090] =0, so that

E[[Val (v, X705) Xic+ 0(00)e|”| = Var [Val (v, X76,) X,]
c e . T _ —Yexp(-Y0TX)

For the logistic regression, we have Y € {—1,1} and Vil (Y,X 90) = Trop(—Vorx%) and thus we need

—Y Xy, exp(—Y 0L X)
1+exp(—Y 0T X)
(GLM3), we impose a minimal randomness on (X,Y") given by the existence of a < b, n,e >0 M > 1 and
for all 1 < k < d an event Ay, € o(Y, X) with P [A, N {M~! < |X;| < M}] > n such that on A, we have

to get a lower bound on the variance of

for all 1 < k < d. To guarantee Assumptions

P ZXi(ag),- <alY,Xp| >¢ and P ZX,-(GG),» > b|Y, Xp| > e
itk itk
% is C! and monotonic for all a,3 > 0 and y € {—1,1}, for M small

enough, there exist constants ¢~, ¢t explicitly depending on M, (,)x,a,b such that on By, := A, N{M~! <
|Xk| S M}7

In particular, since u —

[YXk exp(—Y 0L X)

Y, X
1+ exp(—Y 0T X) > ey, k} -6

and

[—YXk exp(—Y 0T X)

Y, X .
1+ exp(-YOTX) <y, k]>€

We deduce that on the event Bj, we have

~Y X exp(—Y0T X) -\’
V = Y, Xi| > .
a { 1+ exp(—Y 0T X) k] =€ 2

Hence,

—Y X exp(~Y 0T X) ~Y X, -\’
> >
Var 1+exp(-YO0IX) | — E|1sVar 1+ exp(—Y 0 X) Yo Xe| | = me ’

and we can choose




Under review as submission to TMLR

F Counter-example for the quadratic convergence of the stochastic Newton
algorithm without regularization

We show here that even in the simplest case d = 1, stochastic Newton algorithm may not converge in
quadratic mean. Suppose that we define here the naive Newton adaptive matrix A,

n—1 -1
1
Recall that is known (Boyer & Godichon-Baggioni), |2020) that 6,, converges almost-surely to the minimizer

6o at speed n~7 for vy € (1/2,1).

Counter-example with Vg almost everywhere defined

Set g((z,y),0) = (x0)% + y[#]6 and let (X,Y) be a random vector with independent coordinates such that
X ~ Ber(1/2) and P[Y = 1] = P[Y = —1] = 1/2. Then, G(9) = E [X?] 6> + E[Y]|0]6 = 6?/2 and we have
Lebesgue almost surely V,g((x,y),h) = 222h +y|h| and Vig((z,y), h) = 222

Let n > 1. Then, P[X; =0,...,X,, =0,Y; = —1,...,Y, = —1] = 272" and on the event {X; = 0,...,X,, =
0,Y1=-1,...,Y, =—1}, as long as 6 ¢ N for all £k > 0 (which will be temporarily assumed),

1 - 1

ATt = - (1 + ;2)(3“) =

Hence, Ay, = k and (0x)1<k<n is defined recursively by
Op = Op—1 — YAk Ok—1]Yi = Op—1 + kyi[O—1].
If v, = k= for some o < 1, we then have kv, = k!=%, and thus for 6y > 1
Op > (1 +K%/2)0)_1.
We deduce that 6, > [[;_, (1 + k'7*/2) > (n!)!~*27". In particular,
E [[|6n — 00]%] > 275" (n))' 7 2= o0

when 65, ¢ N for all k > 0. Since for each k > 1, 0; ¢ N for almost every 6y € (1, 2], the latter hypothesis
holds for Lebesgue almost every choice of 6y €]1,2].

Counter-example with Vg continuous

Let f be such that f”(0) = 1z41_1/31/3[, and set g((z,),0) = (z0)®+yf(#). Let (X,Y) be a random vector
with independent coordinates satisfying X ~ Ber(1/2) and Y ~ U([-2,2]). Then, G(9) = E [X?] 62 +
E[Y]f(0) = 6%/2 and V,g((z,y),0) = 2220 + yf'(#). Then, Ay =1,

_ k -
At = g (AL 1 2XE 1 (0 Yh)
for k > 1 and
On =01 — An—177LV}Lg((Xna Yn); 0n—1) =0np_1— An—1'77L(2X7219n—1 + }/’nf,(en—l))'

Set §p = 3/2 and v, = k=7 for k > 1, and consider (X;,Y;)o<i<n satisfying the following conditions:
o X;=0forall1l<i<mn,which yields P[X; =0,...,X,, =0]=2""and for all k¥ > 1,

Op = Op—1 — Ap— 17 Y (Or—1)-
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o 0i_1 being known, Y}, € W ((Z+)1/3,2/3]) — Ok—1)N[—2,—1] := T}, (remark that T}, will

[
be shown to be non-empty).

Lemma F.1. The following facts hold for k > 1.

1. Gka—i-l,
2. Ap=k+1,

3. with £ denoting the Lebesgue measure,

1
¢ (M“Jt,(@kl) ((Z+]1/3,2/3]) = Ok—1) N [-2, —1])) > 1/6.

Proof. We will prove those three facts by induction on & > 1. For k = 1, we have 4y = 73, = 1 and
f'(3/2) =1 so that 6, = 3/2 — Y;. Since

1

7=
YT Ao f'(80)

(Z+]11/3,2/3]) — Or1) N [~2, —1] =(=3/2 + Z+]1/3,2/3]) N [-2, 1]
=] - 7/6,—1]U[~2,-11/6],

¢(Ty) > 1/3. On the other hand, for Y; € Ty, 6, > 3/2+1 > 2.

Let us show the induction. Set & > 2 and suppose the result is true for | < k —1. Then 6§, € Z + [1/3,2/3]
for all [ < k, which implies that A;_; = k — 1. Hence,

Ok = Or—1 + K" 7Y3 f' (Or—1).
By induction, 6_1 > k, and since f'(6) > 6/2 for § > 0,

Ty = ((b+ aZ + a]1/3,2/3]) N [~2, —1]

Yef'(0r-1)) < =25 < 1l and b = —0;_1/a. We deduce by pigeonhole principle that

R

with a = 1/(A}€,
£ > 1/6. Finally, for Y}, € Ay we have Y, < —1 so that

1
((Ty) >1/3—35-&

1

By the previous result,

PX;==X,=0Y,€Ty,.... Y, €Tp] >27"-6"=12"".
Moreover, from what we showed previously, on this event we have for 1 <k <n

Ok = Or—1 — Y Ap—1ve f (Ok—1) > Op—1 + K277 /2> 01 k>77 /2.
We deduce that 6, > 0,_1(k —1)177/3 > (n!)?>=7/2". In particular,

E [[|6n — 60]%] > (n)277 /24" 2% 0.
Remark that the latter result can be easily adapted to get a counter-example with g as smooth as desired.
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