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HW/SW Codesign and FPGA Acceleration of
Visual Odometry Algorithms for Rover

Navigation on Mars
George Lentaris, Ioannis Stamoulias, Dimitrios Soudris, and Manolis Lourakis

Abstract— Future Mars exploration missions rely heavily on
high-mobility autonomous rovers equipped with sophisticated
scientific instruments and possessing advanced navigational
capabilities. Increasing their navigation velocity and localization
accuracy is essential for enabling these rovers to explore
large areas on Mars. Contemporary Mars rovers move slowly,
partially due to the long execution time of complex computer
vision algorithms running on their slow space-grade CPUs.
This paper exploits the advent of high-performance space-grade
field-programmable gate arrays (FPGAs) to accelerate the
navigation of future rovers. Specifically, it focuses on visual
odometry (VO) and performs HW/SW codesign to achieve one
order of magnitude faster execution and improved accuracy.
Conforming to the specifications of the European Space Agency,
we build a proof-of-concept system on an HW/SW platform
with processing power resembling that to be available onboard
future rovers. We develop a codesign methodology adapted
to the rover’s specifications, design parallel architectures, and
customize several feature extraction, matching, and motion
estimation algorithms. We implement and evaluate five distinct
HW/SW pipelines on a Virtex6 FPGA and a 150 MIPS CPU.
We provide a detailed analysis of their cost–time–accuracy
tradeoffs and quantify the benefits of employing FPGAs for
implementing VO. Our solution achieves a speedup factor
of 16× over a CPU-only implementation, handling a stereo
image pair in less than 1 s, with a 1.25% mean positional error
after a 100 m traverse and an FPGA cost of 54 K LUTs and
1.46-MB RAM.

Index Terms— Binary robust independent elementary
features (BRIEF), egomotion, features from accelerated
segment test (FAST), field-programmable gate array (FPGA),
Harris, matching, rover navigation, scale-invariant feature
transform (SIFT), speeded-up robust features (SURF), stereo
vision, visual odometry (VO).

I. INTRODUCTION

COMPUTER vision is constantly gaining ground in space
exploration, providing increased flexibility and autonomy

to a variety of robotic applications such as spacecraft docking,
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safe landing, terrain mapping, localization, and navigation.
The last objective is of utmost importance to the Mars
exploration programs pursued by various space agencies.
In this context, a so-called visual odometry (VO) capability
can endow a camera-equipped rover with accurate estimates of
its location, despite any wheel slippage that renders traditional
dead-reckoning ineffective. VO refers to the process of incre-
mentally determining the pose (position and orientation) of a
camera rig by analyzing the images it acquires over time [1].

VO on Mars involves a binocular camera capturing
stereo image pairs and onboard hardware for processing
these images to estimate the six pose parameters of the
rover. The process combines various computer vision (CV)
algorithms and is repeated at regular time intervals during
the rover’s movement. The most effective approaches
proceed by identifying visual landmarks in the form of
natural image features, matching them across images and
eventually using their apparent displacement to infer the
3D motion of the rover relative to its environment. Despite
its merits, this strategy relies on computationally demanding
algorithms for almost every stage of the process. As a result,
feature-based VO algorithms require an increased amount of
time to complete, especially when executed on space-grade
CPUs with limited processing power. Besides, VO suffers
from drift caused by error accumulation over time.
To overcome these limitations, this paper exploits the advent
of high-performance space-grade field-programmable gate
arrays (FPGAs) to accelerate prominent CV algorithms so as
to improve both the speed and accuracy of rover localization.

FPGAs are already being used in space missions to
implement switching tasks, power management, motor
and pyrotechnic control, communications, etc. They are
rad-hardened devices (from Xilinx, Microsemi/Actel, and
Atmel), built with Antifuse, Flash, or SRAM technology, and
offer all of their conventional advantages over space-grade
ASIC and CPUs. Currently on Mars, the Opportunity Mars
exploration rover (MER) and the Curiosity Mars Science
Laboratory (MSL) vehicles utilize near-100 FPGA devices.
However, these devices are not used for VO. Instead,
VO is executed on rad-hard CPUs, i.e., the PowerPC-based
RAD6000 and RAD750, which have a processing power of
only 22–400 MIPS. As a result [2]–[4], a single VO iteration
requires 150 s to complete on MER when executed together
with the remaining flight software (or 21 s on its own, whereas
MSL’s VO is 3–4× faster). Hence, MER seldom uses VO
in practice (only in 11% of its traverse, mostly on terrains
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with slope or sand drifts), as it limits the maximum average
navigation velocity to only 10 m/h. With our work, we achieve
to increase the above speed limit by an order of magnitude
by offloading the CPU and parallelizing the most demanding
algorithms on FPGA. State-of-the-art space-grade FPGAs are
now capable of supporting very complex computations due
to their increased density, and thus, they enable the HW/SW
codesign of VO algorithms for use on high-mobility rovers.

The contribution of this paper is to propose an HW/SW
codesign tailored to the localization needs of future Mars
rovers, along with HW architectures achieving increased VO
accuracy and speed. Specifically, we present our algorithmic
exploration, HW/SW partitioning approach, parallelization
techniques, FPGA designs, CPU-FPGA system development,
and particularly, our customization/tuning of VO to Martian
scenarios and demands. Our work involves the acceleration
of algorithms that result in high localization accuracy
without resorting to mechanical sensor fusion (e.g., inertial
measurement unit (IMU)) or other techniques that build on top
of VO (e.g., bundle adjustment or simultaneous localization
and mapping). That is, we optimize the core of the VO process
independently, and assume that any additional refinement
can be applied a posteriori. Thus, we consider a number of
diverse CV algorithms and combine them to develop multiple
VO pipelines with various cost–time–accuracy tradeoffs.
We provide a complete tradeoff analysis and select the most
efficient VO pipeline. Overall, the proposed methodology
inputs algorithms and system specifications to produce
HW/SW pipelines meeting certain requirements. The require-
ments are set by the European Space Agency (ESA) in its
ongoing research programmes for improving Mars exploration.

ESA specifies certain HW cost, execution time, and
accuracy bounds for the developed localization solutions.
The VO pipeline should input a stereo image pair
and estimate the rover’s pose with a 1-s delay at the
most. The rover’s velocity should be 6 cm/s (distance
between two successive images). The positional error
of the VO estimates should be less than 2% of the
total distance traveled, i.e., a less than 2-m error at
a 100-m distance, while the error in attitude/orientation
should be less than 5°. The HW should be a space-grade CPU
like LEON (a 32-bit embedded processor based on SPARC
architecture, from ESA and Gaisler) and a hypothetical
space-grade FPGA of near-future technology; as a working
hypothesis (after extrapolation of technology trends), the
HW specifications are set to 150 MIPS for the CPU and to an
FPGA of roughly 100-K LUTs and 2-MB ON-chip RAM, e.g.,
to a mid-range Xilinx Virtex6. Notice that this heterogeneous
HW serves more as an example platform for evaluating
the speedup gained when using future FPGAs to assist
the slow onboard CPUs (which are seemingly even slower
when multitasking), rather than for comparing dissimilar
devices. The exact CV algorithms to be used, their HW/SW
partitioning, their architecture, as well as their customization
were all subjects of investigation. In the two-year long ESA
SEXTANT project [5], we developed solutions conforming to
the above specifications and demonstrated their effectiveness
by utilizing FPGAs and CPUs that emulate space-grade

devices. The proposed VO pipelines outperform similar works
in the recent literature and quantify the benefits of employing
FPGAs to enhance the mobility of future rovers.

The remaining sections are organized as follows: Related
previous approaches are briefly reviewed in Section II.
Section III presents the system architecture and the
CV algorithms being considered. Section IV describes
our HW/SW methodology and the HW/SW partitioning of
five VO pipelines. Section V describes the HW architecture of
our accelerators and their FPGA implementation. Section VI
describes the system integration and testing and provides
a detailed evaluation of the five VO pipelines. Finally,
Section VII concludes this paper.

II. PREVIOUS WORK

Estimating the camera motion from images is a long-
studied problem in CV, often referred to as egomotion, visual
motion, or VO to stress its analogy to wheel odometry. Due to
several theoretical and practical reasons, the most successful
approaches to VO adopt the feature-based paradigm [6], which
suggests that VO should proceed by first extracting features,
then matching them across images, and finally, estimating
sparse 3D structure and egomotion. This is in contrast to the
so-called direct methods that are plagued by a limited range
of convergence in their quest to simultaneously estimate the
camera motion and determine the correspondence of each and
every pixel [7].

Related work in the literature includes algorithms and
FPGA implementations for various components of feature-
based VO, as well as few HW/SW solutions for complete
VO pipelines. Relevant algorithms range from feature detec-
tion with Harris [8], FAST (features from accelerated segment
test) [9], SURF (speeded up robust features) [10], SIFT
(scale-invariant feature transform) [11], to feature description
with SIFT [11], BRIEF (binary robust independent elemen-
tary features) [12], SURF [10], BASIS (basis sparse-coding
inspired similarity) [13], to feature matching [11], [14], and
to motion estimation techniques [15]–[17]. Completion of fea-
ture detection on commercial CPUs (e.g., Pentium4@3 GHz)
requires 2–1800 ms, depending on the image size and the
complexity of the algorithm [9], [10]. Similarly, description
requires 8–355 ms for 512 features per image [18].
Matching is in the order of 100 ms, whereas motion esti-
mation requires only a few milliseconds. A typical example
of a feature extraction pipeline executes on a commercial
CPU on the order of 1 s for 800 × 640 images with
1500 features from each [10]. Therefore, the execution time of
the most prominent/complex pipelines on space-grade CPUs
increases to tens of seconds per frame. FPGAs can accelerate
individually each one of their computationally demanding
stages to around 7–70 ms, at a cost of 13–65 K LUTs and
0.5–1.2-MB ON-chip RAM [13], [19]–[25]. The algorithms are
evaluated with respect to the amount of features detected and
correctly matched between images. Their resilience to changes
in illumination/scaling/rotation is measured via repeatability,
distinctiveness, correctness, etc. For moderate image defor-
mations, e.g., 20° viewpoint change, the literature reports a
repeatability of 78%–90% and a correctness of 50%–90% for
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sets of 100–200 features (for small deformations, the accuracy
approaches 99%) [10], [26]. Overall, the feature extraction
algorithms show significant cost–performance tradeoffs, which
have a direct impact on the entire VO. More insights into these
algorithms are provided in the remainder of this paper.

As regards complete VO pipelines on HW/SW platforms,
Howard et al. [3] and Kostavelis et al. [27] propose
solutions for Martian rovers, while [28]–[32] target terrestrial
applications, either for ground robots or for aerial vehicles.
Howard et al. [3] implement on FPGA the Harris feature
detector and a sum-of-differences (SAD) criterion for
matching, whereas they delegate RANSAC and motion
estimation to a commercial CPU. Their system utilizes
Virtex4 and PC104 to process images of 512 ×384 pixels and
output VO estimates at 5 Hz with rover velocity in the range
5–7 cm/s. [28] implements via high level synthesis tools the
SIFT extraction algorithm on a Virtex2 and utilizes a
Pentium-M to match features against a database of
2 · 105 landmarks; the system estimates VO at 3 Hz
with a rover velocity of 5 cm/s. Kostavelis et al. [27] and
Krajník et al. [29] perform HW/SW codesign based on the
SURF algorithm and report VO tests on various 100-m paths.
Schmid and Hirschmüller [30] and Schmid et al. [31] develop
a micro air vehicle by computing stereo on a Spartan6 FPGA
and executing VO at more than 14 Hz on a Core2duo CPU,
which implements Harris (or AGAST for an almost 10× faster
detection) and retrieves the depth of features directly from the
stereo output. Bakambu et al. [33] report field test results of
rover localization in a Mars-like environment. The accuracy of
the above HW/SW VO pipelines, i.e., the positional error over
the traveled distance, ranges from 2% to 3.3% in Mars-like
scenarios and from 2% to 8.15% in terrestrial scenarios
(becomes less than 0.5% when using VO in conjunction with
external sensors, i.e., an Inertial Measurement Unit [30]).
In MER, the reported SW VO accuracy ranges from 1.3% to
2.5% or 4% for 25-m traverses with a 95.5% probability to
converge to a final estimate [2]. In MSL, the SW VO has a
mean positional error of 2.9% for 100-m traverses [4].

III. SYSTEM ARCHITECTURE AND VISION ALGORITHMS

The high-level architecture of our system reflects the design
of the concept rovers for the 2018 and 2020+ planned Mars
missions (e.g., Exomars, MSR). We thus assume a rover
equipped with two distinct pairs of cameras: the wide-angle,
high-definition navigation cameras, which are mounted on a
mast 1m above ground and used mostly for terrain mapping,
and the lower resolution localization cameras, which are
placed lower on the rover to provide a closer view of the
ground and feed the VO pipeline. The localization cameras
have a baseline distance of 12 cm, focal lengths of 3.8 mm,
and an image resolution of 512 × 384 with 8-bit pixels each.
They are mounted 30 cm above the ground, parallel to each
other and in a forward-looking configuration. Compared with
a single camera, such a stereo setup resolves the depth/scale
ambiguity [34] and permits the estimation of motion even from
near-stationary stereo frames. The cameras are tilted by 31.55°
with respect to the horizon and their fields of view span 66°

horizontally and 49.5° vertically, i.e., they each capture an
area in front of the rover that spans from 0.2 m to 2.52 m
away (when on level ground). The above parameters play an
important role in tuning the VO algorithms and generating
realistic synthetic test sequences.

We built a proof-of-concept system consisting of an actual
evaluation board with an FPGA and a general purpose PC
emulating a LEON CPU of 150 MIPS. The FPGA and the
CPU communicate over our custom 100 Mbits/s Ethernet.
The localization camera connects to the CPU, together with
a hard disk drive for image storage. From a software archi-
tecture point of view, the system is structured hierarchically
in three levels. Level-0 interacts with the operating system
and includes the kernel drivers for the cameras and custom
Ethernet as well as the wrappers of imaging, mapping, and
localization. Moreover, Level-0 facilitates the interaction with
other parts/modules of the rover, e.g., IMU sensor, wheel
encoders, and navigation module. Level-1 builds on top of
Level-0 and includes the C/C++ functions implementing the
CV algorithms. Level-2 includes the most computationally
intensive subset of these functions, which are accelerated by
the FPGA. The current work focuses on Level-1 and Level-2
and, more specifically, on localization (i.e., VO).

From an algorithmic point of view, feature-based solutions
to VO need to address three distinct subproblems, namely
feature detection, feature matching, and motion estimation.
Feature detection concerns the extraction of sparse
point features from a scene, feature matching involves
tracking them across successive image frames, and motion
estimation concerns the recovery of the incremental pose of
the camera(s) as well as the recovery of some partial scene
3D information using structure from motion algorithms [34].
Sparse distinctive points, also called features, interest points
or corners in the CV literature, refer to salient image locations
with sufficient local variation [26]. Image features correspond
to points that can be accurately localized, whereas the local
geometric properties of the image patches surrounding them
can be captured by suitable feature descriptors, which can be
robustly matched from different viewpoints. In the context
of our work, several algorithms addressing the above VO
subproblems were investigated and are briefly reviewed next.

A. Interest Point Detectors and Descriptors

1) Harris Detector: The Harris corner detector is a popular
detector that responds strongly to significant local intensity
variations occurring in multiple directions [8]. It employs
Gaussian-smoothed products of image derivatives to define the
autocorrelation matrix, whose eigenvalues capture the princi-
pal intensity changes in a point’s neighborhood. Various corner
strength measures (i.e., cornerness) have been proposed to
avoid the costly computation of the eigenvalues. The original
publication suggests using S2

x S2
y − (Sx Sy)

2 −0.04 · (S2
x + S2

y)
2,

with S2
x , S2

y and Sx Sy being the smoothed products of image
derivatives. Corners are detected on pixels whose corner-
ness is sufficiently high and exceeds that of its neighboring
pixels in a 3 × 3 region (via nonmaximum suppression).
Subpixel accuracy is achieved by finding the minimum of a
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quadratic surface fitted to the cornerness of the 3 × 3 region
around the detected corner. Harris has a high repeatability
rate and is widely used in practice. It is not scale invariant;
however, this is not an issue for VO as successive images differ
only moderately.

2) FAST Detector: FAST operates by considering a circle of
pixels around a corner candidate p [9]. Pixel p is classified as
a corner if there exists a set of n contiguous pixels in a circle
centered on p which are all either brighter than the intensity
of the candidate pixel I (p) plus a threshold t , or all darker
than I (p) − t . The number n is chosen to be equal to 12
because it admits of a high-speed test that can rapidly exclude
a very large number of noncorner pixels. FAST is much faster
compared with Harris but also more fragile as it employs a
very simple criterion.

3) SURF Detector: SURF is a scale- and rotation-invariant
interest point detector and descriptor developed with the aim
of being accurate and fast to compute [10]. The SURF detector
employs an integer approximation of the Hessian matrix that
locates interest points at blob-like structures. Computational
complexity is kept low by relying on integral images for imple-
menting box-type image convolutions. Specifically, SURF
applies box-filters to approximate the second-order partial
derivatives Dxx , Dyy, and Dxy, and evaluate the determinant
Vijs = Dxx · Dyy −w ·Dxy2 with w = 0.81, at distinct loca-
tions i, j and scales s. Subsequently, the determinant values
are nonmaximally suppressed over the resulting scale-space
to detect all image blobs. Retained values are interpolated
in a 3 × 3 × 3 scale-space cube to increase the detection
accuracy. Our experiments use the OpenSURF library [35]
configured with three octaves (eight layers) to detect blobs
sized approximately up to 33×33 pixels. Overall, SURF offers
high repeatability and, compared with SIFT, it is faster and can
be implemented with lower HW cost. However, it might suffer
from loss of accuracy in certain situations.

4) SIFT Descriptor: SIFT is a combined detector-
descriptor [11]. It determines feature locations as the local
extrema of a difference of Gaussians function applied in scale
space to a series of smoothed and resampled versions of
an image. Following this, an orientation is assigned to each
SIFT feature by computing the maximum of an orientation
histogram weighted by the magnitude of local image gradients.
Finally, feature descriptors are determined by rotating the
region surrounding each keypoint according to its dominant
orientation (a step known as orientation normalization) and
then dividing it into square patches. A histogram of image
gradient directions quantized to a finite set of orientations
is extracted from each such patch. The histogram bins are
arranged into a 128D vector (the SIFT descriptor). SIFT is a
proven descriptor that exhibits good robustness to common
transformations and has been successfully employed in a
variety of vision-related tasks. Its primary shortcoming is
related to its costly computation.

In this paper, the computationally expensive scale-space
analysis for determining SIFT feature locations is avoided and
only the descriptor part of SIFT is employed. More precisely,
features are obtained with the Harris detector described above.
For each of these features, a SIFT descriptor capturing the

distribution of orientations in a region around the feature is
computed as in standard SIFT. In doing so, it is noted that
since no scale selection is performed, the scale of the feature
is determined arbitrarily (customized to 43 × 43 in our case).
This is acceptable by considering that in the context of VO,
successive images are not expected to differ considerably. For
the same reason, the orientation normalization step can also
be omitted to reduce the computational cost. When the SIFT
descriptor is used in conjunction with Harris, the required
image gradients can be obtained at no extra cost by reusing the
derivatives generated during the computation of cornerness.

5) BRIEF Descriptor: BRIEF is an efficient feature point
descriptor based on binary strings extracted from image
patches [18]. It is based on performing several pair-wise
intensity comparisons on a Gaussian-smoothed image patch
and encoding the comparison outcomes using a bit vector.
BRIEF compares pixels at a set of random spatial locations
and creates a bit vector from the test responses. Despite not
being designed to be rotationally invariant, BRIEF can tolerate
small amounts of rotation. Compared with SIFT, BRIEF is less
discriminating but more compact and faster to compute and
match.

B. Interest Point Matching

Prior to estimating 3D motion, the 2D displacement
of image points has to be determined by matching the
corresponding features between images. Point matching
employs a nearest neighbor search among the computed
descriptors and proceeds according to the standard distance
ratio test [11]. Specifically, for each feature descriptor from
one image, its two nearest neighbors from another image are
found. The distance to the nearest neighbor is then divided
by the distance to the second nearest and the pair is accepted
as a match only if the ratio is smaller than a threshold
(typically 0.8). Distances among SIFT descriptors are often
computed with the Euclidean (L2) norm. Higher quality
matches are obtained via the χ2 distance [14], which is
a histogram metric taking into account that in natural
histograms, the differences between large bins is less
important than those for small bins. The χ2 is defined by the
sum of ratios of squared bin count differences to bin count
sums. This normalization increases the number of correct
matches at the cost of some extra computational time or
FPGA logic (e.g., 363 LUTs for a 16-bit divider), which we
are willing to pay in the most accurate of the VO solutions
being explored. BRIEF descriptors, which do not amount to
histograms, are compared using the much cheaper Hamming
distance which counts their differing bits.

C. Motion Estimation

For the final stage of VO, we explore two prominent
egomotion estimation algorithms, namely absolute orientation
and LHM. However, prior to applying either of the two,
we employ a preprocessing step to remove mismatched
interest points (i.e., outliers) via the robust estimation of
the underlying stereo epipolar geometry [34]. Furthermore,
the 3D points giving rise to inlying matched point pairs are
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reconstructed via triangulation [36]. Triangulation recovers
3D points as the intersections of back-projected rays by the
matched image projections and the camera centers. Since there
is no guarantee that these rays will actually intersect in space
(e.g., they might be skewed), matched image points should
be refined prior to triangulation so as to exactly satisfy the
estimated epipolar geometry. This is achieved by computing
the points on the epipolar lines that are closest to the original
ones. The computation involves minimizing the distances of
points to epipolar lines with a noniterative scheme that boils
down to solving a sixth degree polynomial [36]. Since this
is rather costly in terms of computation, we employ a much
cheaper alternative relying on the Sampson approximation of
the epipolar distance function. In this paper, the operations
for eliminating outliers via the epipolar geometry and trian-
gulating the inliers will be collectively referred to as filtering.

1) Absolute Orientation: Using the feature detection and
matching techniques described above, a number of points
are reconstructed from the two stereo views at a certain
instant in time t . As the cameras move, detected interest
points are tracked over time in both stereo views from
time t to t + 1. By triangulating the tracked points in
time t + 1, the camera motion can be computed as the
rigid transformation bringing the 3D points of time t in
agreement with those obtained at time t + 1. Determin-
ing the rigid body transformation that aligns two matched
3D point sets is known as the absolute orientation problem and
can be solved analytically with the aid of unit quaternions [15].
Since incorrectly matched points cannot be completely avoided
in descriptor-based matching, care must be taken to suppress
their influence on motion estimation. This is achieved by
embedding the estimation in a RANSAC robust regression
framework that eliminates mismatches [17].

2) LHM: Lu, Hager, and Mjolsness (LHM) refers to the
iterative approach developed by Lu et al. [16] to estimate cam-
era pose from 3D to 2D correspondences by operating on the
3D rotation group SO(3). It combines a constraint on the 3D
points, effectively incorporating depth, with an optimal update
step in the iteration. The LHM algorithm picks a starting
rotation and then alternates between translation and rotation
refinement until convergence. LHM is one of the most efficient
algorithms in the general case and converges from very broad
geometrical configurations. It is combined with robust regres-
sion by RANSAC to safeguard against mismatched points.
In our case, LHM is applied to 3D points that have been recon-
structed via triangulation at time t and their 2D counterparts
that have been tracked at time t +1. Due to its iterative nature,
LHM is expected to be less precise compared with absolute
orientation.

D. Visual Odometry Pipelines

The above algorithms for feature detection, description,
matching, and motion estimation are interchangeable and can
be suitably combined to realize several distinct VO pipelines.
In this paper, we develop five such pipelines: Pipe1, Pipe2,
Pipe3, Pipe1no, and Pipe1c2. Pipe1 employs Harris to detect
features, SIFT to describe their appearance, χ2 distance to

match them, and absolute orientation to estimate motion.
Pipe2 combines FAST features, BRIEF descriptors, Hamming
distance, and LHM motion estimation. Pipe3 consists of
SURF detection, BRIEF description, and absolute orientation.
The Pipe1no is a variation of Pipe1 that omits the orientation
normalization of the SIFT descriptors. Pipe1c2 is a hybrid of
Pipe1 and Pipe2 that consists of Harris, BRIEF, and absolute
orientation. These pipelines were coded in optimized C and
then analyzed using the methodology of Section IV.

IV. HW/SW CODESIGN METHODOLOGY

To determine the most suitable HW/SW solution for VO, we
propose an HW/SW codesign methodology to systematically
analyze multiple VO pipelines and map their components
to HW and SW modules whose combination meets all
specifications. These are 1 s per localization step, maximum
2-m positional and 5° attitude error after a 100-m path,
running on HW resources limited to a Virtex-6 FPGA and a
150-MIPS CPU.

The proposed design methodology consists of six basic
steps:

1) selection of algorithms and datasets;
2) algorithmic analysis and automated SW profiling;
3) partitioning of the pipeline to SW and HW modules;
4) HW architecture design and parametric Very High

Speed Integrated Circuit Hardware description language
(VHDL) coding;

5) HW/SW system integration;
6) tuning and evaluation (return to three until specs

are met).
The first step involves bibliographic search, preliminary
complexity-performance estimations, and SW coding. The
outcome of this process (already outlined in Section III)
facilitates step 2, which takes into account the pipeline
structure and dataset runs to assess the corresponding time,
accuracy, memory, communication, etc. Step 3 takes into
account every platform-dependent constraint/characteristic and
the given specifications (i.e., time budget, HW resources,
VO error) to determine the components that must be accel-
erated by HW. Step 4 involves the design of HW architectures
tailored to each module/pipeline, as well as their development
in parametric VHDL. Parameterizing the HW modules will
facilitate the device adaptation and fine-tuning performed at
steps 5 and 6. More precisely, at step 5 we select a suitable
FPGA board to integrate all HW modules. Moreover, we
integrate the entire HW/SW system by developing a custom
raw Ethernet communication scheme; the motivation behind
the Ethernet customization is to reduce the packet overhead
(e.g., use only eight octets/bytes per frame by avoiding
the source address and CRC) and provide synchronization
at algorithmic level via simple CPU-FPGA handshaking.
At step 6, we evaluate the system’s performance on various
Mars-like datasets, while we methodically tune all parameters
striving to optimize both accuracy and execution time. When
the resulting HW/SW pipeline meets all given specifications,
we successfully complete the development cycle; otherwise,
we return to step 3 to refine our partitioning decisions and
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optimize the design (in the worst case scenario, after many
unsuccessful iterations, one has to return to step 1 and select
new algorithms).

A. Algorithmic Analysis and SW Profiling

The SW analysis stage of the proposed methodology is a
critical prerequisite for designing efficient HW/SW partitions
and HW architectures. Our work relies both on automated
SW profilers and on human analysis of the algorithmic com-
plexity/structure. Experience shows that these two approaches
are complementary to each other and must be combined in
order to derive safe conclusions. Our automated approach
involves the widely used Valgrind profiler, which reports
detailed information about time and memory usage of every
program function, as well as the recording of CPU timestamps
at the beginning and end of major algorithmic tasks. The
automated results are combined with an in-depth study of
the algorithms that aims to enrich and customize the final
reports for the given problem and derive platform-independent
conclusions. Overall, our analysis includes: 1) the execution
time of each function; 2) the amount of platform-independent
calculations (e.g., total arithmetic operations); 3) memory
utilization; 4) communication (I/O data); 5) parallelization
amenability; and 6) type of operations/variables (e.g., memory
access patterns, float or integer values, dynamic range). In
this paper, we first seek to identify those functions that
need to be accelerated by FPGA. Therefore, we are mainly
interested in processor-intensive functions performing several
arithmetic operations (overburdening the space-grade CPU),
mostly doing fixed-point calculations (avoiding floating point
units), with relatively low I/O requirements (limiting the
CPU-FPGA communication), and amenable to parallelization
(efficient acceleration). The remainder of the analysis (e.g.,
memory utilization, dynamic ranges) becomes useful in later
stages for designing the architecture, refining the pipelines, or
even for fine-tuning.

The most representative results are shown in Table I,
which refers to the processing of one 512 × 384 image
with 1000 detected features. The execution time of each
function is measured on an Intel Core2-Duo CPU (E8400 at
3.00 GHz) and scaled to the 150 MIPS space-grade CPU with
multiplication by 18.4× (a factor derived after benchmarking).
Column 3 reports the workload of each function relative to the
total pipeline calculations; the percentage varies depending on
the detection-description algorithms combined in the pipeline
(e.g., Harris-BRIEF or SURF-BRIEF). Columns 4 and 5 report
the I/O and memory requirements of each function assuming
that it is separated/partitioned from the remaining pipeline.
Notice that the I/O of certain subfunctions is greater than
the I/O of the main function due to the data generated inter-
nally. Also, subfunctions reuse memory whenever possible
(e.g., when not partitioned, Harris stores pixels to overwrite
them with cornerness values reused later by interpolation,
SIFT subfunctions overwrite derivatives and reuse gradients;
however, matching must store all descriptors and corners
without reuse).

The SIFT functions are the most computationally intensive,
accounting for up to 88% of the Harris-SIFT pipeline (they

TABLE I

PIPELINE ANALYSIS (TIME PROJECTED TO SPACE-GRADE CPU,

% REFERS TO TOTAL PIPELINE TIME, RANGES DUE

TO DISTINCT PIPELINES/TESTS)

are executed twice for each stereo pair; however, the spatial
matching is an order of magnitude faster than the temporal
matching reported in Table I due to exploiting epipolar geom-
etry constraints). Harris, SURF, and BRIEF matching are also
too slow to process two images in less than 1 s. Filtering is
performed once per localization step and its execution time
alone will not violate our 1-s constraint. The increased I/O of
certain subfunctions mandates their integration/coupling with
each other to avoid increasing the CPU-FPGA communication:
e.g., SURF’s main part should be coupled with the integral
image computation, whereas Harris’ main part with subpixel
refinement. In other cases, the reduced workload but increased
HW cost of certain subfunctions set their HW implementa-
tion at low-priority: e.g., the SIFT orientation normalization
and SURF interpolation need to process only 1000 corners
instead of the entire image, but involve complex trigonometric
and algebraic calculations. Finally, we note that the memory
requirements of most pipelines exceed the capacity of most
FPGA devices (e.g., RAM size 15 Mbits), and hence, our
architecture will prioritize solving this serious memory
problem.

B. HW/SW Partitioning and Pipeline Scheduling

Based on the aforementioned analysis, the characteristics of
our HW platform, and the performance requirements specified
by ESA, we partition the VO pipelines as shown in Fig. 1.
We present three distinct dataflows and distinguish between
SW functions executed on the space-grade CPU (hexagons)
and HW functions accelerated by the FPGA (boxes).
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Fig. 1. HW/SW partitioning of three pipelines: hexagon �→ CPU,
box �→ FPGA.

In pipe1, almost all functions relating to feature extraction/
matching are executed on HW. The only exception is the ori-
entation normalization of SIFT (including the necessary image
gradients calculation), which is executed on SW together
with filtering and egomotion. On the FPGA side, the Harris
module outputs corners plus image derivatives (to be reused
during HW-description), while the HW-match module inputs
descriptors plus corners. The CPU-FPGA communication link
transfers successively transfers image pixels, corner coordi-
nates, and matching results. The pipe1no variation omits the
SIFT normalization on SW, and thus, executes the entire
feature extraction/matching on FPGA. In pipe2 we only need
to accelerate matching, because FAST and BRIEF are already
20× faster than Harris and SIFT on SW (also, we avoid the
transfer of images to the FPGA). In pipe3, we accelerate
detection and matching. Finally, pipe1c2 is partitioned to
execute Harris on FPGA, BRIEF on SW, matching on FPGA,
and egomotion with abs.or. on SW. Notice that pipe1no and
pipe1c2 are derived from the second iteration of the proposed
methodology, where we perform pipeline refinement to meet
all ESA specifications. The proposed partitioning lifts the
majority of the computations from SW to HW: for 1000
features per image, the pipe1 HW is exclusively assigned 92%
of the total computations, the pipe1no HW 96%, the pipe1c2
HW 79%, the pipe2 HW 66%, and the pipe3 HW 69%.

The scheduling of operations is common to all pipelines.
At each step of the rover, a new stereo image is input to
the CPU; first, we process the left image to detect features
(either on CPU or FPGA), second, we describe the features,
third, we temporally match the features of the current left
image to those of the previous left image (already buffered
on HW, Fig. 1), fourth, we store the features of the current
left image on HW for use in the two upcoming spatial and

temporal matching procedures, fifth, we detect features on
the right image, sixth, we describe the new features, seventh,
we conduct a spatial matching of the left and right image
features, eighth, we filter out the mismatched features, and
ninth, we perform motion estimation to obtain the pose of
the rover. All pipelines performing detection on HW divide
the image in horizontal stripes, which are downloaded and
processed successively by the FPGA to reuse space and tackle
the memory bottleneck (Section V). In pipe1 and pipe1no,
which also do description on HW, each image is downloaded
twice to the FPGA (the second for description, with Harris
regenerating the image derivatives) increasing the communi-
cation overhead but reducing the FPGA memory utilization.

The proposed partitioning strikes the right balance among
various design constraints. To begin with, it is critical to
accelerate each one of the above functions because, otherwise,
the CPU execution time of each function alone would violate
the 1 s constraint. Accelerating the remaining SW functions
will not add considerable gain to the system, given the
available time budget of each localization step. In contrast,
extra HW functions would utilize extra FPGA resources,
especially ON-chip RAM, which are greatly valued in space-
grade devices. Besides, execution on CPU has the advantages
of increased floating-point accuracy and easier algorithmic
modification. Finally, we avoid further partitioning of the
HW functions to avoid increasing the CPU-FPGA commu-
nication overhead.

The precision of the arithmetic calculations on HW, i.e.,
the bits and the representation of each variable, is selected
according to the dynamic ranges recorded during profiling.
Later, during the tuning phase, we refine the datapath widths
to reduce the HW cost by paying attention to preserving the
accuracy of VO. Generally, we select fixed-point representa-
tions in all HW components except the gradients’ computation
and descriptor normalization in SIFT, which use floating-
point units compatible to IEEE-754. As expected, the finite
precision leads to results slightly different from the SW output
(e.g., 4% of the low-strength corners not the same and 0.2% of
the SIFT descriptors not identical). However, the nature of the
CV algorithms allows such minor differences without affecting
the final VO outcome. The selected precision is mentioned,
among others, in the following section.

V. PROPOSED ARCHITECTURE OF HW ACCELERATORS

AND DEVELOPMENT ON FPGA

A. Harris Corner Detector

The most computationally intensive part of the Harris corner
detection algorithm (see Section III-A1) is the 2D convolution
generating the partial image derivatives and the Gaussian
smoothing of the squared derivatives. The former uses a 5 ×5
integer coefficient mask combining the Gauss kernel (σ = 0.9)
with the derivative kernel (−1, −3, 0, +3, +1) and is applied
twice on a 512 ×384 image (one for dx and one for dy). The
smoothing convolution uses a 7 × 7 Gauss kernel (σ = 1)
and is performed three times, i.e., once for each squared
derivative image, to output S2

x , S2
y , and Sx Sy . Accelerating

these five convolutions is essential to our design approach,
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Fig. 2. Proposed architecture of the Harris module with pipelining on pixel
basis and parallel arithmetic calculations (A–E denotes the processing order).

which overall relies on fast array transformations and pixel
pipelining techniques.

The proposed architecture (Fig. 2) fully parallelizes the
multiplication with convolution masks and pipelines the accu-
mulation circuitry to achieve a throughput of one derivative
value per cycle. That is, the pixels are forwarded one by one in
raster-scan order into a serial-to-parallel buffer, which outputs
one 5×5 sliding window per cycle. Each window is multiplied
in parallel with the integer coefficient mask using 5 × 5
constant multipliers and a pipelined adder-tree. Effectively,
our architecture completes one 512 × 384 image convolution
in 512 × 384 cycles (derivatives and blurring use similar con-
volution components). To accelerate the computation of each
pixel’s cornerness (see Section III-A1), we store the squared
derivatives in three parallel memory banks, we parallelize the
cornerness formula calculation, and we pipeline the circuit
to complete all cornerness values within a burst read of the
smoothed squares. Overall, the entire Harris computation is
completed in 10 serial steps of 512×384 cycles each (Fig. 2):
two convolutions for derivatives (A), three element-wise multi-
plications (B), three convolutions for blurring (C), calculation
of cornerness (D), and finally, (E) nonmaximum suppression
of cornerness and subpixel refinement (parabola fitting on
a 3×3 cornerness window using a 1-to-3×3 converter similar
to that of convolution) to localize corners with increased
accuracy.

The proposed architecture achieves an efficient balance of
resources and read-cycles (i.e., execution time) tailored to the
requirements. On the one hand, the convolution components
employ 2D kernels so that a single image/array scan suffices
for each convolution (two separate 1D kernels in succession
would require two 512 × 384 scans per convolution). On the
other hand, to limit resource utilization, we avoid performing
all five convolutions in parallel (e.g., scan the image once
and use five distinct convolution components). We also avoid
utilizing variable multipliers: we use two dedicated convolu-
tion components, each fixed with constant multipliers (for dy,
the scan order of the image is reversed so that we can use the
same multipliers with dx) and we reuse one variable multiplier

Fig. 3. Division of image in bands (Harris) and sliding window (SURF).

Fig. 4. Proposed architecture of SURF detector based on parallel memories.

for all squares. Our design utilizes intermediate buffers for
all derivatives/squares to facilitate: 1) pipelining on an image
basis and 2) parallel calculation of each arithmetic formula.

Besides cost–performance balancing, our design tackles
the memory bottleneck caused by the increased storage
requirements of vision algorithms and the limited RAM of
the FPGAs. Specifically, we avoid downloading the entire
image on the FPGA by dividing the image in horizontal
bands and sequentially processing them [Fig. 3 (left)]. As a
result, we decrease the FPGA memory utilization by an order
of magnitude. We make the process equivalent to the original
SW algorithm by overlapping the bands at their top and
bottom rows to allow the convolution kernels to seamlessly
slide between successive bands (the overlapping stripes
provide a 2 + 3 pixel margin for the two kernels, of
half-size 2 and 3, to slide beyond the band limits). The band’s
height is configurable allowing adaptation on diverse project
requirements (in SEXTANT we set height = 32 resulting in
the RAM size shown in Fig. 2).

B. SURF Blob Detector

The SURF detector avoids the computationally intensive
convolutions of Harris; however, it poses greater implementa-
tion challenges with respect to memory. The main reason for
this is the increased size of the examined features: effectively,
Harris examines a local area of 13 × 13 pixels to determine
whether a location on the image resembles a corner, whereas
SURF examines areas of size up to 99 × 99 pixels to detect
scale-invariant blobs (in three octaves). Hence, even though
SURF issues considerably fewer memory requests than Harris,
the requested locations are far more distant on the image
requiring a large part of the image to be cached on the FPGA.
To minimize the FPGA RAM, the CPU-FPGA communica-
tion, and the pipeline stalls, our design caches on the FPGA a
512 × 100 sliding window [Fig. 3 (right)]. We restructure the
search order of SURF so that at a single iteration, it will scan
the entire central row of the cached window to detect any blob



LENTARIS et al.: HW/SW CODESIGN AND FPGA ACCELERATION OF VO ALGORITHMS 1571

at any octave. At the next iteration, two new image rows are
downloaded to the FPGA (overwriting the two oldest rows in
a circular buffer) and the window slides downward allowing
the next central row to be processed. The iterations continue
until all rows are scanned by reusing the same resources.

In the proposed architecture (Fig. 4), we store our sliding
window in a four-bank memory interleaved both in the
horizontal and the vertical directions of the image plane.
This organization allows parallel access to the four value-
corners of any required box filter (any size and image
location). Thus, in a pipelined fashion, we calculate one box
integral per cycle. By using dual port banks, we double the
throughput and we compute each pixel’s response only in
four cycles (involving all approximate second-order partial
derivatives Dxx , Dyy, and Dxy). During execution, the
control unit requests successively all response values lying on
the central row of the cached window. The results are stored
in the response map memory, which consists of eight circular
buffers (distinct sliding windows), one for each of the eight
layers of the three examined octaves. Upon completion of the
central row, we scan the map to forward triplets of responses
to the nonmaximum suppressor for detecting blobs. The
suppressor collects the triplets to form 3 × 3 × 3 scale-space
cubes and detect maxima at the center of each cube. Notice
that successive cubes overlap each other by 3 × 3 × 2 values.
Based on that, and by developing a pipelined comparator tree,
we achieve a throughput of one cube examination per three
cycles. The acceleration in the proposed architecture comes,
mainly, from the parallelization of the integral memory and
the response calculation (CPUs would require 1–2 orders of
magnitude more cycles), as well as from the parallel reading
and pipelining of the scale-space cubes.

C. SIFT Descriptor

The hardware design of our SIFT module focuses on
the acceleration of the most computationally intensive part
of description, which inputs orientation-normalized detected
features and outputs 128-element description vectors. The
orientation normalization is performed in SW (only 5% of
the total description time), while the input gradient values are
computed both in SW and HW, in parallel.

The HW component computing the magnitude of the
image gradients mag = (dx2 + dy2)1/2 and the orientation
of the gradients orien = arctan(dx, dy) inputs the values
dx and dy already produced in the HW Harris module. We use
32-bit arithmetic to develop a floating-point square-root unit,
two fixed-point multipliers, one fixed-point arctan unit,
and one fixed-point modulo 2π unit. We fully pipeline the
design to generate a magnitude-orientation pair per cycle
(Q9.23 and Q5.23 bits) and decrease the CPU-FPGA
communication overhead from 1.4 MB to only
0.2 MB (=image size).

The main part of HW SIFT (Fig. 5) utilizes two distinct
ON-chip memories to store the aforementioned image gra-
dients and the detected corners. The corners are described
iteratively, one by one. At each iteration, an finite state
machine (FSM) successively generates 43 × 43 image

Fig. 5. Proposed architecture of SIFT description with parallel bin loading.

locations to address the samples surrounding a particular
corner. For each sample, we calculate its normalized dis-
tance from the corner (nx, ny), as well as its Gauss weight
G = e−(nx2+ny2)/8 by interpolating two prestored values
from a 256-word LUT. The nx, ny, G are combined with
the sample’s magnitude and orientation fetched from memory
to distribute the sample in eight histogram bins as shown
in the distribution component of Fig. 5: first, we apply the
Gaussian weight to the sample in eight distinct modes
according to SIFT [11]. Second, we assign each one of the
eight products to a distinct bin out of 128 bins in total.
Third, we accumulate each product to the contents of its
assigned bin. Notice that in the proposed architecture, the
eight-way weighted sample is distributed to the bins in parallel
using eight distinct pipes, which terminate to eight local
RAMs. Each local RAM stores a partial description vector
with 128 bins. Upon completion of all 43 × 43 samples, the
eight partial vectors are summed to form the 128-element raw
descriptor of the corner. The raw descriptor is normalized,
truncated at 0.2, and renormalized by custom-developed
32-bit floating-point units to enhance the precision of our
results: HW SIFT outputs 99.8% identical descriptors with
that of the original SW SIFT.

The proposed architecture is pipelined to sustain a
throughput of one sample process per cycle. Moreover, to
reduce the increased ON-chip memory requirements of SIFT,
it employs a sliding window (similar to that of our SURF
detector) to store temporarily only a 512 × 43 stripe of the
image gradients; during execution, we describe all corners
lying on the middle row of the stripe and we advance to
the next row by sliding the window downward in a circular
buffer fashion (notice that each descriptor requires gradients
from only a 43 × 43 window). As a result, we decrease
the ON-chip memory requirements by almost 9×. In terms
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Fig. 6. Proposed architecture of SIFT matching with linear systolic array.

of arithmetic complexity, the most demanding components
of the proposed architecture are the distribution, due to its
eight parallel pipelines (15 32-bit multipliers in total), and
the normalization due to its floating point units (MULT, DIV,
sq. root, 2 floating point converters).

D. Feature Matching With SIFT

SIFT matching is the most time-consuming operation in our
pipelines, and hence, is implemented entirely on the FPGA.
It inputs data from SIFT and Harris, i.e., descriptors and
corners, to match features based both on their similarity
(χ2 distance) and their image location (subject to epipolar
constraints).

The developed matching module stores temporarily the
entire feature set of the image entering the pipeline. The set
of corners and descriptors remains cached until the image fol-
lowing the current image has exited the pipeline. Buffering the
entire sets of two consecutive images allows pair-wise exam-
ination of all features, as well as spatial matching (left versus
right image) and temporal matching (left versus previous left
image) with minimum CPU-FPGA communication. Our buffer
consists of two components, one storing corners and one
storing descriptors (Fig. 6). We use two distinct components
so that we can examine in parallel the similarity metric and
the epipolar validity of any candidate match. Each component
consists of two memories, one storing left image data and
one storing right image data. Notice that the two memories
alternate between left and right image storage depending
on which image enters the pipeline: the current left image
overwrites the previous right image, while the current right
image overwrites the previous left image. Therefore, at any
instant, our matching module buffers one stereo pair (left–right
image features) or one temporal pair (left–left image features).

After initialization, an FSM fetches all the descriptors stored
in memory, one by one, to successively form every feature
pair between images. Each descriptor pair is forwarded to

the calculate distance component, which performs element-
wise comparison of the two vectors to calculate the similarity
metric between the two given features (Fig. 6). Specifically, we
calculate the χ2 distance of two 128-bin descriptors R and L
by evaluating 128 individual terms, ti = (Ri − Li )

2/(Ri + Li ),
one for each bin i . To speed up matching, we compute the
ti terms in parallel as follows. We divide the memory of
descriptors in 128 banks to store each element of the input
descriptor to a distinct bank. The output of each bank is
connected to a private ti calculator utilizing its own multiplier
and divider (16-bit). The outputs of the 128 calculators are
summed and then squared to produce the final 32-bit distance
value. We perform the summation by using the linear systolic
array shown in Fig. 6 (for correct operation, the 128 ti cal-
culators are scheduled to begin with one cycle latency each).
The entire structure is pipelined and sustains a throughput of
one 128-bin χ2 distance calculation per cycle.

In parallel to the distance calculator, an FSM fetches the
coordinates of the features being examined and compares them
against epipolar line limits. It provides a 0/1 output and is
synchronized with the distance calculator to validate the match
under examination (Fig. 6). A new validation is provided in
every cycle until all candidates are examined for a certain
feature. During this time window, a monitoring unit compares
the produced distance metrics to detect on-the-fly the two best
matches of the certain feature. The distance ratio of these
two matches is compared with a fixed threshold to accept or
reject the best match (by utilizing a 32-bit multiplier and a
comparator).

E. Feature Matching With BRIEF and Parallelization Factor

The matching of BRIEF descriptors on HW uses almost
the same architecture with SIFT matching (Fig. 6). The only
structural differences are due to the length of each descriptor
(64 bytes instead of 128) and the similarity metric. The former
allows smaller RAM-L and RAM-R memories. The latter
allows developing a less complex distance component: we
calculate the Hamming distance by replacing the ti units
with ti = |Li ⊕ Ri |1, where ⊕ denotes the bit-wise XOR

operator and | · |1 the population count, i.e., the number
of 1s in a binary word (implemented with a lookup table).
Also, in the linear systolic array, we omit the squaring unit.
The remaining parts of Fig. 6 are common for both SIFT and
BRIEF matching.

The proposed architecture supports a variable number of
ti calculators, up to 128 for SIFT and up to 64 for BRIEF
matching. Section V-D referred to the fully parallel design
for ease of presentation. However, in the general case, we
equip the systolic array with one accumulator following
the adders, which allows us to sum the distance value in
multiple iterations. We parameterize the VHDL code with
respect to the number of ti calculators and we refer to this
number as parallelization factor f . Accordingly, we divide
RAM-L and RAM-R in f memory banks each, and we
program the FSM to fetch the descriptor in 128/ f memory
access cycles (or 64/ f for BRIEF). To avoid under-utilization
of our systolic array, we select f to be a power of 2.
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The throughput becomes one pair examination every 128/ f
cycles (or 64/ f for BRIEF). The logic cells of the proposed
modular architecture increase almost proportionally with f as
the distance calculator becomes far more complex than the
remaining components.

F. CPU-FPGA Communication

During HW/SW coprocessing, the data are transferred
between the FPGA and CPU over a custom communication
scheme based on raw Ethernet packets. On the CPU side,
we developed a device driver to exploit the functionality of
today’s Ethernet network interface cards (NIC) and at the same
time to abstract implementation details away from the user
space. Specifically, in user’s space, the VO algorithm performs
read/write operations to a Linux character device file invoking
our driver for receiving/sending data to the FPGA. The driver
is implemented as a loadable kernel module handling NIC
interrupts and providing the communication data to the NIC.

Before exchanging chunks of data (frames of 1500 bytes
maximum transmission unit), the HW–SW modules involved
perform a handshaking to ensure synchronization at algorith-
mic level.

On FPGA, an off-the-shelf Ethernet PHY chip performs
character encoding, transmission, reception, and decoding.
On top of PHY, we employ an Rx/Tx controller (based
on the Ethernet MAC IP core from OpenCores) to imple-
ment the CSMA/CD LAN in compliance with IEEE 802.3.
On top of the Rx/Tx controller, we build a wrapper to provide
a Wishbone interface and divide large packets (e.g., image
bands) into frames of 1500 bytes. Finally, a custom arbiter
is developed between the Rx/Tx wrapper and the various HW
accelerators to route traffic with designated packet headers and
to cache I/O data.

G. FPGA Implementation and Evaluation

The accelerators described are implemented on a
Xilinx Virtex-6 FPGA (XC6VLX240t-2). Table II reports
the resource utilization of each accelerator together with
the time required to process one 512 × 384 image (with a
clock frequency at 172 MHz). Notice that this time does
not include the CPU-FPGA communication (achieved speed
is 81 Mbits/s, cost in bottom row) and that description
and matching is measured with 900 features per image
(with common configuration at 2000 maximum features and
64× parallelization for matching).

The SURF detector (in row 3) consumes considerably fewer
resources compared with Harris: 5× fewer FPGA slices with
almost 40% less time and memory (Harris can be configured
to use less memory at the cost of 10%–30% more execution
time depending on band height). This result is primarily due
to the nature of SURF, which was designed to decrease
the complexity of convolution-based detectors via its use of
integral images and box filters. Also, our SURF detector avoids
doing interpolation on FPGA (for Harris, the subpixel com-
ponent accounts for one-third of all Harris logic resources).
The increased logic of the SIFT descriptor (in row 4) is due
to the gradients’ computation (7-K LUTs), the complexity

TABLE II

KERNELS IMPLEMENTED ON FPGA (XC6VLX240t-2, 172 MHz)

of the 128-bin vector calculation (e.g., 60 DSPs for parallel
multiplications), and the final floating-point normalization
(5-K LUTs). The most expensive kernel is SIFT matching
(in row 5) due to the f = 64 elements calculating the distance
metric in parallel, which require multiplications and divisions.
However, the logic of SIFT matching can be significantly
reduced at compile time by decreasing the parallelization
factor (e.g., to 5 K slices and 56 DSPs for f = 16×) and
increasing the execution time (inversely proportional to f ).
BRIEF is less expensive due to the smaller description vector
and simplicity of the distance metric (no multiplications/
divisions). For communication, most of the FPGA logic is
consumed by the Ethernet MAC IP core (3-K LUTs) and most
of the memory by the arbiter (48 RAMBs).

Compared with other works in the literature, the accelerators
proposed in this paper prove to be particularly cost efficient
and, in some cases, make reasonable compromises in terms of
time. Our Harris detector consumes less than half the FPGA
logic of the component included in [3] (10 K slices) to operate
at roughly half the speed, but accounting for only 1% of
the 1-s budget of SEXTANT (a negligible compromise). Our
SURF detector utilizes almost half the LUTs of the component
presented in [21] (2.5-K LUTs excluding their interpolation
and integral units) to process the image in double speed.
Moreover, our integral unit is more efficient in performing
on-the-fly calculation of 1 integral value per cycle (inputs
1 pixel per cycle from the communication module) to feed
the SURF detector by utilizing only 1 RAMB and 170 LUTs.
Our SIFT descriptor consumes 10× less memory than [25]
to process the same amount of features in almost the same
amount of time (assuming a 100-MHz clock frequency),
whereas it consumes 3× fewer LUTs compared with [19]
at the cost of 18 ms more time (small considering our
1-s budget). The proposed SIFT matching with
parallelization = 64× processes 4000 features per image
in approximately 39% less time than the matching module
of [20] with 42% fewer LUTs (even though our χ2 distance
requires 128 extra divisions).

The developed accelerators achieve significant speedup
compared with a space-grade CPU of 150 MIPS. Specifically,
the Harris detector achieves a speedup of 63×, the SURF
detector 62×, the SIFT descriptor 100×, and the BRIEF
matching 125×, while the SIFT matching achieves a
speedup of up to 425× depending on image content (for
parallelization = 64×). Such speedups are essential for
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Fig. 7. Sample frames from three 100-m long test sequences depicting
synthetic Martian surface (left, middle) and Atacama desert landscape (right).

TABLE III

COMPLETE EVALUATION OF FIVE PIPELINES

(ON FPGA + SPACE-GRADE CPU)

implementing VO algorithms that meet the specifications of
future high-mobility rovers.

VI. SYSTEM INTEGRATION AND EVALUATION

The proposed HW/SW system is integrated in a modular
fashion allowing a variety of HW and SW components to be
selected at compile time and assemble distinct VO pipelines.
The HW components are placed on the Xilinx Virtex-6 FPGA
(XC6VLX240t-2 at 172 MHz), while the SW components are
executed on the Intel Core2-Duo CPU (E8400 at 3.00 GHz).1

The SW execution time is scaled by a factor of 18.4× (derived
from benchmarking) to emulate execution on a space-grade
CPU with only 150 MIPS processing power [5]. The com-
ponents are selected from our collection of SW C functions
(Section III) and VHDL functions (Section V). The current
section evaluates and compares the five pipelines considered
in Section IV with respect to their HW cost, execution time,
and VO accuracy.

To evaluate the pipelines in Mars-like scenarios, we use two
distinct synthetic sequences depicting a Mars-like environment
and one real sequence captured from a Mars analog terrain
in the Atacama desert [37], all with 512 × 384 resolution
(Fig. 7). The synthetic sequences include 1667 stereo images
recording rover trajectories with 6 cm per step. The Atacama
sequence consists of 1999 stereo frames, for 334 of which
the rover is stationary. The first 1000 frames correspond to
a forward rover motion, whereas the remaining 999 are the
forward ones in reverse order. Thus, the Atacama sequence
simulates a motion where the rover ends up where it started.
In all cases, the trajectories have arbitrary shape and are 100 m
long each. Following the ESA specifications, the images are
characterized visually by diffuse lighting and low contrast
and have an unpredictable mixture of fine grained sand, rock
outcrops, and surface rocks. In addition, as a stress-test, we

1Video available online at: users.uoa.gr/~glentaris/video/tcsvt2015.html.

TABLE IV

TIME ANALYSIS OF A LOCALIZATION STEP

(ONE STEREO PAIR OF ATACAMA)

use the Devon island sequences [38] in which a pushcart
moves at about 19 cm/s (much faster than the Mars rovers) on
quite rough terrain. We perform extensive tests to measure the
positional error and fine-tune parameters regarding the number
of detected corners, the amount of matched features, the width
of the HW datapaths, the HW parallelization factor, and the
maximum size of the HW buffers. Our parametric VHDL
facilitates this optimization phase, which ultimately leads
to a system configuration with reduced HW cost, sufficient
execution time, and increased VO accuracy. We note that due
to the robustness of each pipeline (especially those based
on Harris), its final configuration remains the same in all of
the test sequences. Table III summarizes the results and the
following paragraphs analyze them.

The most demanding pipeline is pipe1, in terms of both
FPGA resources and execution time. pipe1no improves
pipe1 with respect to the orientation normalization of SIFT
(avoids it), the parallelization factor of matching (16× for
pipe1no but 64× for pipe1), and the buffers storing corners
(20% smaller for pipe1no). Specifically, our tests show that
the SIFT orientation normalization requires almost 1 s on
SW without enhancing the odometry accuracy in Mars-like
scenarios; by avoiding normalization, pipe1no saves enough
time to process more corners (1200 per single image versus
800 for pipe1), do slower/cheaper matching on HW (18% less
FPGA logic than pipe1), and meet the 1-s real-time constraint.
Besides cost efficiency, pipe1no leads to the best odometry
accuracy. The least computationally demanding pipeline is
pipe2, which, however, less reliably estimates odometry.
pipe1c2 considerably improves the accuracy of pipe2 at the
additional cost of only 7% FPGA logic, 9% FPGA memory,
and 0.2 s cycle time. pipe3 improves the accuracy of pipe2
with negligible increase in the FPGA cost. Overall, note
that the low logic utilization of pipe1no and pipe1c2 leaves
enough room for applying fault tolerance methods, e.g., triple
modular redundancy. Also note that pipe1no and pipe1c2 can
already fit in today’s space-grade FPGAs, i.e., in Virtex-5QV
(the only 5QV resource over-utilized by the configurations
of Table III is memory, by 39 RAMBs, which, however, can
be avoided by simple customization, e.g., by decreasing the
48 RAMBs of our proof-of-concept arbiter).

The execution time of each pipeline is analyzed in Table IV,
which presents the average amount of time required by each
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Fig. 8. Mean positional error during 100-m rover traverses (6 cm/frame).

function of the HW/SW system when processing 1 localization
step in Atacama (in columns 3–6, tilde “~” denotes execution
on HW and ×2 denotes double execution, one for each image
of the stereo pair). Time depends on the average numbers
of features detected (see column 2) and matched in images:
870 for pipe1 (which examines up to 2 orientations per
feature), 1047 for pipe1no, 610 for pipe2, 690 for pipe1c2, and
500 for pipe3. Around 60%–70% of these matches are actually
used for egomotion estimation, whereas the rest are rejected
as outliers. Note that the above matching results originate
from real image datasets; for synthetic datasets, we obtain
approx. 50% fewer matches (with only 40% of them used for
egomotion, e.g., 200 in pipe1no, or even fewer in pipes using
BRIEF) and the total execution time decreases by 10%–15%.
As shown in Table IV, the FPGA significantly accelerates
each function to only 5–67 ms. Despite their low complexity,
the SW functions require increased time to execute on the
space-grade CPU. Specifically, the SW filtering consumes
about 0.5 s, the SIFT orientation normalization consumes
490 × 2 ms (sw-support of pipe1), and the interpolation of
SURF consumes 192 × 2 ms (sw-support of pipe3). The HW
matching of pipe1 completes almost 4× faster than that of
pipe1no, however, at the cost of 18% extra LUTs (all pipelines
except pipe1no use HW matching at 64× parallelization).
Compared with pipe1c2, pipe1no is able to process 200 extra
corners per 512 ×384 image per second due to its accelerated
HW descriptor (the HW SIFT includes 3 ms for image
derivatives on the FPGA). The CPU-FPGA communication
consumes up to 9% of the total execution time primarily due to
the transferring of images over our custom 81 Mbits/s Ethernet
link. Overall, compared with the all-software execution on the
space-grade CPU, the developed HW/SW system achieves a
speedup of 16× for pipe1no, 8× for pipe1, 4.5× for pipe1c2,
4× for pipe2, and 3.5× for pipe3.

The VO accuracy is evaluated by comparing the output of
the pipelines at each localization step to the known ground
truth of each synthetic sequence. For Atacama, we measure
only the final position of the rover, which is the only position
known with absolute certainty. Table III reports the mean
error measured at the 100-m final positions of our synthetic
sequences. Fig. 8 analyzes the mean error at each intermediate
step of these 100-m paths. In all steps, pipe1no generates very
accurate results limiting the positional error to less than 1.8%
of the traveled distance and the attitude error to less than 3.2°.
Similarly, pipe1c2 and pipe1 have errors always less than 2.6%
in position and 5.2° in attitude. For the first 30 m, pipe2
and pipe3 are almost equally accurate to the pipe1 variations.

Generally, all pipelines follow gracefully the ground truth path
without notable fluctuations of the accumulated error. In the
Atacama sequence, the return point error is only 0.42 m for
pipe1no, 0.71 m for pipe1, 1.2 m for pipe1c2, and around 10 m
for pipe2 and pipe3. Even under the stress-test on the Devon
island (100-m sequences #13, #17), the pipelines proved to
be quite resilient, especially those based on Harris: pipe1no,
pipe1, and pipe1c2 terminated with about 4.0% positional
error (they differ by 20–50 cm, pipe1no still being the best),
while pipe2 and pipe3 produce errors up to 10% (pipe3
was configured to use a denser detection grid to reduce the
probability of completely losing track).

Besides pipeline validation and tuning, our tests provide
useful insight into various individual parts of VO. First, for
the 512 × 384 image resolution, the subpixel refinement
of detected corner locations is of utmost importance, as it
decreases the odometry error from, e.g., 16% to 2% (SURF
without subpixel refinement yields error up to 33%). Second,
the orientation normalization of SIFT introduces errors in
the pipeline (besides cost) making the output less reliable,
statistically, in 2 out of 3 tests; hence, it is preferable to
avoid such normalization in Mars-like scenarios of 6 cm per
step and relatively smooth rover motion. Third, the absolute
orientation’ egomotion is more reliable than LHM and both
have negligible cost. Fourth, the image diversity of distinct
datasets, or even between the stereo pair itself (e.g., due to
photometric/blurring variations), mandates in-depth study and
word-length optimization of the fixed-point datapaths in HW
to support the dynamic-range of all internal variables and adapt
to every possible image content. Fifth, it is important to use
corner selection techniques to detect a constant amount of
features per image; this facilitates tuning and adaptation to
image content, i.e., it improves the robustness and accuracy
of the pipeline (in all cases, the best results were obtained for
800–1400 features per image).

In total, the developed pipelines achieve real-time
processing with very accurate odometry, especially pipe1no
and pipe1c2, which meet all of the constraints imposed
by ESA. Compared with similar works in [3] and [29]–[31],
pipe1no implements more advanced algorithms and improves
the accuracy and robustness of VO. In particular, compared
with the HW/SW codesign of [3] for Mars rovers, we apply
SIFT to generate robust descriptors instead of merely using
15 × 15 pixel regions and we match the features based on χ2

and epipolar geometry instead of merely using SAD; as a
result, our VO error becomes roughly half of the 3.3% in [3]
(they get a 0.5-m error near a 15-m-away target in real-world
experiments with a rover velocity of 5–7 cm/s), whereas
pipe1no consumes 42% more FPGA slices and pipe1c2
consumes 15% fewer FPGA slices for processing than the VO
of [3]. Notice that making detailed quantitative comparisons at
system level is difficult due to the diversity of the datasets, the
project specifications, and the HW platforms. Compared with
HW/SW pipelines for earth applications, the hand-held device
of [30], without IMU fusion, produces bigger error than
pipe1no (2%–7% depending on the number of key frames and
increases to 8% in actual flying tests [31]) and sometimes their
VO fails completely; our pipelines process 2–4× more corners
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than [30], [31] while employing sophisticated description and
matching on FPGA instead of relying merely on pixel areas
and correlation on CPU. Compared with the VO of the actual
MER rovers [2], our HW/SW pipelines improve the VO
accuracy, process one order of magnitude more features, and
complete 21× faster due to the proposed FPGA acceleration.

VII. CONCLUSION

This paper has presented the HW/SW codesign of five dis-
tinct VO pipelines for the future Mars rovers. The pipelines
were implemented on a proof-of-concept platform consisting
of a Virtex6 FPGA and a 150 MIPS CPU resembling the
processing power available to future missions. Testing and
tuning were based on Mars-like scenarios with carefully
selected datasets resembling the Martian terrain. The proposed
solutions, especially pipe1no and pipe1c2, quantify the ben-
efits of employing FPGAs for VO on Mars and meet all
specifications provided by the ESA in an effort to advance
planetary exploration.

The advantages of the proposed solutions come, first, from
exploring and customizing a number of diverse feature-based
algorithms and pipelines, second, from developing an HW/SW
codesign methodology tailored to the needs of Mars rovers,
and third, from designing parallel architectures with extensive
pipelining on pixel-basis, parallel arithmetic calculations,
parallel memory organization for multidata single-cycle
access, input data decomposition for alleviating the memory
size limitation, and parametric VHDL accommodating the
fine-tuning of the final HW/SW pipelines. Our tests show
that VO was accelerated by up to 16× to achieve a 1-s
execution time for a 6-cm localization step, with only a
1.25% mean positional error after multiple 100-m paths.
The FPGA cost was 54-K LUTs and 1.46-MB RAM. As a
result, the proposed solution is more cost effective and more
accurate than similar works in the literature, including the
VO onboard the actual MER and MSL rovers. Future work
involves the implementation of a ready-to-use HW/SW
VO pipeline on actual flight hardware.
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