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Abstract
The Value Iteration Network (VIN) is an end-to-
end differentiable neural network architecture for
planning. It exhibits strong generalization to un-
seen domains by incorporating a differentiable
planning module that operates on a latent Markov
Decision Process (MDP). However, VINs strug-
gle to scale to long-term and large-scale planning
tasks, such as navigating a 100 × 100 maze—a
task that typically requires thousands of planning
steps to solve. We observe that this deficiency
is due to two issues: the representation capac-
ity of the latent MDP and the planning module’s
depth. We address these by augmenting the latent
MDP with a dynamic transition kernel, dramati-
cally improving its representational capacity, and,
to mitigate the vanishing gradient problem, intro-
duce an “adaptive highway loss” that constructs
skip connections to improve gradient flow. We
evaluate our method on 2D/3D maze navigation
environments, continuous control, and the real-
world Lunar rover navigation task. We find that
our new method, named Dynamic Transition VIN
(DT-VIN), scales to 5000 layers and solves chal-
lenging versions of the above tasks. Altogether,
we believe that DT-VIN represents a concrete step
forward in performing long-term large-scale plan-
ning in complex environments.

1. Introduction
Planning is the problem of finding a sequence of actions
that achieves a specific pre-defined goal. As the aim of both
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some older algorithms (e.g., Dyna (Sutton, 1991), A* (Hart
et al., 1968), and others (Schmidhuber, 1990a;b)) and many
recent ones (e.g., the Predictron (Silver et al., 2017), the
Dreamer family of algorithms (Hafner et al., 2020; 2021;
2023), SoRB (Eysenbach et al., 2019), SA-CADRL (Chen
et al., 2017), and the LLM-planner (Song et al., 2023)), ef-
fective planning is a long-standing and important challenge
in artificial intelligence (AI).

Traditional search-based planning algorithms like A* re-
quire an accurate environmental model. Thus, these algo-
rithms are less effective in scenarios with unknown envi-
ronmental models or when the state and action spaces are
large or continuous. In such scenarios, a policy can be
learned either through imitation learning (IL), which lever-
ages expert demonstrations, or through trial and error with
reinforcement learning (RL). Within RL and IL, the Value
Iteration Network (VIN) (Tamar et al., 2016) stands out as
quite unique due to its distinctive architecture that integrates
a differentiable latent “planning module” into the deep neu-
ral network, rather than maintaining an explicit learned
environment model like Dreamer (Hafner et al., 2020) or
MuZero (Schrittwieser et al., 2020). This integrated plan-
ning structure of VINs endows them with powerful gener-
alization capabilities for unseen planning tasks. VINs have
been shown to perform well in some small-scale short-term
planning situations, like path planning (Pflueger et al., 2019;
Jin et al., 2021), autonomous navigation (Wöhlke et al.,
2021), and complex decision-making in dynamic environ-
ments (Li et al., 2021). However, they still struggle to solve
larger-scale and longer-term planning problems. We refer to
large-scale planning tasks as those with high-dimensional
observation space (e.g., the maze size), and long-term plan-
ning tasks as those necessitating extended planning horizons
to achieve the goal. For example, in a 100× 100 maze nav-
igation task, the success rate of VINs in reaching the goal
drops to well below 40% (see Figure 1(b)). Even in smaller
35× 35 mazes, the success rate of VINs drops to 0% when
the required planning steps exceed 60 (see Figure 1(c)).

Our work identifies that the principal deficiency causing
this is the mismatch between the complexity of planning
and the comparatively weak representational capacity of
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Figure 1: (a) shows an example of 100× 100 maze navigation task, where the green line shows the optimal path from the
start position (blue) to the goal position (red). See Appendix Figure 8 for more examples of mazes with other sizes. (b)
shows the success rate of VIN and DT-VIN on the maze navigation tasks as a function of maze size. The reported results are
computed in expectation over different shortest path lengths for each maze size. (c) shows the success rate of VIN (Tamar
et al., 2016) and our DT-VIN as a function of planning steps on the 35× 35 maze benchmark.

the relatively shallow networks that it uses. And while
there has been moderate success in learning more compli-
cated networks (e.g., GPPN (Lee et al., 2018) and Highway
VINs (Wang et al., 2024a)), until now, VINs of a scale ca-
pable of long-term or large-scale planning have not been
computationally tractable due to persistent issues with van-
ishing and exploding gradients—a fundamental problem of
deep learning (Hochreiter, 1991).

In this work, we aim to surgically correct deficiencies in
VIN-based architectures to enable large-scale long-term
planning. Specifically, we first identify the limitations of
the latent MDP in the planning module of VIN and pro-
pose a dynamic transition kernel to dramatically increase
the representational capacity of the network. We then build
on existing work that identifies the connection between net-
work depth and long-term planning (Wang et al., 2024a)
and propose an “adaptive highway loss” that selectively
constructs skip connections to the final loss according to
the actual number of planning steps. This approach helps
mitigate the vanishing gradient problem and enables the
training of very deep networks. With these changes, we find
that our new Dynamic Transition Value Iteration Network
(DT-VIN), is able to be trained with 5000 layers and scale
to 1800 planning steps in a 100× 100 maze navigation task
(compared to the original VIN, which only scaled to 120
planning steps in a 25× 25 maze). We apply our method to
various challenging tasks, including 2D/3D maze navigation
tasks (Wydmuch et al., 2019), continuous control (Founda-
tion, 2022; Fu et al., 2020), and real-world Lunar rover
navigation tasks (Berlin, 2018). We find that DT-VINs can
solve both despite these problems requiring hundreds to
thousands of planning steps. Together, these demonstrate
the practical utility of our method on vision-based tasks
that previous methods are simply unable to solve. This also
serves to highlight the potential of our method to scale to in-

creasingly complex planning tasks alongside the increasing
availability of computing power.

2. Preliminaries
Reinforcement Learning (RL) and Imitation Learning
(IL). The most common formalism used for RL is that of
the Markov Decision Process (MDP) (Bellman, 1957). We
consider an MDP—as per Puterman (2014)—to be the 6-
tuple (S,A, T ,R, γ, µ), where S is a countable state space,
A is a finite action space, T (s′|s, a) represents the tran-
sition probability to state s′ ∈ S from state s ∈ S and
taking action a ∈ A, R(s, a, s′) is the reward function,
γ ∈ [0, 1) is a discount factor, and µ is a distribution
over initial states. The behaviour of an artificial agent
in an MDP is defined by its policy π(a|s), which speci-
fies the probability of taking action a in state s. The state
value function V π(s) is the expected discounted sum of
rewards from state s and following policy π, i.e., V π(s) ≜
E [
∑∞

t=0 γ
tR(st, at, st+1)|s0 = s;π]. The goal of RL is

usually to find an optimal policy π∗ that achieves the high-
est expected discounted sum of rewards. The value function
of an optimal policy is denoted by V ∗(s) = maxπ V

π(s),
and satisfies V π∗

(s) = V ∗(s)∀s. The Value Iteration (VI)
algorithm iteratively applies the following update to all
states to obtain the optimal value function: V (n+1)(s) =
maxa

∑
s′ T (s′|s, a)

[
R (s, a, s′) + γV (n) (s′)

]
, where n

is the iteration number. In scenarios where designing a com-
prehensive reward function is difficult, IL offers a practical
alternative. IL enables agents to learn from human or al-
gorithmic demonstrations, with approaches like Behavioral
Cloning directly mimicking expert actions in similar states
(Bain & Sammut, 1995; Schaal, 1996; Ross et al., 2011).

Value Iteration Networks (VINs). VIN is an end-to-end
differentiable architecture that conducts planning on a latent
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Figure 2: The architecture of VIN and DT-VIN in the maze navigation task. (a) shows the observation of the maze,
which is mapped to the latent reward/transition matrix of the latent MDP through the reward/transition mapping module.
(c) shows the “planning module”, the policy mapping module and the loss. The “planning module” contains numerous
stacked Value Iteration (VI) modules. The green and orange connections show an example of adaptive highway loss for
planning tasks starting from A and B, respectively. (b1) shows the VI module of the original VIN with invariant transition
T
inv ∈ R|A|×F×F . (b2) shows the VI module of DT-VIN with dynamic transition kernel T

dyn ∈ RM×M×|A|×F×F .

MDP M (Tamar et al., 2016). Below, we use · to denote
all the terms associated with the latent MDP M. For each
decision, VIN first maps an observation x, e.g., an image
of a maze and the agent’s position, to M. M is described
by the latent state space S = {(i, j)}i,j∈[M ], where M

denotes its size; a fixed discrete latent action space A; a
latent reward matrix R = fR(x) ∈ RM×M , where fR is a
learnable NN called a reward mapping module; and a latent
transition kernel T

inv ∈ R|A|×F×F with F representing the
dimension of the kernel. The latent transition kernel is a
learnable parameter matrix that is invariant of both the latent
state and the observation x. Next, VIN conducts VI on the
latent MDP M to approximate the latent optimal value func-
tion V

∗
. To ensure the differentiability, a differentiable VI

module is proposed, simulating VI computation using CNN
operations, i.e., convolutional and max-pooling operations:

V
(n)

i,j = max
a

∑
i′,j′

T
inv

a,i′,j′

(
Ri−i′,j−j′ + V

(n−1)

i−i′,j−j′

)
(1)

This equation sums over a matrix patch centered around
position (i, j). After the above, by stacking the VI mod-
ule for N layers, the latent value function is then fed
to a policy mapping module by fπ to represent a pol-
icy that is applicable to the actual MDP M. Here,
fπ
(
V

(n)
(x), a

)
represents the probability of taking action

a given observation x. Finally, the model can be trained
by standard RL and IL algorithms with the following gen-
eral loss: L (θ) = 1

|D|
∑

(x,y)∈D ℓ
(
fπ
(
V

(N)
(x), ·

)
, y
)

,
where D = {(x, y)} is the training data, x is the observa-
tion, y is the label, and ℓ is the sample-wise loss function.
The specific meaning of these items varies depending on
the task. For example, in imitation learning, where the ex-
pert data is provided, the label y is the expert action and
ℓ is the cross-entropy loss, i.e., ℓ

(
fπ
(
V

(N)
(x)
)
, y
)

=

−
∑

a∈A 1{a=y} log f
π
(
V

(n)
(x), a

)
, where 1 is the indi-

cator function.

3. Method
In this section, we discuss how to train scalable VINs for
long-term large-scale planning tasks. Our method addresses
the two key issues with VIN that are identified as hampering
its scalability: the capacity of the latent MDP representation
and the depth of the planning module.

3.1. Improving Latent MDP’s Representation Capacity

VIN utilizes CNNs to simulate the VI computation process,
where the latent transition kernel is implemented as a learn-
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able parameter T
inv ∈ R|A|×F×F , as described in Section 2.

However, there is a discrepancy between the computation
process of CNNs and the general VI.

First, the latent transition kernel of VIN is invariant for
each latent state s = (i, j). This severely limits the latent
MDP’s capacity to represent the complex, state-dependent
transitions of the real MDP–an ability that is essential for its
effectiveness. For example, in the maze navigation problem
shown in Figure 2 (a), the transition probabilities are quite
different if the adjacent cell is a wall versus an empty cell.

Therefore, we propose to use a latent state-dynamic transi-
tion kernel T

dyn ∈ RM×M×|A|×F×F and the augmented
VI module is computed as follows:

V
(n)
i,j = max

a

∑
i′,j′

T
dyn
i,j,a,i′,j′

(
Ri−i′,j−j′ + V

(n−1)
i−i′,j−j′

)
. (2)

Different from VIN’s VI module in Eq. (1), which uses an
invariant kernel T

inv ∈ R|A|×F×F that is same across all
latent states (i, j), here Eq. (2) utilizes a dynamic kernel
T
dyn

i,j that adjusts dynamically to each latent state s = (i, j).

Second, although the original VIN paper proposes a general
framework where the latent transition kernel depends on
the observation, i.e., T

inv
= fT (x), with fT as a learnable

transition mapping module, the latent transition kernel in all
VIN’s experiments is implemented as a learnable parameter
independent of the observation. Intuitively, ignoring obser-
vations prevents VIN from exploiting any information in
the observation to model varying transition dynamics across
different environments. While this limitation does not im-
pact VIN’s performance in small-scale, short-term planning
tasks (as were tested on in the original work) where the state
space is limited and only a few steps are needed to reach the
goal, we found it to be a major barrier to VIN’s effectiveness
when employed to plan on large-scale, long-term planning
tasks with completely different observations. Therefore,
we propose using observation-dynamic transition kernels,
which employ a learnable transition mapping module fT to
dynamically generate the latent transition kernel for each
observation.

The notions of latent state-dynamic and observation-
dynamic features are orthogonal, each capturing an inde-
pendent aspect of variation in the latent transition kernel.
Their combination yields four distinct configurations, along
with corresponding implementations, as summarized in Ta-
ble 1. Our experiment in Section 4.4 shows that the fully
dynamic kernel—which varies with both the latent state and
the observation—achieves the best performance. To imple-
ment this kernel, we design a CNN-based architecture for
the transition mapping module fT, which maps each local
F ′×F ′ maze patch to a |A|×F ×F latent transition kernel

Table 1: Types of latent transition kernels, categorized by
whether they are latent state-dynamic (i.e., vary with the
latent state) and observation-dynamic (i.e., vary with the
observation).

Types Latent state-
dynamic?

Observation-
dynamic?

Implementation

fully invariant ✗ ✗
learnable parameter
T ∈ R|A|×F×F

latent state-
dynamic only

✓ ✗
learnable parameter

T ∈ RM×M×|A|×F×F

observation-
dynamic only

✗ ✓
learnable model fT(x) which

output T ∈∈ R|Ā|×F×F

fully dynamic ✓ ✓
learnable model fT(x) which
output T ∈ RM×M×|Ā|×F×F

for each latent state, where F ′ is the convolutional kernel
size of the transition mapping module, and F is the size of
the latent transition kernel. This architecture only requires
|A|F ′2F 2 additional parameters. Note that in practice, set-
ting both F ′ and F to the small value 3 suffices to achieve
strong performance. Thus, this alternative module greatly
improves the representation capacity of VIN, but typically
does not introduce a significant change in training cost.

Lastly, we further enforce a softmax operation on the values
of the latent transition kernel for each latent state s to avoid
the gradient exploding problem. This not only provides a
statistical semantic meaning to the kernels but also plays
a crucial role in ensuring the training stability, as will be
demonstrated in Section 4.4.

Altogether, these above components form our proposed
method, Dynamic Transition VINs (DT-VINs), which em-
ploys latent transition kernels that dynamically adapt based
on both the latent state and observation, along with a soft-
max normalization operation.

3.2. Increasing Depth of Planning Module

Recent work on Highway VIN has demonstrated the rela-
tionship between the depth of VIN’s planning module and
its planning ability (Wang et al., 2024a). A deeper planning
module implies more iterations of the value iterations pro-
cess, which is proven to yield a more accurate estimation
of the optimal value function (see Theorem 1.12) (Agarwal
et al., 2019). However, training very deep neural networks
is challenging due to the vanishing or exploding gradient
problem (Hochreiter, 1991). Highway VINs address this
issue by incorporating skip connections within the context
of reinforcement learning, showing similarities to existing
works for classification tasks (Srivastava et al., 2015b; He
et al., 2016). Although Highway VINs can be trained with
up to 300 layers, they still fail to achieve perfect scores in
larger-scale and longer-term planning tasks and necessitate
a more intricate implementation. Here, we present a simpler,
easy-to-implement method for training very deep VINs.
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To facilitate the training of very deep VINs, we also adopt
the skip connections structure but implement it differently.
Our central insight is that short-term planning tasks gen-
erally require fewer iterations of value iteration compared
to long-term planning tasks. This is because the informa-
tion from the goal position propagates to the start position
in fewer steps when their distance is short. Therefore, we
propose adding additional loss to shallower layers directly
when the task requires only a few steps during the train-
ing process. We achieve this by introducing the following
adaptive highway loss:

L (θ) =
1

K|D|
·

∑
(x,y,l)∈D

∑
1≤n≤N

1{n≥l}1{n mod J=0}ℓ

(
fπ
(
V

(n)
(x), ·

)
, y

) (3)

Here, K =
∑

(x,y,l)∈D

∑
1≤n≤N

1{n≥l}1{n mod J=0}, 1 is the

indicator function, and l is the length of the planning path
or trajectory, which can be computed from the training data.
For example, in the imitation learning of the maze naviga-
tion task, the length l of the provided expert path from start
to goal is inherently known for each maze in the dataset.
Here, Eq. (3) presents a general form of L with an arbitrary
single-term loss function ℓ (e.g., cross-entropy loss); see
Appendix B.1 for its specific form in different cases.

As Eq. (3) implies, it constructs skip connections for the hid-
den layers to improve information flow, similar to existing
works such as Highway Nets and subsequently, Residual
Nets (Srivastava et al., 2015b; He et al., 2016). However,
we connect hidden layers directly to the final loss, while
existing works typically connect skip connections between
the intermediate layers. Besides, we construct skip connec-
tions for each layer n ≥ l rather than at the specific layer
n = l, as the value iteration process should converge to the
correct solutions even with additional iterations. Note that
this additional loss will not alter the inherent structure of
the value iteration process and will be removed during the
execution phase. Moreover, to decrease computational com-
plexity, we only apply adaptive highway loss to the layers
that satisfy the condition n mod J = 0, where J ≥ 1 is a
hyperparameter.

4. Experiments
We perform several experiments to test if our modifications
to VIN’s planning module allow training very deep DT-
VINs for large-scale long-term planning tasks. Following
previous work (Tamar et al., 2016; Lee et al., 2018), we
focus on the imitation learning scenario, where we leverage
expert demonstrations to evaluate planning capabilities.

In line with previous works (e.g., (Lee et al., 2018)), we
assess our planning algorithms on maze navigation tasks,

encompassing both 2D and 3D environments (Wydmuch
et al., 2019), as detailed in Section 4.1. To demonstrate
the potential for complex action spaces, we further evalu-
ate the generality of DT-VIN on continuous control tasks
(Section 4.2), which present more challenges than the con-
tinuous control tasks described in the original VIN paper
due to increased complexity of the maze and the physics (Fu
et al., 2020). Additionally, we assess DT-VIN in rover nav-
igation tasks (Section 4.3), where the agent must perform
planning based on orthomosaic images (Berlin, 2018).

Each task includes a start position and a goal position. We
say that an agent has succeeded in a task if it can navigate
from the start position to the goal position within a prede-
termined number of steps (M2 in our paper). To assess
planning capabilities across tasks of varying complexities,
our experiments evaluate various tasks distinguished by their
shortest path lengths (SPLs). The SPL represents the length
of the expert path, derived from either human or algorithmic
experts. We further define a path as relatively optimal if it
has the shortest length among all solutions provided by vari-
ous models, including the expert solution. We follow GPPN
and use these for the success rate (SR), which is the rate at
which the algorithm succeeds in the task, and the optimality
rate (OR), which is the rate at which the algorithm provides
a relatively optimal path.

On the above tasks, we compare our DT-VIN method with
several advanced neural networks designed for planning
tasks, including the original VIN (Tamar et al., 2016),
GPPNs (Lee et al., 2018), and Highway VIN (Wang et al.,
2024a). The models are trained through imitation learn-
ing using a labeled dataset. We then identify the best-
performing model based on its results on a validation dataset
and evaluate it on a separate test dataset. Following the
methodology from the GPPN paper, we conduct evaluations
using three different random seeds for each algorithm. This
is sufficient to provide a reliable performance estimate here
due to the low standard deviation we observe in the tasks.
All figures that show learning curves report the mean and
standard deviation on the test set.

4.1. Maze Navigation

Setting. We first evaluate 2D maze navigation tasks with
sizes M set to 15, 35, and 100, where the agent moves one
step at a time to any of the four adjacent cells. Each task
is defined by a starting position, a visual representation of
the M ×M map design matrix (with 0 and 1 representing
obstacles and roads, respectively), and an M × M goal
matrix indicating the position of the goal. These mazes
require hundreds to thousands of planning steps, as shown
in Figure 1(a) and further detailed in Appendix Figure 8.
For each maze size, we generate a dataset following the
methodology in GPPN (Lee et al., 2018) and ensure no
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overlap between training and test datasets. Specifically,
each unique obstacle arrangement—with its varying start
positions and goals—is exclusive to either the training or
the test dataset, preventing information leakage. To assess
the performance of each algorithm, we test various neural
network depths N . For the largest mazes (M = 100), we
specifically examine N = 600 and N = 5000, while for
M = 35, we test multiple depths: N = 30, 100, 300, and
600. For more details, see Appendix C.1.

Results and Discussion. Figure 3(a) shows the success
rates (SRs) of our method and the baseline methods, as a
function of the SPLs. For each algorithm and environment
configuration, we report the performance of the NN with
the best depth N across the ranges specified in the previous
paragraph (see Figure 9 in Appendix C.2 for additional
results concerning different values of N ).

Here, DT-VIN outperforms all the other methods on all
the maze navigation tasks under all the various sizes M
and SPLs. Notably, on small-scale mazes with size in
M = 15, 35, DT-VIN achieves approximately 100% SRs
on all the tasks. For the most challenging environment with
M = 100, DT-VIN performs best with the full 5000 layers,
and it maintains an SR of approximately 100% on short-
term planning tasks with SPL ranging in [1, 200] and an SR
of approximately 88% on tasks with SPLs over 1200. Com-
paratively, VIN performs well on small-scale and short-term
planning tasks. However, even on a small-scale maze with
size M = 15, VIN’s SRs drop to 0% when the SPL exceeds
30. Moreover, when the maze size increases to 100, VIN
only achieves an SR of less than 40%—even on short-term
planning tasks with SPL within [1, 100]. GPPN performs
well on short-term planning tasks, but it fails to generalize
well on long-term planning tasks, which also decreases to
an SR of 0% as the SPL increases. Highway VIN performs
well across tasks with various SPLs on a small-scale maze
with M = 15. However, it shows a performance decrease
on larger-scale maze tasks with M = 35, 100. Figure 3(b)
shows the optimality rates (ORs) of the algorithms, which
measure the rate at which the model outputs the optimal
path. Our DT-VIN maintains consistent ORs compared to
SRs. However, some other methods—especially Highway
VIN—exhibit a clear decrease in ORs, indicating that the
paths generated by these methods is often sub-optimal.

Addtional Experiments. Due to space constraints, we eval-
uate challenging cases with noisy maze observations in Ap-
pendix C.4 and different transition types (agents moving to
any of the eight Moore neighborhood cells) in Appendix C.3.
We also evaluate 3D ViZDoom navigation with first-person
inputs (Wydmuch et al., 2019), where the model plans based
on noisy maze matrix predictions (Appendix C.5). DT-VIN
outperforms all compared methods in these cases.

Table 2: The success rates of the methods on Point Maze
and Ant Maze tasks.

Point Maze Ant Maze
35× 35 100× 100 35× 35 100× 100

VIN 67.42±7.56 38.19±9.73 64.85±9.34 31.67±11.28

GPPN 91.21±1.94 69.37±2.85 86.09±3.46 61.78±6.12

Highway VIN 89.63±2.71 66.45±4.83 82.34±4.19 52.91±8.55

DT-VIN (ours) 99.87±0.12 98.04±1.93 96.57±2.61 93.26±3.14

Table 3: The success rates of the algorithms on rover navi-
gation tasks with various image sizes.

Image Sizes 270×270 450×450 630×630
VIN 85.32±0.14 82.43±0.74 71.71±3.48

GPPN 85.79±0.31 81.72±0.22 76.31±0.75

Highway VIN 85.81±0.6 81.88±0.86 73.21±0.81

DT-VIN (ours) 86.54±0.5 82.78±0.6 77.4±0.98

CNN+A∗ 84.42±0.67 82.11±0.74 76.19±1.23

4.2. Continuous Control

We evaluate the algorithms on two continuous control tasks:
Point Maze and Ant Maze (Foundation, 2022; Fu et al.,
2020). These tasks are more challenging than simple maze
navigation: the agent must not only conduct (explicit or
implicit) planning over the complex maze but also output
the torques to direct the controlled agent (a 2-DOF ball or a
3D quadruped robot) toward the correct direction, as shown
in Figure 4. The input includes the maze’s top-down view,
agent and goal locations, positional values, and velocities of
the agent’s body parts. The network architecture integrates
a planning module structurally similar to that used in 2D
maze navigation. The outputs of this module, combined
with additional state information, are aggregated and passed
to the policy mapping module to produce the control action.
We train the model using the D4RL offline Point/Ant Maze
dataset, which features a fixed 9 × 12 maze layout across
all tasks, varying only in start and goal positions. However,
during evaluation, the model is tested on substantially larger
and more complex mazes (35 × 35 and 100 × 100) with
previously unseen layouts and start/goal configurations, sig-
nificantly increasing task complexity and demanding strong
generalization capabilities. To address this challenge, we
pretrain the planning module on a diverse and readily avail-
able 2D maze navigation dataset to endow the model with
transferable planning skills. Please refer to Appendix D for
more details. Table 2 shows the results of this experiment.
DT-VIN solves the mazes at a much higher rate than all the
baseline methods. Specifically, in the challenging 100×100
Ant Maze, DT-VIN achieves a notable 51% higher success
rate than the second-best baseline.

4.3. Rover Navigation

We further evaluate the algorithms on the rover navigation
task, where the algorithm conduct planning based on a ter-
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Figure 3: SRs and ORs for different algorithms as a function of the shortest path length on 2D maze navigation tasks with
various sizes. For each algorithm, we select the best result across various depths. Specifically, for our DT-VIN, the optimal
depth consistently corresponds to the maximum value in the range: 200 for mazes of size 15, 600 for size 35, and 5000
for size 100. For other methods, the optimal depth differs per task. In the maze of size 100, the optimal depth for all the
baselines is 600. See Figure 9 and Figure 10 in Appendix C.2 for additional results at other depths.

(a) Point Maze (b) Ant Maze

Figure 4: The Point Maze and Ant Maze environment in
the training dataset from D4RL (Foundation, 2022; Fu et al.,
2020), where map size is 9×12. Please refer to Appendix D
for larger (e.g., 100× 100) mazes in our testing dataset.

(a) Terrain image (b) Elevation data

Figure 5: (a) and (b) show a patch of terrain image and
elevation data from Apollo 17 landing tasks.

rain image (e.g., Figure 5(a)) rather than the elevation data
(e.g., Figure 5(b)). While terrain images, visual represen-
tations from aerial photographs, typically lack elevation
information, they are generally more readily available or
less expensive to obtain. We evaluate the Apollo 17 landing
tasks, featuring images with a resolution of 0.5 meters per
pixel (Berlin, 2018). We crop the terrain image into various-
sized patches, each 18× 18 patch defining a cell. The cell is
considered an obstacle if the associated area exhibits an ele-
vation angle exceeding 10 degrees. Analogous to supervised
learning, the training phase uses external elevation data to
generate the expert path, while in the testing phase, this
data is inaccessible to the models and only used to assess
performance metrics. Please refer to Appendix E for details

on the task setting and the models’ architecture.

As shown in Table 3, our DT-VIN outperforms all compared
methods across various terrain image sizes. Notably, with
larger image sizes (particularly 630 × 630), our DT-VIN
outperforms VIN by more than 5%. We also compare with
a special baseline, CNN+A∗, which combines classification
and classical planning algorithms. This method trains a
CNN to classify whether an 18×18 image patch is an obsta-
cle using elevation data, then uses A∗ to conduct planning
based on this prediction. While this unsurprisingly is able
to outperform VIN, it is still outperformed by DT-VIN.

4.4. Ablation Study

We perform multiple ablation studies with a M = 35 maze
and an NN with depth N = 600 to assess the impact of DT-
VIN components, including the dynamic latent transition
kernel and its associated softmax operation, the adaptive
highway loss and the network depth. Unless otherwise
indicated, all these elements are included.

Dynamic Latent Transition Kernel. We evaluate four vari-
ants of dynamic latent transition kernels: fully invariant,
observation-dynamic only, latent state-dynamic only, fully
dynamic (incorporating both observation and latent state-
dynamic). Figure 6(a) and (b) show the SRs of all these
variants w.r.t. the SPLs and obstacle counts respectively.
The variant with invariant kernels performs the worst. Both
observation-dynamic and latent state-dynamic components
contribute to the performance of DT-VIN – removing either
results in a substantial performance drop. It’s worth noting
that the performance gap between the dynamic kernel and
invariant kernel grows with increasing the SPL or obstacle
counts. This improvement is due to the improved model’s
representational capacity by the dynamic kernel, reducing
compounded errors over extended planning horizons and
complex environments with increased obstacle counts, as
shown in Figure 6(c) and (d). Figure 6(e) gives an illustra-
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Figure 6: Ablation studies on the dynamic latent transition kernel. (a) and (b) show the success rates (SRs) w.r.t. to
various shortest path lengths (SPLs) and obstacle counts of the tasks, respectively. (c) and (d) show the losses. (e) shows the
learned latent transition kernels of DT-VIN.
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Figure 7: (a) and (b) show ablation on softmax operation and adaptive highway loss, respectively. The left and right sides
of each sub-figure show the success rate, and the averaged L1 norm of the gradient over the first 10 layers, respectively. (c)
show the the success rate across various depths of model.

tion of DT-VIN’s dynamic transition kernels.

Softmax Operation on Latent Transition Kernel. As
shown in Figure 7(a) (left), the variant without the softmax
operation on the latent transition kernel fails on all the tasks.
This failure is due to exploding gradients, wherein the gra-
dient becomes extremely large, eventually resulting in the
model’s parameters overflowing and becoming a NaN (Not
a Number) value, as depicted in Figure 7(a) (right).

Adaptive Highway Loss. We evaluate several additional
variants to verify the effectiveness of adaptive highway loss.
Figure 7(b) (left) shows the success rate of all variants.
(a) The variant without highway loss suffer a decrease in
performance, as shown in Figure 7(b). (b) We also evaluate a
variant named fully highway loss, which enforces a highway
loss on each hidden layer without adaptive adjustment by
removing the filter 1{n≥l} in Eq. (3). This variant performs
worse than the one with adaptive highway loss, highlighting
the necessity of adaptive adjustment. (c) We assess a variant
called single highway loss, which only apply highway loss
to a specific layer n where n = l by substituting 1{n≥l}
with 1{n=l} in Eq. (3). This variant performs worse than
the adaptive highway loss, demonstrating the critical role
of the component n > l in performance. (d) Finally, we
evaluate a variant named inter highway connection, which
constructs skip connections across the intermediate layers
of the planning module, akin to techniques used in Highway
Nets (Srivastava et al., 2015a). This variant performs the

worst because the skip connections over intermediate layers
can disrupt the structure of value iteration. These results are
consistent with those in existing work (Wang et al., 2024a).

Depth of Planning Module. Figure 7(c) shows the SRs of
DT-VIN with various depths. Here, increasing the depth dra-
matically improves the long-term planning ability. For ex-
ample, for tasks with an SPL of 200, the variant with depth
N = 300 outperforms the variant with depth N = 100.
Moreover, for tasks with an SPL of 300, the deeper variant
with depth N = 600 excels greatly. Other methods like
VIN and GPPN do not show a clear performance improve-
ment when the depth increases, please refer to Figure 9 in
Appendix C.2 for more details.

Additional Ablation Studies. Due to space constraints,
please refer to Appendix F and G, which show the robust-
ness of DT-VIN with 50% of the training dataset, the choice
of the length of the expert path l, impact of jumping hyper-
parameter J , and the scaling of computation complexity,
dataset requirements, and model size with task scale.

5. Related Work
Variants of Value Iteration Networks (VINs). Several
variants of VIN (Tamar et al., 2016) have been proposed in
recent years. Gated Path Planning Networks employ gating
recurrent mechanisms to reduce the training instability and
hyperparameter sensitivity seen in VINs (Lee et al., 2018).
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To mitigate overestimation bias (which is detrimental to
learning here), dVINs were proposed and use a weighted
double estimator as an alternative to the maximum opera-
tor (Jin et al., 2021). For addressing challenges in irregular
spatial graphs, Generalized VINs adopt a graph convolution
operator, extending the traditional convolution operator used
in VINs (Niu et al., 2018). To improve scalability, AVINs
introduce an abstraction module that extracts higher-level
information from the environment and the goal (Schleich
et al., 2019). To improve scalability, Zhao et al. proposed
implicit differentiable planners that decouple forward and
backward passes (Zhao et al., 2023). In contrast, our work
takes a complementary architectural approach, redesigning
VINs for deeper and more expressive planning over larger-
scale tasks. For transfer learning, Transfer VINs address the
generalization of VINs to target domains where the action
space or the environment’s features differ from those of the
training environments (Shen et al., 2020). More recently,
VIRN was proposed and employs larger convolutional ker-
nels to plan using fewer iterations as well as self-attention to
propagate information from each layer to the final output of
the network (Cai et al., 2022). Similarly, GS-VIN also uses
larger convolutional kernels but to stabilize training and also
incorporates a gated summarization module that reduces the
accumulated errors during value iteration (Cai et al., 2023).
Most related to DT-VIN is other recent work that focused on
developing very deep VINs for long-term planning. Specifi-
cally, Highway VIN (Wang et al., 2024a) incorporates the
theory of Highway Reinforcement Learning (Wang et al.,
2024b) to create deep planning networks with up to 300
layers for long-term planning tasks. Highway VIN modifies
the planning module of VIN by introducing an exploration
module that injects stochasticity in the forward pass and
uses gating mechanisms to allow selective information flow
through the network layers. Our method, however, achieves
even deeper planning by incorporating a dynamic transition
matrix in the latent MDP and adaptively weighting each
layer’s connection to the final output.

Neural Networks with Deep Architectures. There is a
long history of developing very deep neural networks (NNs).
For sequential data, this prominently includes the LSTM
architecture and its gated residual connections, which help
alleviate the “vanishing gradient problem” (Hochreiter &
Schmidhuber, 1997; Hochreiter, 1991). For feedforward
NNs, a similar gated residual connection architecture was
used in Highway Networks (Srivastava et al., 2015b) and
later in the ResNet architecture (He et al., 2016), where the
gates were kept open. Such residual connections are still
ubiquitous in modern language architectures, such as the
Generative Pre-trained Transformer (GPT) (Achiam et al.,
2023). Our method dynamically employs skip connections
from select hidden layers to the final loss, utilizing a state
and observation map-dependent transition kernel. This ap-

proach is more closely aligned with the computation of the
true VI algorithm. Similar kernels, dependent on an input
image (Chen et al., 2020) or the coordinates of an image (Liu
et al., 2018), have been previously used in Computer Vision.

6. Conclusions
Previous work introduced VIN as a differentiable neural net-
work for planning in artificial intelligence and reinforcement
learning. While VINs have been successful at short-term
small-scale planning, they start to fail quite rapidly as the
planning horizon and the scale of the tasks grows. We ob-
served that this decay in performance is principally due
to limitations in the (1) representational capacity of their
network and (2) its depth. To alleviate these problems, we
propose several modifications to the architecture, including
a dynamic transition kernel to increase the representation
capacity and an adaptive highway loss function to ease the
training of very deep models. Altogether, these modifica-
tions have allowed us to train networks with 5000 layers.
In line with previous work, we evaluate the efficacy of our
proposed Dynamic Transition VINs (DT-VINs) on 2D/3D
maze navigation, continuous control, and rover navigation.
We find that DT-VINs scale to longer-term and larger-scale
planning problems than previous attempts. To the best of
our knowledge, DT-VINs is, at the time of publication, the
current state-of-the-art planning solution for these specific
environments. We note that the upper bound for this ap-
proach (i.e., the scale of the network and, consequently, the
scale of the planning ability) remains unknown. As our
experiments were limited mostly by computational cost and
did not observe instability, we expect that with the growth
of available computational power, our method will scale to
even longer-term and larger-scale planning.
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A. Limitations and Future Works
The principal limitation of our work compared to VIN and Highway VIN is the increased computational cost (see
Appendix G). This is a consequence of the scale of the network. The past decades have seen AI dominated by the trend of
scaling up systems (Sutton, 2019), so this is not likely a long-term issue.

Future work will explore the impact of a more sophisticated transition mapping module (this work uses a single CNN
layer for this purpose) in more challenging real-world applications, such as real-time robotics navigation in dynamic and
unpredictable environments. Additionally, recent diffusion-based planners (Janner et al., 2022; Mishra et al., 2023) offer
a complementary approach to long-horizon reasoning, which may be integrated with VIN-style architectures to improve
planning capacity and temporal abstraction.

B. Method: Additional Details
B.1. Loss Function

In imitation learning, the loss function in Eq. (3) can be written as

L (θ) =
1

K|D|
∑

(x,y,l)

∑
n

1{n≥l}1{n mod J=0}

(
−
∑
a

1{a=y} log f
π
(
V

(n)
(x), a

))
.

In RL, where the policies are learned through policy gradient, the loss function can be rewritten as

L (θ) =
1

K|D|
∑

(x,y,R,l)∈D

∑
1≤n≤N

1{n≥l}1{n mod J=0}

(
−R log fπ

(
V

(n)
(x), y

))
,

where y is the excuted action, and R the cumulative future reward.

B.2. Translation Equivariance

Although our dynamic latent transition kernel is input-dependent and breaks the conventional weight-sharing scheme, it still
preserves translation equivariance—a desirable property in spatial planning tasks. In other words, shifting the input (e.g., the
maze image) leads to a corresponding shift in the output. While this may seem counterintuitive at first, it is in fact a direct
consequence of our design: the kernel T

dyn
= fT(x) is produced by a CNN, which is itself translation equivariant. As a

result, the downstream value iteration process retains this property (see Eq. 2).

C. Maze Navigation: Additional Experimental Details and Results
C.1. 2D Maze Navigation: Experimental Details

Figure 8 shows some visualizations of some of the different 2D maze navigation tasks we experiment with. Our experimental
setup follows the guidelines established in the GPPN paper (Lee et al., 2018). For these tasks, the datasets for training,
validation, and testing comprise 25000, 5000, and 5000 mazes, respectively. Each maze features a goal position, with all
reachable positions selected as potential starting points. Note that this setting, as done by GPPN, produces a distribution of
mazes with non-uniform SPLs, which is skewed towards shorter SPLs. Table 4 shows the hyperparameters used by our
method. Note that, while DT-VIN consistently uses 3 for the size of the latent transition kernel F and 4 for the size of the
latent action space |A|, other methods instead used their best-performing sizes from between 3 and 5, and between 4 and
150, respectively.

C.2. 2D Maze Navigation with Different Depths of Models

Figure 9 shows the success rate of all the algorithms on the 15× 15, 35× 35, 100× 100 mazes as a function of the shortest
path length and the depth of the network. Similarly, Figure 10 shows the corresponding optimality rates.

C.3. 2D Maze Navigation with Different Transition Types

Following the GPPN paper (Lee et al., 2018), we run additional experiments using different transition type: the Differential
Drive transition, where the agent can move forward along its orientation or rotate 90 degrees left or right, and the MOORE
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(a) 15× 15 Maze (b) 35× 35 Maze (c) 100× 100 Maze

Figure 8: Examples of the 2D maze navigation tasks.

Table 4: 2D Maze Navigation Hyperparameters

Hyperparameter Value

Transition Mapping Module A 1-layer CNN with 3× 3 kernel
Reward Mapping Module A 1-layer CNN with 1× 1 kernel
Policy Mapping Module A 1-layer FCN
Latent Transition Kernel Size (F ) 3
Latent Action Space Size (|A|) 4
Optimizer RMSprop
Learning Rate 1e-3
Batch Size 32

Depth of Planning Module
15× 15 maze: 200
35× 35 maze: 600
100× 100 maze: 5000

transition, where the agent can relocate to any of the eight adjacent cells that comprise its Moore neighborhood. As shown
in Table 8 and 9, DT-VIN consistently outperforms all the compared methods regardless of the transition type used.

C.4. 2D Maze Navigation with Controlled Noisy Maze

We evaluated the methods under controlled noise. To emulate the prediction noise, we add Gaussian noise to the original
maze and enforce the value within (0, 1) by clip(maze+ ϵ, 0, 1), where ϵ is a noise sampled from Gaussian distribution.
The results of this are below. DT-VIN seems more robust in handling noise than Highway VIN and VIN. GPPN shows
robustness in the short term setting, but is not able to solve the task when long term planning is required.

C.5. 3D ViZDoom Navigation

Following the methodology of the GPPN paper, we test our method on 3D ViZDoom (Wydmuch et al., 2019) environments.
Here, instead of directly using the top-down 2D maze as in the previous experiments, we use the observation consists of
RGB images capturing the first-person perspective of the environment, as illustrated in Figure 11(a). Then, a CNN is trained
to predict the maze map from the first-person observation. The map is then given as input to the planning model, using the
same architecture and hyperparameters as the 2D maze environments. For each algorithm, we select the best result across
the various network depths N = 30, 100, 300, 600. We find that the optimal depth for DT-VIN is 600, for GPPN is 300, for
VIN is 300, and for Highway VIN is 300. We evaluated the algorithm on 3D ViZDoom mazes with grid 35× 35, where each
cell in the grid corresponds to a 64× 64 map unit area, the standard spatial measurement in the game engine. Figure 11(b)
shows the SRs. Predictably, the performance of all the baselines decreases compared to the 2D maze environments due to
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Table 5: Rover Navigation Hyperparameters

Hyperparameter Value

Transition Mapping Module A 10-layer CNN

Reward Mapping Module
A 10-layer CNN (sharing the first 8 layers

with Transition Mapping Module)
Policy Mapping Module A 1-layer FCN
Latent Transition Kernel Size (F ) 3
Latent Action Space Size (|A|) 4
Optimizer RMSprop
Learning Rate 1e-3
Batch Size 32

Depth of Planning Module
270× 270 : 50
450× 450 : 100
630× 630: 200

Table 6: 3D ViZDoom Preprocessing Network

Hyperparameter Value

Batch Size (B) 32
Image Directions (D) 4
Image Channels (C) 3
Image Width (W ) 24
Image Height (H) 32
Input Size (B,M,M,D,W,H,C)
Layer 1 (Convolution) (3, 32, 8, 4, 1)
Layer 2 (Convolution) (32, 64, 4, 2, 1)
Layer 3 (Linear) (384, 256)
Layer 4 (Convolution) (1024, 64, 3, 1, 1)
Layer 5 (Convolution) (64, 1, 3, 1, 1)
Output Size (B,M,M)
Optimizer Adam
Learning Rate 1e-3
Betas (0.9, 0.999)
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Table 7: The success rates for each method under tasks with different ranges of shortest path length. For each algorithm, we
choose the best result from a range of depths. Specifically, for our DT-VIN, the optimal depth consistently corresponds to
the maximum value in the range: 600 for size 35, and 5000 for size 100. For other compared methods, the optimal depth
differs depending on the task. In the maze of size 100, the optimal depth for all the baselines is 600. For additional results,
see Figure 9 in Appendix C.2.

Maze Size 35× 35 100× 100
Ranges of Shortest Path Lengths [1,100] [100, 200] [200, 300] [1,600] [600, 1200] [1200, 1800]

VIN (Tamar et al., 2016) 68.41±6.25 0.0±0.00 0.00±0.00 45.05±0.04 0.00±0.00 0.00±0.00

GPPN (Lee et al., 2018) 95.71±0.33 0.39±0.27 0.00±0.00 75.72±0.64 0.00±0.00 0.00±0.00

Highway VIN (Wang et al., 2024a) 90.67±3.92 65.50±5.59 54.40±10.2 69.12±0.02 0.00±0.00 0.00±0.00

DT-VIN (ours) 100.00±0.00 99.99±0.01 99.77±0.23 99.98±0.00 99.56±0.20 88.65±4.76

Table 8: The success rate (%) for each method in 35× 35 2D maze navigation with Differential Drive transition type, where
the agent can move forward along its orientation or rotate 90◦ left or right.

Shortest Path Length [1,150] [150,300] [300,500]
VIN 68.44±3.12 0.03±0.01 0.00±0.00

GPPN 83.1±1.23 0.31±0.01 0.0±0.0

Highway VIN 87.1±3.73 57.1±3.98 49.1±8.73

DT-VIN (ours) 100.00±0.00 100.00±0.00 99.99±0.01

the additional noise introduced by the predictions. Here, DT-VIN outperforms all the methods compared to the task over all
the various SPLs.

To be in line with previous work, we use a state representation preprocessing stage for the 3D ViZDoom environment similar
to that used in the GPPN paper and others (Lee et al., 2018; Lample & Chaplot, 2017). In 3D ViZDoom, a maze is designed
on a grid of M ×M cells. Each cell in this grid corresponds to an area of 64 × 64 map units within the 3D ViZDoom
environment. The map unit is the basic measure of space used in the ViZDoom game engine to define distances and sizes.
Specifically, for each cell in the M ×M 3D maze, the RGB first-person views for each of the four cardinal directions are
given as state to a preprocessing network (see Figure 11(a)). This network then encodes this state and produces an M ×M
binary maze matrix. The hyperparameters and exact specification of the network are given in Table 6.

D. Continuous Control: Additional Experimental Details and Results
In this section, we present experimental details of continuous control, including Point Maze and Ant Maze. Figure 12
demonstrates Point Maze with larger sizes 35 × 35 and 100 × 100. For continuous control tasks, the input includes a
4M × 4M top-down view of the maze, agent and goal locations, positional values, and velocities of the agent’s body parts.
Network architecture comprises 2-layer CNNs for reward and transition mapping, and a 3-layer fully connected network
for policy mapping, which takes outputs from the planning module and additional state information to produce controlled
actions. The planning module in this architecture overlaps with that in the 2D maze navigation task. Therefore, we use
pre-trained parameters from 2D maze navigation tasks. Table 12 lists the hyperparameters of DT-VIN for the continuous
control tasks. We train using PointMaze-Large and AntMaze-Large-Play datasets from D4RL (Fu et al., 2020) and pre-train
on the 100× 100 2D maze.

E. Rover Navigation: Additional Experimental Details and Results
Table 5 shows the hyperparameters of DT-VIN for the rover navigation tasks. For the transition and reward mapping
modules, we employ 10-layer CNNs, with the first 8 layers shared between them.

F. Ablation Studies: Additional Experimental Details and Results
F.1. Ablation on the Jumping Hyperparameter J

To reduce the computational complexity of highway loss, we apply adaptive highway loss only to layers n satisfying the
condition n mod J = 0, where J is a hyperparameter set to 10 in our experiments. Here, the main idea is to build the
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Figure 9: The success rate of each method as a function of shortest path length and network depth. The green and red curves
overlap in the first plot of (a).

highway connections at an interval J — for example, every 10 neural network layers, as in our setting where J = 10.
Using this, the number of the loss terms will reduce to only 1/J of the original one. Table 13 shows the magnitude of the
computational speedup as a consequence of this implementation detail.

F.2. Ablation on the Choice of l

The knowledge of the length l of the expert path naturally exists in the imitation learning case. However, for the case where
such information is unknown, one can use either the length of non-expert data or some heuristic methods to estimate l when
the actual l is completely unknown, e.g., using the distance between the start and the goal position.

To measure the effect of overestimation/underestimation, we experiment with various estimated values of the length of the
shortest path l̂, which are 0, l/2, l, 2l, N (where l is the actual length of the shortest path, N is the depth of the planning
module). Second, to evaluate the case when the estimation of l has variance, we use l ·max(ϵ, 0) as the estimation, with
ϵ sampled from a Gaussian distribution N (1, 1). Third, we also assess two additional variants for estimating l: (a) One
variant that utilizes the length of non-expert trajectories for l; (b) Another variant that estimates the shortest path length
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Figure 10: The optimality rate of each method as a function of shortest path length and network depth. The green and red
curves overlap in the top-left plot.

heuristically using the L1 distance between the start (xs, ys) and the goal (xg, yg), i.e., D = |xs − xg|+ |ys − yg|.

As indicated in Table 14, both overestimation and underestimation lead to a performance degradation of no more than 7%.
Additionally, we find that leveraging non-expert data or the heuristic L1 distance only yields a nearly 3% degradation in
performance, and performs better than the case when the optimal length is extremely overestimated/underestimated. These
results imply that employing the information from non-expert data or heuristic estimation could be taken as an alternative
when the optimal length is not available.

F.3. Ablation on the Size of Training Dataset

Even in situations where data is rare, DT-VIN still outperforms compared methods. As shown in Table 15, with only 50%
of the original dataset, DT-VIN greatly outperforms existing methods. We also highlight the changes compared to the
performance with a full-sized dataset in Table 15, where DT-VIN results in less than a 0.2% degradation for tasks within the
range [1, 100], while the best-performing comparison method, GPPN, incurs a degradation of nearly 12%.
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Table 9: The success rate for each method in 35× 35 2D maze navigation with Moore transition type, where the agent can
relocate to any of the eight adjacent cells that comprise its Moore neighborhood.

Shortest Path Length [1,100] [100,200] [200,250]

VIN 66.44±3.21 0.00±0.00 0.00±0.00

GPPN 89.94±1.31 0.04±0.01 0.00±0.00

Highway VIN 83.14±2.21 37.1±1.98 25.1±3.28

DT-VIN (ours) 100.0±0.00 98.9±0.72 96.7±1.23

Table 10: The success rate for each method in 35× 35 2D maze navigation, with maze noise ϵ ∼ N (0, 0.01).

Shortest Path Length [1,100] [100,200] [200,300]

VIN 66.41±7.25 0.00±0.00 0.00±0.00

GPPN 91.71±1.33 0.21±0.27 0.00±0.00

Highway VIN 86.67±4.92 57.50±6.59 46.40±11.2

DT-VIN (ours) 99.21±0.00 98.17±0.01 97.77±0.23

G. Scaling Experiments
In this section, we examine how the methods scale in terms of computational complexity, dataset requirements, and model
size relative to task scale.

G.1. Required Computational Resources

As we have discussed in Section 3.1, our approaches only require |A| × F 4 parameters, where we set |A| = 4 and F = 3 in
our experiments. Table 17 shows the memory consumption and training time on NVIDIA A100 GPUs for DT-VIN and the
compared methods when using 5000 layers and training for 90 epochs on 100× 100 maze. As shown in the table below,
DT-VIN incurs only slightly higher GPU memory and time costs compared to VIN, while being far more memory-efficient
than GPPN and Highway VIN. These results are generally consistent with those observed in the 35× 35 2D maze in Table
16.

G.2. Required Size of Model

In our experiments, the depth of the network required to solve the problem is close to linear with the number of planning steps
required by the problem. For maze size M = 15, 25, 35, we test DT-VIN models at increasing depths in increments of 100
until the optimal performance is achieved. For instance, for mazes of size 25× 25, we assess depths of 100, 200, 300, 400.
For maze size M = 100, we assess depths of 4000, 5000, 6000. As Table 18 illustrates, the depth of the smallest network
that can solve the task increases slightly more than linearly with the required planning steps. Therefore, it might be feasible
to continue increasing the network depth as the problems become more complex.

G.3. Required Size of Training Data

We evaluate the models on the mazes of size 15× 15, 25× 25, and 35× 35, on increasingly larger numbers of expert steps
(a step here is one transition from a cell to another cell). Specifically, for each maze size, we look for the smallest n such
that, with 5000× n different mazes (with each maze having a number of expert trajectories and larger mazes having more
expert trajectories), DT-VIN can achieve a ≥ 98% success rate on the longest length planning problem for each maze. The
results of this experiment are below (and we will add this to a camera-ready version of the paper). While this is a bit of a
coarse result, comparing the length column to the expert data column, we see a growth rate that looks a more than linear, but
still indicates a manageable degree of complexity increase. We would like to note that using more mazes in the training set
with fewer expert trajectories for each maze might further increase the sample efficiency of our method and the baselines.
Designing an appropriate curriculum for this could be an exciting area of future work.

The scale of the dataset needs to scale up with the complexity of the problem rather than the model depth. Under the same
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Table 11: The success rate for each method in 35× 35 2D maze navigation, with maze noise ϵ ∼ N (0, 0.04).

Shortest Path Length [1,100] [100,200] [200,300]

VIN 59.11±7.94 0.00±0.00 0.00±0.00

GPPN 87.43±1.34 0.15±0.48 0.00±0.00

Highway VIN 81.76±4.74 49.5±6.05 35.7±11.3

DT-VIN (ours) 95.17±0.00 92.29±0.57 91.99±0.27

(a) 3D ViZDoom
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Figure 11: (a) an example of a ViZDoom 3D maze and the first-person view of the environment with each of the corresponding
four orientations. (b) the success rates of the algorithms over various SPLs.

scale of the problem, we didn’t find that increasing model depth requires additional data. As shown in Table 20, without
expanding the dataset, increasing the model depth does not reduce the performance.
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Table 12: Continuous Control Hyperparameters

Hyperparameter Value

Transition Mapping Module A 2-layer CNN with 3× 3 kernel

Reward Mapping Module
A 2-layer CNN (sharing the first layers

with Transition Mapping Module)
Policy Mapping Module A 3-layer FCN
Latent Transition Kernel Size (F ) 3
Latent Action Space Size (|A|) 4
Optimizer RMSprop
Learning Rate 1e-3
Batch Size 32

Depth of Planning Module
35× 35 maze: 600
100× 100 maze: 5000

Table 13: Training time and success rate (%) across different ranges of SPLs for DT-VIN with different J values.

Wall-Clock Time (hours) [1,100] [100,200] [200,300]

J = 1 37 100.00±0.00 99.99±0.01 99.78±0.21

J = 10 12.1 100.00±0.00 99.99±0.01 99.77±0.23

J = 50 7.1 100.00±0.00 99.98±0.02 99.69±0.27

Table 14: Ablation study for using various estimated lengths of optimal paths for adaptive highway loss, under 35 × 35
ViZDoom navigation. The best results are highlighted.

Shortest Path Length [1,100] [100, 200] [200,300]

l̂ = 0 (connected to all hidden layers) 99.49±0.35 94.51±0.77 89.9±3.76

l̂ = l/2 99.62±0.91 96.21±0.44 91.24±1.68

l̂ = l 99.67±0.22 97.92±0.11 96.41±0.37

l̂ = 2 ∗ l 99.61±0.18 96.29±0.48 93.12±0.73

l̂ = N (connected to only last layer) 99.52±0.29 95.52±0.86 91.12±1.64

l̂ = l ·max(ϵ, 0), ϵ ∼ N (1, 1) 99.62±0.50 96.19±0.15 93.21±0.92

l̂ = len(non-expert path) 99.62±0.12 97.01±0.69 93.31±0.31

l̂ = D (L1 distance) 99.64±0.49 96.92±0.05 93.52±0.87

Table 15: The success rates and the changes in success rates for each method, using a dataset reduced to 50% of the original
size, are presented. These changes are compared to the results from the full-sized dataset, with more negative values
indicating worse performance.

Success Rate Changes
Shortest Path Length [1,100] [100,200] [200,300] [1,100] [100,200] [200,300]

VIN 32.41±4.25 0.00±0.00 0.00±0.00 −36.00±3.12 0.00±0.00 0.00±0.00

GPPN 83.11±1.33 0.01±0.01 0.00±0.00 −12.60±1.29 −0.38±0.11 0.00±0.00

Highway VIN 45.41±4.13 37.41±3.25 21.41±6.98 −45.26±3.48 −28.09±2.98 −32.99±3.11

DT-VIN (ours) 99.96±0.01 99.8±0.12 96.01±0.32 −0.04±0.01 −0.19±0.04 −3.76±0.31
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(a) 35× 35 Maze

(b) 100× 100 Maze

Figure 12: Some examples of the Point Maze tasks.

Table 16: Computational complexity during training of each method, employing 600 layers and trained over 30 epochs,
evaluated in a 35× 35 2D maze navigation.

Method GPU Memory (GB) Wall-Clock Time (h) GPU Hours (h)

VIN 4.2 8.4 8.4
GPPN 182 4.2 12.6
Highway VIN 41.3 14.3 14.3
DT-VIN 7.2 12.3 12.3

Table 17: Computational complexity during training of each method using 5000 layers and training for 90 epochs, evaluated
on a 100× 100 2D maze navigation.

Method GPU Memory (GB) Wall-Clock Time (h) GPU Hours (h)
VIN 35 36 36
GPPN 710 31 310
Highway VIN 111 112 224
DT-VIN (ours) 61.2 97 97

Table 18: Minimal depths of DT-VIN model across various maze sizes.

Maze Size Longest Length of Optimal Path Minimal Depth of DT-VIN

15 80 100
25 200 300
35 300 500

100 1800 5000
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Table 19: Minimal required size of training data for DT-VIN across various maze sizes.

Maze Size Longest Length of Optimal Path Required Number of Mazes Required Amount of Expert Steps

15 80 15K 4M
25 200 15K 24M
35 300 10K 45M

Table 20: The success rate of DT-VIN across various model depths N , maintaining the same size as the original dataset.

Shortest Path Length [1,100] [100,200] [200,300]

N = 300 99.99±0.01 99.81±0.13 92.11±1.31

N = 600 100.00±0.00 99.99±0.01 99.77±0.23

N = 1200 100.00±0.00 99.99±0.01 99.81±0.11
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