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Abstract

In recent years, deep neural networks (DNNs) have witnessed extensive appli-
cations, and protecting their intellectual property (IP) is thus crucial. As a non-
invasive way for model IP protection, model fingerprinting has become popular.
However, existing single-point based fingerprinting methods are highly sensitive
to the changes in the decision boundary, and may suffer from the misjudgment of
the resemblance of sparse fingerprinting, yielding high false positives of innocent
models. In this paper, we propose ADV-TRA, a more robust fingerprinting scheme
that utilizes adversarial trajectories to verify the ownership of DNN models. Bene-
fited from the intrinsic progressively adversarial level, the trajectory is capable of
tolerating greater degree of alteration in decision boundaries. We further design
novel schemes to generate a surface trajectory that involves a series of fixed-length
trajectories with dynamically adjusted step sizes. Such a design enables a more
unique and reliable fingerprinting with relatively low querying costs. Experiments
on three datasets against four types of removal attacks show that ADV-TRA exhibits
superior performance in distinguishing between infringing and innocent models,
outperforming the state-of-the-art comparisons.

1 Introduction

In recent years, deep neural networks (DNNs) have witnessed extensive applications, such as au-
tonomous driving [1], AIGC [2] and medical diagnosis [3]. However, training a practical DNN model
requires significant computational resources, data and time. For example, the training of GPT-3 took
about 21 days with a cost of over 2.4 million dollars [4]. It is thus essential to protect the intellectual
property (IP) of DNN models, especially when the models face the risk of being exposed or stolen by
the so-called model extraction attacks [5].

Current technologies to protect model IP can be broadly categorized into two classes: model water-
marking [6, 7, 8] and model fingerprinting [9, 10, 11, 12]. While the former embeds the watermark
into the model to verify the identity of suspect models, it inevitably interferes in the training phase,
which sacrifices the utility of the model or even introduces new security threats [7, 13]. So the latest
research trend has shifted toward model fingerprinting, which enables the extraction of a model’s
fingerprint without any modifications to the model itself.

A common practice of model fingerprinting methods is to generate a batch of special ad-
versarial samples near the decision boundary as fingerprinting samples for model verifica-
tion [14, 12]. However, these single-point fingerprinting samples are generated independently
from each other, and are highly sensitive to the changes in the decision boundary, given their
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inherent localized perspective. When the decision boundary changes, e.g., due to removal at-
tacks [15, 16], a great number of such fingerprinting samples would become invalid (c.f. Figure 1a).

(a) Single-point Fingerprinting (b) Trajectory Fingerprinting

Figure 1: Comparing single-point fingerprinting samples
and our adversarial trajectories. As can be seen, when the
decision boundary alters (from the solid black line to the
dashed red line), (a) a portion of single-point fingerprinting
samples near the boundary become invalid, while (b) the
majority of samples in the trajectories remain effective.

Moreover, even two unrelated models
may share similar portions of decision
boundaries (i.e., the resemblance of
sparse fingerprinting) [17, 18]. There-
fore, single-point fingerprints are more
prone to incorrectly identifying an unre-
lated (innocent) model as stolen, yield-
ing a high false positive rate in the veri-
fication process, as observed in [10, 12].

In this paper, we propose ADV-TRA, a
more robust fingerprinting method for
DNN models. Instead of using single-
point fingerprinting samples to identify
the model, ADV-TRA exploits novel
adversarial trajectories, each of which
is a chain of progressively adversarial
samples2, representing adversarial level
from weak to strong (c.f. Figure 1b).
The adversarial trajectory, incorporat-
ing multi-level adversarial perturbations,
could provide a more precise localization of the decision boundary, which enables to accurately
capture the alteration in the boundary induced by removal attacks, thus exhibiting a more robust
model IP verification.

Though the idea is simple, there are two major challenges. First, it is difficult to control the trajectory
precisely to pass through the decision boundary with fixed length (i.e., the number of samples in the
trajectory). Fixed step sizes in existing adversarial sample generation may result in too long or too
short trajectories, yielding substantial querying times and unstable local optima, or compromising
effectiveness. To tackle this issue, we view each step size as an optimized variable and design several
loss functions and strategies to enforce fixed-length trajectories with dynamically adjusted step sizes.
This leads to smaller steps for samples near the boundary to focus on more subtle details, while larger
steps for samples far away from the boundary to quickly move towards the boundary.

Second, it is not easy to capture the global fingerprint features to avoid the misjudgment of the
resemblance of sparse fingerprinting, since the trajectory across neighboring classes remains limited
to features of a single decision boundary. To address this challenge, we propose to generate a surface
trajectory that comprises numerous adversarial trajectories orderly across multiple classes, which
can offer a more comprehensive representation of the decision surface (instead of a single boundary),
thereby significantly reducing the false positives of innocent models.

Our major contributions can be summarized as follows:

• We propose ADV-TRA, a more robust fingerprinting scheme that utilizes adversarial trajectories
for model verification. Benefited from the intrinsic progressively adversarial level, the trajectory
is able tolerate greater degree of alteration in decision boundaries.

• We design novel schemes to generate a surface trajectory that involves a series of fixed-length
trajectories with dynamically adjusted step sizes. Such a design enables a more unique and
reliable fingerprinting with relatively low querying costs.

• We conduct extensive experiments on three datasets against four types of removal attacks.
Experimental results show that ADV-TRA exhibits superior performance in distinguishing
between infringing and innocent models, outperforming the state-of-the-art comparisons.

2Here, the term “progressively adversarial samples” refers to a series of samples with progressively increasing
adversarial perturbations, rather than the adversarial sample in the strict sense.
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2 Preliminary

2.1 Adversarial Samples

Given a target model, the goal of adversarial samples is to deceive the model into making incorrect
predictions [19, 20]. In the context of a classification model represented as f , an adversarial sample,
x̂ = x+ δ, is crafted to perturb a clean sample x with a ground-truth label y in such a way that: (1)
the perturbation δ is kept small; and (2) the predicted class for x̂ is altered. This can be formalized as:

min ‖x− x̂‖ s.t. f(x̂) 6= y, (1)

where ‖·‖ is a distance metric, e.g., `2 distance. In this way, the clean sample x and its perturbed
counterpart x̂ may appear nearly identical to human observers, but the target model perceives them as
entirely distinct entities.

2.2 Model Fingerprinting

As a non-invasive way to validate the ownership of a DNN model, model fingerprinting seeks to
detect some fingerprints which is normally the model’s decision boundary. Generally, the procedure
of model fingerprinting involves two main steps: fingerprint extraction and fingerprint verification:

Fingerprint Extraction. Suppose a model owner who trains a source model, his goal is to generate
a number of fingerprinting samples that can uniquely characterize the decision boundaries. To this
end, model fingerprinting borrows ideas from adversarial samples, by generating a set of adversarial
examples that are close to the decision boundary, paired with their corresponding predicted labels,
as the fingerprinting samples [9, 11, 14]. More specifically, given a normal sample x and its ground
truth label y, the fingerprinting sample xfp can be derived from optimizing towards yfp, where yfp is
the fingerprinting label that differs from y. Therefore, for a source model fsrc, the corresponding
fingerprinting sample xfp just crosses the decision boundaries, such that fsrc(xfp) 6= fsrc(x).

Fingerprint Verification. During the verification phase, when dealing with a suspect model fsus,
the model owner can determine the ownership by querying it with the set of fingerprinting samples
Dfp = {(xfp, yfp)}. Based on the output results, the owner selects a testing metric Metric(·), e.g., the
accuracy, and computes Metric(fsus, Dfp). By comparing this result with a threshold, the owner can
make the final judgment regarding any potential ownership infringement.

2.3 Removal Attacks

Removal attacks are designed to invalidate fingerprints by tampering with the source model fsrc.
We denote a model that has been processed by removal attacks as frmv, with the goal being to alter
the model such that frmv(xfp) 6= fsrc(xfp). There are several ways to launch removal attacks, e.g.,
by model modification (fine-tuning [21], pruning [22, 23], adversarial training [24, 25]), or model
extraction [26, 5]. Removal attacks pose a significant threat to model fingerprinting. For example,
when the source model undergoes adversarial training, a considerable portion of these fingerprints
may change (i.e., fingerprinting samples become obsolete in the verification phase) [9, 12, 16].

3 Problem Formation

Figure 2: Illustration of model stealing and
verification.

We consider a typical scenario consisting of two par-
ties: the model owner (defender) and the attacker, as
shown in Figure 2. The model owner trains a well-
performed model (i.e., the source model) and deploys
it as a cloud service or client-sided software. The
attacker attempts to steal the source model in either
black-box or white-box ways.

Attacker’s Strategy. We first consider a strong
white-box attacker, who can get access to the en-
tire information of the source model, including the
model structure and all inner parameters, as well as
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sufficient auxiliary data3, through server intrusion or
eavesdropping on communication channels. Once the attacker acquires the source model, he could
leverage removal attacks to modify the model from either the model structure or parameters, so as to
evade the IP infringement detection.

We also consider a black-box attacker, who only has the input-output prediction interface (a.k.a. API)
to the source model. By leveraging an auxiliary dataset, the attacker is able to duplicate the source
model by multiple querying, e.g., model extraction attack, and utilizing the querying results to train a
substitute model from scratch.

Defender’s Strategy. The goal of the model owner is to verify whether a deployed suspect model is
derived from the source model. The model owner naturally has the white-box access to the source
model, but is assumed to only have the black-box access to the suspect model4 and observe its
prediction for any input. In specific, he can extract a set of fingerprinting samples from the source
model and assess their performance on the suspect model. If the number of fingerprinting samples
that validate successfully exceeds a threshold, then it can be concluded that the suspect model has
been illegally stolen from the source model.

From the perspective of the defender, we aim to design a DNN fingerprinting method satisfying the
following properties: (1) Uniqueness. Uniqueness is crucial for ensuring the reliability and fidelity
of a fingerprinting scheme. Fingerprint extraction should comprehensively and fully capture features,
so as to avoid local resemblance-induced misjudgment. (2) Robustness. A robust fingerprinting
scheme needs to be resistant to removal attacks, even under relatively radical attacking strategies. (3)
Efficiency. Considering the API may charge per query and excessive queries may raise the attacker’s
suspicion, the fingerprinting method may require as few query samples as possible.

4 Design of ADV-TRA

We present the workflow of ADV-TRA in Figure 3. In the trajectory generation phase, given the
source model fsrc and a base sample x0 of class c0, ADV-TRA first initializes the trajectory from one
class c0 towards another class c1. Subsequently, the trajectory is fine-tuned for probing the decision
boundary and then simply bilateralized to enforce a cross-class chain of progressively adversarial
samples. Finally, we introduce the surface trajectory Tsurf which traverses among multiple classes to
fingerprint the entire decision surface. In the verification phase, we use Tsurf to compute the mutation
rate rmut for a suspect model fsus, and determine whether fsus is stolen from fsrc.

4.1 Trajectory Generation

We use adversarial trajectories to fingerprint the source model’s decision boundaries. A naive way of
generating the adversarial trajectory is to record all intermediate products using adversarial sample
algorithms like Basic Iterative Method (BIM) [29]. However, this approach does not consider the
distance from a base sample x0 to its corresponding decision boundary, and often uses a fixed step
size, which would cause too few (or too many) trajectory samples, resulting in lower effectiveness (or
excessive queries, even getting stuck in local optima and unable to cross the decision boundary) .

Therefore, we propose an adaptive step-size adversarial trajectory generation algorithm that can
achieve fixed length between any two classes by dynamically adjusting the step size, by involving the
following four steps: (1) trajectory initialization; (2) boundary probing; (3) trajectory bilateralization;
and (4) trajectory connection.

Trajectory Initialization. Given a source model fsrc, a base sample x0 (with its ground truth label
ybs), and a target label ytgt, a trajectory is initialized just like the process of generating adversarial
samples with gradient descent. Instead of using fixed step size, we view the step size si in all rounds
of iterations s = {s0, s1, . . . , sl−1} as an optimizable variable and generate the initial trajectory Tint:

3The auxiliary data can be collected from the wild or internet with the same distribution as the task do-
main [26] or just synthesized using image generation techniques [27, 28].

4We consider the most difficult and practical settings where the attacker deploys the stolen model on the
cloud and only the prediction interface is provided for user’s queries. Our method can be easily adapted to
white-box cases where richer information such as the outputs of each layer of the model can be obtained.
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Figure 3: Exemplary illustration of ADV-TRA pipeline (the length of Tint l = 3; the length of Tsurf is
2lm, exclusive of c0). A darker color of the trajectory sample indicates a higher level of adversarial
strength towards the target class.

Tint = T (fsrc, x0, ytgt, s) = {x0, x1, . . . , .xl}
s.t. xi+1 = xi − si · sign(∇L(fsrc, xi, ytgt)),

for i = 0, 1, . . . , l − 1,

(2)

where L(fsrc, xi, ytgt) is the loss function to guide the prediction towards ytgt, and l is the length of
Tint.

Boundary Probing. Recall that we use Tint of length l to probe the decision boundary, so it is crucial
to scale Tint such that it precisely reaches the decision boundary, i.e., the last sample xl in Tint happens
to predicted as ytgt (whereas the prior samples are not):

fsrc(xi) 6= ytgt, if i = 1, 2, . . . , l − 1

fsrc(xi) = ytgt, if i = l.
(3)

To this end, we propose a simple length control strategy, which scales Tint by adjusting the step
sizes s with a length control variable αlc (0 < αlc < 1). Specifically, given a trajectory, we first
check whether the requirements in Eq. (3) are satisfied, and further determine whether to increase or
decrease the step size. If the trajectory reaches the decision boundary early (late), we need to reduce
(resp. enlarge) the step size of all steps s by multiplying a length control factor αlc (resp. 1/αlc).

In order to record more details near the decision boundary, the step size si is expected to decay when
current xi are closer to the decision boundary, i.e., si+1 < si. For this purpose, we define the brake
loss function Lbrk as:

Lbrk(s) =

l−1∑
i=0

(αbrk · si − si+1)2, (4)

where αbrk (0 < αbrk < 1) is the brake factor that controls the proportional relationship of two
adjacent step sizes.

Moreover, to ensure the internal forward trend within the trajectory, i.e., xi+1 is closer to the decision
boundary of ytgt than xi, each step si should be greater than 0. So we define the forward loss function
Lfwd to prevent any recession in the trajectory:

Lfwd(s) =

l−1∑
i=0

I(si < 0) · si, (5)

where I(·) is the indicator function.

Hence, training the step sizes s involves the above two optimization objectives:

Min : L = Lbrk(s) + Lfwd(s). (6)

We optimize s using the gradient descent algorithm. Specifically, the optimization terminates when
satisfying the following conditions:(1) The last sample xl in Tint is predicted as ytgt, while the prior
samples are not, as described in Eq. 3. (2) The step size for the next sample si+1 is smaller than the
step size si for the previous sample, i.e., si+1 < si.

Trajectory Bilateralization. Given the optimized Tint, we next extend it to a bilateral trajectory
Tbi. This is necessary due to the random variation in the perturb direction of the decision boundary
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when subjected to removal attacks, and the trajectory is preferred to evenly attend to both sides of the
decision boundary to keep a consistent measuring scale for both sides. We thus utilize a mirroring
operation, centered on xl, to make up the other half of the trajectory, using the reversed step sizes
ŝ = {sl−1, sl−2, . . . , s0}, and a bilateral trajectory Tbi can thus be generated as:

Tbi = T (fsrc, x0, ytgt, s ∪ ŝ) = {x0, x1, . . . , .x2l}, (7)
where Tbi crosses to the other side of the decision boundary starting from xl, and is able to locate the
boundary well with the intrinsic progressively adversarial samples.

It is worth noting that the bilateral trajectory may pass through more than two classes. Such a case
does not lower the efficacy of the trajectory; instead, it serves as a special feature regarding to the
model’s decision surface, which makes our fingerprinting more unique.

Trajectory Connection. So far we can fingerprint a specific decision boundary between two classes
c0 and c1 by a bilateral trajectory T c0→c1

bi . However, a decison boundary alone, as discussed before,
is not sufficient to fully capture the fingerprint of the model. While two unrelated models may share
some similarities along the decision boundary, their decision surfaces would almost never be the
same [17, 18]. Therefore, we introduce the surface trajectory Tsurf to fingerprint the entire decision
surface, which merges all the bilateral trajectories to traverse through all classes. This can be done by
simply connecting the bilateral trajectories in order, i.e., the last sample in T c0→c1

bi is the first sample
of T c1→c2

bi (c.f. Figure 3).

It is noticed that, it may be costly to involve all the bilateral trajectories, especially for complex
models. Therefore, a more practical way for large models is to randomly selectm bilateral trajectories
for the surface trajectory generation (c.f. Algorithm 1 in Appendix B):

Tsurf = T c0→c1
bi ∪ T c1→c2

bi ... ∪ T cm−1→cm
bi , (8)

Our experiments indicate that a small number of m = 10 is sufficient to fingerprint the 100-class
CIFAR-100 and 1000-class ImageNet models.

4.2 Trajectory Verification

In the verification phase, the model owner can query the given suspect model fsus with the surface
trajectory Tsurf. We then calculate the mutation rate of Tsurf from fsrc to fsus by:

rmut =
1

|Tsurf|
∑

xi∈Tsurf

I(fsus(xi) 6= fsrc(xi)). (9)

Here, rmut reflects the proportion of samples in the trajectory whose predictions on fsus differ from
fsrc. Theoretically, an infringement model is expected to possess a lower rmut than an innocent model,
since it originates from the source model fsrc and shares a more similar decision surface with it.
The defender can determine whether Tsurf is also the exclusive trajectory of fsus by comparing the
obtained rmut and a threshold Thrmut (0.5 in our case, equivalent to random guess). In practice, we
calculate the detection rate of a number of adversarial trajectories (i.e. surface trajectories) on the
suspect model to make the final infringement judgment.

5 Experiments

We use three widely-used benchmark datasets, namely, CIFAR-10 [30], CIFAR-100 [30], and
ImageNet [31] , in model fingerprinting domain to evaluate the performance of our ADV-TRA. We
compare our approach with four existing model fingerprinting techniques, including CoRt [11],
IPGuard [14], CAE [9], and UAP [10]. We also evaluate the robustness of ADV-TRA against four
types of removal attacks (fine-tuning [6, 32], pruning [33], adversarial training [34], and model
extraction attacks [26, 27, 35]) across multiple model architectures. In Appendix C we furthermore
list details on experiment setups, including dataset, models, evaluation metrics, and implementation
details.

Moreover, we reveal how removal attacks affect the effectiveness of fingerprints by altering the
decision surface in Appendix D.1. Additionally, we compare a simple approach (trajectory spanning
only two categories) with trajectories spanning multiple categories (see Appendix D.2), and conduct
a series of ablation studies to analyze the impact of parameters of ADV-TRA (see Appendix D.3).
At last, we demonstrate how the progressiveness of the trajectory enables it to locate the decision
boundaries (see Appendix D.4).
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Table 1: Main results on CIFAR-10 dataset. P-20% denotes model pruning with a pruning rate
p = 0.2; Adv-0.001 represents adversarial training with budget ε = 0.001. Fingerprint detection
rate in bold indicates the best performance. For positive models, a higher fingerprint detection rate
is preferred, suggesting better ability to verify IP infringement. In contrast, negative models are
expected to yield a lower detection rate, avoiding false verification.

Model Type CIFAR-10 Fingerprint Detection Rate
Accuracy r̄mut IPGuard CAE UAP Ours

Source Model 0.874± 0.000 0.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Positive
Suspect
Model

FTLL 0.868± 0.001 0.043± 0.002 0.978± 0.001 0.956± 0.002 0.958± 0.001 0.952± 0.000

FTAL 0.867± 0.001 0.058± 0.002 0.942± 0.002 0.934± 0.001 0.954± 0.002 0.950± 0.000

RTLL 0.865± 0.000 0.030± 0.001 0.917± 0.001 0.921± 0.001 0.944± 0.002 0.947± 0.001
RTAL 0.864± 0.000 0.143± 0.001 0.621± 0.001 0.663± 0.002 0.719± 0.001 0.763± 0.002
P-20% 0.872± 0.001 0.035± 0.001 0.895± 0.001 0.924± 0.000 0.946± 0.001 0.955± 0.000
P-40% 0.869± 0.000 0.064± 0.001 0.783± 0.001 0.894± 0.001 0.934± 0.001 0.945± 0.001
P-80% 0.825± 0.002 0.257± 0.003 0.587± 0.001 0.628± 0.001 0.634± 0.002 0.678± 0.001

Adv-0.001 0.859± 0.001 0.238± 0.001 0.423± 0.000 0.421± 0.001 0.513± 0.001 0.758± 0.001
Adv-0.01 0.863± 0.000 0.394± 0.001 0.162± 0.001 0.158± 0.001 0.348± 0.000 0.612± 0.001
Adv-0.1 0.865± 0.001 0.205± 0.002 0.184± 0.001 0.256± 0.002 0.402± 0.002 0.628± 0.001

Negative
Suspect
Model

SAST 0.879± 0.000 0.714± 0.000 0.631± 0.001 0.561± 0.001 0.412± 0.000 0.143± 0.000
SADT 0.876± 0.001 0.722± 0.001 0.497± 0.001 0.422± 0.002 0.382± 0.002 0.126± 0.000
DAST 0.875± 0.002 0.762± 0.001 0.454± 0.001 0.389± 0.002 0.323± 0.001 0.124± 0.001
DADT 0.874± 0.003 0.787± 0.001 0.357± 0.002 0.219± 0.001 0.313± 0.001 0.116± 0.001

5.1 Main Performance

We first validate ADV-TRA on 100 suspect models for each source model, including 50 positive
models under various attacks and 50 negative models on CIFAR-10 dataset. In our paper, the positive
models originate from the source model but have been processed by removal attacks, including model
pruning, adversarial training, and fine-tuning (Fine-Tune Last Layer (FTLL), Fine-Tune All Layers
(FTAL), Retrain Last Layer (RTLL), and Retrain All Layers (RTAL)). The negative models come
from four ways: (1) SAST: the same architecture as victim model and the same training data (Note
that model initialization and training randomness can still lead to differences from the source model);
(2) SADT: the same architecture as victim model but different training data; (3) DAST: a different
architecture but the same training data; (4) DADT: a different architecture and different training data
(For more details, please refer to Appendix C). The results are shown in Table 1.

It is evident that our ADV-TRA outperforms other methods in most cases (12 out of 14), achieving
high detection rates for positive models while maintaining low detection rates for negative models.
Only ADV-TRA is able to clearly separate the two types of models, which is adequate to guarantee
the subsequent verification without any false positives. Its corresponding lower bound of positive
models is 0.612 (corresponds to Adv-0.01), which is still much higher than the upper bound of
negative models (0.143, corresponds to SAST). In contrast, other methods fail to distinguish between
some of the positive models and negative models. It is also surprising to see that our method has a
low false positive rate: the detection rate of ADV-TRA for negative models is much lower than the
three baselines. This is attributed to our design of the chain of progressively adversarial samples,
which is able to simultaneously capture more characteristics at various levels to avoid false positives.

One intermediate product average mutation rate r̄mut reflects the dissimilarity in the decision boundary
of a source model and a suspect model. It can be observed that a removal attack causing higher r̄mut
brings about lower fingerprint detection rate. For example, three fine-tuning methods (FTLL, FTAL,
and RTLL) only result in a r̄mut of less than 0.06, corresponding to a relatively high fingerprint
detection rate of approximately 0.95. Negative models have a high r̄mut (over 0.7) since their decision
boundaries differ more significantly from the source model.

To further validate the ability of the fingerprinting samples to accurately distinguish between positive
and negative models, we present the ROC curve and the distribution of all suspect models in Figure 4a
and Figure 4b. Only ADV-TRA gets an AUC = 1, significantly outperforming other approaches. As
can be seen, CoRt, IPGuard, and CAE all do not readily distinguish between the two types of suspect
models, exhibiting strong cross-model transferability. Especially for general adversarial samples
(CoRt), their transferability to negative models is more obvious, leading to high detection rate. For
ADV-TRA, the detection rate of the negative model is quite low, approximately 0.15. This also serves
as empirical evidence for our analysis that our trajectories have an extremely low false positive rate.
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(a) (b)
Figure 4: The ROC curve (a) and the distribu-
tion (b) of fingerprint detection rate of different
suspect models on CIFAR-10.

(a) CIFAR-100 (b) ImageNet
Figure 5: Fingerprint detection rate vs. fine-
tuning epochs. The gray area represents the
range of fingerprint detection rate for negative
models.

Table 2: Comparison of different fingerprinting techniques. T1%F denotes True Positive Rate when
the False Positive Rate is at 1%.

Method CIFAR-10 CIFAR-100 ImageNet
T1%F T10%F AUC T1%F T10%F AUC T1%F T10%F AUC

CoRt 0.26 0.32 0.70 0.29 0.38 0.72 0.20 0.28 0.59

IPGuard 0.30 0.46 0.77 0.43 0.63 0.80 0.27 0.40 0.69

CAE 0.48 0.64 0.80 0.51 0.70 0.83 0.39 0.48 0.76

UAP 0.76 0.78 0.91 0.77 0.83 0.92 0.46 0.56 0.85

Ours 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.90 0.96

To evaluate the universality of our method, we conduct experiments on three datasets as illustrated in
Table 2. It can be found that our method extracts the most strongly detectable fingerprints, which
achieves AUC of 1.0 on CIFAR-10 and CIFAR-100. In all cases, ADV-TRA has better AUC, T1%F,
and T10%F than other fingerprinting methods. For the models trained on ImageNet, we conjecture
that classification models with more classes have more complex decision boundaries. When subjected
to removal attacks, the model’s functionality (such as predicting the probability of each class) is more
prone to changes, resulting in less robustness compared to models with fewer classes.

5.2 Robustness Against Removal Attacks

Impact of Fine-tuning. We first employ a more radical fine-tuning strategy (i.e., with a higher
learning rate and many more epochs) to better simulate real-world removal attacks. Figure 5 shows
the results on the CIFAR-100 and ImageNet datasets. For CIFAR-100 dataset, we can see that the
FTLL, FTAL, and RTLL models are hardly affected and consistently demonstrate a high fingerprint
detection rate (around 0.96), whereas the detection rate for the RTAL model steadily decreases,
dropping to 0.72 after 50 epochs. As for ImageNet dataset, which has more classes, the detection rate
of the positive models experiences a more significant decline, dropping from 1.0 to below 0.5 within
the first 12 fine-tuning epochs. After that, the FTLL, FTAL, RTLL models begin to stabilize, but the
RTAL model continues declining at a high rate. When the epoch reaches 50, the detection rate of the
RTAL model is 0.290, still significantly higher than the upper bound of the negative models (0.143).
In general, fine-tuning is not a considerable threat to ADV-TRA.

Impact of Pruning. Next, we test the impact of pruning, by varying the pruning rate from 10% to
90%. Figure 6 illustrates the fingerprint detection rate and model accuracy for each pruning level
on CIFAR-100 and ImageNet. We can clearly see that the detection rate has a strong correlation
with the model accuracy. For CIFAR-100 dataset, as the pruning rate increases from 10% to 60%,
the fingerprint detection rate decreases slightly from 0.986 to 0.920. When the pruning rate exceeds
70%, the fingerprint detection rate experiences a sharp decline (from 0.832 to 0.367). The results
on ImageNet dataset also reveal two declining lines with increasing curvature. Even at a pruning
rate of 90%, the fingerprinting samples could no longer reliably differentiate between positive
(0.114±0.064) and negative (0.001∼0.143) models. However, when so many fingerprinting samples
become invalid, the model accuracy also suffers a sharp decrease. In practice, considering the model’s
basic functionality, an attacker would not implement pruning attack of such strength.

Impact of Adversarial Training. To investigate how adversarial training affects the effectiveness of
fingerprinting samples, we vary the perturbation budget ε from 0.001 to 1.0 and attack the source
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(a) CIFAR-100 (b) ImageNet
Figure 6: Fingerprint detection rate (blue line)
and model accuracy (red line) under pruning
attacks.

(a) (b)
Figure 7: The results for adversarial training
on CIFAR-100, varying (a) perturbation budget
and (b) training epochs.

Table 3: Performance under three model extraction attacks.

Attack Dataset Test Accuracy F1-score
IPGuard CAE UAP Ours

PRADA CIFAR-100 0.721 0.70 0.76 0.85 0.90
ImageNet 0.743 0.59 0.63 0.72 0.83

Knockoff CIFAR-100 0.734 0.69 0.84 0.87 0.93
ImageNet 0.764 0.62 0.68 0.75 0.86

HL CIFAR-100 0.723 0.35 0.38 0.51 0.67
ImageNet 0.735 0.29 0.27 0.44 0.58

model for 20 epochs (ε = 1.0 is quite large for adversarial training but we still test with this value).
Figure 7a illustrates the results for CIFAR-100. Interestingly, we observe a trend where the detection
rate first decreases (from 1.0 to 0.60) and then increases (from 0.60 to 0.76), as ε rises from 0.001 to
1.0. A perturbation budget of 0.01 achieves the best attack result, rendering 40% of fingerprinting
samples invalid. This implies that an attacker does not necessarily have to impose adopt higher ε
to launch stronger attacks. For ε = 0.01, our approach successfully detects 60% of trajectories,
which are about 3 times that of IPGuard and CAE, and 1.5 times that of UAP, demonstrating strong
robustness against adversarial training. Additionally, we record the results during 50 epochs of
adversarial training in Figure 7b. The first 5 epochs witness a big drop of fingerprint detection rate.
As the number of training epochs continues to increase, the fingerprint detection rates of these models
remains almost unchanged. We speculate that the models have already attained the ε−adversarial
robustness during the first few training epochs. As such, subsequent training does not further decrease
the effectiveness of fingerprinting samples.

Impact of Model Extraction Attacks. Since the fingerprint detection rate alone cannot reflect the
gap between positive and negative models, here, we calculate the F1-score of correctly identified
fingerprint samples under PRADA and Knockoff attacks. From the results in Table 3, we can observe
that our method achieves the best results, leading the second-place method (UAP) by nearly 0.1 under
all attacks. It is worth noting that better extraction performance (higher test accuracy) is inevitably
accompanied by a substitute model that learns a decision surface more similar to the source model.
This also leads to a better transfer of the fingerprint space (a part of the decision surface) as well.
Moreover, as a data-free model stealing attack with access to only hard labels, HL distills a relatively
more dissimilar substitute model compared to the source model under less prior knowledge, resulting
in the lowest F1-score among the four fingerprinting methods.

6 Conclusion

In this paper, we have presented ADV-TRA, a robust fingerprinting scheme that leverages adversarial
trajectories to fingerprint the DNN model. ADV-TRA generates a chain of samples with varying
levels of adversarial perturbation, and further extends to the surface trajectory that involves a series
of fixed-length trajectories with dynamically adjusted step sizes. By doing so, the alteration in the
decision boundary can be captured more accurately, and the misjudgment caused by local resemblance
from innocent models can be significantly reduced. Extensive evaluation results on three datasets
demonstrate that ADV-TRA is able to defend against various removal attacks even under severe attack
intensities, exhibiting greatly superior robustness and lower false positive rates compared to existing
state-of-the-art fingerprinting methods.
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Appendix

In this appendix, we present the following additional contents: (1) A review of model fingerprint-
ing methods and fingerprint removal attacks (Appendix A); (2) The pseudocode of our ADV-TRA
(Appendix B); (3) Detailed settings for our experimental setups (Appendix C); (4) Additional experi-
mental results, including robustness analysis with decision boundary visualization (Appendix D.1),
comparison of the surface trajectory and the bilateral trajectory (Appendix D.2), ablation studies
analyzing the impact of various hyperparameters. (Appendix D.3), the visualization of adversarial
trajectories (Appendix D.4), and time overheads (Appendix D.5); (5) Discussion of limitations and
the future work (Appendix E); (6) Technical details about our experiment environment (Appendix F.1)
and the instruction for the code of our method (Appendix F.2).

A Related Work

A.1 Model Fingerprinting

In order to protect the IP of DNN models, model fingerprinting extracts the features of a model in a
non-invasive way, usually by detecting the decision boundaries [37].

Most fingerprinting approaches utilize adversarial samples to probe the decision boundaries of the
models. Cao et al. [14] argue that a model can be uniquely represented by its decision boundary.
Hence, they find some special data points (i.e., adversarial samples) near the boundary to mark the
target model, which is the first model fingerprinting method. Later, several studies are working
to explore the transferability of adversarial samples. For instance, Lukas et al. [9] design special
adversarial samples that show strong transferability for homology models. They also study the impact
of some factors (e.g., model architecture and removal attacks) that affect such transferability. Lukas
et al. [10] also point out that prior fingerprinting methods still suffer a high false positive rate: two
unrelated models always have the same fingerprinting samples due to the adversarial transferring.
Instead, they generate Universal Adversarial Perturbations to match the model. Any normal sample
added with such perturbation would shift to the decision boundary. However, from the perspective
of ownership verification, this kind of perturbation lacks security and uniqueness [6, 38]: Once the
attacker knows the pattern of perturbation, he can easily invalidate all fingerprinting samples by
removing the perturbation from them.

In addition to adversarial-based model fingerprinting, some studies use the intermediate computations
to measure the model similarity. For example, Maho et al. [39] design a greedy algorithm that
leverages few benign inputs and C.E. Shannon’s information theory to quantify the statistical similarity
between the internal outputs of two models. Guan et al. [12] select samples with inconsistent
prediction results across two groups of reference models and utilize their pairwise relationships for
suspicious model identity recognition. Besides, the model internal parameters can also serve as
fingerprints. Similarly, Jia et al. [18] construct a reference dataset to train a linear model, and compute
the cosine distance between the weights of the linear models. Zheng et al. [41] project the front-
layer weights onto a random space defined by the model owner’s identity, allowing non-repudiable
and irrevocable ownership proof against model IP misappropriation and ownership fraud. Recent
works [11, 42] build an audit framework to assess the infringement of model IP. The former leverages
multiple testing metrics (e.g., neuron output distance) to calculate the similarity of two models. The
latter projects the high-dimensional model parameters into low-dimensional data and compares their
distributions.

For model fingerprinting, one open question is how to extract fingerprints that satisfies both uniqueness
(low false positive rate) and robustness (robust against removal attacks) [43]. Current fingerprinting
schemes, which verify with a special type of adversarial samples individually, are less than satisfactory,
especially for removal attacks like adversarial training [25, 36]. In this paper, we attempt to generate
a chain of samples that have intrinsic connections with each other, using them to capture more
comprehensive characteristics of the decision surface to enhance both the uniqueness and robustness.

A.2 Removal Attacks

Several studies are also working on exploring the vulnerabilities of model fingerprinting through
removal attacks. Removal attacks involve modifying the model, including parameter modifications
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such as fine-tuning [21] or structural modifications such as pruning [44]. Such modifications can
remove or alter the original fingerprints of the model, leading to the failure of model identification.

Even though many works [14, 9, 10, 11] on model fingerprinting report their robustness against a
variety of removal attacks, the strength of the simulated removal attacks in these works is relatively
weak. A recent study [36] makes a comprehensive robustness evaluation for existing watermarking
and fingerprinting methods, and points out that none of the surveyed schemes is robust in practice.
Yang et al. [32] emphasize that changes in a model’s decision boundaries caused by model modifica-
tion could render fingerprinting methods less reliable, particularly for input modification [45] and
adversarial training [25]. Another kind of removal attack originates from model extraction [5], where
an attacker can distill knowledge from the source model and train a substitute model. PRADA [26]
aims to steal black-box deployed victim models, with the objective of obtaining a substitute model
with strong transferability of adversarial samples. Apart from the aforementioned model modification
attacks, Wang et al. [46] also find randomized transformations to input samples can significantly
undermine query-based fingerprinting methods. Likewise, Jiang et al. [47] propose an adversarial
post-processing method to evade copyright detection of the model’s products.

In this paper, we select four representative removal attacks, including three approaches capable
of altering model decision boundaries (fine-tuning, pruning, and adversarial training), as well as
three model extraction attacks, to evaluate the robustness of model fingerprinting methods. We also
strengthen the intensity of the removal attacks to simulate a more powerful attacker that may occur in
real-world scenarios.

B Pseudocode for ADV-TRA

Algorithm 1 ADV-TRA
Input: Source model fsrc, base sample x0, number of classes m, length of trajectory l, number of
generation iteration t.
Output: Surface trajectory Tsurf.

Randomly choose pre-defined classes c = {c1, ..., cm}
Let Tsurf = ∅
for cj in c do

for epoch = 1 to t do
Initialize step size of each step s = {s0, s1, . . . , sl−1} . Trajectory initialization
s← LengthControl(fsrc, s, x0, cj , αlc)
Calculate Lbrk(s) and Lfwd(s)
Optimize s with Lfwd and Lbrk . Boundary Probing

end for
Tbi = T (fsrc, x0, cj , s ∪ ŝ) . Trajectory Bilateralization
Tsurf ← Tsurf ∪ Tbi . Trajectory Connection
Update x0 with the last sample of Tbi

end for
return Tsurf

C Experiment Setup

Datasets. We consider three commonly used image datasets CIFAR-10 [30], CIFAR-100 [30], and
ImageNet [31] in our experiments.

• CIFAR-105. This dataset is a widely used benchmark dataset in the field of computer vision
and machine learning. It consists of 60, 000 32× 32 images in 10 classes, with 6, 000 images
per class.

• CIFAR-1005. This dataset consists of 60, 000 color images of 100 classes containing 600
images each. It has the same image size as CIFAR-10 but contains 20 superclasses instead of 10
classes, with each super class having 5 sub-classes.

5http://www.cs.toronto.edu/~kriz/cifar.html
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• ImageNet6. This dataset is a large-scale dataset containing 14 million 224 × 224 images of
1, 000 classes. It continues to be one of the most popular and challenging datasets for benchmark
classification and detection models.

For both CIFAR-10 and CIFAR-100, we allocate 50, 000 samples for training the model,
while reserving the remaining 10, 000 samples for the attacker to launch removal attacks.
For ImageNet, considering the huge computation cost for training a model and suspect models
from scratch, we utilize pre-trained models available in Pytorch7. We allocate 60, 000 samples
to launch removal attacks.

Models. For the source models, we consider ResNet20 for CIFAR-10, WideResNet for CIFAR-100,
and ResNet50 for ImageNet. Specifically, for the negative models from DAST and DADT, we
widely adopted other model architectures, including 6 different structures: VGG16, ResNet152,
DenseNet201, EfficientNetV2, InceptionV3, and MobileNetV3.

Existing Defenses. We compare ADV-TRA with the following four fingerprinting methods against
the removal attacks: (1) CoRt [11] generates a series of adversarial examples using FGSM [19]
and PGD [34]. (2) IPGuard [14] designs a type of fingerprinting samples that is superior to
general adversarial samples and can better locate the decision boundaries. (3) CAE [9] proposes
to use multiple surrogate models to find the conferrable fingerprinting samples that demonstrate
better transferability on stolen models. (4) Given any normal sample, UAP [10] designs a special
adversarial perturbation that only reacts to the source model.

Implementation Details. In general, we train the source model and negative models for 200 epochs
with a batch size b = 128. We use SGD optimizer with learning rate of 0.1, momentum of 0.9, and
weight decay of 5e-4. Additionally, we adopt a learning rate scheduler to decay the learning rate
by 0.1× at epochs 60, 120, and 160. For all fingerprinting methods, we select 100 clean samples to
generate fingerprinting samples. For our ADV-TRA, we also choose 100 (clean) base samples to
generate 100 trajectories (the number of Tbi m = 10 (in Appendix D.2, we discuss the impact of the
m on performance) for CIFAR-100 and ImageNet; the length of Tint l = 2), and set the threshold
for mutation rate Thrmut = 0.5, the brake factor αbrk = 0.9. For each set of experiments, we build a
distinct source model for every dataset. Within each set, we perform five trials and then compute the
average results.

Removal Attacks. In this paper, we adopt four common removal attacks to evaluate the robustness
of fingerprinting methods.

• Fine-Tuning. Fine-tuning uses auxiliary data to continue to train a pre-trained model (source
model). We adopt four common strategies as in [6, 32]: (1) Fine-Tune Last Layer (FTLL): only
update the last layer while training; (2) Fine-Tune All Layers (FTAL): update all layers while
training; (3) Retrain Last Layer (RTLL): re-initialize the last layer before FTLL; and (4) Retrain
All Layers (RTAL): re-initialize the last layer before FTAL. We strengthen the attack intensity
by lengthening the fine-tuning epoch as well as increasing the learning rate. Specifically, we
apply SGD optimizer with a learning rate η = 0.001 for FTLL and FTAL attack. For RTLL and
RTAL attacks, we utilize SGD optimizer with a learning rate of 0.01, momentum of 0.9, and
weight decay of 5e-4. We set the epochs of all fine-tuning strategies to 50.

• Pruning. Pruning is used for model compression, so that the model’s memory for fingerprints
diminishes over the pruning process. We utilize the technique in [33] for our evaluation. We
vary the pruning rate p from 0.1 to 0.9, i.e., pruning p fraction of parameters which have the
smallest absolute values. After pruning, we fine-tune the model for 10 epochs for CIFAR-10
and CIFAR-100, and 20 epochs for ImageNet, in order to ensure the accuracy of the model.

• Adversarial Training. Adversarial training helps models withstand misleading inputs by
incorporating them during the training process to improve the model’s robustness. We use the
method in [34] in our experiments. We adopt standard `∞ PGD training, which has been proved
to achieve the best empirical robustness. In detail, we leverage advertorch8 library to generate
specified adversarial samples. We vary the perturbation budget ε from 1e-4 to 1.0 to generate
adversarial samples used for adversarial training. To avoid compromising the model’s accuracy,

6https://image-net.org/
7https://pytorch.org/vision/stable/models.html#classification
8https://github.com/BorealisAI/advertorch
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Figure 9: The visualization for the decision surface under various removal attacks. Each color represents a class.
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Figure 8: Visualization for the decision surface under various removal attacks. Each color represents
a class.

we incorporate normal samples during adversarial training. Additionally, we enhance the attack
intensity by prolonging the training epochs to 50.

• Model Extraction Attack. Model extraction enables an attacker to derive a substitute model
from the source model. We apply three commonly used attacks, namely, PRADA [26], Knock-
off [27] and HL [35] for evaluation. PRADA is a benchmark extraction attack in model IP
protection, which selects specific hyperparameters and generates synthetic data to train a sub-
stitute model with high watermarking transferability. Knockoff collect data from different
domains and train a substitute model with fewer queries in a reinforcement learning manner. As
a data-free model stealing attack, HL leverages the structure of DCGAN and alternately trains
a substitute model and generator in a hard label setting. All extraction attacks adopt the same
model architecture as the source model.

Metrics. In our experiments, we use Fingerprint Detection Rate as the main evaluation metric, which
is widely used in previous studies [14, 10, 36]. This metric represents the proportion of fingerprinting
samples (adversarial trajectories in our case) matched with a suspect model. We also employ the
Receiver Operating Characteristic (ROC) curve, Area Under the Curve (AUC), T1%F, and T10%F as
the evaluation metrics. The ROC curve plots the True Positive Rate (TPR) against the False Positive
Rates (FPR) at various threshold settings. T1%F and T10%F represent the TPR values at 1% and
10% FPR, respectively, with higher values indicating better verification performance. These metrics
can be used to measure the ability of the fingerprinting samples to accurately distinguish the positive
models from the negative ones. To measure the impact of removal attacks on decision boundaries, we
compute the average mutation rate rmut across multiple suspect models in Table 1, represented as
r̄mut, which quantifies the discrepancy in decision boundaries between the suspect and source models.
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(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet

Figure 9: T1%F and T10%F with the varying number of classes spanned by trajectories. Note that
when the number of classes spanned by a trajectory is two, it is equivalent to a bilateral trajectory as
defined in Section 4.1 in the main text.

D Additional Experimental Results

D.1 Robustness Analysis with Decision Boundary Visualization

To better understand how the removal attacks affect the source model from the perspective of the
decision boundary, we leverage a recent model visualization technique [17] based on data manifold9.
This method requires three base images to construct the decision boundary surface. We randomly
select three samples belonging to the classes FROG, AIRPL, and BIRD from CIFAR-10 dataset,
and the results are presented in Figure 8. It can be found that stronger attacks (Adv-0.01, RTAL,
and P-80%) induce greater changes to the decision surface, which is consistent with their relatively
lower fingerprint detection rates shown in Table 1 in the main text. Compared to the source model,
the Adv-0.01 model exhibits a reduction in the number of regions corresponding to the CAT class
(red region) from 3 to 1. Additionally, there is a significant increase in the area corresponding to the
DEER class (orange region). It can also be observed that RTAL greatly alters the decision surface by
eliminating most of the smaller regions. In general, the source model is more vulnerable to adversarial
training attacks. For negative models, even though the SAST model adopts the same training data and
model architecture as the source model, the differences between its decision surface and the source
model’s are still greater compared to the positive models. This is why model fingerprinting is able to
distinguish between infringing positive models and innocent negative models. It can also be observed
that there is an obvious inductive bias of the model architecture from DAST and DADT models.

D.2 Surface Trajectory vs. Bilateral Trajectory

In this part, we investigate the advantages of the surface trajectory over the bilateral trajectory. We
evaluate the ability of multi-class trajectories to capture global fingerprint features on 100 suspect
models (same setup as Section 5.1.), assessing whether traversing more classes can help reduce the
misjudgment of trajectories. To ensure a fair comparison across different experimental groups and
avoid the impact of threshold selection, we utilize the T1%F and T10%F metrics. The results are
shown in Figure 9.

Obviously, a trajectory crossing only two classes (corresponding to the bilateral trajectory) is in-
sufficient to adequately extract the “unique” or “global" fingerprint features of the model, and its
performance may even be inferior to that of single-point fingerprinting methods (e.g., UAP, see
Table 2 in the main text). However, when the number of crossed classes increases from 2 to 6,
both T1%F and T10%F show significant improvements, strongly implying a sharp fall in the false
positive rate. For CIFAR-10 and CIFAR-100 datasets, T1%F and T10%F approach 1.0 once the
number of crossed classes exceeds 6, whereas for ImageNet dataset, T1%F and T10%F continue
to increase slowly as the number of spanning classes increases. This may be attributed to the large
number of classes in ImageNet dataset, which has a more complex decision surface and a higher
level of intricacy in the fingerprint patterns. As mentioned in Section 4.1 in the main text, a bilateral
trajectory Tbi only attends the decision boundary between two classes, which is still restricted to local
fingerprinting. In contrast, a surface trajectory Tsurf that spans multiple classes has the potential to

9https://github.com/somepago/dbViz
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(a) CIFAR-100 (b) ImageNet

Figure 10: The distribution and AUC value of fingerprint detection rate for two types of suspect
models under different trajectory lengths. Length=1 corresponds to the single-point fingerprinting
method. We choose UAP as the baseline in view of its excellent performance.

(a) CIFAR-100 (b) ImageNet

Figure 11: Performance over different brake factor αbrk for various trajectory lengths.

capture richer and higher-level features of decision surface, thereby significantly reducing the false
positives of innocent models.

D.3 Impact of Parameters

D.3.1 Impact of Trajectory Length

The length of adversarial trajectories is a critical hyperparameter that determines the effectiveness
and stability of ADV-TRA. In this part, we vary the length of trajectories from 10 to 320. Here, a
length of 320 signifies that for a trajectory traversing 10 classes, there would be 32 samples per class.

As shown in Figure 10, as the length increases from 10 to 80, the gap between positive models
and negative models gradually widens until completely separated, and the range of negative models
shrinks from 0.597 to 0.095. However, when the length exceeds 80, the trend is reversed. When the
length is 320, we can see an obvious breakdown. The AUC value maintains 1.0 within the length
ranging from 20 to 180. Even when the AUC drops to 0.942 at the length of 320, it is 0.03, still
higher than the baseline (0.91). Overall, for lengths surpassing 20, the effectiveness of our method is
distinctly superior to the baseline.

Since the distance from a sample to the decision boundary is fixed, a longer length means smaller
step sizes and more samples in the trajectory. Ideally, a trajectory with more samples could provide
richer details regarding the decision boundary. However, there is a convergence problem during
trajectory generation: when the step size is too small, it may get trapped in local optima, rendering
the trajectory difficult to cross over the decision boundary. We observe that some of the trajectories
do exhibit this phenomenon when the length is 320. This is a common problem for gradient-based
optimization algorithms. Therefore it is important to determine the length of the trajectory. Based on
the experimental results, setting the length between 20 to 80 is a wise choice.

D.3.2 Impact of Brake Factor

Another key point is the brake factor αbrk, which regulates the proportional relationship between the
step sizes of two adjacent steps in the trajectory. A small αbrk may result in subsequent excessively
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Figure 12: t-SNE visualization of the adversarial trajectory. It depicts an adversarial trajectory
traversing four classes starting from a base sample (red), where larger points denote the first samples
crossing the decision boundary of a new class. We sample a base sample from class 0 and guide it
through class 1, 2, and 3.

small step size, getting trapped in local optima. On the contrary, a large αbrk may fail to capture the
rich information around the decision boundary.

As shown in Figure 11, we can clearly see that both αbrk and the length jointly affect the AUC value.
When the αbrk is small, the effectiveness of the verification dramatically decreases and becomes
almost equivalent to random guessing. Interestingly, shorter trajectories tend to perform better under
extremely low αbrk values. In other words, shorter trajectories show greater tolerance for smaller αbrk,
as step sizes decrease exponentially along the trajectory. For example, the AUC curve for a length
of 40 begins to experience substantial growth around αbrk = 0.3, whereas the curve for a length of
160 does not increase until αbrk = 0.6. It can also be obviously seen that the peak of the AUC curve
occurs at αbrk < 1 (αbrk = 1 corresponds to a fixed step size). This is more pronounced on ImageNet
dataset, which demonstrates that the strategy of decaying step size does help to attend more local
details of decision boundaries.

D.4 Visualization

Through t-SNE [48] visualization technique, we visualize our adversarial trajectory fingerprinting
in Figure 12. It can be seen that an adversarial trajectory contains multiple sub-fingerprints (i.e.,
bilateral trajectories) with varying levels of perturbations. The trajectory starts from a base sample,
and progresses toward specified classes until crossing multiple classes. This process generates a
series of coherent sub-fingerprints. The number of sub-fingerprints contained in each class is fixed,
thus realizing the trajectory of a fixed length, which makes the required query number limited.
Furthermore, the progressiveness of the trajectory enables it to mark the positioning of decision
boundaries (i.e., where the larger point is located), thereby enabling measurement of how much the
decision boundaries have changed due to removal attacks. Compared to single-point fingerprints,
the distinctive verification approach of regarding the whole trajectory as one fingerprint can capture
richer decision boundary information, thereby significantly enhancing robustness against removal
attacks and reducing the possibility of false positive identification.

D.5 Time Overheads

As our fingerprinting trajectories requiring iterative optimization, ADV-TRA incurs a higher gen-
eration time compared to single-point fingerprinting methods. Table 4 reports the time required
to generate 10 trajectories (each containing 40 samples) and an equivalent set of 400 single-point
fingerprints using the PGD algorithm. It is evident that the time needed to generate trajectories is
significantly less than the time required to train a model. Therefore, it is acceptable for the model
owner to generate a number of fingerprinting trajectories for future ownership verification. Further-
more, in our subsequent experiments (see Appendix D.2 and D.3), we find that the time overheads
can be further reduced (while achieving decent performance) by shortening the trajectory length and
decreasing the number of classes spanned by the trajectory. During the ownership verification phase,
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Table 4: Time overheads for training the model from scratch, PGD-fingerprinting, and ADV-TRA.
Note that we use a pre-trained model for the ImageNet case.

CIFAR-10 CIFAR-100 ImageNet
Model Training 1h37m 2h41m -
PGD 49s 52s 2m55s

Ours 5m42s 5m53s 27m13s

since querying the black-box model is almost real-time, we do not discuss the time overheads at this
stage.

E Discussions

Expansibility. In our design, the trajectory generation method that records the evolution process
of adversarial samples is built upon the classical Basic Iterative Method [29] by incorporating
a series of optimization strategies. More recent works towards more undetectable [49, 50] and
transferable [51, 52] adversarial samples can also be combined with our method to further enhance
the protection performance.

Universality. Most existing model watermarking or fingerprinting methods mainly focus on image
classification models and cannot be directly extended to other types of DNN models, such as
generative models. When facing new model architectures and input-output mappings, extending our
approach to other models can be challenging. To the best of our knowledge, our approach is the
only method so far that quantifies model decision boundary altering through applying adversarial
perturbations at different levels, which may allow it to adapt to other models more readily compared
to single-point fingerprinting methods.

Advanced Removal Attacks. First, in realistic scenarios, an attacker who attempts to remove
fingerprints from a target model via removal attacks may not rely on a single type of attack, but
instead employ a combination of several attack methods to achieve better fingerprint removal. In such
cases, the reliability of existing fingerprinting schemes may be significantly undermined. Second, our
experimental results show that adversarial training poses a greater threat compared to other removal
attacks. This is possible because adversarial training effectively improves the robustness of the model,
i.e. the ability of the model to resist adversarial samples. That is to say, the model’s robustness may
instead degrade the effectiveness of fingerprinting methods. In addition to adversarial training, there
are still many other techniques that can improve model robustness, such as adding regularization
terms during training. Therefore, further research is needed to investigate the impact of these model
robustness enhancement techniques on model fingerprinting.

Limitations. Unlike traditional single-point fingerprinting methods where each fingerprinting sample
corresponds to a single sample, we use a chain of samples (i.e., the trajectory) to jointly fingerprint
the decision surface. While our fingerprinting method is able to accurately capture the global and
more rich fingerprint features, it inevitably increases the number of queries needed. For example,
the total length of a trajectory that crosses m classes, with 2l samples in each class, is m× 2l. This
also means the number of queries required for a trajectory during the verification phase. In practice,
multiple trajectories are often needed to reduce randomness. For DNN models deployed in the
cloud as prediction interfaces, too many queries may increase the cost of verification (Of course,
model owners can apply for unrestricted/unobstructed model verification from third-party copyright
organizations). Therefore, in our design we have take efforts to restrict the needed querying costs
by using a fix-length trajectory, instead of the traditional adversarial sample induced trajectory with
uncontrollable length. In our future work, we plan to explore the adversarial trajectory generation
method using even fewer queries to further improve the querying efficiency.

Broader Impacts. In this paper, we propose ADV-TRA for protecting the copyright of deep learning
models. Under the black-box deployment of suspect models, it utilizes the progressive adversarial
perturbations to detect similarities in the decision boundaries of the models. This new paradigm
exhibits stronger robustness and better decision boundary localization capability compared to existing
single-point fingerprinting methods, especially when facing removal attacks. Our approach not only
provides a new perspective for protecting the IP of DNNs but also promotes the development of
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interpretability for black-box models. As a method for protecting model copyrights, this paper is
dedicated to safeguarding the rights of legitimate model owners. In summary, this paper drives
the development of the copyright community in the AI era, providing security guarantees for the
advancement of AI.

F Additional Information

F.1 Experiment Environment

Hardware Information. We conduct all experiments on a server equipped with:
• CPU: An AMD Ryzen 9 7950X CPU 16-Core@4.50GHz
• GPU: 2 NVIDIA GeForce RTX 4090 GPUs each with 24 GB of memory
• Memory: 64 GB, DDR4, 5600MHz

Operating Systems and Environment.
• Operating System: Windows 11 Professional 22H2
• Environment: We use Anaconda to build Python environment and Spyder as the compiler. All

experiments are implemented based on Pytorch [53].
• Libraries: Python=3.8.15, torch=1.12.0, torchvision=0.13.0, numpy=1.23.4, advertorch=0.2.3,

scikit-learn=0.20.0

F.2 PyTorch Code

The code of ADV-TRA is available at: https://github.com/SPHelixLab/ADV-TRA.

Getting Started. To run this repository, we kindly advise you to install Python 3.8 and PyTorch 1.12
with Anaconda. You can download Anaconda and read the installation instructions on the official
website10.

Create a new virtual environment named “ADV-TRA” based on Python 3.8 and enter this environment:

1 conda create -n ADV_TRA python =3.8
2 conda activate ADV_TRA

Install PyTorch and related packages in torch environment:
1 conda install pytorch ==1.12.1
2 conda install torchvision -c pytorch
3 pip install numpy 1.23.4 advertorch =0.2.3 scikit -learn 0.20.0

File Structure. We now introduce the composition of Python files and their implemented functions
in this project.

Process the raw dataset and partition it for attacker, defender, and test set:
1 ./utils/data_process.py

Train the source model:
1 ./utils/utils.py

Include the design of the model structure involved in this paper:
1 ./utils/models.py

Generate adversarial trajectories as the fingerprints as well as verify the suspect model with a number
of adversarial trajectories:

1 ./utils/adv_gen.py

10https://www.anaconda.com/download/
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The main program for our framework:

1 ./utils/main.py

Note that the main program contains numerous parameters. You can print the help descriptions for all
parameters with the following command:

1 python main.py -h
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state that this paper focuses on IP
protection for DNNs, and the introduction outlines the contributions in separate points.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our proposed method in Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have presented the steps of our algorithm in detail in Section 4, and
provided pseudocode in Appendix B for reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We have made the code for our proposed algorithm publicly available through
URLs (in Appendix F.2) and supplementary material, and we have introduced the run
environment and operation instructions in Appendix F.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and test details (including datasets, models, hyperparameters,
etc.) can be found in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have conducted repeated experiments to obtain more comprehensive results,
including the use of standard deviation in Table 1 and Figure 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: These information can be found in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research conforms the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper has positive impacts on the protection of deep learning model
copyrights, which is discussed in Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Since this paper does not release any data or pre-trained models, it has no such
risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper that produced the code package or dataset
and provided corresponding URLs in Appendix C.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have provided the code through URLs as well as supplementary material,
which includes documentation instructions for its usage.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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