
Positive Experience Reflection for Agents in
Interactive Text Environments

Philip Lippmann Matthijs T.J. Spaan Jie Yang
Delft University of Technology

{p.lippmann, m.t.j.spaan, j.yang-3}@tudelft.nl

Abstract

Intelligent agents designed for interactive environments face significant challenges
in text-based games, a domain that demands complex reasoning and adaptability.
While agents based on large language models (LLMs) using self-reflection have
shown promise, they struggle when initially successful and exhibit reduced effec-
tiveness when using smaller LLMs. We introduce Sweet&Sour, a novel approach
that addresses these limitations in existing reflection methods by incorporating
positive experiences and managed memory to enrich the context available to the
agent at decision time. Our comprehensive analysis spans both closed- and open-
source LLMs and demonstrates the effectiveness of Sweet&Sour in improving
agent performance, particularly in scenarios where previous approaches fall short.

1 Introduction

Intelligent agents, designed to interact with and make decisions in dynamic environments, have
become a central focus in AI research, with text-based games (TBGs) emerging as a particularly
challenging domain for evaluating these agents’ reasoning, adaptability, and learning abilities [2, 21].
Originally popular in the 1970s as text adventure games,1 TBGs present players with textual descrip-
tions of environments, requiring them to input natural language commands to achieve objectives [4].
For instance, determining if a metal fork is conductive involves locating the fork, assembling a circuit,
and analyzing the result. Navigating TBGs demands that agents exhibit a combination of abilities,
including planning, memory retention, spatial reasoning, and common sense knowledge [22].

Previously, deep reinforcement learning and behavior cloning were the primary approaches to develop
agents to play TBGs [1, 25]. However, recent research shows that agents based on pretrained large
language models (LLMs) are more effective at navigating TBGs [11]. A key factor in their success is
the integration of internal reflection to improve planning [24, 9, 7].

Self-reflection, closely related to self-refinement, is a form of reasoning that occurs after receiving
binary or scalar feedback from the environment [12]. In this process, the LLM reviews its actions
and their outcomes, considering what went wrong and potential ways to improve [23]. By iteratively
adjusting its strategy based on verbal reinforcement, conveyed through textual feedback, the agent
refines its planning for subsequent attempts [17]. However, reflection also has several limitations,
including 1) underwhelming performance when agents are correct initially [10], 2) significantly worse
efficacy when using smaller LLMs [11], and 3) dependence on external feedback [29].

Our Contributions In this work we conduct a comprehensive analysis of LLM-based agents employ-
ing reflection approaches in TBGs and evaluate their performance across closed- and open-source
LLMs. To address the limitations of poor performance when agents are initially successful and the
diminished efficacy of smaller LLMs, we propose Sweet&Sour to leverage positive experiences and

1Try it yourself: https://www.microsoft.com/en-us/research/project/textworld/try-it/

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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Figure 1: Comparison of used prompting methods to play ScienceWorld. ReAct introduces a THINK
action to explicitly reason regarding the next step. Reflexion leverages self-reflection across attempts
to learn from unsuccessful tries and stores these in memory. Sweet&Sour not only performs self-
reflection after failures but also after each completed sub goal, making its reflection instantly available.

managed memory to create a richer context for self-reflection. Our findings demonstrate that our
method improves the performance of agents using reflection, particularly in scenarios where they
previously struggled, enabling more robust and generalizable learning across tasks and model sizes.

2 Methodology

Background Assuming an LLM behaving as an actor model as part of our agent – i.e. generating
actions based on the current state and policy, analogous to traditional policy-based RL setups –
we sample an action at from the current policy πθ at time t and receive an observation from the
environment ot. When a game begins, the agent makes its first observation o0 at time step t = 0.
This first observation differs from subsequent ones, as it consists of the goal description d, as well
as an analysis of the starting room (i.e. the output of the “look around” command). Subsequently,
the agent can perform an action at at each time step and receives a corresponding observation ot
from the environment. The agent has an inventory it in which to store items. Each task consists of a
number of sub tasks (such as finding a key object), the completion of which grants the agent a sparse
reward, which adds to its current reward rt. The game continues until the agent has achieved the goal
outlined in d and receives the full reward as final score, or the maximum number of steps – which we
set to 150 – is reached, in which case rt will become the final score. A detailed problem formulation
and assumptions we make are given in appendix A.

Self-Reflection Reflection occurs in addition to the acting LLM. Here, the agent reviews the at and
ot associated with previous unsuccessful attempts to verbalize the reason for failure. This process
typically involves maintaining a persistent history of insights gained across attempts, which the LLM
uses as additional context for its reflections to improve future decision making for the next attempt [17].
However, since other self-reflection methods focus on learning from failures [16, 28, 30, 8, 27], they
overlook the importance of reinforcing successful behaviors in a similar way.

Sweet&Sour To address the limitations of existing reflection methods, we enhance self-reflection by
incorporating both positive (sweet) and negative (sour) experiences into the reflection process. This
enables the agent to learn effectively from successful actions by reinforcing strategies that lead to
positive outcomes while still learning from failures. When the current policy is achieving rewards, we
query the agent to extrapolate from it, encouraging the agent to verbalize what made its current policy
successful and what can be generalized from this. This is visualized in figure 1 and an example of this
is shown in appendix B. Our method is broadly applicable to agents in interactive text environments
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with feedback using self-reflection, including those that build additional complexity on top of the
core reflection loop, such as grounding [11] or gradient learning [27]. We leave the study of these
additional use cases for future work.

Previous works store their reflections gained from unsuccessful attempts in something akin to a long-
term memory to make them available to the agent across attempts [8, 17]. Instead, to complement
Sweet&Sour, we propose a managed memory approach to store and retrieve relevant reflections.
This is implemented using a dual-buffer structure, where experiences are stored in two categories:
short-term memory and long-term memory, based on their outcome (success or failure) and recency.
Initially, if sub goals are reached, short-term memories of the made reflections are stored in a
temporary buffer. Each short-term memory consists of a tuple (reflectiont, ot, at, rt). Once a task
is completed or an attempt ends, all short-term memories are moved to long-term memory. Failed
attempts’ reflections are immediately added to long-term memory for the next attempt and short-term
memory collection ends.

3 Experiments

Data & Environment We use the ScienceWorld benchmark [21], which provides a versatile setting for
evaluating agents in science experiment tasks across 10 interconnected locations, such as a greenhouse
and a workshop, with over 200 objects and 25 action templates, generating a vast and dynamic search
space. We use the test set for our evaluation, which provides up to 10 variations of each of the 30
distinct tasks. These interactive tasks cover various topics, including chemistry and electricity, and
have an average optimal decision depth of 50 steps. An example task is shown in appendix C. For
details of all tasks and the environment, we refer to [21]. We elect to use ScienceWorld instead of
previous interactive text environment benchmarks such as TWC [13] and ALFWorld [18], due to
their relative simplicity for current LLM-based agents. We measure performance using the success
score, which is always between 0 and 100. Completing a task implies completing every sub task,
receiving the full reward, and thus a score of 100.

Baselines CALM [25] is a reranking method that integrates a deep reinforced relevance network
(DRRN) [5] with a causal language model fine-tuned using oracle trajectories. The causal language
model acquires task- and environment-specific knowledge through imitation learning, while DRRN
trains a policy network to rerank the language model’s predictions. We use ReAct [26] as our baseline
LLM-based agent. ReAct composes useful information at each time step by reasoning over the current
context (e.g. decomposing task or common sense knowledge query) and carries it forward to the
context of the following time step. This reasoning action does not affect the environment and may be
considered few-shot in-context learning. To contextualize our work, we compare our method against
Reflexion [17], an agent built on ReAct that employs a self-reflection mechanism to iteratively improve
its performance across rounds upon encountering failure based on feedback from the environment. As
such, it runs over up to four rounds as it builds up its long-term memory. For all agents, we evaluate
their performance using LLMs of different sizes and complexities to assess the performance of each
method across varying computational resources. In descending order of parameter count, we select
GPT-4o (gpt-4o-2024-08-06)[15], Mistral Large 2 (mistral-large-2407), and Llama 3.1 8B
(llama-3.1-8b-instruct)[3], accessing each through its respective APIs.

Main Results The results are shown in table 1. We find that Sweet&Sour outperforms the baseline
methods across all LLMs, setting the highest average score at 54.6 using GPT-4o. The performance
gap between Sweet&Sour and the other methods widens for smaller models with a lower parameter
count. For instance, it achieves 44.6 compared to Reflexion’s 27.6 on Mistral Large 2, and 32.5
compared to 21.7 on Llama 8B – indicating that our method is more suitable for scenarios with limited
computational resources. When we modify our method to only sample from failures, performance
drops significantly to a level similar to Reflexion – scores decrease to 24.6, 31.1, and 44.9 for Llama
8B, Mistral Large 2, and GPT-4o, respectively. As such, incorporating positive experiences indeed
leads to better reflections, mimicking how humans learn from both positive and negative experiences,
resulting in improved decision-making.

Anti-Tilt In highly challenging tasks, such as 1-1 and 8-2, all methods tend to struggle, while in
simpler tasks, most methods succeed based on the LLM’s inherent capabilities alone. However,
medium-difficulty tasks, such as 3-2 and 3-3, reveal a critical performance gap between our method
and previous approaches. We note that this occurs because traditional methods fail to reflect on early
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Table 1: Results on the ScienceWorld benchmark. For each method, we use GPT-4o (GPT), Mistral
Large 2 (ML2), and Llama 8B (L8B). Each value is an average of across all task variations.

Task CALM ReAct Reflexion Sweet&Sour (ours)
CALM L8B ML2 GPT L8B ML2 GPT L8B ML2 GPT

1-1 (Boil) 0.0 0.0 0.0 3.8 0.0 0.0 5.1 0.0 7.2 9.6
1-2 (Melt) 0.0 8.4 10.3 11.8 0.0 0.0 10.0 11.4 12.1 12.8
1-3 (Freeze) 0.0 1.5 0.0 8.1 0.0 2.3 8.3 2.4 3.1 8.9
1-4 (Change state) 0.0 1.0 4.7 10.0 0.0 0.0 4.2 1.7 2.9 9.2
2-1 (Thermometer) 1.0 5.1 7.8 7.7 3.4 4.2 7.6 7.8 9.7 10.9
2-2 (Melting) 1.0 6.7 6.3 5.9 3.3 3.3 26.2 7.9 36.8 46.0
2-3 (Melting) 5.0 9.1 11.8 23.4 13.2 14.7 22.6 15.2 29.0 38.3
3-1 (Power 1) 7.0 18.8 24.6 57.2 21.2 51.5 78.4 28.6 75.4 81.1
3-2 (Power 2) 2.0 10.2 24.7 55.6 9.5 11.9 24.7 23.3 44.5 58.0
3-3 (Conductivity 1) 2.0 52.4 51.7 73.0 9.2 25.8 72.1 59.1 69.2 75.7
3-4 (Conductivity 2) 10.0 54.2 64.9 89.7 35.4 41.6 75.1 62.7 60.3 67.3
4-1 (Find 1) 54.0 17.3 18.7 27.5 44.6 48.1 62.3 41.7 71.7 74.2
4-2 (Find 2) 10.0 69.1 71.6 80.3 68.4 75.7 87.3 76.8 100.0 100.0
4-3 (Find 3) 8.0 21.3 42.8 47.7 18.4 16.5 17.3 20.9 21.5 34.3
4-4 (Find 4) 2.0 15.7 15.2 19.3 39.6 46.6 100.0 55.1 87.8 100.0
5-1 (Grow plant) 4.0 10.8 10.8 10.0 7.2 7.2 7.9 14.2 14.6 17.4
5-2 (Grow fruit) 3.0 18.1 18.5 19.2 30.8 51.4 34.6 51.5 55.6 60.2
6-1 (Chemistry 1) 6.0 37.8 42.9 58.6 27.1 29.7 70.2 37.9 61.1 70.2
6-2 (Chemistry 2) 3.0 25.0 27.1 50.6 14.4 28.0 69.8 27.2 51.9 83.1
6-3 (Chemistry 3) 6.0 14.4 17.5 39.7 38.9 31.1 16.7 45.3 53.7 61.5
7-1 (Lifespan 1) 10.0 37.0 41.7 60.0 75.0 75.0 100.0 75.0 88.2 100.0
7-2 (Lifespan 2) 4.0 50.5 50.7 67.5 60.0 71.9 81.4 70.5 77.0 80.0
7-3 (Lifespan 3) 4.0 33.7 38.2 50.0 29.5 33.7 75.0 51.1 54.2 84.6
8-1 (Identify life 1) 0.0 5.1 18.9 25.3 1.7 1.7 3.4 11.1 10.3 14.2
8-2 (Identify life 2) 0.0 6.4 7.4 8.0 7.4 8.0 8.0 5.0 7.4 7.4
9-1 (Measure angle) 0.0 28.5 33.0 42.5 56.9 55.1 57.1 68.4 70.3 75.0
9-2 (Friction 1) 3.0 14.5 22.6 43.1 23.4 29.3 100.0 33.3 36.7 62.0
9-3 (Friction 2) 2.0 2.9 14.5 42.8 1.3 33.6 59.6 7.2 51.9 63.1
10-1 (Genetics 1) 2.0 25.7 27.3 26.4 5.6 9.8 50.4 38.9 48.6 78.8
10-2 (Genetics 2) 2.0 13.2 19.1 17.2 6.2 21.5 22.7 23.6 24.0 54.8

Average 5.07 20.5 24.8 36.0 21.7 27.6 45.3 32.5 44.6 54.6

successes, leaving them with less contextual understanding to carry momentum forward, leading to a
sustained performance decline or “tilt.” By contrast, we theorize that Sweet&Sour’s reflection on
both successes and failures provides a richer context, enabling it to sustain and build upon initial
successes. For instance, on task 3-2, Sweet&Sour achieves a score of 68.0 with GPT-4o, significantly
outperforming Reflexion’s 24.7 while beating ReAct’s 55.6 by a smaller margin, indicating that
Reflexion, although it is overall more capable, got stuck despite its self-reflection.

4 Conclusion

In an attempt to improve agent performance and reduce sensitivity to the LLM used, our study
embarks on an analysis of reflection mechanisms for LLM-based agents. Existing work focuses on
learning from failures only. Although these methods improve planning by analyzing past mistakes,
they struggle when agents are initially successful and when using smaller LLMs. The primary
contribution of our work is Sweet&Sour, a novel reflection technique for LLM-based agents in
TBGs that leverages positive experiences to improve agent self-reflection. Our comprehensive
analysis demonstrates the effectiveness of Sweet&Sour in enhancing agent adaptability and reasoning,
particularly in challenging situations where previous approaches struggled.

Limitations Despite promising results, our work has limitations. LLMs do not provide guarantees
regarding their reasoning capabilities. Additionally, our evaluation is conducted using a single
environment, which, while comprehensive, does not cover all types of interactive scenarios. We leave
the exploration of additional environments to future work.
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A Background

One may consider every TBG to be a partially observable Markov decision process (POMDP) [19]
where the environment state is never observed directly. This POMDP may be formalized as
⟨S, T,A,Ω, R, γ⟩, where γ ∈ [0, 1] denotes the reward discount factor. S denotes the set of states s
that contain the internal information of the game – such as objects found throughout the game or the
player’s location – not all of which may be visible to the agent at any given time. A denotes the action
space made up of individual text actions a issued by the player. Ω denotes the observation function.
Further, o ∈ O denotes the observations made by the player. The observation ot of the agent at time
t depends on the current state st, as well as the previous action at−1, which may be formalized as
Ω (ot | st, at−1). Seeing as the agent can only observe and interact with the environment of a TBG
via natural language, each observation is composed of a sequence of tokens ot =

{
ô1t , · · · , ôNt

}
, as

are their actions at =
{
â1t , · · · , âMt

}
.

In the context of TBGs, an action at is considered admissible at a state st if it is capable of changing
the game’s state, i.e., if it can lead to a transition to a new state st+1 that is different from the
current state st. The environment’s state transition is modeled through a probabilistic function
T (st+1 | st, at). Traditionally, admissible actions in state st could deterministically lead to a new
state st+1. However, we use a more general approach where all actions, whether admissible or not,
are included in the state transition function. Non-admissible actions, which do not lead to a change
in the game’s state, result in a transition back to the original state st with probability 1. In contrast,
admissible actions lead to different states with their own probability. The admissible action set is
bound to be significant for quests with a sufficiently large branching factor. While admissible, many
action candidates are bound to be suboptimal.

The reward r received by the agent – the discounted sum of which, E [
∑

t γ
trt], it aims to maximize

– are obtained by rt = R (st, at). In practice, TBGs typically provide sparse positive rewards for
completing subgoals and advancing towards completing the game.

A TBG’s interpreter can accept any text sequence, but will only recognize text that follows a certain
structure. Typically, commands take the form of either a single keyword (such as “look”) or a
combination involving verbs, objects, and occasionally prepositions. Previous works on TBGs
made the assumption that we have access to a predefined set of all admissible actions at each game
state and must select the correct action to progress [14, 6]. This is consistent with how some text
adventure games are played in the real world [20]. In line with more recent works [11], we make the
assumption that we have access to a number of action templates (e.g. connect A to B, pick up
C) and subsequently ask the agent to generate the actions as tokens using these templates. This leads
to a more challenging action generation process for the agent.

B LLM Reflection

After successfully completing a sub task, the agent is prompted to reflect on its most recent observa-
tions and identify the key factors that contributed to its success. This reflection process encourages
the agent to verbalize the steps and strategies that led to the desired outcome, helping it create a
plan that can be stored in managed memory for future use. A similar procedure is applied in cases
of failure. When a task is unsuccessful, the agent is instructed to reflect on alternative actions it
could have taken and to devise a revised plan for the next attempt, ensuring continuous learning and
improvement. This plan is also stored in memory.

An example trajectory of a ScienceWorld task where the agent reflects on positive and negative
experiences is shown in Figure 2. At the end of this trajectory, we show for a single command what a
reflection would look like for a successful or unsuccessful choice, in this case picking up an animal.
For the unsuccessful case (red), where the agent does not pick up an animal, we reflect on whether
another choice would have constituted an animal and thus resulted in a reward. For the successful
case where a sub goal is reached (yellow), we reflect on what made the current actions successful and
subsequently commit this to memory.
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ScienceWorld Task 8-1

Task Description:
Your task is to find a(n) animal. First, focus on the thing. Then, move it to the red box in the
kitchen.

> look around
This room is called the hallway. In it, you see:

• a substance called air
• a picture
• the agent

You also see:
• A door to the greenhouse (open)
• A door to the living room (open)
• A door to the art studio (open)
• A door to the kitchen (open)
• A door to the bedroom (open)
• A door to the workshop (open)

> open door to greenhouse
The door is already open.
> go to greenhouse
You move to the greenhouse.
> open door to outside
The door is already open.
> go to outside
You move to the outside.
> look around
This outside location is called the outside. Here, you see:

• a substance called air
• an axe
• a substance called wood
• the ground
• a fire pit (containing nothing)
• a fountain (containing a substance called water)
• a butterfly egg
• a blue jay egg
• a dove egg
• the agent

You also see:
• A door to the kitchen (open)
• A door to the foundry (open)
• A door to the greenhouse (open)

Case #1: Failure
> focus on axe
You focus on the axe.
> pick up axe
You move the axe to the inventory.
Reflection(I failed because I assumed eggs are not animals. My plan was to go outside to
find animals. I tried to pick up an axe. An alternative course of action would have been to go
outside and pick up an egg, as it might be considered an animal.)
→ Managed Memory
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Case #2: Success
> focus on dove egg
You focus on the dove egg.
> pick up dove egg
You move the dove egg to the inventory.
Reflection(Picking up an egg was the correct choice. Even though the animal was in an egg,
it is still considered an animal. My plan was to go outside and find an animal in the wild.
Items such as an axe, wood, or landscape elements are not related to animals.)
→ Managed Memory

Figure 2: Example of reflection in the 2-1 Task, where the agent needs to find something.

C Example ScienceWorld Task

In this section, we provide a successfully completed task, a variation of Task 1-1, which concerns
itself with boiling a substance, in this case water, to change its state. Once the agent has viewed its
surroundings and moved to the kitchen, it collects the necessary items and begins its experiment by
boiling the water in a pot on the stove. Finally, the agent examines steam and completes the task
(highlighted in green). The example is truncated to improve readability. The trajectory is shown in
Figure 3.

ScienceWorld Task 1-1

Task Description:
Your task is to boil water. For compounds without a boiling point, combusting the substance
is also acceptable. First, focus on the substance. Then, take actions that will cause it to
change its state of matter.

> look around
This room is called the hallway. In it, you see:

• a picture
• a substance called air
• the agent
• A door to the green house (open)
• A door to the living room (open)
• A door to the art studio (open)
• A door to the kitchen (open)
• A door to the bedroom (open)
• A door to the workshop (open)

> open door to kitchen
The door is already open.
> go to kitchen
You move to the kitchen.
> look around
This room is called the kitchen. In it, you see:

• a substance called soap
• a painting
• a thermometer reading 10°C
• a counter with various items (banana, potato, red apple, orange)
• a sink (off, empty)
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• a table with a glass cup (empty)
• a chair (empty)
• a freezer (closed)
• a lighter
• a stopwatch (deactivated)
• a fridge (closed)
• a cupboard (closed)
• a stove (turned off)
• a glass jar containing sodium chloride
• various other items (air, the agent, etc.)

> pick up thermometer
You move the thermometer to the inventory.
> open cupboard
The cupboard is now open.
> pick up metal pot
You move the metal pot to the inventory.
> move metal pot to sink
You move the metal pot to the sink.
> activate sink
The sink is now activated.
> deactivate sink
The sink is now deactivated.
> pick up metal pot
You move the metal pot to the inventory.
> focus on substance in metal pot
You focus on the water.
> move metal pot to stove
You move the metal pot to the stove.
> activate stove
The stove is now activated.
> use thermometer in inventory on substance in metal pot
The thermometer measures a temperature of 13 degrees Celsius.
> examine substance in metal pot
A substance called water.
> use thermometer in inventory on substance in metal pot
The thermometer measures a temperature of 28 degrees Celsius.
> examine substance in metal pot
A substance called water.
> use thermometer in inventory on substance in metal pot
The thermometer measures a temperature of 58 degrees Celsius.
> examine substance in metal pot
A substance called water.
> use thermometer in inventory on substance in metal pot
The thermometer measures a temperature of 78 degrees Celsius.
> examine substance in metal pot
A substance called water.
> use thermometer in inventory on substance in metal pot
The thermometer measures a temperature of 98 degrees Celsius.
> examine steam
A substance called steam. Task completed.

Figure 3: Successful sequence of events in the 1-1 Task, where the agent needs to boil water.
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