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Abstract

Spine MRIs are usually acquired in highly anisotropic 2D axial or sagittal slices. Verte-
bra structures are not fully resolved in these images, and multi-image superresolution by
aligning scans to pair them is difficult due to partial volume effects and inter-vertebral
movement during acquisition. Hence, we propose an unpaired inpainting superresolution
algorithm that extrapolates the missing spine structures. We generate synthetic training
pairs by multiple degradation functions that model the data shift and acquisition errors
between sagittal slices and sagittal views of axial images. Our method employs modeling of
the k-space point spread function and the interslice gap. Further, we imitate different MR
acquisition challenges like histogram shifts, bias fields, interlace movement artifacts, Gaus-
sian noise, and blur. This enables the training of diffusion-based superresolution models
on scaling factors larger than 6× without real paired data. The low z-resolution in axial
images prevents existing approaches from separating individual vertebrae instances. By
applying this superresolution model to the z-dimension, we can generate images that allow
a pre-trained segmentation model to distinguish between vertebrae and enable automatic
segmentation and processing of axial images. We experimentally benchmark our method
and show that diffusion-based superresolution outperforms state-of-the-art super-resolution
models.

Keywords: Superresolution, MRI, Spine, Denoising Diffusion, Segmentation, Degradation
function, MR Preprocessing
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1. Introduction

Magnetic Resonance Imaging (MRI) has become a cornerstone of medical imaging. While
improvements in MRI scanners have enabled widespread clinical adaptation, imaging re-
quires a careful balance of acquisition time, required scan resolution, and signal quality
(Plenge et al., 2012). To reduce scan time, medical imaging research has developed a
variety of super-resolution (SR) algorithms that aim to reconstruct high-resolution from
low-resolution scans featuring sharp and anatomically faithful details whilst ideally being
resistant to hallucinations. While advancements have led to noticeable achievements in
various MRI applications, improving spinal multiple sclerosis (MS) imaging is particularly
challenging. In MS diagnosis, precise imaging is required, as detecting MS lesions is inher-
ent to diagnosing and monitoring the disease (Wattjes et al., 2021; Kearney et al., 2015).
Registration and structure/MS segmentation are well established in brain imaging, while
spinal imaging has been trailing behind due to its more challenging acquisition and analysis
process. Only recently, it gained traction within the MS community since guidelines have
shifted a focus to spinal cord lesions (Wattjes et al., 2021) and recent technical advances
such as the development of the Spinal Cord Toolbox (SCT) (Leener et al., 2017). In clinical
routine, T2-weighted (T2w) MRI is crucial in assessing lesion load and disease activity. Due
to the size of the spine, imaging is typically performed using 2D sagittal or axial views with
relatively high slice thicknesses, typically ranging between 3-10 mm. This poses an inherent
challenge to 3D segmentation, as axial 2D views frequently lack the intricate details and
context needed to accurately segment vertebral structures and intervertebral discs. At the

Figure 1: Training procedure (yellow): We take real sagittal slices, apply our degradation function,
and train a diffusion model to reconstruct the image. Inference (red): 1) the axial image
is upscaled to the target resolution; 2) the sagittal slices of the axial images are super-
resolved; 3) sagittal segmentation algorithms succeed in vertebrae segmentation.

2



Modeling acquisition shift between axial and sagittal MRI for superresolution

same time, axial scans are preferred in the context of lesion activity. To conduct MS studies
for the spinal cord, it is necessary to register spine scans to a common template like the
PAM50 atlas (De Leener et al., 2018). Current registration tools (Leener et al., 2017) require
manual vertebra-level labels to function. Although whole spine segmentation for sagittal
images was made available recently (Graf et al., 2023; Möller et al., 2024), the problem
of axial vertebra instance segmentation persists due to the challenges posed by large slice
thicknesses. Through super-resolution, we can enable segmentation on axial images. With
such a segmentation, we could automatically extract the vertebra-level label, which can be
utilized for atlas registration and enables large-scale studies to access MS lesion growth in
the spinal cord. This paper proposes a solution to these challenges by enhancing the quality
of axial images for segmentation to the same resolution as the inplane resolution of a sagittal
slice. The approach involves using sagittal images only for training, avoiding the difficulties
associated with aligning sagittal and axial images. We improve the existing degradation
model of SMORE (Zhao et al., 2021), based on MRI scan properties, to learn the impact of
shifts in distribution between axial and sagittal images. We change the zero-shot-learning
approach of SMORE to an unpaired sagittal plane of axial to sagittal super-resolution. We
compare existing super-resolution networks with the conditional diffusion models Palette.
Our pipeline is the first that can automatically segment full vertebrae in axial T2w images.
We achieve a realistic-looking >6x super-resolution without paired or isotropic data.

2. Related Work

Superresolution. Superresolution (SR) enhances image sharpness and details. Various
models have been introduced to upscale paired low-resolution (LR) images to high-resolution
(HR) images (Bashir et al., 2021; Bhowmik et al., 2017). In the context of MRI, isotropic
HR images are often downscaled to LR images through downsampling for training (Feng
et al., 2022; Chen et al., 2018; Li et al., 2022). Subsequently, a deep learning model, such as a
GAN (Zhou et al., 2022) or regression model, learns the inverse process. More recent papers
investigate denoising diffusion as an SR model (Chung et al., 2023; Wu et al., 2023; Kawar
et al., 2022). Some SR methods focus on enhancing LR patches to HR patches (Mithra
et al., 2021; Zhao et al., 2021). For instance, SMORE (Zhao et al., 2021) utilizes zero-
shot-learning, where high-resolution plane patches are degraded with an MRI-specific point
spread function. The orthogonal LR plane is then upsampled and super-resolved by the
model. However, a limitation of patch-based SR is its inability to introduce features that are
larger than a patch or perform biologically informed slice inpainting, which is crucial for our
task because we want to reintroduce the z-axis information to distinguish vertebra instances.
The SMORE zero-shot approach can not learn how a vertebra looks under different rotations
because it has never seen it, especially given the large-scale factors. Other papers explore
jointly modeling axial and sagittal images (Liu et al., 2021; McGinnis et al., 2023; Zhao
et al., 2019), aiming to enhance correctness. Nevertheless, these approaches necessitate
registration to align these images, posing a ”chicken and egg” problem for our task.

Spine segmentation. Vertebra segmentation is well-established for CT through the
VerSe Challenge (Sekuboyina et al., 2021) and its participants (Payer et al., 2020; Chen
et al., 2020). Regarding sagittal T2w MRI, two datasets are available for the lumbar
spine—Spider (van der Graaf et al., 2023) and MRSpineSeg Challenge (Pang et al., 2020).
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Li et al. (2021) developed a 2D slice-wise semantic segmentation for axial images. Recent
advancements have extended CT whole spine segmentation to sagittal MR images (Graf
et al., 2023). Möller et al. (2024) leveraged these labels and incorporated intervertebral disc
and spinal channel segmentation from Streckenbach et al. (2022). We employ their publicly
available segmentation algorithm as a downstream task on our super-resolved axial images
to generate segmentation. On native axial resolution, this model can not untangle vertebra
instances due to the strong resolution mismatch.

Registration. The Spinal Cord Toolbox (Leener et al., 2017) facilitates registration to
an atlas when spinal cord segmentation and vertebra height points are accessible. However,
automatic vertebra height extraction proves unreliable on thick axial images and necessitates
manual annotation. In contrast, our segmentation on axial SR can autonomously generate
these points, offering a fully automatic solution.

3. Methodology

Problem statement Given two types of slice-wise MRI with different high-resolution
planes, we want to upscale a low-resolution view to the same resolution as the other image.
For this, we aimed to investigate degradation functions and a diffusion-based SR algorithm.
Pairing real data is infeasible due to the thick sliced spine images suffering from intrinsic
motion, missing isotropic ground truth data, and misaligned sagittal volumes. To assess
the quality of the SR data, we assessed spine segmentation as a downstream task. The
segmentation enables labeling and registration to a common atlas to evaluate multiple
sclerosis statistics in the axial images in future studies, a task previously not solved.

Dataset We have an internal dataset with 416 multiple sclerosis patients (split 336/45/36)
with multiple follow-up sessions (total=927/136/93). Each session contains ≈ 2 − 4 axial
(total=2742/404/282) and ≈ 2 sagittal T2w MRI scans (total=1883/285/193). Our data
exhibits a through-plane spacing of 3-4 mm in sagittal images and 5 mm in axial images,
representing a standard slice thickness for such scans. See Figure 1 on how the resolution
differs between sagittal views of an axial and a sagittal image. Due to the large partial
volume effects and inter-vertebral movement, we could not register the axial and sagittal
image beyond the automatic alignment with an error of up to 30 mm (Figure 7).

3.1. Degradation function

A degradation function is the forward mapping from an HR to an LR image. A naive
approach would be interpolation and random Gaussian noise (Bashir et al., 2021). For MRI
images, this approach does not correctly model the signal acquisition.

Point spread function (PSF) MRIs are acquired in k-space, and the PSF must be
modeled in k-space instead of the image space. Inspired by SMORE (Zhao et al., 2021), we
use a convolutional kernel to degrade the 2D HR image that simulates the partial volume
effect caused by the k-space PSF. While SMORE only downscales the image to LR, we
both down- and upscale the image to the same pixel space as the HR image. We add
random Gaussian noise in between the up- and downsampling process. The target sagittal
in-plane resolution is the same as the pretrainend segmentation network with 0.8571 mm.
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Figure 2: Overview of our degradation functions. We start with a sagittal image slice. The red
path describes the augmentation of the HR image and the yellow path for the LR image.
The final LR and HR images constitute the training pairs for the SR model.

We work with clinical data and expect that we cannot rely on the resolution being always
exactly 5 mm. With the down- and upscale steps, we are not limited to any fixed integer
scaling factor. Instead of one fixed kernel, we take multiple PSF kernels with starting
resolutions between 4 and 9 mm in 0.25 mm steps.

Interslice gap randomization The signal of a 2D slice is measured with a target thick-
ness. The thickness of this volume is not the slice distance (Bradley and Glenn, 1987;
Schwaighofer et al., 1989). We found the measured thickness to be 4 mm. This volume
is not constantly integrated but must drop from the center focus to the 2 mm edges to
the side; otherwise, we would observe very blurry images. As we only have discrete pixel
rows, we take up to half (1 to n slices chosen randomly) of them inside a slice thickness and
weighted sum them together. We repeat this generated pixel row for the full slice thickness.
This process simulates a random volume effect rather than the real partial volume effect
and intentionally loses information about slices between two axial image slices. This process
is done before the downsampling of the SMORE degradation.

Histogram MRI images have no fixed values but are instead images between 0 and a
max-value. We linearly rescaled the image to [0,1]. The histogram changes between scans
and MRI devices. We used color jitter to randomize the histogram (0.8 - 1.2 factor). This
should make the model histogram shift agnostic. We tried manual parametric histogram
shifts, but they added nothing to the performance when we used them, along with the more
general color jitter.

Interlace movements artifact Slice interleaving is the process of scanning every other
slice first to prevent cross-talk between slices. If the subject moved during the image
acquisition, we observe that every other slice is shifted in the front-back direction. We
simulate this in 15% of the LR images by moving an interlace pattern with 4 to 10 pixels
thickness by 0.2% to 2% of the image width to the back. See Figure 4 for an example.

Others We add other common image degradations like randomMRI-bias field (Van Leem-
put et al., 1999; Sudre et al., 2017), Gaussian noise, and blur. We do a random rescale (factor
0.75 to 1.5) and randomly rotate up to 5 degrees. PSF and interslice gab simulation are
applied all the time. All other degradation have a chance of 30% to be applied. For the
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order of operation, see Figure 2. We pad and crop the images to 160 by 160, which is
roughly the size of a sagittal view of an axial image.

3.2. Conditional diffusion model for superresolution

Our chosen SR-model is Palette, a diffusion image to image model (Saharia et al., 2022).
Palette is a diffusion model for conditional image translation, inpainting, and image recon-
struction. It use the denoising diffusion implicit model (Song et al., 2020; Ho et al., 2020),
which is conditioned by concatenating the LR image to the noised HR image as an input.
The model is a 4-block UNet. It uses SiLu activation and 32-channel GroupNorm. The
timestep embedding is added by scaling and shifting the channels in every ResBlock. We
only superresolve single sagittal slices. The slice superresolution is mostly consistent, but
some image artifacts are visible in the axial view. Like Zhao et al. (2021), we could intro-
duce a second phase that removes the created artifact from the axial view by superresolving
an axial image and producing a paired data set of the original image and its corresponding
slices. We omitted this for simplicity.

4. Experiments and Results

We manually corrected a vertebra instance segmentation ground truth for our axial test
data, where at least the vertebral body is fully segmented. Predicted vertebra instances are
matched with the center of mass of the vertebra body to this ground truth. We count how
many vertebrae are missed by merging or omitting. A vertebra is considered omitted when
no vertebra body center mass point is inside the instance-corrected ground truth mask. We
analyze the vertebra components by computing the Betti error b0 and b1 (Stucki et al., 2023).
We expect a vertebra to be a single component b0 = 1. A vertebra has a single hole for the
spinal cord, and the neck vertebrae contain two additional holes called transverse foramina,
which are openings for vessels to pass through. The used segmentation algorithm cannot
reproduce the additional holes. We expect the number of holes to be b1 ∈ [1, 2, 3] for neck
vertebrae and b1 = 1 for the rest. We count error rates per vertebrae that are missing or
do not fit this description. We use this metric because we observed that the segmentation
network often has issues with completing the structure around the spinal channel. We
manually annotate 107 random axial slices of the bony vertebra, each in a different axial
volume, by two medical experts. The sagittal segmentation algorithm segments the super-
resolved axial image. Then, we sample the segmentation back to the original volume and
compute the Dice score for our expert annotation. Unlike other papers, we omitted PSNR
or SSIM from our analysis due to the lack of a suitable ground truth. As a proxy, we use a
downstream task quality to evaluate whether contrast enhancement and inpainting improve
the segmentation and instance detection. Therefore, this work optimizes the structural
enhancement instead of the perceptual quality of the images.

4.1. Model comparison

We compare existing models with the Palette diffusion approach, all with our degradation
function. We use cubic interpolation, GAN-based ESRGAN+RRDBNet (Wang et al., 2018;
Feng et al., 2022), regression-based RCAN (Zhang et al., 2018) and transformer-based
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Figure 3: Qualitative Results: Model differences for two samples. All models improve image detail,
but the contrast strength between bone and soft tissue is model-dependent. Only our
model (Pallete) can reconstruct all posterior neck vertebra structures. See red arrow.

HAT(Chen et al., 2023) model as baselines. We report them in Table 1 and visualize
differences in Figure 3. The diffusion model Palette was better suited than the best baseline
RCAN for superresolution. RCAN performance is competitive with Palette. As already
discussed by Zhang et al. (2018), all their tested SR models drop in performance with large
scaling factors. We reckon Pallete could handle larger superresolution factors better than
other models. Further research is needed for confirmation.

Table 1: Quantitative comparison of downstream 3D segmentation. The axial SR is segmented by
a pre-trained network. Vertebra detection rate (dtr) is the percent of vertebrae correctly
identified through translation and segmentation in axial images. We reported the Betti
numbers error rate (er) when a vertebra has not b0 = 1; b1 = 1 or ∈ [1, 2, 3] for neck
vertebra. ”axial Dice” is the Dice score on a binary vertebra-bone annotation with 107
slices in different axial scans evenly distributed through the subjects.

Vertebra
dtr↑

Betti
b0 er↓

Betti
b1 er↓

axial
Dice↑

cubic interpolation 0.6464 0.435 0.600 0.684
ESRGAN (RRDBNet) 0.9224 0.141 0.318 0.695
HAT 4×4 blocks 0.9805 0.098 0.240 0.681
RCAN 0.9853 0.062 0.165 0.711
Palette (diffusion) 0.9942 0.045 0.115 0.718

4.2. Degradation function ablation

We do an ablation on our degradation function. See Table 2 for exact values. The Dice
score of axial slices does not improve much because of large interpolation artifacts. The
segmentation network rescales the image in the left/right direction to 1.25 mm. Other
common errors are structures not modeled in the sagittal segmentation, like the transverse
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Table 2: Ablation of the degradation function. We retrained the model on different degradation
aspects, as indicated on the table’s left side. The right side has the same metrics as before.
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Vertebra
dtr↑

Betti b0
er↓

Betti b1
er↓

axial Dice
↑

cubic upscale 0.6464 0.435 0.600 0.684
✓ ✓ 0.9851 0.053 0.153 0.710
✓ ✓ ✓ 0.9937 0.043 0.142 0.713
✓ ✓ ✓ 0.9931 0.049 0.133 0.717
✓ ✓ ✓ ✓ 0.9931 0.047 0.118 0.712
✓ ✓ ✓ ✓ ✓ 0.9937 0.043 0.124 0.705
✓ ✓ ✓ ✓ ✓ ✓ 0.9937 0.039 0.133 0.714
✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.9942 0.045 0.115 0.718

foramina or the transverse process of the vertebra, which is outside of the field of view of
most sagittal images. Our approach improves the vertical correctness of the images. The
betti errors towards b0 do not follow a trend, while b1 shows our additional augmentations
improve the segmentation around the spinal channel. Our ablation is limited to additional
augmentations because the chosen SR-model plus segmentation model is quite stable, even
with some SR anomalies, and we believe that we have reached the segmentation model’s
upper limit. We introduced additional augmentation to be invariant against movement
artifacts, MR bias-field, changing through-plane resolution, and image corruption through
noise or blur. The test showed that these changes do not worsen the baseline results.

5. Conclusion

In this work, we address the previously unsolved task of full 3D vertebrae instance segmen-
tation in clinical axial MRI images. This was unsolved because the z-resolution of clinical
axial MRI images is typically larger than the intervertebral disc or substructures of the ver-
tebrae. We achieve this by training unpaired superresolution diffusion models with a newly
developed degradation function. Our degradation function is informed by real-world MRI
properties such as the point spread function, the interslice gap, the interlaced acquisition,
histogram shift, and bias fields. We can artificially introduce a domain shift from HR to
LR images and create aligned training data. We do not require isometric data nor aligned
axial and sagittal images. Our diffusion model can inverse this process by training on the
generated pairs. During inference, we only need the real axial images to superresolve them.
SR for large scaling factors is strongly ill-posed, and our model is limited to a best guess.
The structures between slices, as expected, vary from the real structure. The superresolu-
tion enables us to segment the axial image and compute points for registration; both were
previously not possible. See Figure 5 and 6. In the future, our approach can be extended
to any other MR acquisition protocol with resolution differences.
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Modeling acquisition shift between axial and sagittal MRI for superresolution

Appendix A. Supplementary Material

Figure 4: Real and artificial interlace pattern. It is easy to spot when the pattern is or-
thogonal to the spinal cord. The introduced movement artifacts are difficult to
spot in other areas. The artificial interlace pattern has the SMORE degradation
and the interlace pattern; The other degradation functions are turned off.
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Figure 5: Examples of our inference pipeline. We stitched and cubic upscaled the axial
images to isometric 0.8571 and used the sagittal plane to upscale the image. We
show the segmentation in the slice and 3D render. The segmentation can be used
to extract the vertebra heights for registration.
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Figure 6: An example of an atlas registration with our automatic vertebra level points.
Block 1 is the axial image with superresolution, automatic segmentation, and
vertebra heights. Block 2 is the PAM50 atlas with and without spinal cord
segmentation. Block 3 shows PAM50 registered on the axial image. Block 4 shows
axial images with the probabilistic white and gray matter atlas registration from
the PAM50 template. The height where those slices are taken is indicated with
a,b,c in block 1.
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Table 3: We repeated the test on an older version of the segmentation algorithm, which is
more susceptible to image anomalies. There, we observe that the final degradation
improves the vertebra detection rate. The Betti error rates behave similarly, but
b1 is much worse overall.
Ablation of the degradation function with an older version of the segmentation
model that is less stable towards out-of-distribution images and performs worse in
the neck region. We retrained the model and turned on different degeneration, as
indicated on the table’s left side. The models are the same as in the other tables.
Vertebra detection rate (dtr) is the percent of vertebrae correctly identified through
translation and segmentation in axial images. We reported the Betti numbers error
rate (er) when a vertebra has not b0 = 1 b1 = 1 or ∈ [1, 2, 3] for neck vertebra.
”axial Dice” is the Dice score on a binary vertebra-bone annotation with 107 slices
in different axial scans evenly distributed through the subjects.
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Vertebra
dtr↑

Betti b0
er↓

Betti b1
er↓

axial Dice
↑

cubic upscale 0.7557 0.495 0.756 0.599
✓ ✓ 0.9702 0.160 0.446 0.663
✓ ✓ ✓ 0.9810 0.155 0.435 0.661
✓ ✓ ✓ 0.9773 0.179 0.389 0.664
✓ ✓ ✓ ✓ 0.9795 0.155 0.431 0.665
✓ ✓ ✓ ✓ ✓ 0.9831 0.133 0.408 0.655
✓ ✓ ✓ ✓ ✓ ✓ 0.9926 0.134 0.410 0.660
✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.9932 0.152 0.413 0.659
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Figure 7: Example of how axial and sagittal T2w scans may cover different fields of view
(FOV) and may include localized mismatches in anatomical structures. Matching
the structures would require deformable registration; this does not routinely work
without strong supervision due to different fields of view and subtle structural
differences caused by highly anisotropic imaging. The shown segmentation for
axial images was unavailable before and could not be used for registration because
it is an end product of our superresolution method, plus the sagittal segmentation
algorithm. Our SR model solved the chicken and egg problem by not requiring
registration.
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