
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRAPHFLEX: STRUCTURE LEARNING FRAMEWORK
FOR LARGE EXPANDING GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph structure learning is a core problem in graph-based machine learning, es-
sential for uncovering latent relationships and ensuring model interpretability.
However, most existing approaches are ill-suited for large-scale and dynamically
evolving graphs, as they often require complete re-learning of the structure upon
the arrival of new nodes and incur substantial computational and memory costs. In
this work, we propose GraphFLEx—a unified and scalable framework for Graph
Structure Learning in Large and Expanding Graphs. GraphFLEx mitigates the
scalability bottlenecks by restricting edge formation to structurally relevant subsets
of nodes identified through a combination of clustering and coarsening techniques.
This dramatically reduces the search space and enables efficient, incremental graph
updates. The framework supports 48 flexible configurations by integrating di-
verse choices of learning paradigms, coarsening strategies, and clustering methods,
making it adaptable to a wide range of graph settings and learning objectives.
Extensive experiments across 26 diverse datasets and graph neural network archi-
tectures demonstrate that GraphFLEx achieves state-of-the-art performance with
significantly improved scalability. Our implementation is publicly available here.

1 INTRODUCTION
Graph representations capture relationships between entities, vital across diverse fields like biology,
finance, sociology, engineering, and operations research (Zhou et al., 2020; Fout et al., 2017; Wu
et al., 2020; Malik et al., 2025). While some relationships, such as social connections or sensor
networks, are directly observable, many, including gene regulatory networks, scene graph generation
(Gu et al., 2019), brain networks, (Zhu et al., 2021) and drug interactions, require inference (Allen
et al., 2012). Even when available, graph data often contains noise, requiring denoising and
recalibration. In such cases, inferring the correct graph structure becomes more crucial than the
specific graph model or downstream algorithm. Graph Structure Learning (GSL) offers a solution,
enabling the construction and refinement of graph topologies. GSL has been widely studied in both
supervised and unsupervised contexts (Liu et al., 2022; Chen & Wu, 2022). In supervised GSL
(s-GSL), the adjacency matrix and Graph Neural Networks (GNNs) are jointly optimized for a
downstream task, such as node classification. Notable examples of s-GSL include NodeFormer
(Wu et al., 2022b), Pro − GNN (Jin et al., 2020), WSGNN (Lao et al., 2022), and SLAPS
(Fatemi et al., 2021). Unsupervised GSL (u-GSL), on the other hand, focuses solely on learning
the underlying graph structure, typically through adjacency or laplacian matrices. Methods in this
category include approximate nearest neighbours (A − NN) (Dong et al., 2011; Muja & Lowe,
2014), k-nearest neighbours (k −NN) (MacQueen et al., 1967; Wang & Zhang, 2006), covariance
estimation (emp.Cov.) (Hsieh et al., 2011), graphical lasso (GLasso) (Friedman et al., 2008),
SUBLIME (Liu et al., 2022), and signal processing techniques like l2-model,log-model and
large-model (Dong et al., 2016; Kalofolias, 2016).

Supervised graph structure learning (s-GSL) methods have demonstrated effectiveness in
specific tasks; however, their reliance on labeled data and optimization for downstream objectives
particularly node classification, significantly constrains their generalizability to settings where
annotations are scarce or unavailable (Liu et al., 2022). Unsupervised graph structure learning
(u-GSL) methods, which constitute the focus of this work, offer broader applicability. Nevertheless,
both s-GSL and u-GSL approaches exhibit critical limitations in their ability to scale to large
graphs or adapt efficiently to expanding datasets. To address these challenges, we introduce

1

https://anonymous.4open.science/r/Scaling_Graph_Learning-CB67/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

9
8719

20
21

1

11

2

12

14

15

GNN Clustering Graph Communities

C1
C1

C3

C2

C3

G
ra

ph
 L

ea
rn

in
g

G
ra

ph
 L

ea
rn

in
g

9

11
12 13

15
16

17

14
18

1

19

2

21

3

20

87
54

23

22

24

6

10

9

11
12 13

54

17

18

16

6

10

Graph Coarsening

Super-nodes

formation

Most relevant nodes

Most relevant
communities

9

9
9

9

11

11

12

12

13

14

14

14

13
13

10

10
10

1

1

2

2

3

15

3

15

1515
15

3
3

8

8

8
8

8

7

7

7
7

7

t1

t6

t4

t3
t2

t5

1

19
19

19

19

20
20

21
21

1
1

1

12

13

14

12

2
2

2

2

11

10

11

Projection back to original space

1
2

87

319
19

20
20

21
21

24

23

22

7
8

921

20

11
12 13

15

16

17 14

18

1

2
19

3

8754

6
10

9

20

21

21

12
119

20 21

11 12

Input Data: a)

Incoming Nodes

at time t

or b)

Figure 1: This figure illustrates the general pipeline of GraphFLEx, designed to efficiently handle both a) large
datasets with missing structure and b) expanding graphs. Both scenarios can be modeled as expanding graphs
(details in Section 3.1). GraphFLEx processes a graph (Gt) and incoming nodes (Et+1) at time t, newly arriving
nodes are shown with different timestamps and shades of blue to indicate their arrival time. Our framework
comprises of three main components: i) Clustering, which infers Et+1 nodes to existing communities using a
pre-trained model Mclust(G0) into smaller, more manageable communities; ii) Since these communities may
still be large, a Coarsening, module is applied to further reduce their size while preserving essential structural
information; and iii) Finally, a Learning module, where the structure associated with Et+1 nodes are learned
using the coarsened graph, followed by projecting this structure onto the Gt graph to create graph Gt+1.

GRAPHFLEX, a unified and scalable framework for Graph Structure Learning in Large and
Expanding Graphs. GraphFLEx is built upon the coordinated integration of three foundational
paradigms in graph processing: graph clustering, graph coarsening, and structure learning.

10000 20000 30000 40000 50000
Number of Nodes

0

150

300

450

600

750

900

1050

1200

Tim
e in

 Se
co

nd
s

Time in Seconds vs Number of Nodes (Each Line Represents an Experiment)
GraphFlex ANN
GraphFlex KNN
GraphFlex Log model
GraphFlex L2 model
GraphFlex Emp. Covar.
GraphFlex Large model

(a) GraphFLEx

10000 20000 30000 40000 50000
Number of Nodes

0

150

300

450

600

750

900

1050

1200

Tim
e in

 Se
co

nd
s

Time in Seconds vs Number of Nodes (Each Line Represents an Experiment)
ANN
KNN
Log model
L2 model
Emp. Covar.
Large model

(b) Vanilla

Figure 2: High computational time required
to learn graph structures using existing meth-
ods, whereas GraphFLEx effectively controls
computational growth, achieving near-linear
scalability. Notably, Vanilla KNN failed to
construct graph structures for more than 10K
nodes due to memory limitations.

While each of these methodologies has been studied exten-
sively in isolation, their joint application within a single
framework has remained largely unexplored. GraphFLEx
combines these components in the principled manner in
which they are algorithmically aligned to reinforce one
another; clustering serves to localize the search space,
coarsening reduces structural redundancy while preserv-
ing global properties, and structure learning operates effi-
ciently within this refined context. This integration enables
GraphFLEx to scale effectively to large datasets and ac-
commodate dynamic graphs through incremental updates,
eliminating the need for expensive re-training. Addition-
ally, the framework supports 48 modular configurations,
enabling broad adaptability across datasets, learning objec-
tives, and deployment constraints. Crucially, we establish
theoretical guarantees on edge recovery fidelity and com-
putational complexity, offering rigorous foundations for
the framework’s efficiency and reliability. As illustrated in Figure 1, GraphFLEx significantly reduces
the candidate edge space by operating on structurally relevant node subsets. Empirical evaluations,
summarized in Figure 2, demonstrate that GraphFLEx substantially outperforms existing baselines in
both runtime and scalability.
Key contributions of GraphFLEx:

• Unifies multiple structure learning strategies within a single, flexible framework.
• Demonstrates effectiveness in handling growing graphs.
• Enhances the scalability of graph structure learning on large-scale graphs.
• Serves as a comprehensive framework applicable individually for clustering, coarsening, and

learning tasks.
• Provides both theoretical guarantees and empirical evidence, validating performance across diverse

datasets.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PROBLEM FORMULATION AND BACKGROUND
A graph G is represented using G(V,A,X) where V = {v1, v2...vN} is the set of N nodes, each
node vi has a d−dimensional feature vector xi in X ∈ RN×d and A ∈ RN×N is adjacency matrix
representing connection between ith and jth nodes when entry Aij > 0. An expanding graph
EG can be considered a variant of graph G where nodes v now have an associated timestamp τv.
We can represent a expanding graph as a sequence of graphs, i.e., EG = {G0,G1, ...GT } where
{G0 ⊆ G1.... ⊆ GT } at τ ∈ {0, ...T} timestamps. New nodes arriving at different timestamps are
seamlessly integrating into initial graph G0.

Problem statement. Given a partially known or missing graph structure, our goal is to incrementally
learn the whole graph (A or laplacian matrix). Specifically, we consider two unsupervised GSL goals:

Goal 1 Large Datasets with Missing Graph Structure: Here, the graph structure is entirely unavail-
able, and existing methods are computationally infeasible for learning the whole graph in a single
step. To address this, we first randomly partition the dataset into exclusive subsets. We then learn
the initial graph G0(V0, X0) over a small subset of nodes and incrementally expand it by integrating
additional partitions, ultimately reconstructing the full graph GT .

Goal 2 Partially Available Graph: In this case, we only have access to the graph Gt at timestamp
t, with new nodes arriving over time. The goal is to update the graph incrementally to obtain GT ,
without re-learning it from scratch at each timestamp.

2.1 GRAPH REDUCTION
Graph reduction encompasses sparsification, clustering, coarsening, and condensation (Hashemi
et al., 2024). GraphFlex employs clustering and coarsening to refine the set of relevant nodes for
potential connections.
Graph Clustering. Graphs often exhibit global heterogeneity with localized homogeneity, making
them well-suited for clustering (Fortunato, 2010). Clusters capture higher-order structures, aiding
graph learning. Methods like DMoN (Tsitsulin et al., 2023) use GNNs for soft cluster assignments,
while Spectral Clustering (SC) (Kamvar et al., 2003) and K-means (Wagstaff et al., 2001; MacQueen
et al., 1967) efficiently detect communities. DiffPool (Bruna et al., 2014; Defferrard et al., 2016)
applies SC for pooling in GNNs.
Graph Coarsening. Graph Coarsening (GC) reduces a graph G(V,E,X) with N nodes and
features X ∈ RN×d into a smaller graph Gc(Ṽ , Ẽ, X̃) with n≪ N nodes and X̃ ∈ Rn×d. This is
achieved via learning a coarsening matrix P ∈ Rn×N , mapping similar nodes in G to super-nodes in
Gc, ensuring X̃ = PX while preserving key properties (Loukas, 2019; Kataria et al., 2023; Kumar
et al., 2023; Kataria et al., 2024).

2.2 UNSUPERVISED GRAPH STRUCTURE LEARNING
Unsupervised graph learning spans from simple k-NN weighting (Wang & Zhang, 2006; Zhu et al.,
2003) to advanced statistical and graph signal processing (GSP) techniques. Statistical methods, also
known as probabilistic graphical models, assume an underlying graph G governs the joint distribution
of data X ∈ RN×d (Koller & Friedman, 2009; Banerjee et al., 2008; Friedman et al., 2008). Some
approaches (Dempster, 1972) prune elements in the inverse sample covariance matrix Σ̂ = 1

d−1XXT

and sparse inverse covariance estimators, such as Graphical Lasso (GLasso) (Friedman et al., 2008):
maximizeΘ log detΘ − tr(Σ̂Θ) − ρ∥Θ∥1, where Θ is the inverse covariance matrix. However,
these methods struggle with small sample sizes. Graph Signal Processing (GSP) techniques analyze
signals on known graphs, ensuring properties like smoothness and sparsity. Signal smoothness on a
graph G is quantified by the Laplacian quadratic form: Q(L) = xTLx = 1

2

∑
i,j wij(x(i)− x(j))2.

For a set of vectors X , smoothness is measured using the Dirichlet energy (Belkin et al., 2006):
tr(XTLX). State-of-the-art methods l2−model, log−model and large−model (Dong et al., 2016;
Kalofolias, 2016; Hu et al., 2013) optimize Dirichlet energy while enforcing sparsity or specific
structural constraints. Table 8 in Appendix F compares various graph learning methods based on
their formulations and time complexities. More recently, SUBLIME (Liu et al., 2022) learns graph
structure in an unsupervised manner by leveraging self-supervised contrastive learning to align a
learnable graph with a dynamically refined anchor graph derived from the data itself.

Remark 1 Graph Structure Learning (GSL) differs significantly from Continual Learning (CL)
(Van de Ven & Tolias, 2019; Zhang et al., 2022; Parisi et al., 2019) and Dynamic Graph Learning
(DGL) (Kim et al., 2022; Wu et al., 2023; You et al., 2022), as discussed in Appendix E.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 GRAPHFLEX
Here, we present GraphFLEx which has three main modules: 1) Graph Clustering. It identifies
communities and extracts higher-order structural information, 2) Graph Coarsening. It is used to
coarsen down the desired community, if the community itself is large, and 3) Graph Learning. Learns
the graph’s structure using a limited subset of nodes from the clustering and coarsening modules,
enabling scalability. For pseudocode, see Algorithm 1 in Appendix B.

3.1 INCREMENTAL GRAPH LEARNING FOR LARGE DATASETS
Real-world graph data is continuously expanding. For instance, e-commerce networks accumulate
new clicks and purchases daily (Xiang et al., 2010), while academic networks grow with new
researchers and publications (Wang et al., 2020). To manage such growth, we propose incrementally
learning the graph structure over smaller segments. Given a large dataset L(VL, XL), where VL
is the node set and XL represents node features, we define an expanding dataset setting LE =
{ETτ=0}. Initially, L is split into: (i) a static dataset E0(V0, X0) and (ii) an expanding dataset
E = {Eτ (Vτ , Xτ)}Tτ=1. Both Goal 1 (large datasets with missing graph structure) and Goal 2
(partially available graphs with incremental updates), discussed in Section 2, share the common
objective of incrementally learning and updating the graph structure as new data arrives. GraphFLEx
handles these by decomposing the problem into two key components:

• Initial Graph G0(V0, A0, X0): For Goal 1, where the graph structure is entirely missing, E0(V0, X0)
is used to construct G0 from scratch using structure learning methods (Sec.2.2). For Goal 2, the
initial graph G0(V0, A0, X0) is already available and serves as the starting point for incremental
updates.

• Expanding Dataset E = {Eτ (Vτ , Xτ)}Tτ=1: In both cases, E consists of incoming nodes and
features arriving over T timestamps. These nodes are progressively integrated into the existing
graph, enabling continuous adaptation and growth.

The partition is controlled by a parameter r, which determines the proportion of static nodes:
r = ∥V0∥

∥VL∥ . For example, r = 0.2 implies that 20% of VL is treated as static, while the remaining 80%
arrives incrementally over T timestamps. In our experiments, we set r = 0.5 and T = 25.

Remark 2 We can learn Gτ (Vτ , Aτ , Xτ) by aggregating Eτ nodes in Gτ−1 graph. We aim to learn
GT (VT , AT , XT) after T th-timestamp.

3.2 DETECTING COMMUNITIES
From the static graph G0, our goal is to learn higher-order structural information, identifying
potential communities to which incoming nodes (V ∈ V τ) may belong. We train the community
detection/clustering modelMclust once using G0, allowing subsequent inference of clusters for all
incoming nodes. While our framework supports spectral and k-means clustering, our primary focus
has been on Graph Neural Network (GNN)-based clustering methods. Specifically, we use DMoN
(Tsitsulin et al., 2023; Bianchi, 2022), which maximizes spectral modularity. Modularity (Newman,
2006) measures the divergence between intra-cluster edges and the expected number. These
methods use a GNN layer to compute the partition matrix C = softmax(MLP(X̃, θMLP)) ∈ RN×K ,
where K is the number of clusters and X̃ is the updated feature embedding generated by one
or more message-passing layers. To optimize the C matrix, we minimize the loss function
∆(C;A) = − 1

2mTr(CTBC)+
√
k

n |ΣiC
T
i |F − 1, which combines spectral modularity maximization

with regularization to prevent trivial solutions, where B is the modularity matrix (Tsitsulin et al.,
2023). Our static graph G0 and incoming nodes E follow Assumption 1.

Assumption 1 Based on the well-established homophily principle, which forms the basis of most
graph coarsening and learning methods. We assume that the generated graphs adhere to the
Degree-Corrected Stochastic Block Model (DC-SBM) (Zhao et al., 2012), where intra-class (or
intra-community) links are more likely than inter-class links. DC-SBM, an extension of SBM that
accounts for degree heterogeneity, making it a more flexible and realistic choice for real-world
networks (Details on DC-SBM in Appendix C).

Lemma 1 Mclust Consistency. We adopt the theoretical framework of (Zhao et al., 2012) for a
DC-SBM with N nodes and k classes. The edge probability matrix is parameterized as PN = ρNP ,
where P ∈ Rk×k is a symmetric matrix containing the between/within community edge probabilities
and it is independent of N , ρN = λN/N , and λN is the average degree of the network. Let

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

ŷN = [ŷ1, ŷ2, . . . , ŷN] denote the predicted class labels, and let ĈN be the corresponding N × k
one-hot matrix. Let the true class label matrix is CN , and µ is any k × k permutation matrix. Under
the adjacency matrix A(N), the global maximum of the objective ∆(·;A(N)) is denoted as Ĉ∗

N . The
consistency of class predictions is defined as:

1) Strong Consistency: PN

[
minµ ∥Ĉ∗

Nµ− CN∥2F = 0
]
→ 1 as N → ∞.

2) Weak Consistency: ∀ε > 0, PN

[
minµ

1
N

∥Ĉ∗
Nµ− CN∥2F < ε

]
→ 1 as N → ∞.

where ∥ · ∥F is the Frobenius norm. Under theorem 3.1 from (Zhao et al., 2012), theMclust objective
is strongly consistent if λN/ log(N)→∞, and it is weakly consistent when λN →∞.

GraphFLEx focus on learning the structure within each community rather than the structure of
the entire dataset at once. Strong consistency ensures perfect community recovery, meaning no
inter-community edges exist representing the ideal case. Weak consistency, however, allows for a
small fraction (ϵ) of inter-community edges, where ϵ is controlled by ρn in Pn = ρnP , influencing
graph sparsity. By Lemma 1 and Assumption 1, stronger consistency leads to more precise structure
learning, whereas weaker consistency permits a limited number of inter-community edges.

3.3 LEARNING GRAPH STRUCTURE ON A COARSE GRAPH
After training Mclust, we identify communities for incoming nodes, starting with τ = 1. Once
assigned, we determine significant communities, i.e., communities with at least one incoming node.
We then learn the connections of incoming nodes only to their respective community subgraphs.
For large datasets, substantial community sizes may again introduce scalability issues. To mitigate
this, we first coarsen the large community graph into a smaller graph and use it to identify potential
connections for incoming nodes. This process constitutes the second module of GraphFLEx, denoted
asMcoar, which employs LSH-based hashing for graph coarsening. The supernode index for ith
node is given as:

Hi = maxOccurance

{⌊
1

r
· (W ·Xi + b)

⌋}
(1)

where r (bin width) controls the coarsened graph size, W represents random projection matrix,
X is the feature matrix, and b is the bias term. For further details, refer to UGC (Kataria et al.,
2024). After coarsening the ith community (Ci),Mcoar(Ci) = {Pi, Si} yields a partition matrix
Pi ∈ R∥Si∥×∥Ci∥ and a set of coarsened supernodes (Si), as discussed in Section 2. To identify the
potential set of nodes for incoming nodes, we define their ideal connections/neighborhood as follows:

Definition 1 The neighborhood of a set of nodes Ei is defined as the union of the top k most similar
nodes in Ci for each node v ∈ Ei, where similarity is measured by the distance function d(v, u). A
node u ∈ Ci is considered part of the neighborhood if its distance d(v, u) is among the k smallest
distances for all u′ ∈ Ci.

Nk(Ei) =
⋃
v∈Ei

{u ∈ Ci | d(v, u) ≤ top-k[d(v, u′) : u′ ∈ Ci]}

The neighborhood of incoming nodes Nk(Ei) represents the ideal set of nodes where the incoming
nodes Ei are likely to establish connections when the entire community is provided to a structure
learning framework. A robust coarsening framework must reduce the number of nodes within each
community Ci while ensuring that the neighborhood of the incoming nodes is preserved.
3.4 GRAPH LEARNING ONLY WITH POTENTIAL NODES
As we now have a coarse representation of the community (Sec. 3.3), we can employ any graph
learning algorithms discussed in Section 2.2 to learn a graph between coarsened supernodes Si and
incoming nodes (V i

τ ∈ Vτ). This is the third module of GraphFLEx, i.e., graph learning; we denote
it asMgl. The number of supernodes in Si is much smaller compared to the original size of the
community, i.e., ∥Si∥ ≪ ∥Ci∥; scalability is not an issue now. We learn a small graph first using
Mgl(Si, X

i
τ) = G̃iτ (V c

τ , A
c
τ) where Xi

τ represents features of new incoming nodes belonging to ith

community at time τ , G̃iτ (V c
τ , A

c
τ) representing the graph between supernodes and incoming nodes.

Utilizing the partition matrix Pi obtained fromMcoar, we can precisely determine the set of nodes
associated with each supernode. For every new node V ∈ V i

τ , we identify the connected supernodes
and subsequently select nodes within those supernodes. This subset of nodes is denoted by ωV i

τ
, the

sub-graph associated with ωV i
τ

represented by Giτ−1(ωV i
τ
) then undergoes an additional round of

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Time complexity analysis of GraphFLEx. Here, N is the number of nodes in the graph, k is the
number of nodes in the static subgraph used for clustering (k ≪ N), and c represents the number of detected
communities. kτ denotes the number of nodes at timestamp τ . Finally, α = ∥Si

τ∥ + ∥Ei
τ∥ is the sum of

coarsened and incoming nodes in the relevant community at τ timestamp.

Mclust Mcoar Mgl GraphFLEx
Best (kNN-UGC-ANN) O(k2) O

(
kτ

c

)
O(α logα) O(k2 + kτ

c + α logα)

Worst (SC-FGC-GLasso) O(k3) O
((

kτ

c

)2 ∥Si
τ∥
)

O(α3) O(k3 +
(
kτ

c

)2 ∥Si
τ∥+ α3)

graph learningMgl(Giτ−1(ωV i
τ
), Xi

τ), ultimately providing a clear and accurate connection of new
nodes V i

τ with nodes of Gτ−1, ultimately updating it to Gτ . This multi-step approach, characterized
by coarsening, learning on coarsened graphs, and translation to the original graph, ensures scalability.

Theorem 3.1 Neighborhood Preservation. Let Nk(Ei) denote the neighborhood of incoming nodes
Ei for the ith community. With partition matrix Pi andMgl(Si, X

i
τ) = Gcτ (V c

τ , A
c
τ) we identify the

supernodes connected to incoming nodes Ei and subsequently select nodes within those supernodes;
this subset of nodes is denoted by ωV i

τ
. Formally,

ωV i
τ
=

⋃
v∈Ei

{ ⋃
s∈Si

{π−1(s)|Ac
τ (v, s) ̸= 0}

}
Then, with probability Π{c∈ϕ}p(c), it holds that Nk(Ei) ⊆ ωV i

τ
where

p(c) ≤ 1− 2√
2π

c

r

[
1− e−r2/(2c2)

]
,

and ϕ is a set containing all pairwise distance values (c = ∥v − u∥) between every node v ∈ Ei and the nodes
u ∈ ωV i

τ
. Here, π−1(s) denotes the set of nodes mapped to supernode s, r is the bin-width hyperparameter of

Mcoar.

Proof 3.1 The proof is deferred in Appendix D.

Figure 3: The versatility of GraphFlex in
supporting multiple GSL methods.

Theorem 3.1 establishes that, with a constant probability of
success, the neighborhood of incoming nodes Nk(Ei) can
be effectively recovered using the GraphFLEx multistep
approach, which involves coarsening and learning on the
coarsened graph, i.e., Nk(Ei) ⊆ ωV i

τ
. The set ωV i

τ
, esti-

mated by GraphFLEx, identifies potential candidates where
incoming nodes are likely to connect. The probability of
failure can be reduced by regulating the average degree of
connectivity inMgl(Si, X

i
τ) = Gcτ (V c

τ , A
c
τ). While a fully

connected network Gcτ ensures all nodes in the community
are candidates, it significantly increases computational costs
for large communities.

3.5 GRAPHFLEX: MULTIPLE GSL FRAMEWORKS
Each of the three modules of GraphFLEx, as also shown in Figure 3 controls a distinct aspect of the
GSL process: clustering influences community detection, coarsening reduces graph complexity via
supernodes, and the learning module governs structural inference. Altering any of these modules
results in a new GSL method. Currently, we support 48 different graph learning configurations, and
this number scales aggressively with the addition of new methods to any module. The number of
possible frameworks is given by α× β × γ, where α, β, and γ represent the number of clustering,
coarsening, and learning methods, respectively.

Module Selection: Since different clustering, coarsening, and learning choices yield distinct GSL
variants, we provide module selection guidelines in Appendix L.

3.6 RUN TIME ANALYSIS
GraphFLEx computational time is always bounded by existing approaches, as it operates on a
significantly reduced set of nodes. We evaluate the run-time complexity of GraphFLEx in two
scenarios: (a) the worst-case scenario, where computationally intensive clustering and coarsening
modules are selected, providing an upper bound on time complexity, and (b) the best-case scenario,
where the most efficient modules are chosen. Table 1 presents a summary of this analysis for both
cases. Due to space limitations, a more comprehensive analysis is provided in Appendix G.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS
Tasks and Datasets. To validate GraphFLEx’s utility, we evaluate it across four key dimensions:
(i) computational efficiency, (ii) scalability to large graphs, (iii) quality of learned structures, and
(iv) adaptability to dynamically growing graphs. To validate the characteristics of GraphFLEx, we
conduct extensive experiments on 26 different datasets, including (a) datasets that already have a
complete graph structure (allowing comparison between the learned and the original structure), (b)
datasets with missing graph structures, (c) synthetic datasets, (d) small datasets for visualizing the
graph structure, and (e) large datasets, including datasets with even 2.4M nodes. More details about
datasets and system specifications are presented in Table 7 in Appendix A.

4.1 COMPUTATIONAL EFFICIENCY.
Existing methods like k-NN and log-model struggle to learn graph structures even for 20k nodes due
to out-of-memory (OOM) or out-of-time (OOT) issues, while l2-model and large-model struggle
beyond 50k nodes. Although A-NN and emp-Covar. are faster, GraphFLEx outperforms them on
sufficiently large graphs (Table 2). While traditional methods may be efficient for small graphs,
GraphFLEx scales significantly better, excelling on large datasets like Pubmed and Syn 5, where most
methods fail. It accelerates structure learning, making A-NN 3× faster and emp-Covar. 2× faster.

4.2 NODE CLASSIFICATION ACCURACY
Experimental Setup. We now evaluate the prediction performance of GNN models when trained on
graph structures learned from three distinct scenarios: 1) Original Structure: GNN models trained
on the original graph structure, which we refer to as the Base Structure, 2) GraphFLEx Structure:
GNN models trained on the graph structure learned from GraphFLEx, and 3)Vanilla Structure: GNN
models trained on the graph structure learned from other existing methods. For each scenario, a
unique graph structure is obtained. We trained GNN models on each of these three structure. For
more details on GNN model parameters, see Appendix H.

Table 2: Computational time(in seconds) for learning graph structures using GraphFLEx (GFlex) with existing
methods (Vanilla referred to as Van.). The experimental setup involves treating 50% of the data as static, while
the remaining 50% of nodes are treated as incoming nodes arriving in 25 different timestamps. The best times
are highlighted by color Green. OOM and OOT denote out-of-memory and out-of-time, respectively.

Data ANN KNN log-model l2-model emp-Covar. large-model Sublime
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

Cora 335 100 8.4 36.1 869 81.6 424 55 8.6 30 2115 18.4 7187 493
Citeseer 1535 454 21.9 75 1113 64.5 977 54.0 14.7 59.2 8319 43.9 8750 670
DBLP 2731 988 OOM 270 77000 919 OOT 1470 359 343 OOT 299 OOM 831
CS 22000 12000 OOM 789 OOT 838 32000 809 813 718 OOT 1469 OOM 1049
PubMed 770 227 OOM 164 OOT 176 OOT 165 488 299 OOT 262 OOM 914
Phy. 61000 21000 OOM 903 OOT 959 OOT 908 2152 1182 OOT 2414 OOM 2731
Syn 3 95 37 OOM 30 58000 346 859 53 88 59 5416 42 6893 780
Syn 4 482 71 OOM 73 OOT 555 OOT 145 2072 1043 OOT 392 OOM 1896

Table 3: Node classification accuracies on different GNN models using GraphFLEx (GFlex) with existing Vanilla
(Van.) methods. The experimental setup involves treating 70% of the data as static, while the remaining 30% of
nodes are treated as new nodes coming in 25 different timestamps. The best and the second-best accuracies in
each row are highlighted by dark and lighter shades of Green, respectively. GraphFLEx’s structure beats all of
the vanilla structures for every dataset. OOM and OOT denotes out-of-memory and out-of-time respectively.

Data Model ANN KNN log-model l2-model COVAR large-model Sublime Base Struct.
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

GAT 34.23 67.37 OOM 69.83 OOT 69.83 OOT 68.98 50.48 68.56 OOT 66.38 OOM 68.32 70.84
SAGE 34.23 69.58 OOM 70.28 OOT 70.28 OOT 70.68 51.47 70.51 OOT 69.32 OOM 70.28 72.57

DBLP GCN 34.12 69.41 OOM 73.39 OOT 73.39 OOT 73.05 51.50 71.75 OOT 68.55 OOM 69.06 74.43
GIN 34.01 69.69 OOM 68.19 OOT 68.19 OOT 73.08 52.77 72.03 OOT 71.18 OOM 71.87 73.92

GAT 12.47 60.89 OOM 61.09 OOT 60.95 18.64 61.06 58.96 88.06 OOT 86.22 OOM 64.21 60.75
SAGE 12.70 78.81 OOM 79.43 OOT 79.06 19.24 78.94 56.97 93.30 OOT 92.79 OOM 78.94 80.33

CS GCN 12.59 63.81 OOM 67.94 OOT 69.33 19.21 66.01 58.35 91.07 OOT 84.85 OOM 68.92 67.43
GIN 13.07 77.62 OOM 78.41 OOT 78.55 19.24 77.61 58.26 92.07 OOT 86.03 OOM 77.61 55.65

GAT 49.49 83.71 OOM 84.60 OOT 84.60 OOT 84.04 72.63 83.97 OOT 81.15 OOM 82.15 84.04
SAGE 50.43 87.27 OOM 87.34 OOT 87.34 OOT 87.42 73.57 86.68 OOT 87.34 OOM 83.45 88.88

Pub. GCN 50.45 82.06 OOM 83.56 OOT 83.56 OOT 83.74 73.14 82.39 OOT 78.03 OOM 70.94 85.54
GIN 51.82 83.13 OOM 84.31 OOT 84.07 OOT 82.93 73.15 83.51 OOT 82.85 OOM 80.72 86.50

GAT 29.18 88.06 OOM 88.47 OOT 88.47 OOT 88.68 58.96 88.06 OOT 86.22 OOM 86.12 88.58
SAGE 29.57 93.47 OOM 93.47 OOT 93.47 OOT 93.78 56.97 93.60 OOT 92.79 OOM 89.58 94.19

Phy. GCN 27.84 91.27 OOM 91.08 OOT 91.08 OOT 91.78 58.35 91.07 OOT 84.85 OOM 88.46 91.48
GIN 28.38 92.69 OOM 92.04 OOT 92.04 OOT 92.27 58.26 92.07 OOT 86.03 OOM 87.20 88.89

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

GNN Models. Graph neural networks (GNNs) such as GCN (Kipf & Welling, 2016), GraphSage
(Hamilton et al., 2017), GIN (Xu et al., 2018), and GAT (Velickovic et al., 2017) rely on accurate
message passing, dictated by the graph structure, for effective embedding. We use these models to
evaluate the above-mentioned learned structures. Table 3 reports node classification performance
across all methods. Notably, GraphFLEx outperforms vanilla structures by a significant margin
across all datasets, achieving accuracies close to those obtained with the original structure. Figure 8
in Appendix H illustrates GraphSage classification results, highlighting GraphFLEx’s superior
performance. For the CS dataset, GraphFLEx (large-model) and GraphFLEx (empCovar.-model)
even surpass the original structure, demonstrating its ability to preserve key structural properties
while denoising edges, leading to improved accuracy.
Graph Transformers. To address limitations of message-passing GNNs (e.g., limited receptive
fields and over-smoothing), recent Graph Transformers couple self-attention with structural priors to
capture long-range dependencies. We also include node-classification accuracies of Graph Trans-
former models like GOAT (Kong et al., 2023), Nodeformer (Wu et al., 2022a), and Exoformer (Shirzad
et al., 2023) when trained on graph structures learned by GraphFLEx (Table 10 in App. H).
Table 4: Runtime (sec) and Node Classification Accuracy (%) across large datasets. Each cell shows: Time /
Accuracy. Van = Vanilla, GFlex = GraphFLEx. OOM = Out of Memory, OOT = Out of Time.

Method ogbn-arxiv (60.13) ogbn-products (73.72) Flickr (44.92) Reddit (94.15)
Van. GFlex Van. GFlex Van. GFlex Van. GFlex

Covar OOM — – 3.7k — 60.26 OOM — – 83.1k — 68.23 2.3k — 44.65 682 — 44.34 OOM — – 6.6k — 94.13
ANN 7.8k — 60.14 4.8k — 60.22 OOM — – 89.3k — 67.91 2.5k — 44.09 705 — 44.92 12.6k — 94.14 6.1k — 94.18
knn 8.3k — 60.09 6.1k — 60.23 OOM — – 91.8k — 68.47 2.7k — 43.95 920 — 44.73 15.6k — 94.14 6.9k — 94.15
l2 OOT — – 9.1k — 58.39 OOT — – OOT — – 93.3k — 44.90 1.2k — 44.32 OOT — – 5.1 — 93.47
log OOT — – 45.6k — 58.72 OOT — – OOT — – OOT — – 18.7k — 44.59 OOT — – 60.3k — 94.13
large OOT — – 5.6k — 60.20 OOT — – OOT — – OOT — – 2.2k — 44.45 OOT — – 9.3k — 93.71

4.3 SCALABILITY OF GRAPHFLEX ON LARGE-SCALE GRAPHS.
To evaluate GraphFLEx’s scalability to large-scale graphs, we consider four datasets with large
number of nodes: (a) Flickr(89k nodes) (Zeng et al., 2019), (b) Reddit (233k nodes) (Zeng et al.,
2019), (c) Ogbn-arxiv (169k nodes) (Wang et al., 2020), and (d) Ogbn-products (2.4M nodes) (Bhatia
et al., 2016). As shown in Table 4, GraphFLEx consistently demonstrates superior scalability across
all datasets, outperforming all baseline methods in runtime. In particular, methods such as log-model,
l2-model, and large-model fail to run even on Flickr, while GraphFLEx successfully scales them
on Flickr, Ogbn-arxiv, and Reddit, enabling structure learning where others cannot. For the most
computationally demanding dataset, Ogbn-products, these methods remain prohibitively expensive
even for GraphFLEx. Nonetheless, GraphFLEx efficiently supports scalable structure learning on
Ogbn-products using the Covar, ANN, and KNN modules. Table 4 also reports node classification
accuracy, demonstrating that GraphFLEx maintains performance comparable to the original (base)
structure across all datasets. These results confirm that GraphFLEx not only scales effectively, but
also preserves the quality of learned structures.

4.4 GRAPHFLEX FOR LINK PREDICTION AND GRAPH CLASSIFICATION.
To further validate the generalization, we evaluate GraphFLEx on the link prediction task. Results
are in Table 5 which follows the same setting as in Table 3. The structure learned by GraphFLEx
demonstrates strong predictive performance, in some cases even outperforming the base structure.
This highlights the effectiveness of GraphFLEx in preserving and even enhancing relational infor-
mation relevant for link prediction. While our primary focus is on structure learning for node-level
Table 5: Link predication accuracy (%) across different datasets. The best and the second-best accuracies in
each row are highlighted by dark and lighter shades of Green, respectively.

Data ANN KNN log-model l2-model COVAR large-model Base Struct.
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

DBLP 96.57 96.61 OOM 94.23 OOT 97.59 OOT 97.59 97.22 97.59 OOT 96.24 95.13
Citeseer 80.12 96.32 85.17 96.24 80.48 96.24 80.48 96.48 82.05 96.24 84.50 94.38 90.78
Cora 84.47 95.30 79.23 95.14 90.63 95.45 90.81 95.14 86.05 95.30 90.63 94.67 89.53
Pubmed 94.24 96.91 OOM 97.42 OOT 97.42 OOT 97.37 94.89 94.64 OOT 94.41 94.64
CS 94.21 95.73 OOM 96.02 OOT 93.17 OOT 93.17 93.52 92.31 OOT 95.73 95.00
Physics 95.77 91.34 OOM 94.63 OOT 90.79 OOT 94.63 92.03 90.79 OOT 92.97 93.96

tasks, we briefly discuss the applicability of GraphFLEx to graph classification. In such tasks,
especially in domains like molecule or drug discovery, each data point often corresponds to a small
individual subgraph. For these cases, applying clustering and coarsening is typically redundant and
may introduce unnecessary computational overhead. Nevertheless, GraphFLEx remains flexible its

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) 10 incoming
nodes

(b) 20 incoming
nodes

(c) 30 incoming
nodes

(d) ANN as Mgl (e) Emp. Covr. as
Mgl

(f) kNN as Mgl

Figure 4: Figures (a), (b), and (c) illustrate the growing structure learned using GraphFLEx for HE synthetic
dataset. Figures (d), (e), and (f) illustrate the learned structure on Zachary’s karate dataset when existing methods
are employed with GraphFLEx. New nodes are denoted using black color.

learning module can be directly used without the clustering or coarsening steps, making it suitable
for graph classification as well. This adaptability reinforces GraphFLEx’s utility across a broad range
of graph learning tasks.

4.5 CLUSTERING QUALITY
Table 6: Clustering (NMI, C, Q) and node classification
accuracy using GCN, GraphSAGE, GIN, and GAT.

Data NMI C Q GCN SAGE GIN GAT

Bar. M. 0.716 0.057 0.741 91.2 96.2 95.1 94.9
Seger. 0.678 0.102 0.694 91.0 93.9 94.2 92.3
Mura. 0.843 0.046 0.706 96.9 97.4 97.5 96.4

Bar. H. 0.674 0.078 0.749 95.3 96.4 97.2 95.8
Xin 0.741 0.045 0.544 98.6 99.3 98.9 99.8

MNIST 0.677 0.082 0.712 92.9 94.5 94.9 82.6

We measure three metrics to evaluate the re-
sulting clusters or community assignments: a)
Normalized Mutual Information (NMI) (Tsit-
sulin et al., 2023) between the cluster assign-
ments and original labels; b) Conductance (C)
(Jerrum & Sinclair, 1988) which measures the
fraction of total edge volume that points outside
the cluster; and c) Modularity (Q) (Newman,
2006) which measures the divergence between
the intra-community edges and the expected one.
Table 6 illustrates these metrics for single-cell RNA and the MNIST dataset (where the whole struc-
ture is missing), and Figure 12 in Appendix K.1 shows the PHATE (Moon et al., 2019) visualization
of clusters learned using GraphFLEx’s clustering moduleMclust. We also train the aforementioned
GNN models for the node classification task in order to illustrate the efficacy of the learned structures;
the accuracy values presented in Table 6, clearly highlight the significance of the learned structures,
as reflected by the high accuracy values. For a comprehensive ablation study, refer to Appendix K.

4.6 STRUCTURE VISUALIZATION

Figure 5: Effectiveness of GraphFlex in learning struc-
ture between similar MNIST digits and GloVe embed-
dings.

We evaluate the structures generated by Graph-
FLEx through visualizations on four small
datasets: (i) MNIST (LeCun et al., 2010), con-
sisting of handwritten digit images, where Fig-
ure 5(a) shows that images of the same digit are
mostly connected; (ii) Pre-trained GloVe embed-
dings (Pennington et al., 2014) of English words,
with Figure 5(b) revealing that frequently used
words are closely connected; (iii) A synthetic
H.E dataset (see Appendix A), demonstrating
GraphFLEx’s ability to handle expanding networks without requiring full relearning. Figure 4(a-c)
shows the graph structure evolving as 30 new nodes are added over three timestamps; and (iv)
Zachary’s karate club network (Zachary, 1977), which highlights GraphFLEx’s multi-framework
capability. Figure 4(d-f) shows three distinct graph structures after altering the learning module.

5 CONCLUSION
Large or expanding graphs challenge the best of graph learning approaches. GraphFLEx, introduced
in this paper, seamlessly adds new nodes into an existing graph structure. It offers diverse methods for
acquiring the graph’s structure. GraphFLEx consists of three key modules: Clustering, Coarsening,
and Learning which empowers GraphFLEx to serves as a comprehensive framework applicable
individually for clustering, coarsening, and learning tasks. Empirically, GraphFLEx outperforms
state-of-the-art baselines, achieving up to 3× speedup while preserving structural quality. The perfor-
mance across multiple real and synthetic datasets affirms the utility and efficacy of GraphFLEx for
graph structure learning.
Limitations and Future Work. GraphFLEx is designed assuming minimal inter-community connec-
tivity, which aligns well with many real-world scenarios. However, its applicability to heterophilic
graphs may require further adaptation. Future work will focus on extending the framework to
supervised GSL methods and heterophilic graphs, broadening its scalability and versatility.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES
Jeffrey D Allen, Yang Xie, Min Chen, Luc Girard, and Guanghua Xiao. Comparing statistical

methods for constructing large scale gene networks. PloS one, 7(1):e29348, 2012. (Cited at p. 1.)

Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont. Model selection through sparse
maximum likelihood estimation for multivariate gaussian or binary data. The Journal of Machine
Learning Research, 9:485–516, 2008. (Cited at p. 3.)

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. Journal of machine learning research, 7
(11), 2006. (Cited at p. 3.)

K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. The extreme classi-
fication repository: Multi-label datasets and code, 2016. URL http://manikvarma.org/
downloads/XC/XMLRepository.html. (Cited at pp. 8 and 16.)

Filippo Maria Bianchi. Simplifying clustering with graph neural networks. arXiv preprint
arXiv:2207.08779, 2022. (Cited at p. 4.)

J Bruna, W Zaremba, A Szlam, and Y LeCun. Spectral networks and deep locally connected networks
on graphs. arxiv. arXiv preprint arXiv:1312.6203, 2014. (Cited at p. 3.)

Yu Chen and Lingfei Wu. Graph neural networks: Graph structure learning. Graph Neural Networks:
Foundations, Frontiers, and Applications, pp. 297–321, 2022. (Cited at p. 1.)

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry, pp. 253–262, 2004. (Cited at p. 17.)

Michaël Defferrard, Lionel Martin, Rodrigo Pena, and Nathanaël Perraudin. Pygsp: Graph signal
processing in python. URL https://github.com/epfl-lts2/pygsp/. (Cited at p. 15.)

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016. (Cited at p. 3.)

Arthur P Dempster. Covariance selection. Biometrics, pp. 157–175, 1972. (Cited at p. 3.)

Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph construction for generic
similarity measures. In Proceedings of the 20th international conference on World wide web, pp.
577–586, 2011. (Cited at p. 1.)

Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst. Learning laplacian
matrix in smooth graph signal representations. IEEE Transactions on Signal Processing, 64(23):
6160–6173, 2016. (Cited at pp. 1 and 3.)

Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves structure
learning for graph neural networks. Advances in Neural Information Processing Systems, 34:
22667–22681, 2021. (Cited at p. 1.)

Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–174, 2010. (Cited at
p. 3.)

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph
convolutional networks. Advances in neural information processing systems, 30, 2017. (Cited at
p. 1.)

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with
the graphical lasso. Biostatistics, 9(3):432–441, 2008. (Cited at pp. 1 and 3.)

Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. Magnn: Metapath aggregated graph neural
network for heterogeneous graph embedding. In Proceedings of The Web Conference 2020, pp.
2331–2341, 2020. (Cited at p. 15.)

10

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://github.com/epfl-lts2/pygsp/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jiuxiang Gu, Handong Zhao, Zhe Lin, Sheng Li, Jianfei Cai, and Mingyang Ling. Scene graph
generation with external knowledge and image reconstruction. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 1969–1978, 2019. (Cited at p. 1.)

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017. (Cited at p. 8.)

Mohammad Hashemi, Shengbo Gong, Juntong Ni, Wenqi Fan, B Aditya Prakash, and Wei Jin. A
comprehensive survey on graph reduction: Sparsification, coarsening, and condensation. arXiv
preprint arXiv:2402.03358, 2024. (Cited at p. 3.)

Cho-Jui Hsieh, Inderjit Dhillon, Pradeep Ravikumar, and Mátyás Sustik. Sparse inverse covariance
matrix estimation using quadratic approximation. Advances in neural information processing
systems, 24, 2011. (Cited at p. 1.)

Chenhui Hu, Lin Cheng, Jorge Sepulcre, Georges El Fakhri, Yue M Lu, and Quanzheng Li. A graph
theoretical regression model for brain connectivity learning of alzheimer’s disease. In 2013 IEEE
10th International Symposium on Biomedical Imaging, pp. 616–619. IEEE, 2013. (Cited at p. 3.)

Mark Jerrum and Alistair Sinclair. Conductance and the rapid mixing property for markov chains:
the approximation of permanent resolved. In Proceedings of the twentieth annual ACM symposium
on Theory of computing, pp. 235–244, 1988. (Cited at p. 9.)

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 66–74, 2020. (Cited at p. 1.)

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation
for graph neural networks. arXiv preprint arXiv:2110.07580, 2021. (Cited at p. 19.)

Vassilis Kalofolias. How to learn a graph from smooth signals. In Artificial intelligence and statistics,
pp. 920–929. PMLR, 2016. (Cited at pp. 1 and 3.)

Sepandar D Kamvar, Dan Klein, and Christopher D Manning. Spectral learning. In IJCAI, volume 3,
pp. 561–566, 2003. (Cited at p. 3.)

Mohit Kataria, Aditi Khandelwal, Rocktim Das, Sandeep Kumar, and Jayadeva Jayadeva. Linear
complexity framework for feature-aware graph coarsening via hashing. In NeurIPS 2023 Workshop:
New Frontiers in Graph Learning, 2023. URL https://openreview.net/forum?id=
HKdsrm5nCW. (Cited at pp. 3, 18, and 19.)

Mohit Kataria, Sandeep Kumar, and Jayadeva Jayadeva. UGC: Universal graph coarsening. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=nN6NSd1Qds. (Cited at pp. 3, 5, and 17.)

Seoyoon Kim, Seongjun Yun, and Jaewoo Kang. Dygrain: An incremental learning framework for
dynamic graphs. In IJCAI, pp. 3157–3163, 2022. (Cited at pp. 3 and 18.)

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016. (Cited at pp. 8 and 18.)

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009. (Cited at p. 3.)

Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein. Goat:
A global transformer on large-scale graphs. In International Conference on Machine Learning, pp.
17375–17390. PMLR, 2023. (Cited at pp. 8 and 19.)

Manoj Kumar, Anurag Sharma, and Sandeep Kumar. A unified framework for optimization-based
graph coarsening. Journal of Machine Learning Research, 24(118):1–50, 2023. URL http:
//jmlr.org/papers/v24/22-1085.html. (Cited at p. 3.)

11

https://openreview.net/forum?id=HKdsrm5nCW
https://openreview.net/forum?id=HKdsrm5nCW
https://openreview.net/forum?id=nN6NSd1Qds
http://jmlr.org/papers/v24/22-1085.html
http://jmlr.org/papers/v24/22-1085.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Danning Lao, Xinyu Yang, Qitian Wu, and Junchi Yan. Variational inference for training graph neural
networks in low-data regime through joint structure-label estimation. In Proceedings of the 28th
ACM SIGKDD conference on knowledge discovery and data mining, pp. 824–834, 2022. (Cited at
p. 1.)

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010. (Cited at pp. 9 and 16.)

Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan. Towards unsupervised
deep graph structure learning. In Proceedings of the ACM Web Conference 2022, pp. 1392–1403,
2022. (Cited at pp. 1 and 3.)

Andreas Loukas. Graph reduction with spectral and cut guarantees. J. Mach. Learn. Res., 20(116):
1–42, 2019. (Cited at p. 3.)

Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey. Physica A: statistical
mechanics and its applications, 390(6):1150–1170, 2011. (Cited at p. 18.)

James MacQueen et al. Some methods for classification and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1,
pp. 281–297. Oakland, CA, USA, 1967. (Cited at pp. 1 and 3.)

Nikita Malik, Rahul Gupta, and Sandeep Kumar. Hyperdefender: A robust framework for hyper-
bolic gnns. Proceedings of the AAAI Conference on Artificial Intelligence, 39(18):19396–19404,
Apr. 2025. doi: 10.1609/aaai.v39i18.34135. URL https://ojs.aaai.org/index.php/
AAAI/article/view/34135. (Cited at p. 1.)

Kevin R Moon, David Van Dijk, Zheng Wang, Scott Gigante, Daniel B Burkhardt, William S Chen,
Kristina Yim, Antonia van den Elzen, Matthew J Hirn, Ronald R Coifman, et al. Visualizing
structure and transitions in high-dimensional biological data. Nature biotechnology, 37(12):
1482–1492, 2019. (Cited at pp. 9 and 22.)

Marius Muja and David G Lowe. Scalable nearest neighbor algorithms for high dimensional data.
IEEE transactions on pattern analysis and machine intelligence, 36(11):2227–2240, 2014. (Cited
at p. 1.)

Mark EJ Newman. Modularity and community structure in networks. Proceedings of the national
academy of sciences, 103(23):8577–8582, 2006. (Cited at pp. 4 and 9.)

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural networks, 113:54–71, 2019. (Cited at
pp. 3 and 18.)

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014. (Cited at pp. 9 and 16.)

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018. (Cited at p. 15.)

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.
Exphormer: Sparse transformers for graphs. In International Conference on Machine Learning,
pp. 31613–31632. PMLR, 2023. (Cited at pp. 8 and 19.)

Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with graph
neural networks. Journal of Machine Learning Research, 24(127):1–21, 2023. (Cited at pp. 3, 4,
and 9.)

Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019. (Cited at pp. 3 and 18.)

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio,
et al. Graph attention networks. stat, 1050(20):10–48550, 2017. (Cited at p. 8.)

12

https://ojs.aaai.org/index.php/AAAI/article/view/34135
https://ojs.aaai.org/index.php/AAAI/article/view/34135

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Joshua T Vogelstein, William Gray Roncal, R Jacob Vogelstein, and Carey E Priebe. Graph classi-
fication using signal-subgraphs: Applications in statistical connectomics. IEEE transactions on
pattern analysis and machine intelligence, 35(7):1539–1551, 2012. (Cited at p. 18.)

Kiri Wagstaff, Claire Cardie, Seth Rogers, Stefan Schrödl, et al. Constrained k-means clustering with
background knowledge. In Icml, volume 1, pp. 577–584, 2001. (Cited at p. 3.)

Fei Wang and Changshui Zhang. Label propagation through linear neighborhoods. In Proceedings
of the 23rd international conference on Machine learning, pp. 985–992, 2006. (Cited at pp. 1
and 3.)

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia.
Microsoft academic graph: When experts are not enough. Quantitative Science Studies, 1(1):
396–413, 2020. (Cited at pp. 4, 8, and 16.)

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393
(6684):440–442, 1998. (Cited at p. 15.)

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387–27401, 2022a. (Cited at pp. 8 and 19.)

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387–27401, 2022b. (Cited at p. 1.)

Tiandeng Wu, Qijiong Liu, Yi Cao, Yao Huang, Xiao-Ming Wu, and Jiandong Ding. Continual graph
convolutional network for text classification. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 13754–13762, 2023. (Cited at pp. 3 and 18.)

Yongji Wu, Defu Lian, Yiheng Xu, Le Wu, and Enhong Chen. Graph convolutional networks
with markov random field reasoning for social spammer detection. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 1054–1061, 2020. (Cited at p. 1.)

Liang Xiang, Quan Yuan, Shiwan Zhao, Li Chen, Xiatian Zhang, Qing Yang, and Jimeng Sun.
Temporal recommendation on graphs via long-and short-term preference fusion. In Proceedings of
the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
723–732, 2010. (Cited at p. 4.)

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018. (Cited at p. 8.)

Fan Yang, Wenchuan Wang, Fang Wang, Yuan Fang, Duyu Tang, Junzhou Huang, Hui Lu, and
Jianhua Yao. scbert as a large-scale pretrained deep language model for cell type annotation of
single-cell rna-seq data. Nature Machine Intelligence, 4(10):852–866, 2022. (Cited at p. 15.)

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.
(Cited at p. 15.)

Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: graph learning framework for dynamic graphs.
In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining,
pp. 2358–2366, 2022. (Cited at pp. 3 and 18.)

Wayne W Zachary. An information flow model for conflict and fission in small groups. Journal of
anthropological research, 33(4):452–473, 1977. (Cited at pp. 9, 16, and 23.)

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.
(Cited at pp. 8 and 16.)

Xikun Zhang, Dongjin Song, and Dacheng Tao. Cglb: Benchmark tasks for continual graph learning.
Advances in Neural Information Processing Systems, 35:13006–13021, 2022. (Cited at pp. 3
and 18.)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yunpeng Zhao, Elizaveta Levina, and Ji Zhu. Consistency of community detection in networks under
degree-corrected stochastic block models. 2012. (Cited at pp. 4, 5, and 16.)

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI open, 1:57–81, 2020. (Cited at p. 1.)

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the 20th International conference on Machine
learning (ICML-03), pp. 912–919, 2003. (Cited at p. 3.)

Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Yuanqi Du, Jieyu Zhang, Qiang Liu, Carl Yang, and Shu Wu.
A survey on graph structure learning: Progress and opportunities. arXiv preprint arXiv:2103.03036,
2021. (Cited at p. 1.)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix

A DATASETS
Datasets used in our experiments vary in size, with nodes ranging from 1k to 60k. Table 7 lists all
the datasets we used in our work. We evaluate our proposed framework GraphF lex on real-world
datasets Cora ,Citeseer, Pubmed (Yang et al., 2016), CS, Physics (Shchur et al., 2018), DBLP (Fu
et al., 2020), all of which include graph structures. These datasets allow us to compare the learned
structures with the originals. Additionally, we utilize single-cell RNA pancreas datasets (Yang et al.,
2022), including Baron, Muraro, Segerstolpe, and Xin, where the graph structure is missing. The
Baron dataset was downloaded from the Gene Expression Omnibus (GEO) (accession no. GSE84133).
The Muraro dataset was downloaded from GEO (accession no. GSE85241). The Segerstolpe dataset
was accessed from ArrayExpress (accession no. E-MTAB-5061). The Xin dataset was downloaded
from GEO (accession no. GSE81608). We simulate the expanding graph scenario by splitting the
original dataset across different T timestamps. We assumed 50% of the nodes were static, with the
remaining nodes arriving as incoming nodes at different timestamps.
Synthetic datasets: Different data generation techniques validate that our results are generalized to

Category Data Nodes Edges Feat. Class Type

Original
Structure
Known

Cora 2,708 5,429 1,433 7 Citation network
Citeseer 3,327 9,104 3,703 6 Citation network
DBLP 17,716 52.8k 1,639 4 Research paper

CS 18,333 163.7k 6,805 15 Co-authorship network
PubMed 19,717 44.3k 500 3 Citation network
Physics 34,493 247.9k 8,415 5 Co-authorship network

Original
Structure

Not Known

Xin 1,449 NA 33,889 4 Human Pancreas
Baron Mouse 1,886 NA 14,861 13 Mouse Pancreas

Muraro 2,122 NA 18,915 9 Human Pancreas
Segerstolpe 2,133 NA 22,757 13 Human Pancreas

Baron Human 8,569 NA 17,499 14 Human Pancreas

Synthetic

Syn 1 2,000 8,800 150 4 SW
Syn 2 5,000 22k 150 4 SW
Syn 3 10,000 44k 150 7 SW
Syn 4 50,000 220k 150 7 SW
Syn 5 400 1,520 100 4 PyG-G
Syn 6 2,500 9,800 100 4 PyG-S
Syn 7 1,000 9,990 150 4 HE
Syn 8 2,000 40k 150 4 HE

Visulization Datasets
MNIST 60,000 NA 784 10 Images

Zachary’s karate 34 156 34 4 Karate club network
Glove 2,000 NA 50 NA GloVe embeddings

Large dataset
Flickr 89,250 899,756 500 7 -
Reddit 232,965 11.60M 602 41 -

Ogbn-arxiv 169,343 1.16M 128 40 -
Ogbn-products 2,449,029 61.85M 100 47 -

Table 7: Summary of the datasets.

different settings. Please refer to Table 7 for more details about the number of nodes, edges, features,
and classes, Syn denotes the type of synthetic datasets. Figure 6 shows graphs generated using
different methods. We have employed three different ways to generate synthetic datasets which are
mentioned below:

• PyGSP(PyGsp): We used synthetic graphs created by PyGSP (Defferrard et al.) library. PyG-G
and PyG-S denotes grid and sensor graphs from PyGSP.

• Watts–Strogatz’s small world(SW): (Watts & Strogatz, 1998) proposed a generation model
that produces graphs with small-world properties, including short average path lengths and high
clustering.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Heterophily(HE): We propose a method for creating synthetic datasets to explore graph behavior
across a heterophily spectrum by manipulating heterophilic factor α, and classes. α is determined
by dividing the number of edges connecting nodes from different classes by the total number of
edges in the graph.

Visulization Datasets: To evaluate, the learned graph structure, we have also included three
datasets: (i) MNIST (LeCun et al., 2010), consisting of handwritten digit images; (ii) Pre-trained
GloVe embeddings (Pennington et al., 2014) of English words; and (iii) Zachary’s karate club
network (Zachary, 1977).
Large Datasets: To comprehensively evaluate GraphFLEx’s scalability to large-scale graphs, we
consider four datasets with a high number of nodes: (a) Flickr(89k nodes) (Zeng et al., 2019), (b)
Reddit (233k nodes) (Zeng et al., 2019), (c) Ogbn-arxiv (169k nodes) (Wang et al., 2020), and (d)
Ogbn-products (2.4M nodes) (Bhatia et al., 2016).

System Specifications: All the experiments conducted for this work were performed on an Intel Xeon
W-295 CPU with 64GB of RAM desktop using the Python environment.

(a) PyGSP-Sensor, N = 50, α=3 (b) PyGSP-Grid, N = 80, α=3 (c) SW, N = 50, α=3 (d) HE, N = 50, α=3

Figure 6: This figure illustrates different types of synthetic graphs generated using i)PyGSP, ii) Watts–Strogatz’s
small world(SW), and iii) Heterophily(HE). N denotes the number of nodes, while α denotes the number of
classes.

B ALGORITHM
In this section we include the pseudocode of GraphFLEx; see Algorithm 1.

C DEGREE-CORRECTED STOCHASTIC BLOCK MODEL(DC-SBM)
The DC-SBM is one of the most commonly used models for networks with communities and
postulates that, given node labels c = c1, ...cn, the edge variables A′

ijs are generated via the formula

E[Aij] = θiθjPciPcj

, where θi is a ”degree parameter” associated with node i, reflecting its individual propernsity to
form ties, and P is a K × K symmetric matrix containing the between/withincommunity edge
probabilities and PciPcj denotes the edge probabilities between community ci and cj .
For DC-SBM model (Zhao et al., 2012) assumed Pn on n nodes with k classes, each node vi is given
a label/degree pair(ci, θi), drawn from a discrete joint distribution ΠK×m which is fixed and does
not depend on n. This implies that each θi is one of a fixed set of values 0 ≤ x1 ≤ ≤ xm. To
facilitate analysis of asymptotic graph sparsity, we parameterize the edge probability matrix P as
Pn = ρnP where P is independent of n, and ρn = λn/n where λn is the average degree of the
network.

D NEIGHBOURHOOD PRESERVATION
Theorem D.1 Neighborhood Preservation. Let Nk(Ei) denote the neighborhood of incoming nodes
Ei for the ith community. With partition matrix Pi andMgl(Si, X

i
τ) = Gcτ (V c

τ , A
c
τ) we identify the

supernodes connected to incoming nodes Ei and subsequently select nodes within those supernodes;
this subset of nodes is denoted by ωV i

τ
. Formally,

ωV i
τ
=

⋃
v∈Ei

{ ⋃
s∈Si

{π−1(s)|Ac
τ (v, s) ̸= 0}

}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1 GraphFlex: A Unified Structure Learning framework for expanding and Large Scale
Graphs
Input: Graph G0(X0, A0), expanding nodes set ET1 = {Eτ (Vτ ,Xτ)}Tτ=1
Parameter: GClust, GCoar, GL← Clustering, Coarsening and Learning Module
Output: Graph GT (XT , AT)

1: Train clustering module train(Mclust, GClust, G0)
2: for each Et(Vt, Xt) in ET1 do
3: Ct = infer(Mclust, Xt), Ct ∈ RNt denotes the communities of Nt nodes at time t.
4: It = unique(Ct).
5: for each Iit in It do
6: Gi

t−1 = subgraph(Gt−1, Iit)
7: {Si

t−1, P
i
t−1} =Mcoar(G

i
t−1), S

i
t−1 ∈ Rk×d are features of k supernodes, P i

t−1 ∈ Rk×Ni
t

is the partition matrix.
8: Gcit−1(S

i
t−1, A

i
t−1) =Mgl(S

i
t−1, X

i
t), Gcit−1 is the learned graph on super-nodes Si

t−1

and new node Xi
t .

9: ωi
t ← []

10: for x ∈ Xi
t do

11: ωi
t.append(x)

12: np = {n | Ai
t−1[n] > 0}

13: ωi
t.append(np)

14: end for
15: Gt−1 = update(Gt−1,Mgl(ω

i
t))

16: end for
17: Gt = Gt−1

18: end for
19: return GT (XT , AT)

Then, with probability Π{c∈ϕ}p(c), it holds that Nk(Ei) ⊆ ωV i
τ

where

p(c) ≤ 1− 2√
2π

c

r

[
1− e−r2/(2c2)

]
,

and ϕ is a set containing all pairwise distance values (c = ∥v − u∥) between every node v ∈ Ei and the nodes
u ∈ ωV i

τ
. Here, π−1(s) denotes the set of nodes mapped to supernode s, r is the bin-width hyperparameter of

Mcoar.

Proof: The probability that LSH random projection (Kataria et al., 2024; Datar et al., 2004) preserves
the distance between two nodes v and u i.e., d(u, v) = c, is given by:

p(c) =

∫ r

0

1

c
f2

(
t

c

)(
1− t

r

)
dt,

where f2(x) =
2√
2π

e−x2/2 represents the Gaussian kernel when the projection matrix is randomly
sampled from p-stable(p = 2) distribution (Datar et al., 2004).
The probability p(c) can be decomposed into two terms:

p(c) = S1(c)− S2(c),

S1(c) and S2(c) are defined as follows:

S1(c) =
2√
2π

∫ r

0

e−(t/c)2/2dt ≤ 1,

S2(c) =
2√
2π

∫ r

0

e−(t/c)2/2 t

r
dt.

S2(c) =
2√
2π
· c
r

∫ r

0

e−(t/c)2/2 t

c2
dt

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Expanding S2(c) :

S2(c) =
2√
2π
· c
r

∫ r2/(2c2)

0

e−ydy

S2(c) =
2√
2π
· c
r

[
1− e−r2/(2c2)

]
Thus, the probability p(c) can be bounded as:

p(c) ≤ 1− 2√
2π

c

r

[
1− e−r2/(2c2)

]
.

Now, let ϕ be the set of all pairwise distances d(u, v), where v ∈ Ei and nodeωV i
τ

. The probability
that all nodes inNk(Ei) are preserved within ωV i

τ
, requires that all distances c ∈ ϕ are also preserved.

The probability is then given by: ∏
c∈ϕ

p(c).

∏
c∈ϕ

p(c) ≤
∏
c∈ϕ

(
1− 2√

2π

c

r

[
1− e−r2/(2c2)

])
.

E CONTINUAL LEARNING AND DYNAMIC GRAPH LEARNING
In this subsection, we highlight the key distinctions between Graph Structure Learning (GSL) and
related fields to justify our specific selection of related works in Section 2.2. GSL is often confused
with topics such as Continual Learning (CL) and Dynamic Graph Learning (DGL).
CL (Van de Ven & Tolias, 2019; Zhang et al., 2022; Parisi et al., 2019) addresses the issue of catas-
trophic forgetting, where a model’s performance on previously learned tasks degrades significantly
after training on new tasks. In CL, the model has access only to the current task’s data and cannot
utilize data from prior tasks. Conversely, DGL (Kim et al., 2022; Wu et al., 2023; You et al., 2022)
focuses on capturing the evolving structure of graphs and maintaining updated graph representations,
with access to all prior information.
While both CL and DGL aim to enhance model adaptability to dynamic data, GSL is primarily
concerned with generating high-quality graph structures that can be leveraged for downstream tasks
such as node classification (Kipf & Welling, 2016), link prediction (Lü & Zhou, 2011), and graph
classification (Vogelstein et al., 2012). Moreover, in CL and DGL, different tasks typically involve
distinct data distributions, whereas GSL assumes a consistent data distribution throughout.

F RELATED WORK
Table 8 presents the formulations and associated time complexities of various unsupervised Graph
Structure Learning methods.

Table 8: Unsupervised Graph Structure Learning Methods

Method Time Complexity Formulation

GLasso O(N3) maxΘ log detΘ− tr(Σ̂Θ)− ρ∥Θ∥1
log-model O(N2) minW∈W ∥W ◦ Z∥1,1 − α1T log(W1) + β

2
∥W∥2F

l2-model O(N2) minW∈W ∥W ◦ Z∥1,1 + α∥W1∥2 + α∥W∥2F + 1{∥W∥1,1 = n}

large-model O(N log(N)) minW∈W̃ ∥W ◦ Z∥1,1 − α1T log(W1) + β
2
∥W∥2F

G RUN TIME ANALYSIS
In the context of clustering module, k −NN is the fastest algorithm, while Spectral Clustering is
the slowest. Suppose we aim to learn the structure of a graph with N nodes. The clustering module,
however, is only applied to a randomly sampled, smaller, static subgraph with k nodes, where k ≪ N .
In the worst-case scenario, spectral clustering requiresO(k3) time, whereas in the best case, k−NN
requiresO(k2) time. For coarsening module, LSH-based coarsening framework (Kataria et al., 2023),

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

has the best time complexity of O(kτ

c) while FGC denotes the worst case with a time-complexity of
O((kτ

c)2∥Si
τ∥) where c is the number of communities detected by clustering moduleMclust, ∥Si

τ∥
is the number of coarsened node in the relevant community at τ timestamp and kτ denotes number
of nodes at τ timestamp. For learning module, A−NN is the most efficient algorithm with time
complexity as O(NlogN), while GLasso has the worst computational cost of O(N3). So, the
effective time complexity of GraphFLEx is upper bounded by O(k3 + (kτ

c)2∥Si
τ∥+ α3) and lower

bounded by O(k2 + kτ

c + αlogα) where α = ∥Si
τ∥ + ∥E iτ∥. GraphFLEx’s efficiency in term of

computational time is evident in Figure 2 and further quantified in Table 2.
Out of the three modules of GraphFLEx first module(Mclust) is trained once, and hence its run time is
always bounded; computational time for second module(Mcoar) can also be controlled because some
of the methods either needs training once (Jin et al., 2021) or have linear time complexity (Kataria
et al., 2023). Consequently, both the clustering and coarsening modules contribute linearly to the
overall time complexity, denoted as O(N). Thus, the effective time complexity of GraphFLEx is
given by O(N +O(Mgl(∥Si, X

i
τ∥)). The overall complexity scales either linearly or sub-linearly,

depending on α and theMgl module. For instance, whenMgl is A-NN the complexity remains
linear, if α log(α) ≈ N , whereas for GLasso, a linear behavior is observed when α3 ≈ N .

H NODE CLASSIFICATION WITH GNNS AND GRAPH TRANSFORMERS.
We used four GNN models, namely GCN, GraphSage, GIN, and GAT. These GNN backbones (GCN,
GraphSAGE, GIN, GAT) use two hidden layers of 64 units each and are trained for 500 epochs with
Adam (learning rate 0.003, weight decay 5× 10−4).

Dynamic Nodes

9

9

11

11

12

12

13

13

15 1516

16

17

17

14

14

18

18

1

1

19

2

2

21

3

3

20

8

8

7

7

5

5

4

4

23

22

24

6

6

10

10t1

t6

t4

t3
t2

t5

Log model

L2 model

KNN

Empirical

Covariance

GLasso 

Large model

ANN

Log model

L2 model

KNN

Empirical

Covariance

GLasso 

Large model

ANN

GNN FACH

Vanilla

GraphFlex

Compare

Accuracy

Random Graph

GNN Models

921

20

11
12 13

15

16

17 14

18

1

2
19

24

24
23

22

21

20

19

23

22
3

8754

6
10

Figure 7: GNN training pipeline.

We randomly split data in 60%, 20%, 20% for training-validation-test. The results for these models on
Cora, Citeseer, and some synthetic datasets are presented in Table 9. Figure 7 illustrates the pipeline
for training our GNN models. Graph structures were learned using both existing methods and Graph-
Flex, and GNN models were subsequently trained on both structures. Node classification accuracy
results across all datasets are presented in Table 9 and Table 3. We further include node-classification
accuracies of recent Graph Transformer models like GOAT (Kong et al., 2023), Nodeformer (Wu
et al., 2022a), and Exoformer (Shirzad et al., 2023) when trained on graph structures learned by
GraphFLEx (GLex) (see Table 10). Figure 8 shows the accuracies when structure is learned or given
with 3 different scenarios (Vanilla, GraphFlex, Original) across different datasets.

I COMPUTATIONAL EFFICIENCY
Table 11 illustrates the remaining computational time for learning graph structures using GraphFLEx
with existing Vanilla methods on Synthetic datasets. While traditional methods may be efficient for
small graphs, GraphFLEx scales significantly better, excelling on large datasets like Pubmed and Syn
5, where most methods fail.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0

10

20

30

40

50

60

70

80

90

100

Cora Citeseer DBLP Pubmed Physics CS

Ac
cu
ra
ci
es

Datasets

Vanilla SLdgSL FullDataset

LO
G

 M
od

el

L2
 M

od
el

Em
p.

 C
ov

a

La
rg

e
M

od
el

AN
N

KN
N

LO
G

 M
od

el

L2
 M

od
el

Em
p.

 C
ov

a

La
rg

e
M

od
el

AN
N

KN
N

LO
G

 M
od

el

L2
 M

od
el

Em
p.

 C
ov

a

La
rg

e
M

od
el

AN
N

KN
N

LO
G

 M
od

el

L2
 M

od
el

Em
p.

 C
ov

a

La
rg

e
M

od
el

AN
N KN

N

LO
G

 M
od

el

L2
 M

od
el

Em
p.

 C
ov

a

La
rg

e
M

od
el

AN
N

KN
N

LO
G

 M
od

el

L2
 M

od
el

Em
p.

 C
ov

a

La
rg

e
M

od
el

AN
N

KN
N

Figure 8: GraphSage accuracies when structure is learned or given with 3 different scenarios(Vanilla, GraphFlex,
Original) across different datasets, highlighting performance with 30% node growth over 25 timestamps.

Table 9: Node classification accuracies on different GNN models using GraphFLEx (GFlex) with existing Vanilla
(Van.) methods. The experimental setup involves treating 70% of the data as static, while the remaining 30% of
nodes are treated as new nodes coming in 25 different timestamps. The best and the second-best accuracies in
each row are highlighted by dark and lighter shades of Green, respectively. GraphFLEx’s structure beats all of
the vanilla structures for every dataset. OOM and OOT denotes out-of-memory and out-of-time respectively.

Dataset Model ANN KNN log-model l2-model COVAR large-model Base Struc.
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

GAT 18.73 73.84 20.96 73.65 16.14 72.36 18.74 73.10 49.72 77.55 14.28 76.43 79.77
SAGE 17.25 77.37 18.00 76.99 19.48 77.40 19.85 75.51 49.35 76.99 14.28 77.55 82.37

Cora GCN 17.99 78.11 17.81 77.92 18.55 77.74 20.41 79.22 47.31 80.52 14.28 79.03 84.60
GIN 16.69 76.44 18.74 80.52 17.44 76.25 19.29 76.62 48.79 78.85 14.28 76.06 81.63

GAT 16.51 61.82 25.00 62.27 19.24 64.70 18.18 63.48 20.91 62.73 16.67 62.27 66.42
SAGE 16.66 68.48 16.67 68.64 22.12 69.39 22.42 69.85 22.88 71.52 16.67 69.39 72.57

Citeseer GCN 28.18 60.00 16.67 61.97 20.45 65.45 19.70 64.24 21.06 64.70 16.67 63.18 68.03
GIN 16.66 64.39 16.67 63.94 20.15 59.85 18.64 63.64 22.12 60.30 16.67 61.81 67.38

GAT 29.55 92.07 OOM 90.86 OOT 91.64 OOT 91.64 35.79 92.52 OOT 93.74 89.49
SAGE 26.75 87.89 OOM 91.05 OOT 86.64 OOT 86.64 32.92 90.44 OOT 86.01 90.03

Syn 4 GCN 28.85 51.97 OOM 19.58 OOT 18.29 OOT 18.92 33.80 26.60 OOT 36.85 21.43
GIN 28.50 65.61 OOM 31.06 OOT 26.51 OOT 26.56 34.03 46.40 OOT 47.10 29.35

GAT 44.00 86.80 43.60 86.60 30.00 78.75 55.40 92.80 36.20 93.60 31.80 92.80 97.20
SAGE 41.00 93.80 41.40 93.60 33.75 88.75 57.60 94.00 35.20 94.80 28.20 95.60 97.40

Syn 6 GCN 43.60 88.80 42.20 87.40 26.25 81.25 55.60 92.40 31.40 94.40 25.20 94.00 99.40
GIN 39.60 89.00 40.40 86.60 21.25 82.50 55.20 91.80 30.00 94.60 30.40 92.00 98.80

GAT 29.55 99.75 33.75 88.75 88.25 99.25 88.25 99.25 26.00 85.50 94.00 96.00 98.50
SAGE 26.75 100.0 32.50 100.0 88.75 99.50 88.75 99.50 26.75 100.0 92.50 100.0 100.0

Syn 8 GCN 28.85 98.75 31.75 99.75 88.75 99.00 88.75 99.00 28.50 99.25 95.00 100.0 100.0
GIN 28.50 50.00 30.50 91.00 82.25 91.50 82.25 91.50 27.25 81.75 91.75 92.25 78.25

J VISUALIZATION OF GROWING GRAPHS
This section helps us visualize the phases of our growing graphs. We have generated a synthetic graph
of 60 nodes using PyGSP-Sensor and HE methods mentioned in Appendix A. We then added 40 new
nodes denoted using black color in these existing graphs at four different timestamps. Figure 9 and
Figure 10 shows the learned graph structure after each timestamp for two different Synthetic graphs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 10: Node classification accuracies on different recent Graph Transformer models when trained on structure
learned using GraphFLEx (GFlex). The experimental setup involves treating 70% of the data as static, while the
remaining 30% of nodes are treated as new nodes coming in 25 different timestamps.

Data Model Base GFlex(KNN) GFlex(ANN) GFlex(Sub.) GFlex(covar) GFlex(l2) GFlex(log)

Cora
Goat 68.01 65.90 70.20 70.10 71.20 69.60 68.30
Nodeformer 65.80 65.80 65.80 64.50 65.91 63.12 64.27
Exoformer 71.80 68.16 69.80 70.30 67.70 69.80 70.30

Citeseer
Goat 65.02 65.10 62.40 66.13 61.20 63.03 66.10
Nodeformer 61.00 61.00 61.71 63.48 62.60 61.34 61.54
Exoformer 58.40 60.70 59.80 60.70 59.40 60.21 59.80

DBLP
Goat 81.92 80.68 80.31 82.25 82.29 79.86 80.10
Nodeformer 73.76 73.76 75.34 74.39 72.94 73.29 74.96
Exoformer 72.12 72.12 72.71 73.61 72.92 69.84 71.62

CS
Goat 93.05 93.24 93.32 90.84 92.39 93.16 92.03
Nodeformer 94.60 95.12 95.12 95.36 94.91 95.12 93.29
Exoformer 95.53 95.33 94.63 93.26 95.33 95.09 94.32

Table 11: Computational time for learning graph structures using GraphFLEx (GFlex) with existing methods
(Vanilla referred to as Van.). The experimental setup involves treating 50% of the data as static, while the
remaining 50% of nodes are treated as incoming nodes arriving in 25 different timestamps. The best times are
highlighted by color Green. OOM and OOT denote out-of-memory and out-of-time, respectively.

Data ANN KNN log-model l2-model COVAR large-model
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

Syn 1 19.4 9.8 2.5 10.5 2418 56.4 37.2 8.8 3.5 8.3 205 9.4
Syn 2 47.3 16.9 6.6 18.3 14000 144 214 22.6 20.3 18.6 1259 16.4
Syn 5 5.1 11.5 0.8 7.3 57.4 28 1.1 5.8 0.2 4.8 3.2 5.3
Syn 6 16.6 9.9 2.8 11.4 1766 96.3 193 101 5.3 8.9 324 9.6
Syn 7 10.6 7.4 1.4 8.9 704 85.2 10.3 7.9 0.9 6.4 36.5 8.2
Syn 8 19.6 11.2 2.5 11.7 2416 457 37.2 17.0 3.4 10.9 204 11.7

PyGsp

(a) Initial graph G0 (b) α= 10, G1 (c) α= 20, G2 (d) α = 30, G3 (e) α = 40, G4

Figure 9: This figure illustrates the growing structure learned using GraphFlex for dynamic nodes. New nodes
are denoted using black color, and α denotes number of new nodes. PyGsp denotes type synthetic graph.

HE

(a) Initial graph G0 (b) α = 10, G1 (c) α = 20, G2 (d) α= 30, G3 (e) α = 40, G4

Figure 10: This figure illustrates the growing structure learned using GraphFlex for dynamic nodes. New nodes
are denoted using black color, and α denotes the number of new nodes. HE denotes the type of synthetic graph.

K ABLATION STUDY
In this section, we present an ablation study to analyze the role of individual modules within
GraphFLEx and their influence on the final graph structure. Specifically, we focus on two aspects: (i)
the significance of the clustering module, and (ii) the effect of varying module configurations on the
learned graph topology.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 11: Original Karate Graph

(a) Xin (b) MNIST (c) Baron Human

(d) Muraro (e) Baron Mouse (f) Segerstolpe

Figure 12: PHATE visualization of clusters learnt using GraphFlex clustering module for scRNA-seq datasets.

K.1 CLUSTERING QUALITY
Figure 12 shows the PHATE (Moon et al., 2019) visualization of clusters learned using GraphFLEx’s
clustering moduleMclust for 6 single-cell RNA datasets, namely Xin, MNIST , Baron−Human,
Muraro, BaronMouse, and Segerstolpe datasets.

K.2 CLUSTERING MODULE EVALUATION
To evaluate the effectiveness of the clustering module, we compute standard metrics such as Normal-
ized Mutual Information (NMI), Conductance (C), and Modularity (Q) across various datasets (see
Table 6 in Section 4.5). These metrics collectively validate the quality of the discovered clusters,
thereby justifying the use of a clustering module as a foundational step in GraphFLEx. Since cluster-
ing in GraphFLEx is applied only once on a randomly sampled small set of nodes, selecting the right
method can be considered as part of hyperparameter tuning, where these clustering measures can
guide the optimal choice based on dataset characteristics.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Vanilla

(a) ANN (b) Emp. Cov. (c) KNN (d) L2 model (e) Log model

GraphFlex

(f) ANN (g) Emp Cov. (h) KNN (i) L2 model (j) Log model

Figure 13: This figure compares the structures learned on Zachary’s karate dataset when existing methods are
employed with GraphFlex and when existing methods are used individually. We consider six nodes, denoted in
black, as dynamic nodes.

K.3 IMPACT OF MODULE CHOICES ON LEARNED GRAPH STRUCTURE
This section involves a comparison of the graph structure learned from GraphFlex with existing
methods. Six nodes were randomly selected and considered as new nodes. Figure 13 visually depicts
the structures learned using GraphFlex compared to other methods. It is evident from the figure that
the structure known with GraphFlex closely resembles the original graph structure. Figure 11 shows
the original structure of Zachary’s karate club network (Zachary, 1977). We assumed six random
nodes to be dynamic nodes, and the structure learned using GraphFlex compared to existing methods
is shown in Figure 13.

L MODULE SELECTION
The Experiments section provides analyses to inform the selection of clustering and coarsening
components. In particular, Section 4.5 evaluates clustering quality using quantitative metrics, which
help choose a clustering method suited to a graph’s community structure and distribution. Moreover,
Figs. 13 illustrate how different learning-module choices impact the final learned structure. Additional
practical guidance is summarized below:

Clustering Methods. K-means is computationally efficient and performs well when clusters are
roughly spherical; it is a strong choice for large datasets where speed is critical. Spectral clustering
leverages eigenvalue decompositions to capture complex community structure, even when groups
are not easily separated by simple distance metrics; however, it can be expensive at scale. Deep
learning–based clustering adapts to non-linear, high-dimensional patterns and is effective for complex,
feature-rich graph data, though it typically requires more compute.

Coarsening Methods. UGC (used in our main experiments) is a scalable, LSH-based approach
that merges nodes with similar features and supports arbitrary coarsening ratios. Spectral approaches
such as LVE and LVN preserve local eigenstructure but can limit coarsening flexibility. Heavy Edge
Matching (HE) prioritizes the contraction of strong edges and is efficient for edge-weighted graphs.
Algebraic-distance and affinity-based schemes rely on node-proximity metrics and can be more costly.
Kron reduction maintains spectral fidelity but is typically too slow for very large graphs. FGC jointly
integrates graph structure and node attributes, optimizing clustering and coarsening together, but is
computationally demanding.

23

	Introduction
	Problem Formulation and Background
	Graph Reduction
	Unsupervised Graph Structure Learning

	GraphFLEx
	Incremental Graph Learning for Large Datasets
	Detecting Communities
	Learning Graph Structure on a Coarse Graph
	Graph Learning only with Potential Nodes
	GraphFLEx: Multiple GSL Frameworks
	Run Time Analysis

	Experiments
	Computational Efficiency.
	Node Classification Accuracy
	Scalability of GraphFLEx on Large-Scale Graphs.
	GraphFLEx for Link Prediction and Graph Classification.
	Clustering Quality
	Structure Visualization

	Conclusion
	Datasets
	Algorithm
	Degree-Corrected Stochastic Block Model(DC-SBM)
	Neighbourhood Preservation
	Continual Learning and Dynamic Graph Learning
	Related Work
	Run Time Analysis
	Node classification with GNNs and Graph Transformers.
	Computational Efficiency
	Visualization of Growing graphs
	Ablation Study
	Clustering Quality
	Clustering Module Evaluation
	Impact of Module Choices on Learned Graph Structure

	Module Selection

