Under review as a conference paper at ICLR 2026

GRAPHFLEX: STRUCTURE LEARNING FRAMEWORK
FOR LARGE EXPANDING GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph structure learning is a core problem in graph-based machine learning, es-
sential for uncovering latent relationships and ensuring model interpretability.
However, most existing approaches are ill-suited for large-scale and dynamically
evolving graphs, as they often require complete re-learning of the structure upon
the arrival of new nodes and incur substantial computational and memory costs. In
this work, we propose GraphFLEx—a unified and scalable framework for Graph
Structure Learning in Large and Expanding Graphs. GraphFLEx mitigates the
scalability bottlenecks by restricting edge formation to structurally relevant subsets
of nodes identified through a combination of clustering and coarsening techniques.
This dramatically reduces the search space and enables efficient, incremental graph
updates. The framework supports 48 flexible configurations by integrating di-
verse choices of learning paradigms, coarsening strategies, and clustering methods,
making it adaptable to a wide range of graph settings and learning objectives.
Extensive experiments across 26 diverse datasets and graph neural network archi-
tectures demonstrate that GraphFLEX achieves state-of-the-art performance with
significantly improved scalability. Our implementation is publicly available here.

1 INTRODUCTION

Graph representations capture relationships between entities, vital across diverse fields like biology,
finance, sociology, engineering, and operations research (Zhou et al., 2020; Fout et al., 2017; Wu
et al., 2020; Malik et al., 2025). While some relationships, such as social connections or sensor
networks, are directly observable, many, including gene regulatory networks, scene graph generation
(Gu et al., 2019), brain networks, (Zhu et al., 2021) and drug interactions, require inference (Allen
et al., 2012). Even when available, graph data often contains noise, requiring denoising and
recalibration. In such cases, inferring the correct graph structure becomes more crucial than the
specific graph model or downstream algorithm. Graph Structure Learning (GSL) offers a solution,
enabling the construction and refinement of graph topologies. GSL has been widely studied in both
supervised and unsupervised contexts (Liu et al., 2022; Chen & Wu, 2022). In supervised GSL
(s-GSL), the adjacency matrix and Graph Neural Networks (GNNs) are jointly optimized for a
downstream task, such as node classification. Notable examples of s-GSL include NodeFormer
(Wu et al., 2022b), Pro — GNN (Jin et al., 2020), WSGNN (Lao et al., 2022), and SLAPS
(Fatemi et al., 2021). Unsupervised GSL (u-GSL), on the other hand, focuses solely on learning
the underlying graph structure, typically through adjacency or laplacian matrices. Methods in this
category include approximate nearest neighbours (A — NN) (Dong et al., 2011; Muja & Lowe,
2014), k-nearest neighbours (k — NV N) (MacQueen et al., 1967; Wang & Zhang, 2006), covariance
estimation (emp.Cov.) (Hsieh et al., 2011), graphical lasso (G Lasso) (Friedman et al., 2008),
SUBLIME (Liu et al., 2022), and signal processing techniques like [2-model,log-model and
large-model (Dong et al., 2016; Kalofolias, 2016).

Supervised graph structure learning (s-GSL) methods have demonstrated effectiveness in
specific tasks; however, their reliance on labeled data and optimization for downstream objectives
particularly node classification, significantly constrains their generalizability to settings where
annotations are scarce or unavailable (Liu et al., 2022). Unsupervised graph structure learning
(u-GSL) methods, which constitute the focus of this work, offer broader applicability. Nevertheless,
both s-GSL and u-GSL approaches exhibit critical limitations in their ability to scale to large
graphs or adapt efficiently to expanding datasets. To address these challenges, we introduce

https://anonymous.4open.science/r/Scaling_Graph_Learning-CB67/README.md

Under review as a conference paper at ICLR 2026

Input Data: a) X;, 4, orb) X,

Expanding Graph

Mclust

Incoming Nodes
at time t

GNN Clustering

© b) Node Feature Matrix

&——
&——

Very Large Dataset co
a» 2 &s
£ £ © ‘ ﬂ”
s s
51 b5 «—
- - Super-nodes
-§ §_ S m formation P
L] ’ e
S S % o Ref
() Graph Coarsening
Projection back to original space Mcoar

Figure 1: This figure illustrates the general pipeline of GraphFLEx, designed to efficiently handle both a) large
datasets with missing structure and b) expanding graphs. Both scenarios can be modeled as expanding graphs
(details in Section 3.1). GraphFLEx processes a graph (G;) and incoming nodes (€;41) at time ¢, newly arriving
nodes are shown with different timestamps and shades of blue to indicate their arrival time. Our framework
comprises of three main components: i) Clustering, which infers £:1 nodes to existing communities using a
pre-trained model M. (Go) into smaller, more manageable communities; ii) Since these communities may
still be large, a Coarsening, module is applied to further reduce their size while preserving essential structural
information; and iii) Finally, a Learning module, where the structure associated with £;+1 nodes are learned
using the coarsened graph, followed by projecting this structure onto the G graph to create graph G 1.

GRAPHFLEX, a unified and scalable framework for Graph Structure Learning in Large and
Expanding Graphs. GraphFLEx is built upon the coordinated integration of three foundational
paradigms in graph processing: graph clustering, graph coarsening, and structure learning.
While each of these methodologies has been studied exten-
sively in isolation, their joint application within a single
framework has remained largely unexplored. GraphFLEx
combines these components in the principled manner in
which they are algorithmically aligned to reinforce one
another; clustering serves to localize the search space,

Time in Seconds

coarsening reduces structural redundancy while preserv-
ing global properties, and structure learning operates effi-
ciently within this refined context. This integration enables

Number of Nodes

(a) GraphFLEx

Number of Nodes

(b) Vanilla

GraphFLEXx to scale effectively to large datasets and ac-
commodate dynamic graphs through incremental updates,
eliminating the need for expensive re-training. Addition-
ally, the framework supports 48 modular configurations,
enabling broad adaptability across datasets, learning objec-
tives, and deployment constraints. Crucially, we establish
theoretical guarantees on edge recovery fidelity and com-
putational complexity, offering rigorous foundations for
the framework’s efficiency and reliability. As illustrated in Figure 1, GraphFLEX significantly reduces
the candidate edge space by operating on structurally relevant node subsets. Empirical evaluations,
summarized in Figure 2, demonstrate that GraphFLEx substantially outperforms existing baselines in
both runtime and scalability.

Key contributions of GraphFLEx:

Figure 2: High computational time required
to learn graph structures using existing meth-
ods, whereas GraphFLEx effectively controls
computational growth, achieving near-linear
scalability. Notably, Vanilla KNN failed to
construct graph structures for more than 10K
nodes due to memory limitations.

* Unifies multiple structure learning strategies within a single, flexible framework.

* Demonstrates effectiveness in handling growing graphs.

* Enhances the scalability of graph structure learning on large-scale graphs.

» Serves as a comprehensive framework applicable individually for clustering, coarsening, and
learning tasks.

* Provides both theoretical guarantees and empirical evidence, validating performance across diverse
datasets.

Under review as a conference paper at ICLR 2026

2 PROBLEM FORMULATION AND BACKGROUND

A graph G is represented using G(V, A, X) where V = {v1,vq...ux} is the set of N nodes, each
node v; has a d—dimensional feature vector z; in X € RV*4 and A € RV*¥ is adjacency matrix
representing connection between i*" and j** nodes when entry Ai; > 0. An expanding graph
&g can be considered a variant of graph G where nodes v now have an associated timestamp 7.
We can represent a expanding graph as a sequence of graphs, i.e., &g = {Go, G1,...Gr} where
{Go € Gy.... C Gr}atT € {0,...T} timestamps. New nodes arriving at different timestamps are
seamlessly integrating into initial graph Gy.

Problem statement. Given a partially known or missing graph structure, our goal is to incrementally
learn the whole graph (A or laplacian matrix). Specifically, we consider two unsupervised GSL goals:

Goal 1 Large Datasets with Missing Graph Structure: Here, the graph structure is entirely unavail-
able, and existing methods are computationally infeasible for learning the whole graph in a single
step. To address this, we first randomly partition the dataset into exclusive subsets. We then learn
the initial graph Go(Vy, Xo) over a small subset of nodes and incrementally expand it by integrating
additional partitions, ultimately reconstructing the full graph Gr.

Goal 2 Partially Available Graph: In this case, we only have access to the graph G; at timestamp
t, with new nodes arriving over time. The goal is to update the graph incrementally to obtain Gr,
without re-learning it from scratch at each timestamp.

2.1 GRAPH REDUCTION

Graph reduction encompasses sparsification, clustering, coarsening, and condensation (Hashemi
et al., 2024). GraphFlex employs clustering and coarsening to refine the set of relevant nodes for
potential connections.

Graph Clustering. Graphs often exhibit global heterogeneity with localized homogeneity, making
them well-suited for clustering (Fortunato, 2010). Clusters capture higher-order structures, aiding
graph learning. Methods like DMoN (Tsitsulin et al., 2023) use GNNs for soft cluster assignments,
while Spectral Clustering (SC) (Kamvar et al., 2003) and K-means (Wagstaff et al., 2001; MacQueen
et al., 1967) efficiently detect communities. DiffPool (Bruna et al., 2014; Defferrard et al., 2016)
applies SC for pooling in GNNs.

Graph Coarsening. Graph Coarsening (GC) reduces a graph G(V, E, X) with N nodes and

features X € RV into a smaller graph G.(V, E, X) with n < N nodes and X € R"*< This is
achieved via learning a coarsening matrix P € R"XN mapping similar nodes in G to super-nodes in

G., ensuring X = PX while preserving key properties (Loukas, 2019; Kataria et al., 2023; Kumar
et al., 2023; Kataria et al., 2024).

2.2 UNSUPERVISED GRAPH STRUCTURE LEARNING

Unsupervised graph learning spans from simple k-NN weighting (Wang & Zhang, 2006; Zhu et al.,
2003) to advanced statistical and graph signal processing (GSP) techniques. Statistical methods, also
known as probabilistic graphical models, assume an underlying graph G governs the joint distribution
of data X € RN xd (Koller & Friedman, 2009; Banerjee et al., 2008; Friedman et al., 2008). Some
approaches (Dempster, 1972) prune elements in the inverse sample covariance matrix > = ﬁX X7
and sparse inverse covariance estimators, such as Graphical Lasso (GLasso) (Friedman et al., 2008):
maximizeg log det © — tr(2O) — p||©||1, where © is the inverse covariance matrix. However,
these methods struggle with small sample sizes. Graph Signal Processing (GSP) techniques analyze
signals on known graphs, ensuring properties like smoothness and sparsny Signal smoothness on a
graph G is quantified by the Laplacian quadratic form: Q(L) = x"Lx = Z w;i(x(1) — x(5))2
For a set of vectors X, smoothness is measured using the Dirichlet energy (Belkm et al., 2006):
tr(XT LX). State-of-the-art methods [2—model, log—model and large—model (Dong et al., 2016;
Kalofolias, 2016; Hu et al., 2013) optimize Dirichlet energy while enforcing sparsity or specific
structural constraints. Table 8 in Appendix F compares various graph learning methods based on
their formulations and time complexities. More recently, SUBLIME (Liu et al., 2022) learns graph
structure in an unsupervised manner by leveraging self-supervised contrastive learning to align a
learnable graph with a dynamically refined anchor graph derived from the data itself.

Remark 1 Graph Structure Learning (GSL) differs significantly from Continual Learning (CL)
(Van de Ven & Tolias, 2019; Zhang et al., 2022; Parisi et al., 2019) and Dynamic Graph Learning
(DGL) (Kim et al., 2022; Wu et al., 2023; You et al., 2022), as discussed in Appendix E.

Under review as a conference paper at ICLR 2026

3 GRAPHFLEX

Here, we present GraphFLEx which has three main modules: 1) Graph Clustering. It identifies
communities and extracts higher-order structural information, 2) Graph Coarsening. It is used to
coarsen down the desired community, if the community itself is large, and 3) Graph Learning. Learns
the graph’s structure using a limited subset of nodes from the clustering and coarsening modules,
enabling scalability. For pseudocode, see Algorithm 1 in Appendix B.

3.1 INCREMENTAL GRAPH LEARNING FOR LARGE DATASETS

Real-world graph data is continuously expanding. For instance, e-commerce networks accumulate
new clicks and purchases daily (Xiang et al., 2010), while academic networks grow with new
researchers and publications (Wang et al., 2020). To manage such growth, we propose incrementally
learning the graph structure over smaller segments. Given a large dataset £(V., X), where V.
is the node set and X represents node features, we define an expanding dataset setting Lg =
{€X_,}. Initially, £ is split into: (i) a static dataset £y(Vy, Xo) and (i) an expanding dataset
& = {&(V, Xy) 2:1- Both Goal I (large datasets with missing graph structure) and Goal 2
(partially available graphs with incremental updates), discussed in Section 2, share the common
objective of incrementally learning and updating the graph structure as new data arrives. GraphFLEx
handles these by decomposing the problem into two key components:

e Initial Graph Go(Vy, Ao, Xo): For Goal 1, where the graph structure is entirely missing, £y(Vp, Xo)
is used to construct Gy from scratch using structure learning methods (Sec.2.2). For Goal 2, the
initial graph Go(Vp, Ao, Xo) is already available and serves as the starting point for incremental
updates.

e Expanding Dataset & = {€;(V,, X;)}1_,: In both cases, £ consists of incoming nodes and
features arriving over 1" timestamps. These nodes are progressively integrated into the existing
graph, enabling continuous adaptation and growth.

The partition is controlled by a parameter r, which determines the proportion of static nodes:

T = \‘II\‘//gll‘\ . For example, » = 0.2 implies that 20% of V. is treated as static, while the remaining 80%

arrives incrementally over 7" timestamps. In our experiments, we set 7 = 0.5 and T' = 25.

Remark 2 We can learn G (V;, A, X;) by aggregating £, nodes in G,_1 graph. We aim to learn
Gr(Vp, Ap, X1) after T -timestamp.

3.2 DETECTING COMMUNITIES

From the static graph Gy, our goal is to learn higher-order structural information, identifying
potential communities to which incoming nodes (V' € V'7) may belong. We train the community
detection/clustering model M, once using Gy, allowing subsequent inference of clusters for all
incoming nodes. While our framework supports spectral and k-means clustering, our primary focus
has been on Graph Neural Network (GNN)-based clustering methods. Specifically, we use DMoN
(Tsitsulin et al., 2023; Bianchi, 2022), which maximizes spectral modularity. Modularity (Newman,
2006) measures the divergence between intra-cluster edges and the expected number. These
methods use a GNN layer to compute the partition matrix C' = softmax(MLP(X, Oyp)) € RY*E,

where K is the number of clusters and X is the updated feature embedding generated by one
or more message-passing layers. To optimize the C' matrix, we minimize the loss function
A(C;A) = —5=Tr(CTBC) + %mi(f | — 1, which combines spectral modularity maximization
with regularization to prevent trivial solutions, where B is the modularity matrix (Tsitsulin et al.,
2023). Our static graph Gy and incoming nodes £ follow Assumption 1.

Assumption 1 Based on the well-established homophily principle, which forms the basis of most
graph coarsening and learning methods. We assume that the generated graphs adhere to the
Degree-Corrected Stochastic Block Model (DC-SBM) (Zhao et al., 2012), where intra-class (or
intra-community) links are more likely than inter-class links. DC-SBM, an extension of SBM that
accounts for degree heterogeneity, making it a more flexible and realistic choice for real-world
networks (Details on DC-SBM in Appendix C).

Lemma 1 M,y Consistency. We adopt the theoretical framework of (Zhao et al., 2012) for a
DC-SBM with N nodes and k classes. The edge probability matrix is parameterized as Py = pn P,
where P € RF*F is a symmetric matrix containing the between/within community edge probabilities
and it is independent of N, py = An/N, and Ay is the average degree of the network. Let

Under review as a conference paper at ICLR 2026

In = [1, U2, - - -, Un]| denote the predicted class labels, and let C be the corresponding N x k
one-hot matrix. Let the true class label matrix is Cn, and u is any k x k permutation matrix. Under
the adjacency matrix AXN), the global maximum of the objective Al AN)) is denoted as C']*\, The
consistency of class predictions is defined as:

1) Strong Consistency: Py [minu |Cp — O} = 0] —1 as N — oco.
2) Weak Consistency: Ve >0, Py [min# LCxhu—CnlF < 5] —1 as N — oo.

where || - || is the Frobenius norm. Under theorem 3.1 from (Zhao et al., 2012), the M .5 0bjective
is strongly consistent if A /log(N) — oo, and it is weakly consistent when A\ — o©.

GraphFLEx focus on learning the structure within each community rather than the structure of
the entire dataset at once. Strong consistency ensures perfect community recovery, meaning no
inter-community edges exist representing the ideal case. Weak consistency, however, allows for a
small fraction (¢) of inter-community edges, where ¢ is controlled by p,, in P, = p, P, influencing
graph sparsity. By Lemma | and Assumption 1, stronger consistency leads to more precise structure
learning, whereas weaker consistency permits a limited number of inter-community edges.

3.3 LEARNING GRAPH STRUCTURE ON A COARSE GRAPH

After training M5, we identify communities for incoming nodes, starting with 7 = 1. Once
assigned, we determine significant communities, i.e., communities with at least one incoming node.
We then learn the connections of incoming nodes only to their respective community subgraphs.
For large datasets, substantial community sizes may again introduce scalability issues. To mitigate
this, we first coarsen the large community graph into a smaller graph and use it to identify potential
connections for incoming nodes. This process constitutes the second module of GraphFLEx, denoted
as M coar, which employs LSH-based hashing for graph coarsening. The supernode index for i*"
node is given as:

H,; = maxOccurance { U - (W X; + b)J } @)

where 7 (bin width) controls the coarsened graph size, WV represents random projection matrix,
X is the feature matrix, and b is the bias term. For further details, refer to UGC (Kataria et al.,
2024). After coarsening the i*" community (C;), Mcou(Ci) = {P;, S;} yields a partition matrix
P, € RISIIXICiH and a set of coarsened supernodes (S;), as discussed in Section 2. To identify the
potential set of nodes for incoming nodes, we define their ideal connections/neighborhood as follows:

Definition 1 The neighborhood of a set of nodes E; is defined as the union of the top k most similar
nodes in C; for each node v € &;, where similarity is measured by the distance function d(v,u). A
node u € C; is considered part of the neighborhood if its distance d(v,w) is among the k smallest
distances for all v’ € C;.

Ni(&) = U {u € Ci | d(v,u) < top-k[d(v,u') : v’ € Cy]}
vEE;
The neighborhood of incoming nodes N (&;) represents the ideal set of nodes where the incoming
nodes &; are likely to establish connections when the entire community is provided to a structure
learning framework. A robust coarsening framework must reduce the number of nodes within each
community C; while ensuring that the neighborhood of the incoming nodes is preserved.

3.4 GRAPH LEARNING ONLY WITH POTENTIAL NODES

As we now have a coarse representation of the community (Sec. 3.3), we can employ any graph
learning algorithms discussed in Section 2.2 to learn a graph between coarsened supernodes S; and
incoming nodes (V; € V). This is the third module of GraphFLEX, i.e., graph learning; we denote
it as Mg;. The number of supernodes in \S; is much smaller compared to the original size of the
community, i.e., ||.S;|| < ||C;||; scalability is not an issue now. We learn a small graph first using

Mgi(Si, X2) = GE(VE, AS) where X! represents features of new incoming nodes belonging to 7"
community at time 7, G¢ (V,¢, A) representing the graph between supernodes and incoming nodes.
Utilizing the partition matrix P; obtained from M,:, we can precisely determine the set of nodes
associated with each supernode. For every new node V' € V!, we identify the connected supernodes
and subsequently select nodes within those supernodes. This subset of nodes is denoted by wyi, the
sub-graph associated with wy: represented by G, (wy:i) then undergoes an additional round of

Under review as a conference paper at ICLR 2026

Table 1: Time complexity analysis of GraphFLEx. Here, IV is the number of nodes in the graph, k is the
number of nodes in the static subgraph used for clustering (k < N), and c represents the number of detected
communities. k, denotes the number of nodes at timestamp 7. Finally, « = ||Sy|| + [|£7]| is the sum of
coarsened and incoming nodes in the relevant community at 7 timestamp.

Mclust MCO(L’V' Mgl GraphFLEx
Best (kNN-UGC-ANN) O(k?) 0 (k) O(aloga) O(k* + &= + alog)
Worst (SC-FGC-GLasso) ~ O(k%) O ((%)2 ||s;?||) 0(a?) Ok + (52)* 1S + o)

graph learning M (G, (wy:), X%), ultimately providing a clear and accurate connection of new
nodes V! with nodes of G, _1, ultimately updating it to G,. This multi-step approach, characterized
by coarsening, learning on coarsened graphs, and translation to the original graph, ensures scalability.

Theorem 3.1 Neighborhood Preservation. Let Ny (E;) denote the neighborhood of incoming nodes
&; for the i™ community. With partition matrix P; and M gi(S;, X1) = GE(V,E, AS) we identify the
supernodes connected to incoming nodes &; and subsequently select nodes within those supernodes;
this subset of nodes is denoted by wy.i. Formally,

wyy = U { U r ()45 (0, 5) # 01}
veE; sSES;
Then, with probability T1{.c 4yp(c), it holds that N (E;) C Wy where
2 c 2 /(9e2
)<1——=—_° [l—e /(20)]7
p(e) < ot

and ¢ is a set containing all pairwise distance values (c = ||v — ul|) between every node v € &; and the nodes
U € wyi. Here, 71 (s) denotes the set of nodes mapped to supernode s, r is the bin-width hyperparameter of

Meoar. E— Yoy A
Proof 3.1 The proof is deferred in Appendix D. uGe | Logmodel
gt > | L2 model

Theorem 3.1 establishes that, with a constant probability of Kmeans e RE—
success, the neighborhood of incoming nodes Ny (€;) can | speeri sl =

. . . lusterin, mpirical
be effectively recovered using the GraphFLEx multistep g Loy M
approach, which involves coarsening and learning on the i e ‘5| GlLasso
coarsened graph, i.e., Nix(&;) C wy:. The set wy:, esti- | P! Kron N
mated by GraphFLEX, identifies potential candidates where GCond Ll
incoming nodes are likely to connect. The probability of

failure can be reduced by regulating the average degree of Graph Clustering Graph Coarsening Graph Learning
connectivity in M (S;, X1) = GE(V,E, A2). While a fully

connected network G¢ ensures all nodes in the community Figure 3: The versatility of GraphFlex in
are candidates, it significantly increases computational costs ~supporting multiple GSL methods.

for large communities.

3.5 GRAPHFLEX: MULTIPLE GSL FRAMEWORKS

Each of the three modules of GraphFLEX, as also shown in Figure 3 controls a distinct aspect of the
GSL process: clustering influences community detection, coarsening reduces graph complexity via
supernodes, and the learning module governs structural inference. Altering any of these modules
results in a new GSL method. Currently, we support 48 different graph learning configurations, and
this number scales aggressively with the addition of new methods to any module. The number of
possible frameworks is given by a X 3 X =, where «, 3, and y represent the number of clustering,
coarsening, and learning methods, respectively.

Module Selection: Since different clustering, coarsening, and learning choices yield distinct GSL
variants, we provide module selection guidelines in Appendix L.

3.6 RUN TIME ANALYSIS

GraphFLEx computational time is always bounded by existing approaches, as it operates on a
significantly reduced set of nodes. We evaluate the run-time complexity of GraphFLEx in two
scenarios: (a) the worst-case scenario, where computationally intensive clustering and coarsening
modules are selected, providing an upper bound on time complexity, and (b) the best-case scenario,
where the most efficient modules are chosen. Table 1 presents a summary of this analysis for both
cases. Due to space limitations, a more comprehensive analysis is provided in Appendix G.

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

Tasks and Datasets. To validate GraphFLEX’s utility, we evaluate it across four key dimensions:
(i) computational efficiency, (ii) scalability to large graphs, (iii) quality of learned structures, and
(iv) adaptability to dynamically growing graphs. To validate the characteristics of GraphFLEx, we
conduct extensive experiments on 26 different datasets, including (a) datasets that already have a
complete graph structure (allowing comparison between the learned and the original structure), (b)
datasets with missing graph structures, (c) synthetic datasets, (d) small datasets for visualizing the
graph structure, and (e) large datasets, including datasets with even 2.4 nodes. More details about
datasets and system specifications are presented in Table 7 in Appendix A.

4.1 COMPUTATIONAL EFFICIENCY.

Existing methods like k-NN and log-model struggle to learn graph structures even for 20k nodes due
to out-of-memory (OOM) or out-of-time (OOT) issues, while [2-model and large-model struggle
beyond 50k nodes. Although A-NN and emp-Covar. are faster, GraphFLEx outperforms them on
sufficiently large graphs (Table 2). While traditional methods may be efficient for small graphs,
GraphFLEXx scales significantly better, excelling on large datasets like Pubmed and Syn 5, where most
methods fail. It accelerates structure learning, making A-NN 3x faster and emp-Covar. 2x faster.

4.2 NODE CLASSIFICATION ACCURACY

Experimental Setup. We now evaluate the prediction performance of GNN models when trained on
graph structures learned from three distinct scenarios: 1) Original Structure: GNN models trained
on the original graph structure, which we refer to as the Base Structure, 2) GraphFLEx Structure:
GNN models trained on the graph structure learned from GraphFLEX, and 3)Vanilla Structure: GNN
models trained on the graph structure learned from other existing methods. For each scenario, a
unique graph structure is obtained. We trained GNN models on each of these three structure. For
more details on GNN model parameters, see Appendix H.

Table 2: Computational time(in seconds) for learning graph structures using GraphFLEx (GFlex) with existing
methods (Vanilla referred to as Van.). The experimental setup involves treating 50% of the data as static, while
the remaining 50% of nodes are treated as incoming nodes arriving in 25 different timestamps. The best times

are highlighted by color . OOM and OOT denote out-of-memory and out-of-time, respectively.
Data ANN KNN log-model 12-model emp-Covar. large-model Sublime
Van. GFlex | Van. GFlex Van. GFlex Van. GFlex ‘ Van. GFlex | Van. GFlex Van. GFlex
Cora 335 100 8.4 36.1 869 | 816 | 424 55 8.6 30 | 2115 | 184 | 7187 | 493
Citescer | 1535 | 454 | 219 75 1113 | 645 977 540 | 147 592 | 8319 = 439 | 8750 = 670
DBLP 2731~ 988 | OOM 270 | 77000 = 919 | OOT = 1470 | 359 = 343 | OOT = 299 | OOM 831
cs 22000 = 12000 | OOM = 789 | OOT | 838 | 32000 809 | 813 | 718 | OOT = 1469 | OOM 1049
PubMed | 770 227 | OOM | 164 | OOT = 176 | OOT | 165 | 488 | 299 | OOT = 262 | OOM = 914
Phy. 61000 21000 | OOM = 903 | OOT = 959 | OOT | 908 | 2152 1182 | OOT = 2414 | OOM 2731
Syn3 95 37 | OOM = 30 | 58000 | 346 859 53 88 59 | 5416 @ 42 6893 780
Syn4 482 71 OOM | 73 OOT | 555 | OOT = 145 | 2072 1043 | OOT | 392 | OOM 1896

Table 3: Node classification accuracies on different GNN models using GraphFLEx (GFlex) with existing Vanilla
(Van.) methods. The experimental setup involves treating 70% of the data as static, while the remaining 30% of
nodes are treated as new nodes coming in 25 different timestamps. The best and the second-best accuracies in
each row are highlighted by dark and lighter shades of , respectively. GraphFLEX’s structure beats all of
the vanilla structures for every dataset. OOM and OOT denotes out-of-memory and out-of-time respectively.

Van. GFlex | Van. GFlex | Van. GFlex | Van. GFlex | Van. GFlex | Van. GFlex | Van. GFlex

GAT | 34.23 67.37 | OOM 69.83 | OOT @ 69.83 | OOT 6898 | 50.48 68.56 | OOT 66.38 | OOM 68.32 70.84

SAGE | 34.23 69.58 | OOM 70.28 | OOT 70.28 | OOT | 70.68 | 51.47 70.51 | OOT 69.32 | OOM 70.28 72.57

DBLP GcN | 3412 69.41 | OOM | 73.39 | OOT | 73.39 | OOT 73.05 | 51.50 71.75 | OOT 68.55 | OOM 69.06 74.43
GIN | 34.01 69.69 | OOM 68.19 | OOT 68.19 | OOT | 73.08 | 52.77 72.03 | OOT 71.18 | OOM 71.87 73.92

GAT | 1247 60.89 | OOM 61.09 | OOT 6095 | 18.64 61.06 | 58.96 @ 88.06 | OOT 86.22 | OOM 64.21 60.75

SAGE | 12.70 78.81 | OOM 79.43 | OOT 79.06 | 19.24 78.94 | 56.97 93.30 | OOT 92.79 | OOM 78.94 80.33

CS GCeN | 12,59 63.81 | OOM 6794 | OOT 69.33 | 19.21 66.01 | 58.35 ' 91.07 | OOT 84.85 | OOM 68.92 67.43
GIN | 13.07 77.62 | OOM 7841 | OOT 78.55 | 1924 77.61 | 5826 92.07 | OOT 86.03 | OOM 77.61 55.65

GAT |49.49 83.71 | OOM 84.60 | OOT | 84.60 | OOT 84.04 | 72.63 83.97 | OOT 81.15 | OOM 82.15 84.04
SAGE | 50.43 87.27 | OOM 87.34 | OOT 87.34 | OOT ' 8742 | 73.57 86.68 | OOT 87.34 | OOM 83.45 88.88
Pub. GCN | 50.45 82.06 | OOM 83.56 | OOT 83.56 | OOT 83.74 | 73.14 82.39 | OOT 78.03 | OOM 70.94 85.54
GIN | 51.82 83.13 | OOM 84.31 | OOT 84.07 | OOT 8293 | 73.15 83.51 | OOT 82.85 | OOM 80.72 86.50

Data Model ANN KNN ‘ log-model ‘ 12-model COVAR ‘large-model‘ Sublime Base Struct.

GAT |[29.18 88.06 | OOM 88.47 | OOT 88.47 | OOT | 88.68 | 58.96 88.06 | OOT 86.22 | OOM 86.12 88.58
SAGE | 29.57 93.47 | OOM 93.47 | OOT 93.47 | OOT ' 93.78 | 56.97 93.60 | OOT 92.79 | OOM 89.58 94.19
Phy. GeN | 27.84 91.27 | OOM 91.08 | OOT 91.08 | OOT = 91.78 | 58.35 91.07 | OOT 84.85 | OOM 88.46 91.48

GIN | 28.38 92.69 | OOM 92.04 | OOT 92.04 | OOT 9227 | 58.26 92.07 | OOT 86.03 | OOM 87.20 88.89

Under review as a conference paper at ICLR 2026

GNN Models. Graph neural networks (GNNs) such as GC'N (Kipf & Welling, 2016), GraphSage
(Hamilton et al., 2017), GIN (Xu et al., 2018), and GAT (Velickovic et al., 2017) rely on accurate
message passing, dictated by the graph structure, for effective embedding. We use these models to
evaluate the above-mentioned learned structures. Table 3 reports node classification performance
across all methods. Notably, GraphFLEx outperforms vanilla structures by a significant margin
across all datasets, achieving accuracies close to those obtained with the original structure. Figure 8
in Appendix H illustrates GraphSage classification results, highlighting GraphFLEX’s superior
performance. For the C'S dataset, GraphFLEX (large-model) and GraphFLEx (empCovar.-model)
even surpass the original structure, demonstrating its ability to preserve key structural properties
while denoising edges, leading to improved accuracy.

Graph Transformers. To address limitations of message-passing GNNs (e.g., limited receptive
fields and over-smoothing), recent Graph Transformers couple self-attention with structural priors to
capture long-range dependencies. We also include node-classification accuracies of Graph Trans-
former models like GOAT (Kong et al., 2023), Nodeformer (Wu et al., 2022a), and Exoformer (Shirzad
et al., 2023) when trained on graph structures learned by GraphFLEx (Table 10 in App. H).

Table 4: Runtime (sec) and Node Classification Accuracy (%) across large datasets. Each cell shows: Time /
Accuracy. Van = Vanilla, GFlex = GraphFLEx. OOM = Out of Memory, OOT = Out of Time.

Method ogbn-arxiv (60.13) ogbn-products (73.72) Flickr (44.92) Reddit (94.15)
‘ Van. GFlex Van. GFlex Van. GFlex ‘ Van. GFlex

Covar OOM — - 3.7k —60.26 | OOM —— 83.1k—68.23 | 2.3k —44.65 682 —44.34 OOM — — 6.6k —94.13
ANN 7.8k —60.14 4.8k— 6022 | OOM —- 893k —67.91 | 2.5k —44.09 705 — 44.92 12.6k —94.14 6.1k —94.18
knn 83k —60.09 6.1k—60.23 | OOM —- 91.8k —68.47 | 2.7k —43.95 920 —44.73 15.6k —94.14 6.9k — 94.15
12 OOT — - 9.1k —58.39 | OOT —- OOT — - 933k —4490 1.2k —44.32 OO0T — - 5.1—93.47
log OOT — - 45.6k —58.72 | OOT —— OOT — - OOT — - 18.7k — 44.59 00T — - 60.3k — 94.13
large OOT — - 5.6k —60.20 | OOT —— OOT — - OOT — - 2.2k —44.45 00T — - 9.3k —93.71

4.3 SCALABILITY OF GRAPHFLEX ON LARGE-SCALE GRAPHS.

To evaluate GraphFLEX’s scalability to large-scale graphs, we consider four datasets with large
number of nodes: (a) Flickr(89k nodes) (Zeng et al., 2019), (b) Reddit (233k nodes) (Zeng et al.,
2019), (c) Ogbn-arxiv (169k nodes) (Wang et al., 2020), and (d) Ogbn-products (2.4M nodes) (Bhatia
et al., 2016). As shown in Table 4, GraphFLEx consistently demonstrates superior scalability across
all datasets, outperforming all baseline methods in runtime. In particular, methods such as log-model,
[2-model, and large-model fail to run even on Flickr, while GraphFLEx successfully scales them
on Flickr, Ogbn-arxiv, and Reddit, enabling structure learning where others cannot. For the most
computationally demanding dataset, Ogbn-products, these methods remain prohibitively expensive
even for GraphFLEx. Nonetheless, GraphFLEXx efficiently supports scalable structure learning on
Ogbn-products using the Covar, ANN, and KNN modules. Table 4 also reports node classification
accuracy, demonstrating that GraphFLEx maintains performance comparable to the original (base)
structure across all datasets. These results confirm that GraphFLEX not only scales effectively, but
also preserves the quality of learned structures.

4.4 GRAPHFLEX FOR LINK PREDICTION AND GRAPH CLASSIFICATION.

To further validate the generalization, we evaluate GraphFLEXx on the link prediction task. Results
are in Table 5 which follows the same setting as in Table 3. The structure learned by GraphFLEx
demonstrates strong predictive performance, in some cases even outperforming the base structure.
This highlights the effectiveness of GraphFLEX in preserving and even enhancing relational infor-
mation relevant for link prediction. While our primary focus is on structure learning for node-level

Table 5: Link predication accuracy (%) across different datasets. The best and the second-best accuracies in
each row are highlighted by dark and lighter shades of , respectively.

Data ANN KNN log-model 12-model COVAR large-model | Base Struct.
Van. GFlex | Van. GFlex | Van. GFlex | Van. GFlex | Van. GFlex | Van. GFlex

DBLP | 96.57 96.61 | OOM 9423 | OOT | 97.59 | OOT ' 97.59 | 97.22 ' 97.59 | OOT 96.24 95.13
Citeseer | 80.12 96.32 | 85.17 96.24 | 80.48 96.24 | 80.48 96.48 | 82.05 96.24 | 84.50 94.38 90.78
Cora 84.47 9530 | 7923 95.14 | 90.63 9545 | 90.81 95.14 | 86.05 95.30 | 90.63 94.67 89.53
Pubmed | 9424 9691 | OOM ' 97.42 | OOT | 97.42 | OOT 9737 | 9489 94.64 | OOT 9441 94.64
CS 9421 9573 | OOM | 96.02 | OOT 93.17 | OOT 93.17 | 93.52 9231 | OOT 95.73 95.00
Physics | 95.77 9134 | OOM 94.63 | OOT 90.79 | OOT 94.63 | 92.03 90.79 | OOT 92.97 93.96

tasks, we briefly discuss the applicability of GraphFLEx to graph classification. In such tasks,
especially in domains like molecule or drug discovery, each data point often corresponds to a small
individual subgraph. For these cases, applying clustering and coarsening is typically redundant and
may introduce unnecessary computational overhead. Nevertheless, GraphFLEx remains flexible its

Under review as a conference paper at ICLR 2026

(a) 10 incoming (b) 20 incoming (c) 30 incoming (d) ANN as M ; (e) Emp. Covr. as (f) kNN as Mg,
nodes nodes nodes Mg

Figure 4: Figures (a), (b), and (c) illustrate the growing structure learned using GraphFLEx for HE synthetic
dataset. Figures (d), (e), and (f) illustrate the learned structure on Zachary’s karate dataset when existing methods
are employed with GraphFLEx. New nodes are denoted using black color.

learning module can be directly used without the clustering or coarsening steps, making it suitable
for graph classification as well. This adaptability reinforces GraphFLEX’s utility across a broad range
of graph learning tasks.

4.5 CLUSTERING QUALITY
We measure three metrics to evaluate the re- Table 6: Clustering (NMLI, C, Q) and node classification
sulting clusters or community assignments: a) accuracy using GCN, GraphSAGE, GIN, and GAT.

Normalized Mutual Information (NMI) (Tsit-

sulin et al., 2023) between the cluster assign- Data |NMI| C | Q |GCN |SAGE | GIN | GAT
ments and original labels; b) Conductance (C) Bar. M. | 0.716 | 0.057 | 0.741 | 912 | 962 | 95.1 | 94.9
(Jerrum & Sinclair, 1988) which measures the Seger. | 0.678 | 0.102 | 0.694 | 91.0 | 939 | 942 | 923
fraction of total edge volume that points outside ~ Mura. | 0.843 10046 0.706 | 969 | 974 | 97.5 | 96.4

. ar. H. | 0.674 | 0.078 | 0749 | 953 | 964 | 972 | 9538
the cluster; and ¢) Modularity (Q) (Newman, xin | 0741 | 0,045 | 0544 | 9856 | 993 | 989 | 998

2006) which measures the divergence between MNIST | 0.677 | 0.082 | 0.712] 929 | 945 | 949 | 82.6
the intra-community edges and the expected one.
Table 6 illustrates these metrics for single-cell RNA and the MNIST dataset (where the whole struc-
ture is missing), and Figure 12 in Appendix K.1 shows the PHATE (Moon et al., 2019) visualization
of clusters learned using GraphFLEX’s clustering module M, s;. We also train the aforementioned
GNN models for the node classification task in order to illustrate the efficacy of the learned structures;
the accuracy values presented in Table 6, clearly highlight the significance of the learned structures,
as reflected by the high accuracy values. For a comprehensive ablation study, refer to Appendix K.

4.6 STRUCTURE VISUALIZATION

We evaluate the structures generated by Graph- ‘@‘7‘“1/’/

FLEx through visualizations on four small o % % =i

datasets: (i) MNIST (LeCun et al., 2010), con- Iy
Vi

sisting of handwritten digit images, where Fig-
ure 5(a) shows that images of the same digit are
mostly connected; (ii) Pre-trained GloVe embed-
dings (Pennington et al., 2014) of English words,
with Figure 5(b) revealing that frequently used
words are closely connected; (iii) A synthetic
H.FE dataset (see Appendix A), demonstrating
GraphFLEX’s ability to handle expanding networks without requiring full relearning. Figure 4(a-c)
shows the graph structure evolving as 30 new nodes are added over three timestamps; and (iv)
Zachary’s karate club network (Zachary, 1977), which highlights GraphFLEx’s multi-framework
capability. Figure 4(d-f) shows three distinct graph structures after altering the learning module.

5 CONCLUSION

Large or expanding graphs challenge the best of graph learning approaches. GraphFLEXx, introduced
in this paper, seamlessly adds new nodes into an existing graph structure. It offers diverse methods for
acquiring the graph’s structure. GraphFLEXx consists of three key modules: Clustering, Coarsening,
and Learning which empowers GraphFLEx to serves as a comprehensive framework applicable
individually for clustering, coarsening, and learning tasks. Empirically, GraphFLEx outperforms
state-of-the-art baselines, achieving up to 3x speedup while preserving structural quality. The perfor-
mance across multiple real and synthetic datasets affirms the utility and efficacy of GraphFLEx for
graph structure learning.

Limitations and Future Work. GraphFLEx is designed assuming minimal inter-community connec-
tivity, which aligns well with many real-world scenarios. However, its applicability to heterophilic
graphs may require further adaptation. Future work will focus on extending the framework to
supervised GSL methods and heterophilic graphs, broadening its scalability and versatility.

Figure 5: Effectiveness of GraphFlex in learning struc-
ture between similar MNIST digits and GloVe embed-
dings.

Under review as a conference paper at ICLR 2026

REFERENCES

Jeffrey D Allen, Yang Xie, Min Chen, Luc Girard, and Guanghua Xiao. Comparing statistical
methods for constructing large scale gene networks. PloS one, 7(1):¢29348, 2012. (Cited at p. 1.)

Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’ Aspremont. Model selection through sparse
maximum likelihood estimation for multivariate gaussian or binary data. The Journal of Machine
Learning Research, 9:485-516, 2008. (Cited at p. 3.)

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. Journal of machine learning research, 7
(11), 2006. (Cited at p. 3.)

K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. The extreme classi-
fication repository: Multi-label datasets and code, 2016. URL http://manikvarma.org/
downloads/XC/XMLRepository.html. (Cited at pp. 8 and 16.)

Filippo Maria Bianchi. Simplifying clustering with graph neural networks. arXiv preprint
arXiv:2207.08779, 2022. (Cited at p. 4.)

J Bruna, W Zaremba, A Szlam, and Y LeCun. Spectral networks and deep locally connected networks
on graphs. arxiv. arXiv preprint arXiv:1312.6203,2014. (Cited at p. 3.)

Yu Chen and Lingfei Wu. Graph neural networks: Graph structure learning. Graph Neural Networks:
Foundations, Frontiers, and Applications, pp. 297-321, 2022. (Cited at p. 1.)

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry, pp. 253-262, 2004. (Cited at p. 17.)

Michaél Defferrard, Lionel Martin, Rodrigo Pena, and Nathanaél Perraudin. Pygsp: Graph signal
processing in python. URL https://github.com/epfl-1ts2/pygsp/. (Cited at p. 15.)

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on

graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016. (Cited at p. 3.)

Arthur P Dempster. Covariance selection. Biometrics, pp. 157-175, 1972. (Cited at p. 3.)

Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph construction for generic
similarity measures. In Proceedings of the 20th international conference on World wide web, pp.
577-586, 2011. (Cited at p. 1.)

Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst. Learning laplacian
matrix in smooth graph signal representations. IEEE Transactions on Signal Processing, 64(23):
6160-6173, 2016. (Cited at pp. 1 and 3.)

Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves structure
learning for graph neural networks. Advances in Neural Information Processing Systems, 34:
22667-22681, 2021. (Cited at p. 1.)

Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75-174, 2010. (Cited at
p-3.)

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph
convolutional networks. Advances in neural information processing systems, 30, 2017. (Cited at

p-1.)

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with
the graphical lasso. Biostatistics, 9(3):432—441, 2008. (Cited at pp. 1 and 3.)

Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. Magnn: Metapath aggregated graph neural
network for heterogeneous graph embedding. In Proceedings of The Web Conference 2020, pp.
2331-2341, 2020. (Cited at p. 15.)

10

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://github.com/epfl-lts2/pygsp/

Under review as a conference paper at ICLR 2026

Jiuxiang Gu, Handong Zhao, Zhe Lin, Sheng Li, Jianfei Cai, and Mingyang Ling. Scene graph
generation with external knowledge and image reconstruction. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 1969-1978, 2019. (Cited at p. 1.)

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017. (Cited at p. 8.)

Mohammad Hashemi, Shengbo Gong, Juntong Ni, Wenqi Fan, B Aditya Prakash, and Wei Jin. A
comprehensive survey on graph reduction: Sparsification, coarsening, and condensation. arXiv
preprint arXiv:2402.03358, 2024. (Cited at p. 3.)

Cho-Jui Hsieh, Inderjit Dhillon, Pradeep Ravikumar, and Matyas Sustik. Sparse inverse covariance
matrix estimation using quadratic approximation. Advances in neural information processing
systems, 24, 2011. (Cited at p. 1.)

Chenhui Hu, Lin Cheng, Jorge Sepulcre, Georges El Fakhri, Yue M Lu, and Quanzheng Li. A graph
theoretical regression model for brain connectivity learning of alzheimer’s disease. In 2013 IEEE
10th International Symposium on Biomedical Imaging, pp. 616—619. IEEE, 2013. (Cited at p. 3.)

Mark Jerrum and Alistair Sinclair. Conductance and the rapid mixing property for markov chains:
the approximation of permanent resolved. In Proceedings of the twentieth annual ACM symposium
on Theory of computing, pp. 235-244, 1988. (Cited at p. 9.)

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 6674, 2020. (Cited at p. 1.)

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation
for graph neural networks. arXiv preprint arXiv:2110.07580, 2021. (Cited at p. 19.)

Vassilis Kalofolias. How to learn a graph from smooth signals. In Artificial intelligence and statistics,
pp- 920-929. PMLR, 2016. (Cited at pp. 1 and 3.)

Sepandar D Kamvar, Dan Klein, and Christopher D Manning. Spectral learning. In IJCAI, volume 3,
pp. 561-566, 2003. (Cited at p. 3.)

Mohit Kataria, Aditi Khandelwal, Rocktim Das, Sandeep Kumar, and Jayadeva Jayadeva. Linear
complexity framework for feature-aware graph coarsening via hashing. In NeurIPS 2023 Workshop:
New Frontiers in Graph Learning, 2023. URL https://openreview.net/forum?id=
HKdsrm5nCW. (Cited at pp. 3, 18, and 19.)

Mohit Kataria, Sandeep Kumar, and Jayadeva Jayadeva. UGC: Universal graph coarsening. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=nN6NSd1Qds. (Cited at pp. 3, 5, and 17.)

Seoyoon Kim, Seongjun Yun, and Jaewoo Kang. Dygrain: An incremental learning framework for
dynamic graphs. In IJCAIL pp. 3157-3163, 2022. (Cited at pp. 3 and 18.)

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016. (Cited at pp. 8 and 18.)

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009. (Cited at p. 3.)

Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein. Goat:
A global transformer on large-scale graphs. In International Conference on Machine Learning, pp.
17375-17390. PMLR, 2023. (Cited at pp. 8 and 19.)

Manoj Kumar, Anurag Sharma, and Sandeep Kumar. A unified framework for optimization-based

graph coarsening. Journal of Machine Learning Research, 24(118):1-50, 2023. URL http:
//jmlr.org/papers/v24/22-1085.html. (Cited at p. 3.)

11

https://openreview.net/forum?id=HKdsrm5nCW
https://openreview.net/forum?id=HKdsrm5nCW
https://openreview.net/forum?id=nN6NSd1Qds
http://jmlr.org/papers/v24/22-1085.html
http://jmlr.org/papers/v24/22-1085.html

Under review as a conference paper at ICLR 2026

Danning Lao, Xinyu Yang, Qitian Wu, and Junchi Yan. Variational inference for training graph neural
networks in low-data regime through joint structure-label estimation. In Proceedings of the 28th
ACM SIGKDD conference on knowledge discovery and data mining, pp. 824-834, 2022. (Cited at
p-1.)

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010. (Cited at pp. 9 and 16.)

Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan. Towards unsupervised
deep graph structure learning. In Proceedings of the ACM Web Conference 2022, pp. 1392-1403,
2022. (Cited at pp. 1 and 3.)

Andreas Loukas. Graph reduction with spectral and cut guarantees. J. Mach. Learn. Res., 20(116):
1-42, 2019. (Cited at p. 3.)

Linyuan Lii and Tao Zhou. Link prediction in complex networks: A survey. Physica A: statistical
mechanics and its applications, 390(6):1150-1170, 2011. (Cited at p. 18.)

James MacQueen et al. Some methods for classification and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1,
pp. 281-297. Oakland, CA, USA, 1967. (Cited at pp. 1 and 3.)

Nikita Malik, Rahul Gupta, and Sandeep Kumar. Hyperdefender: A robust framework for hyper-
bolic gnns. Proceedings of the AAAI Conference on Artificial Intelligence, 39(18):19396—19404,
Apr. 2025. doi: 10.1609/aaai.v39i18.34135. URL https://ojs.aaai.org/index.php/
AAATI/article/view/34135. (Cited at p. 1.)

Kevin R Moon, David Van Dijk, Zheng Wang, Scott Gigante, Daniel B Burkhardt, William S Chen,
Kristina Yim, Antonia van den Elzen, Matthew J Hirn, Ronald R Coifman, et al. Visualizing
structure and transitions in high-dimensional biological data. Nature biotechnology, 37(12):
1482-1492, 2019. (Cited at pp. 9 and 22.)

Marius Muja and David G Lowe. Scalable nearest neighbor algorithms for high dimensional data.
IEEE transactions on pattern analysis and machine intelligence, 36(11):2227-2240, 2014. (Cited
atp. 1.)

Mark EJ Newman. Modularity and community structure in networks. Proceedings of the national
academy of sciences, 103(23):8577-8582, 2006. (Cited at pp. 4 and 9.)

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural networks, 113:54-71, 2019. (Cited at
pp- 3 and 18.)

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532-1543, 2014. (Cited at pp. 9 and 16.)

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Giinnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018. (Cited at p. 15.)

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.
Exphormer: Sparse transformers for graphs. In International Conference on Machine Learning,
pp- 31613-31632. PMLR, 2023. (Cited at pp. 8 and 19.)

Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Miiller. Graph clustering with graph
neural networks. Journal of Machine Learning Research, 24(127):1-21, 2023. (Cited at pp. 3, 4,
and 9.)

Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019. (Cited at pp. 3 and 18.)

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio,
et al. Graph attention networks. stat, 1050(20):10-48550, 2017. (Cited at p. 8.)

12

https://ojs.aaai.org/index.php/AAAI/article/view/34135
https://ojs.aaai.org/index.php/AAAI/article/view/34135

Under review as a conference paper at ICLR 2026

Joshua T Vogelstein, William Gray Roncal, R Jacob Vogelstein, and Carey E Priebe. Graph classi-
fication using signal-subgraphs: Applications in statistical connectomics. /EEE transactions on
pattern analysis and machine intelligence, 35(7):1539-1551, 2012. (Cited at p. 18.)

Kiri Wagstaff, Claire Cardie, Seth Rogers, Stefan Schrodl, et al. Constrained k-means clustering with
background knowledge. In Icml, volume 1, pp. 577-584, 2001. (Cited at p. 3.)

Fei Wang and Changshui Zhang. Label propagation through linear neighborhoods. In Proceedings
of the 23rd international conference on Machine learning, pp. 985-992, 2006. (Cited at pp. 1
and 3.)

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia.
Microsoft academic graph: When experts are not enough. Quantitative Science Studies, 1(1):
396-413, 2020. (Cited at pp. 4, 8, and 16.)

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world networks. nature, 393
(6684):440-442, 1998. (Cited at p. 15.)

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387-27401, 2022a. (Cited at pp. 8 and 19.)

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387-27401, 2022b. (Cited at p. 1.)

Tiandeng Wu, Qijiong Liu, Yi Cao, Yao Huang, Xiao-Ming Wu, and Jiandong Ding. Continual graph
convolutional network for text classification. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 13754-13762, 2023. (Cited at pp. 3 and 18.)

Yongji Wu, Defu Lian, Yiheng Xu, Le Wu, and Enhong Chen. Graph convolutional networks
with markov random field reasoning for social spammer detection. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 1054-1061, 2020. (Cited at p. 1.)

Liang Xiang, Quan Yuan, Shiwan Zhao, Li Chen, Xiatian Zhang, Qing Yang, and Jimeng Sun.
Temporal recommendation on graphs via long-and short-term preference fusion. In Proceedings of
the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
723-732,2010. (Cited at p. 4.)

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018. (Cited at p. 8.)

Fan Yang, Wenchuan Wang, Fang Wang, Yuan Fang, Duyu Tang, Junzhou Huang, Hui Lu, and
Jianhua Yao. scbert as a large-scale pretrained deep language model for cell type annotation of
single-cell rna-seq data. Nature Machine Intelligence, 4(10):852-866, 2022. (Cited at p. 15.)

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40-48. PMLR, 2016.
(Cited at p. 15.)

Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: graph learning framework for dynamic graphs.
In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining,
pp. 2358-2366, 2022. (Cited at pp. 3 and 18.)

Wayne W Zachary. An information flow model for conflict and fission in small groups. Journal of
anthropological research, 33(4):452-473, 1977. (Cited at pp. 9, 16, and 23.)

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.
(Cited at pp. 8 and 16.)

Xikun Zhang, Dongjin Song, and Dacheng Tao. Cglb: Benchmark tasks for continual graph learning.
Advances in Neural Information Processing Systems, 35:13006-13021, 2022. (Cited at pp. 3
and 18.)

13

Under review as a conference paper at ICLR 2026

Yunpeng Zhao, Elizaveta Levina, and Ji Zhu. Consistency of community detection in networks under
degree-corrected stochastic block models. 2012. (Cited at pp. 4, 5, and 16.)

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
Al open, 1:57-81, 2020. (Cited at p. 1.)

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the 20th International conference on Machine
learning (ICML-03), pp. 912-919, 2003. (Cited at p. 3.)

Yangiao Zhu, Weizhi Xu, Jinghao Zhang, Yuanqi Du, Jieyu Zhang, Qiang Liu, Carl Yang, and Shu Wu.
A survey on graph structure learning: Progress and opportunities. arXiv preprint arXiv:2103.03036,
2021. (Cited at p. 1.)

14

Under review as a conference paper at ICLR 2026

Appendix

A DATASETS
Datasets used in our experiments vary in size, with nodes ranging from 1k to 60k. Table 7 lists all
the datasets we used in our work. We evaluate our proposed framework GraphFlex on real-world
datasets Cora ,Citeseer, Pubmed (Yang et al., 2016), CS, Physics (Shchur et al., 2018), DBLP (Fu
et al., 2020), all of which include graph structures. These datasets allow us to compare the learned
structures with the originals. Additionally, we utilize single-cell RNA pancreas datasets (Yang et al.,
2022), including Baron, Muraro, Segerstolpe, and Xin, where the graph structure is missing. The
Baron dataset was downloaded from the Gene Expression Omnibus (GEO) (accession no. GSE84133).
The Muraro dataset was downloaded from GEO (accession no. GSE85241). The Segerstolpe dataset
was accessed from ArrayExpress (accession no. E-MTAB-5061). The Xin dataset was downloaded
from GEO (accession no. GSE81608). We simulate the expanding graph scenario by splitting the
original dataset across different 7 timestamps. We assumed 50% of the nodes were static, with the
remaining nodes arriving as incoming nodes at different timestamps.

Synthetic datasets: Different data generation techniques validate that our results are generalized to

Category Data Nodes Edges Feat. Class Type
Cora 2,708 5,429 1,433 7 Citation network
Citeseer 3,327 9,104 3,703 6 Citation network
Original DBLP 17,716 528k 1,639 4 Research paper
Structure CS 18,333 163.7k 6,805 15 Co-authorship network
Known PubMed 19,717 44.3k 500 3 Citation network
Physics 34,493 2479k 8,415 5 Co-authorship network
Xin 1,449 NA 33,889 4 Human Pancreas
Original Baron Mouse 1,886 NA 14,861 13 Mouse Pancreas
Structure Muraro 2,122 NA 18,915 9 Human Pancreas
Not Known Segerstolpe 2,133 NA 22,7757 13 Human Pancreas
Baron Human 8,569 NA 17,499 14 Human Pancreas
Syn 1 2,000 8,800 150 4 SW
Syn 2 5,000 22k 150 4 SW
Syn 3 10,000 44k 150 7 SW
Synthetic Syn 4 50,000 220k 150 7 SW
Syn 5 400 1,520 100 4 PyG-G
Syn 6 2,500 9,800 100 4 PyG-S
Syn 7 1,000 9,990 150 4 HE
Syn 8 2,000 40k 150 4 HE
MNIST 60,000 NA 784 10 Images
Visulization Datasets Zachary’s karate 34 156 34 4 Karate club network
Glove 2,000 NA 50 NA GloVe embeddings
Flickr 89,250 899,756 500 7 -
Large dataset Reddit 232,965 11.60M 602 41 -
Ogbn-arxiv 169,343 1.16M 128 40 -
Ogbn-products 2,449,029 61.85M 100 47 -

Table 7: Summary of the datasets.

different settings. Please refer to Table 7 for more details about the number of nodes, edges, features,
and classes, Syn denotes the type of synthetic datasets. Figure 6 shows graphs generated using
different methods. We have employed three different ways to generate synthetic datasets which are
mentioned below:

* PyGSP(PyGsp): We used synthetic graphs created by PyGSP (Defferrard et al.) library. PyG-G
and PyG-S denotes grid and sensor graphs from PyGSP.

* Watts—Strogatz’s small world(SW): (Watts & Strogatz, 1998) proposed a generation model
that produces graphs with small-world properties, including short average path lengths and high
clustering.

15

Under review as a conference paper at ICLR 2026

* Heterophily(HE): We propose a method for creating synthetic datasets to explore graph behavior
across a heterophily spectrum by manipulating heterophilic factor o, and classes. « is determined
by dividing the number of edges connecting nodes from different classes by the total number of
edges in the graph.

Visulization Datasets: To evaluate, the learned graph structure, we have also included three
datasets: (i) MNIST (LeCun et al., 2010), consisting of handwritten digit images; (ii) Pre-trained
GloVe embeddings (Pennington et al., 2014) of English words; and (iii) Zachary’s karate club
network (Zachary, 1977).

Large Datasets: To comprehensively evaluate GraphFLEX’s scalability to large-scale graphs, we
consider four datasets with a high number of nodes: (a) Flickr(89k nodes) (Zeng et al., 2019), (b)
Reddit (233k nodes) (Zeng et al., 2019), (c) Ogbn-arxiv (169k nodes) (Wang et al., 2020), and (d)
Ogbn-products (2.4M nodes) (Bhatia et al., 2016).

System Specifications: All the experiments conducted for this work were performed on an Intel Xeon
W-295 CPU with 64GB of RAM desktop using the Python environment.

AN N/

\/\/\/\/\/\;; /

(a) PyGSP-Sensor, N =50, a=3 (b) PyGSP-Grid, N = 80, a=3 (¢) SW,N =50, =3 (d) HE, N =50, a=3

Figure 6: This figure illustrates different types of synthetic graphs generated using i)PyGSP, ii) Watts—Strogatz’s
small world(SW), and iii) Heterophily(HE). N denotes the number of nodes, while o denotes the number of
classes.

B ALGORITHM
In this section we include the pseudocode of GraphFLEX; see Algorithm 1.

C DEGREE-CORRECTED STOCHASTIC BLOCK MODEL(DC-SBM)
The DC-SBM is one of the most commonly used models for networks with communities and
postulates that, given node labels ¢ = ¢y, ...c,, the edge variables Agjs are generated via the formula

E[Aij] = 0,0, P, P,

, where 0; is a ”degree parameter” associated with node i, reflecting its individual propernsity to
form ties, and P is a K x K symmetric matrix containing the between/withincommunity edge
probabilities and P, P, denotes the edge probabilities between community c; and c;.

For DC-SBM model (Zhao et al., 2012) assumed P,, on n nodes with k classes, each node v; is given
a label/degree pair(c;, 0;), drawn from a discrete joint distribution Ik x.,, which is fixed and does
not depend on n. This implies that each 6; is one of a fixed set of values 0 < z; < < x,,. To
facilitate analysis of asymptotic graph sparsity, we parameterize the edge probability matrix P as
P, = p, P where P is independent of n, and p,, = \,,/n where A, is the average degree of the
network.

D NEIGHBOURHOOD PRESERVATION
Theorem D.1 Neighborhood Preservation. Let Ny (E;) denote the neighborhood of incoming nodes
& for the i™ community. With partition matrix P; and M i(S;, X1) = GE(V,E, AS) we identify the
supernodes connected to incoming nodes &; and subsequently select nodes within those supernodes;
this subset of nodes is denoted by wyi. Formally,

wvy = U { U ()45 (w,5) # 01}

veEE; SES;

16

Under review as a conference paper at ICLR 2026

Algorithm 1 GraphFlex: A Unified Structure Learning framework for expanding and Large Scale
Graphs
Input: Graph G(Xo, Ag), expanding nodes set L = {&, (V,, X,)},
Parameter: GClust, GCoar, GL < Clustering, Coarsening and Learning Module
Output: Graph G (X1, Ar)
1: Train clustering module train(M .y st, GClust, Gp)
2: for each E;(V;, X;) in & do

3: Cp = infer(Mepust, X¢), Cy € RNt denotes the communities of Ny nodes at time ¢.

4: I = unique(Cy).

5. for each I} in I; do A

6: G}_, =subgraph(G;_1, I})

7: {Si_ |, P} 1} = Meoar(Gi_y), Si_, € RF*9 are features of k supernodes, P}, € RF*N:
is the partition matrix.

8: Gei_1(Sj_1,Al_}) = Myu(S;i_1, X}), Gci_ is the learned graph on super-nodes S;_;
and new node X7.

9: Wi [1]

10: for z € X, do

11: wi.append(x)

12: ny, = {n| Ai_[n] > 0}

13: wi.append(n,)

14: end for ‘

15: Gi—1 = update(Gy_1, Mg (w}))

16: end for

17: G =Gy

18: end for

19: return G (Xr, Ar)

Then, with probability I1{.c 4yp(c), it holds that Ny (E;) C Wyi where

o) < 1= 221 emrta)],

V2T

and ¢ is a set containing all pairwise distance values (¢ = ||v — ul|) between every node v € &; and the nodes
U € wyi. Here, 1 (s) denotes the set of nodes mapped to supernode s, r is the bin-width hyperparameter of

Mcoar-

Proof: The probability that LSH random projection (Kataria et al., 2024; Datar et al., 2004) preserves
the distance between two nodes v and u i.e., d(u, v) = ¢, is given by:

o= [()1
where fo(z) = 2-c

oo represents the Gaussian kernel when the projection matrix is randomly

sampled from p-stable(p = 2) distribution (Datar et al., 2004).
The probability p(c) can be decomposed into two terms:

p(e) = Si(c) = Sa(e),
S1(c) and S3(c) are defined as follows:

2 " 2
Sl(C) = \/7277(/0\ 67(t/c) /2dt S 17

2 r 2,61
Ss(c) = — e (/722 gt
=== | :

2 c [2, t
Sofe) = 2 C [w2ty
2(6) /727_[_ r /O € 2

2 —x?/2

17

Under review as a conference paper at ICLR 2026

Expanding S3(c) :

% /(2¢%)
/ e Ydy
0

[1 _ 642/(28)}

I 3o

Thus, the probability p(c) can be bounded as:

2 C 2 2
ple) <1 — —- |:1—€_T /(2)].
VT

Now, let ¢ be the set of all pairwise distances d(u, v), where v € &; and nodewy:. The probability
that all nodes in Ny (&;) are preserved within wy:, requires that all distances ¢ € ¢ are also preserved.
The probability is then given by:

[Ir.

cEP

[Ire <] (1 B \/%; [1 B e-ﬁ/@é)D ,

cEP cEP

E CONTINUAL LEARNING AND DYNAMIC GRAPH LEARNING

In this subsection, we highlight the key distinctions between Graph Structure Learning (GSL) and
related fields to justify our specific selection of related works in Section 2.2. GSL is often confused
with topics such as Continual Learning (CL) and Dynamic Graph Learning (DGL).

CL (Van de Ven & Tolias, 2019; Zhang et al., 2022; Parisi et al., 2019) addresses the issue of catas-
trophic forgetting, where a model’s performance on previously learned tasks degrades significantly
after training on new tasks. In CL, the model has access only to the current task’s data and cannot
utilize data from prior tasks. Conversely, DGL (Kim et al., 2022; Wu et al., 2023; You et al., 2022)
focuses on capturing the evolving structure of graphs and maintaining updated graph representations,
with access to all prior information.

While both CL and DGL aim to enhance model adaptability to dynamic data, GSL is primarily
concerned with generating high-quality graph structures that can be leveraged for downstream tasks
such as node classification (Kipf & Welling, 2016), link prediction (Lt & Zhou, 2011), and graph
classification (Vogelstein et al., 2012). Moreover, in CL and DGL, different tasks typically involve
distinct data distributions, whereas GSL assumes a consistent data distribution throughout.

F RELATED WORK
Table 8 presents the formulations and associated time complexities of various unsupervised Graph
Structure Learning methods.

Table 8: Unsupervised Graph Structure Learning Methods

Method Time Complexity Formulation

GLasso O(N3) maxe logdet © — tr(20) — p||O||1

log-model O(N?) minwew ||W o Z|[11 — a1’ log(W1) + & |W||%
12-model O(N?) minwew ||[W o Z||11 + o|W1|]2 + a|W||% + 1{||W|1,1 = n}
large-model ~ O(N log(N)) miny, i [|[W o Z|[1,1 — a1 log(W1) + £ |W||%

G RUN TIME ANALYSIS

In the context of clustering module, &k — NN is the fastest algorithm, while Spectral Clustering is
the slowest. Suppose we aim to learn the structure of a graph with N nodes. The clustering module,
however, is only applied to a randomly sampled, smaller, static subgraph with k£ nodes, where k < N.
In the worst-case scenario, spectral clustering requires (’)(k3) time, whereas in the best case, k — NN
requires O(k?) time. For coarsening module, LSH-based coarsening framework (Kataria et al., 2023),

18

Under review as a conference paper at ICLR 2026

has the best time complexity of O(’%) while FGC denotes the worst case with a time-complexity of
O((£2)2||S2||) where c is the number of communities detected by clustering module My, || S2 ||
is the number of coarsened node in the relevant community at 7 timestamp and k, denotes number
of nodes at 7 timestamp. For learning module, A — N N is the most efficient algorithm with time
complexity as O(NlogN), while G Lasso has the worst computational cost of O(N?3). So, the
effective time complexity of GraphFLEXx is upper bounded by O(k* + (£2)2||S2|| + o®) and lower
bounded by O(k? + ’% + aloga) where o = ||SE|| + ||EL||. GraphFLEX’s efficiency in term of
computational time is evident in Figure 2 and further quantified in Table 2.

Out of the three modules of GraphFLEX first module(M) is trained once, and hence its run time is
always bounded; computational time for second module(M ;) can also be controlled because some
of the methods either needs training once (Jin et al., 2021) or have linear time complexity (Kataria
et al., 2023). Consequently, both the clustering and coarsening modules contribute linearly to the
overall time complexity, denoted as O(N). Thus, the effective time complexity of GraphFLEXx is
given by O(N + O(M(||S;, X2||)). The overall complexity scales either linearly or sub-linearly,
depending on « and the M, module. For instance, when M,; is A-NN the complexity remains
linear, if alog(a) & N, whereas for G Lasso, a linear behavior is observed when o® ~ N.

H NODE CLASSIFICATION WITH GNNS AND GRAPH TRANSFORMERS.

We used four GNN models, namely GCN, GraphSage, GIN, and GAT. These GNN backbones (GCN,
GraphSAGE, GIN, GAT) use two hidden layers of 64 units each and are trained for 500 epochs with
Adam (learning rate 0.003, weight decay 5 x 10™%).

t —
G ® N - GNN Models

Dynamic Nodes \-)

GNN FACH

Compare
Accuracy

GraphFlex

Figure 7: GNN training pipeline.

We randomly split data in 60%, 20%, 20% for training-validation-test. The results for these models on
Cora, Citeseer, and some synthetic datasets are presented in Table 9. Figure 7 illustrates the pipeline
for training our GNN models. Graph structures were learned using both existing methods and Graph-
Flex, and GNN models were subsequently trained on both structures. Node classification accuracy
results across all datasets are presented in Table 9 and Table 3. We further include node-classification
accuracies of recent Graph Transformer models like GOAT (Kong et al., 2023), Nodeformer (Wu
et al., 2022a), and Exoformer (Shirzad et al., 2023) when trained on graph structures learned by
GraphFLEXx (GLex) (see Table 10). Figure 8 shows the accuracies when structure is learned or given
with 3 different scenarios (Vanilla, GraphFlex, Original) across different datasets.

I COMPUTATIONAL EFFICIENCY

Table 11 illustrates the remaining computational time for learning graph structures using GraphFLEx
with existing Vanilla methods on Synthetic datasets. While traditional methods may be efficient for
small graphs, GraphFLEXx scales significantly better, excelling on large datasets like Pubmed and Syn
5, where most methods fail.

19

Under review as a conference paper at ICLR 2026

Vanilla ®SLdgSL m FullDataset

100
90
m7o Z
% %0 é Z Z
@©
'550 -V = 5 1 A: Z _,:g @s EE;‘:
2. BEEEH BEPREE BEES F B0 F BRHER AR
~ §EAR O DR
2 7 78 7 7R 7 2 7
7z 7 zZ Z
20 2 7 78 7 78 7 7 2
707772 77 777 TRRER RER R HER R PRR7
0 29%7%77 %%%% 7 78 7 7R 7 78 7BR77
. 97%%9%7 %77%77 74dl78 78BE7R 7EEE7R 78877
Cora Citeseer DBLP Pubmed Physics CSs

Datasets

Figure 8: GraphSage accuracies when structure is learned or given with 3 different scenarios(Vanilla, GraphFlex,
Original) across different datasets, highlighting performance with 30% node growth over 25 timestamps.

Table 9: Node classification accuracies on different GNN models using GraphFLEx (GFlex) with existing Vanilla
(Van.) methods. The experimental setup involves treating 70% of the data as static, while the remaining 30% of
nodes are treated as new nodes coming in 25 different timestamps. The best and the second-best accuracies in
each row are highlighted by dark and lighter shades of Green, respectively. GraphFLEX’s structure beats all of
the vanilla structures for every dataset. OOM and OOT denotes out-of-memory and out-of-time respectively.

Dataset Model ANN KNN log-model 12-model COVAR large-model Base Struc.
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

GAT 18.73 73.84 20.96 73.65 16.14 72.36 18.74 73.10 49.72 77.55 14.28 76.43 79.77
SAGE 17.25 77.37 18.00 76.99 19.48 77.40 19.85 75.51 49.35 76.99 14.28 | 77.55 82.37
Cora GeN 1799 7811 17.81 77.92 18.55 77.74 20.41 79.22 47.31 80.52 14.28 79.03 84.60
GIN 16.69 76.44 18.74 80.52 17.44 76.25 19.29 76.62 48.79 78.85 14.28 76.06 81.63

GAT 16.51 61.82 25.00 62.27 19.24 64.70 18.18 63.48 20.91 62.73 16.67 62.27 66.42
SAGE 16.66 68.48 16.67 68.64 22.12 69.39 22.42 69.85 22.88 71.52 16.67 69.39 72.57
Citeseer GCN 28.18 60.00 16.67 61.97 20.45 65.45 19.70 64.24 21.06 64.70 16.67 63.18 68.03
GIN 16.66 64.39 16.67 63.94 20.15 59.85 18.64 63.64 22.12 60.30 16.67 61.81 67.38

GAT 29.55 92.07 OOM 90.86 OOT 91.64 OOT 91.64 35.79 9252 OOT| 93.74 89.49
SAGE 26.75 87.89 OOM | 91.05 OOT 86.64 OOT 86.64 32.92 90.44 OOT 86.01 90.03
Syn 4 GeN 28851 51.97 OOM 19.58 OOT 18.29 OOT 1892 33.80 26.60 OOT 36.85 2143
GIN 2850 65.61 OOM 31.06 OOT 26.51 OOT 26.56 34.03 46.40 OOT 47.10 29.35

GAT 44.00 86.80 43.60 86.60 30.00 78.75 55.40 92.80 36.20 93.60 31.80 92.80 97.20
SAGE 41.00 93.80 41.40 93.60 33.75 88.75 57.60 94.00 35.20 94.80 28.20 95.60 97.40
Syn 6 GCN 43.60 88.80 4220 87.40 26.25 81.25 55.60 92.40 31.40 9440 2520 94.00 99.40
GIN 39.60 89.00 40.40 86.60 21.25 82.50 55.20 91.80 30.00 94.60 30.40 92.00 98.80

GAT 29.55 99.75 33.75 88.75 88.25 99.25 88.25 99.25 26.00 85.50 94.00 96.00 98.50
SAGE 26.75 100.0 32.50 100.0 88.75 99.50 88.75 99.50 26.75 100.0 92.50 ' 100.0 100.0
Syn 8 GeN 2885 9875 31.75 99.75 88.75 99.00 88.75 99.00 28.50 99.25 95.00 100.0 100.0
GIN 28.50 50.00 30.50 91.00 82.25 91.50 82.25 91.50 27.25 81.75 91.75 9225 78.25

J VISUALIZATION OF GROWING GRAPHS

This section helps us visualize the phases of our growing graphs. We have generated a synthetic graph
of 60 nodes using PyGSP-Sensor and HE methods mentioned in Appendix A. We then added 40 new
nodes denoted using black color in these existing graphs at four different timestamps. Figure 9 and
Figure 10 shows the learned graph structure after each timestamp for two different Synthetic graphs.

20

Under review as a conference paper at ICLR 2026

Table 10: Node classification accuracies on different recent Graph Transformer models when trained on structure
learned using GraphFLEx (GFlex). The experimental setup involves treating 70% of the data as static, while the
remaining 30% of nodes are treated as new nodes coming in 25 different timestamps.

Data Model Base \ GFlex(KNN) GFlex(ANN) GFlex(Sub.) GFlex(covar) GFlex(12) GFlex(log)
Goat 68.01 65.90 70.20 70.10 71.20 69.60 68.30
Cora Nodeformer 65.80 65.80 65.80 64.50 65.91 63.12 64.27
Exoformer 71.80 68.16 69.80 70.30 67.70 69.80 70.30
Goat 65.02 65.10 62.40 66.13 61.20 63.03 66.10
Citeseer Nodeformer 61.00 61.00 61.71 63.48 62.60 61.34 61.54
Exoformer 58.40 60.70 59.80 60.70 59.40 60.21 59.80
Goat 81.92 80.68 80.31 82.25 82.29 79.86 80.10
DBLP Nodeformer 73.76 73.76 75.34 74.39 72.94 73.29 74.96
Exoformer 72.12 72.12 72.71 73.61 72.92 69.84 71.62
Goat 93.05 93.24 93.32 90.84 92.39 93.16 92.03
CS Nodeformer 94.60 95.12 95.12 95.36 9491 95.12 93.29
Exoformer 95.53 95.33 94.63 93.26 95.33 95.09 94.32

Table 11: Computational time for learning graph structures using GraphFLEx (GFlex) with existing methods
(Vanilla referred to as Van.). The experimental setup involves treating 50% of the data as static, while the
remaining 50% of nodes are treated as incoming nodes arriving in 25 different timestamps. The best times are
highlighted by color . OOM and OOT denote out-of-memory and out-of-time, respectively.

Data ANN KNN log-model 12-model COVAR large-model
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

Synl 19.4 9.8 2.5 10.5 2418 564 372 8.8 3.5 8.3 205 9.4
Syn2 473 16.9 6.6 18.3 14000 144 214 226 203 18.6 1259 164
Syn5 @ 5.1 11.5 0.8 7.3 574 28 1.1 5.8 0.2 4.8 32 53
Syn6 16.6 9.9 2.8 11.4 1766 96.3 193 101 5.3 8.9 324 9.6
Syn7 10.6 7.4 14 8.9 704 852 103 7.9 0.9 6.4 36.5 82
Syn8 19.6 = 11.2 2.5 11.7 2416 457 372 17.0 3.4 10.9 204 11.7

(a) Initial graph G (b) a=10, G4 (©) a=20, G (d) a =30, G5 (&) =40, G4

Figure 9: This figure illustrates the growing structure learned using GraphFlex for dynamic nodes. New nodes
are denoted using black color, and o denotes number of new nodes. PyGsp denotes type synthetic graph.

A
ez

(a) Initial graph G (b)) a=10,G4 (c) =20, G2 (d) =30, G3 (e) =40, G4

Figure 10: This figure illustrates the growing structure learned using GraphFlex for dynamic nodes. New nodes
are denoted using black color, and o denotes the number of new nodes. HE denotes the type of synthetic graph.

K ABLATION STUDY

In this section, we present an ablation study to analyze the role of individual modules within
GraphFLEx and their influence on the final graph structure. Specifically, we focus on two aspects: (i)
the significance of the clustering module, and (ii) the effect of varying module configurations on the
learned graph topology.

21

Under review as a conference paper at ICLR 2026

Original Karate Graph

o
s

A

‘-n-.,‘-_-~
(a) Xin (b) MNIST
L}
A \
P2
£ &
] »
» ¢ I d
R O :
N ;fsi: ; Y "y P
Ho F . “ /
'%‘ £ “tog,, %
RON .
» LN R e \- S
* : ."-l
(d) Muraro (e) Baron Mouse (f) Segerstolpe

Figure 12: PHATE visualization of clusters learnt using GraphFlex clustering module for scRNA-seq datasets.

K.1 CLUSTERING QUALITY

Figure 12 shows the PHATE (Moon et al., 2019) visualization of clusters learned using GraphFLEx’s
clustering module M ., 5+ for 6 single-cell RNA datasets, namely Xin, M NIST, Baron— Human,
Muraro, BaronM ouse, and Segerstolpe datasets.

K.2 CLUSTERING MODULE EVALUATION

To evaluate the effectiveness of the clustering module, we compute standard metrics such as Normal-
ized Mutual Information (NMI), Conductance (C), and Modularity (Q) across various datasets (see
Table 6 in Section 4.5). These metrics collectively validate the quality of the discovered clusters,
thereby justifying the use of a clustering module as a foundational step in GraphFLEX. Since cluster-
ing in GraphFLEx is applied only once on a randomly sampled small set of nodes, selecting the right
method can be considered as part of hyperparameter tuning, where these clustering measures can
guide the optimal choice based on dataset characteristics.

22

Under review as a conference paper at ICLR 2026

Vanilla

(¢) KNN
GraphFlex

(g) Emp Cov. (h) KNN (i) L2 model (j) Log model

Figure 13: This figure compares the structures learned on Zachary’s karate dataset when existing methods are
employed with GraphFlex and when existing methods are used individually. We consider six nodes, denoted in
black, as dynamic nodes.

K.3 IMPACT OF MODULE CHOICES ON LEARNED GRAPH STRUCTURE

This section involves a comparison of the graph structure learned from GraphFlex with existing
methods. Six nodes were randomly selected and considered as new nodes. Figure 13 visually depicts
the structures learned using GraphFlex compared to other methods. It is evident from the figure that
the structure known with GraphFlex closely resembles the original graph structure. Figure 11 shows
the original structure of Zachary’s karate club network (Zachary, 1977). We assumed six random
nodes to be dynamic nodes, and the structure learned using GraphFlex compared to existing methods
is shown in Figure 13.

L MODULE SELECTION

The Experiments section provides analyses to inform the selection of clustering and coarsening
components. In particular, Section 4.5 evaluates clustering quality using quantitative metrics, which
help choose a clustering method suited to a graph’s community structure and distribution. Moreover,
Figs. 13 illustrate how different learning-module choices impact the final learned structure. Additional
practical guidance is summarized below:

Clustering Methods. K-means is computationally efficient and performs well when clusters are
roughly spherical; it is a strong choice for large datasets where speed is critical. Spectral clustering
leverages eigenvalue decompositions to capture complex community structure, even when groups
are not easily separated by simple distance metrics; however, it can be expensive at scale. Deep
learning—based clustering adapts to non-linear, high-dimensional patterns and is effective for complex,
feature-rich graph data, though it typically requires more compute.

Coarsening Methods. UGC (used in our main experiments) is a scalable, LSH-based approach
that merges nodes with similar features and supports arbitrary coarsening ratios. Spectral approaches
such as LVE and LVN preserve local eigenstructure but can limit coarsening flexibility. Heavy Edge
Matching (HE) prioritizes the contraction of strong edges and is efficient for edge-weighted graphs.
Algebraic-distance and affinity-based schemes rely on node-proximity metrics and can be more costly.
Kron reduction maintains spectral fidelity but is typically too slow for very large graphs. FGC jointly
integrates graph structure and node attributes, optimizing clustering and coarsening together, but is
computationally demanding.

23

	Introduction
	Problem Formulation and Background
	Graph Reduction
	Unsupervised Graph Structure Learning

	GraphFLEx
	Incremental Graph Learning for Large Datasets
	Detecting Communities
	Learning Graph Structure on a Coarse Graph
	Graph Learning only with Potential Nodes
	GraphFLEx: Multiple GSL Frameworks
	Run Time Analysis

	Experiments
	Computational Efficiency.
	Node Classification Accuracy
	Scalability of GraphFLEx on Large-Scale Graphs.
	GraphFLEx for Link Prediction and Graph Classification.
	Clustering Quality
	Structure Visualization

	Conclusion
	Datasets
	Algorithm
	Degree-Corrected Stochastic Block Model(DC-SBM)
	Neighbourhood Preservation
	Continual Learning and Dynamic Graph Learning
	Related Work
	Run Time Analysis
	Node classification with GNNs and Graph Transformers.
	Computational Efficiency
	Visualization of Growing graphs
	Ablation Study
	Clustering Quality
	Clustering Module Evaluation
	Impact of Module Choices on Learned Graph Structure

	Module Selection

