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Abstract

The rapid development of Multimodal Large Lan-
guage Models (MLLMs), such as GPT-40, marks
a significant step toward artificial general intel-
ligence. Existing methods typically align vi-
sion encoders with LLMs via supervised fine-
tuning (SFT), but this often deteriorates their abil-
ity to handle multiple languages as training pro-
gresses. We empirically observe that imbalanced
SFT datasets, largely English-centric, degrade per-
formance on non-English languages due to the
failure in multilingual token alignment. To ad-
dress this, we propose PARROT, a novel approach
that leverages textual guidance for visual token
alignment at the language level. PARROT con-
ditions visual tokens on diverse language inputs
and uses Mixture-of-Experts (MoE) to align mul-
tilingual tokens. By computing cross-attention
between initial visual features and textual embed-
dings, we select the most relevant experts, convert-
ing visual tokens into language-specific represen-
tations. Additionally, we introduce the Massive
Multilingual Multimodal Benchmark (MMMB),
a new benchmark comprising 6 languages, 15
categories, and 12,000 questions, to assess mul-
tilingual capabilities. PARROT achieves state-
of-the-art performance on both the multilingual
benchmarks and a wide range of multimodal
tasks. Code and dataset are available at: https:
//github.com/AIDC-AI/Parrot.

1. Introduction

The rapid development of Large Language Models (LLMs),
such as GPT-4 (Radford et al., 2018; Brown et al., 2020;
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Figure 1. The output of OpenAI-CLIP-based and Chinese-CLIP-
based models using the same Chinese prompts. We can observe
that the OpenAI-CLIP-based model exhibits confusion between
Chinese and English responses.

OpenAl, 2023a; 2024), has gained significant attention.
However, LLMs are limited to processing only text-only
data. The integration of visual modalities has endowed
LLMs with multimodal capabilities (Wang et al., 2024a;
Liu et al., 2024), driving the emergence of Multimodal
Large Language Models (MLLMs). These models combine
pre-trained LLMs with vision encoders, bridging the
modality gap by aligning visual features with language
embeddings. Current research predominantly uses either
Q-Former (Li et al., 2023b) or MLP projector (Liu et al.,
2023b) to align vision encoders with LLMs, enabling
models to process multimodal.

Multilingual capability is a crucial aspect of MLLMs,
enabling them to generate responses in the same language as
the input, accommodating linguistic diversity. This feature
is vital for ensuring equitable access to technology across
different regions and cultures (Chen et al., 2022; Hu et al.,
2023). Many LLMs (Grattafiori et al., 2024; Yang et al.,
2024; OpenAl, 2023b) exhibit multilingual capabilities,
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generating diverse language responses based on prompts.
However, after multimodal alignment training, MLLMs
often lose their ability to effectively understand, process,
or generate non-English languages. This phenomenon,
which we refer to as multilingual erosion, results in models
like LLaVA (Liu et al., 2023b), which tend to respond
predominantly in English, even when the input is in another
language. Therefore, it is essential to address multilingual
erosion for improving MLLM’s multilingual abilities.

The primary cause of multilingual erosion is the imbalanced
nature of multimodal alignment data, which is overwhelm-
ingly English-centric. While models align visual and textual
tokens well in English, their performance in other languages
is suboptimal. Through empirical analysis, we observe that
multilingual erosion stems from the misalignment between
visual tokens and textual tokens in non-English languages.
For example, in our ablation study using OpenAI-CLIP
and Chinese-CLIP (Yang et al., 2022), we find that a model
using OpenAI-CLIP struggles with Chinese inputs, while
the Chinese-CLIP-equipped model effectively understands
and generates Chinese responses. As shown in Figure 6,
the t-SNE visualizations further demonstrate that the visual
features of Chinese-CLIP-based LLaVA are more closely
aligned with the Chinese prompts. Therefore, an intuitive
question is: how to transform the visual features into
language-specific embeddings to enhance the MLLM’s
multilingual capabilities.

Due to the scarcity of non-English multimodal data (e.g., the
lack of large-scale, high-quality image-text datasets), it is
necessary to use as little multilingual data as possible to en-
hance the model’s multilingual capabilities. To this end, we
propose a novel method, PARROT, which uses textual guid-
ance to align visual tokens at the language level. PARROT
leverages a Mixture-of-Experts (MoE) module (Jacobs et al.,
1991) to convert visual tokens into language-specific em-
beddings. Specifically, we first calculate the cross-attention
between the class token of visual features and the text
embeddings. The resulting features are then passed through
the MoE router to activate a probability distribution for each
language expert. Based on the input language, visual tokens
biased towards English are transformed into language-
specific embeddings using the appropriate expert. This
approach not only enhances the multilingual capabilities of
the MLLM but also bridges the multimodal gap effectively.

To address the scarcity of current multilingual benchmarks,
we introduce a new benchmark encompassing six languages:
English, Chinese, Portuguese, Arabic, Turkish, and Rus-
sian. This includes an extension of the MMBench dataset
to six languages and a Massive Multilingual Multimodal
Benchmark (MMMB) featuring 2,000 evaluation ques-
tions per language, totaling 12,000 questions. Through
a semi-automatic construction process, we mitigate the po-

tential erros and noise. Extensive experiments validate the
PARROT’s state-of-the-art performance across two multi-
lingual benchmarks, surpassing Qwen2-VL and LLaVA-
OneVision in multiple languages. Additionally, we evaluate
our model across a broad range of multimodal benchmarks
(e.g., MME (Fu et al., 2023) and ScienceQA (Lu et al.,
2022), and SEED-Bench (Li et al., 2024a)), demonstrating
its competitive performance in diverse tasks.

2. MMMB: A Massive Multilingual
Multimodal Benchmark

In this section, we first outline the limitations of existing
benchmarks and identify the key characteristics an ideal
multilingual benchmark should exhibit. We then provide a
detailed explanation of how to construct a new benchmark.

2.1. Limitations of Existing Benchmarks

There are several existing multilingual benchmarks (e.g.,
Multi30K (Elliott et al., 2016), M3Exam (Zhang et al.,
2024b), MMBench (Liu et al., 2023c), and LLaVA-
Bench (Liu et al., 2023b; Hu et al., 2023)) for MLLMs, but
they have notable limitations: 1) Outdated Benchmarks.
Multi30k is designed for image-text retrieval tasks, and its
performance has nearly reached its upper bound due to rela-
tively simple problems. 2) Non-Standardized Evaluations.
Benchmarks like LL.aVA-Bench rely on evaluations using
GPT-4. This dependence on GPT-4 as a de facto “Ground
Truth” may hinder reproducibility. Additionally, LLaVA
uses a deprecated version (GPT-4-0314), which introduces
potential inconsistencies if other versions are used, leading
to unfair comparisons. Moreover, M3Exam lacks consistent
test samples across different languages, making it difficult
to determine whether poor performance results from the
difficulty of the problem or the model’s limited multilin-
gual capabilities. 3) Limited Languages. MMBench and
LLaVA-Bench are restricted to English and Chinese, limit-
ing their ability to assess multilingual capabilities across a
broader range of languages.

2.2. The Key Characteristics of an Ideal Benchmark

To more accurately evaluate the multilingual capabilities of
MLLMs, an ideal benchmark should exhibit the following
characteristics:

1) Languages with Significant Differences. The bench-
mark should cover a diverse range of language families,
selecting languages that are distinct and non-repetitive. This
ensures a comprehensive assessment of MLLMs’ ability to
adapt across linguistic variations.

2) Problems with Medium Level of Difficulty. The prob-
lems should not be overly challenging (e.g., logical rea-
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a =18
b=ax*x3-6
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print("b is lower than 50"
else:
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(a) Code reasoning

Question: <image 1> The region bounded by the
graph as shown above. Choose an integral
expression that can be used to find

(b) Logical reasoning

What is the capital of Michigan?
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(c) Low relevance between image and text

Figure 2. Some bad cases for the existing multilingual benchmark. Left: code reasoning is strongly related to English. Middle: logical
reasoning is too challenging. Right: lack relevance between image and text.
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Figure 3. The calibration process for constructing a multilingual
benchmark consists of two stages: translation and calibration.

soning), as the primary goal is to assess the multilingual
understanding, processing, and generating capabilities of
MLLMs, rather than their reasoning abilities.

3) Tasks with Multilingual and Multimodal. As shown
in Figure 2, datasets should not be overly reliant on En-
glish (e.g., code reasoning). These tasks should not inher-
ently translate into multiple languages if they are composed
mainly of English words. Moreover, images should be an
indispensable part when MLLMs answer the question. For
instance, when shown a map of the United States and asked
to identify its capital, relying solely on text-based abilities
would be insufficient. Therefore, it is crucial that questions
exhibit a significant interplay between images and text.

4) Content Consistency across Languages. To fairly as-
sess the multilingual capabilities of MLLMs, content across
languages must remain consistent. For instance, if English
questions focus primarily on addition within one hundred,
while Chinese questions emphasize calculus computation,
it would be difficult to determine whether poor performance
in Chinese stems from the complexity of the problem or
from the model’s limited multilingual capabilities. Ensuring
content consistency across languages is thus essential for a
fair and accurate comparison.

2.3. Construction Pipeline

Following the above criteria, we select six languages for in-
clusion: English (en), Chinese (zh), Portuguese (pf), Arabic

(ar), Turkish (¢r), and Russian (ru). These languages rep-
resent a diverse range of linguistic families. Detailed infor-
mation and multilingual examples are provided in Figure 4.
Regarding dataset requirements and consistency, our bench-
mark is constructed with two key considerations: 1) Since
MMBench (Liu et al., 2023c¢) officially includes English and
Chinese versions, we extend it to the other four languages.
2) For the creation of the new massive multilingual multi-
modal benchmark, we select and curate relevant data from
the ScienceQA (Lu et al., 2022), MME (Fu et al., 2023),
and SEED-Bench (Li et al., 2024a) datasets, adhering to
established guidelines. These datasets are then transformed
into a Visual Question Answering (VQA) format, resulting
in a total of 12,000 samples across all six languages.

To mitigate potential errors and noise in the data acquisition
process, we employ the following strategies to enhance the
quality of our translations, as illustrated in Figure 3. First,
we use GPT-4 to translate the original problem into the target
language. Next, the initial translation is re-entered into for
a re-check and refinement. This step helps identify and
correct any immediate inconsistencies or inaccuracies. For
manual calibration, we engage two groups of professional
translators for each language involved in the study:

¢ First Group for Refinement. This group consists of
three language experts who independently review and
refine the translations generated by GPT-4. This results
in three distinct versions of each translation.

* Second Group for Voting. The second group eval-
uates these refined translations and selects the most
accurate one, ensuring it captures the intended mean-
ing and nuances of the original text.

This calibration process significantly improves data quality
by reducing errors and ensuring that translations are contex-
tually accurate across languages. As a result, our benchmark
achieves higher linguistic precision and cultural relevance,
which we believe enhances the robustness of our research
findings. Future versions will include additional details to
further enhance readability and completeness.
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Figure 4. The overview of MMMB benchmark. It incorporates 6 languages, 15 categories, and 12,000 questions.

2.4. Evaluation Strategy

Since random guessing can lead to ~25% Top-1 accuracy
for 4-choice questions, it may reduce the discernible perfor-
mance differences between various MLLMs. Additionally,
MLLMs may have a tendency to favor a particular choice
among the options (Liu et al., 2023c), further amplifying
evaluation bias. To address these issues, we implement
a circular validation strategy inspired by MMBench.
Specifically, MMMB is adapted to the Yes/No question
format, where each image is paired with two questions,
requiring ‘Yes’ and ‘No’ answers, respectively. As shown
in Figure 10 in Appendix, an answer is considered accurate
only if both questions are answered correctly; failing either
results in marking the entire instance as incorrect. This
strategy ensures a more rigorous evaluation of MLLMs,
reducing the impact of random guessing and promoting
more robust comparisons across different models.

3. Methods
3.1. Preliminaries: Visual Instruction Tuning

A representative work in MLLMs is LLaVA (Liu et al.,
2023b), which introduces a simple yet effective method for
aligning the vision encoder and the pre-trained LLM. Specif-
ically, for a given input image X, LLaVA uses the pre-
trained CLIP vision encoder ViT-L/14 (Radford et al., 2021)
to extract visual features Z, = ¢(X,). It then employs
Vicuna (Chiang et al., 2023) as the LLM to generate textual
embeddings H,. To align the vision encoder with the LLM,
a projector, implemented as a multi-layer perceptron (MLP)

denoted by W. This projector converts Z, into language
embedding tokens H,, effectively enabling the integration
of multimodal information within the LLM’s framework.

H, = W - Z,, with Z, = g(X,). (1

Finally, we input H, and H, into LLM to generate the
model’s responses. However, after the modality alignment
training, LLaVA loses its ability to process in non-English
languages.

3.2. Pilot Study

To address the challenge of multilingual erosion in MLLMs
due to the dominance of English in image-text data, we
empirically observe an inherent mismatch between visual
tokens H,, and textual tokens H;, which biases the model to-
wards English semantics and increases the likelihood of En-
glish outputs. Specifically, the widely-used OpenAI-CLIP
vision encoder (Radford et al., 2021), pre-trained on a large
English-centric image-text corpus, yields visual representa-
tions more aligned with English.

To investigate this, we conduct the ablation study using
OpenAI-CLIP and Chinese-CLIP (Yang et al., 2022). As
shown in Figure 1, the OpenAI-CLIP model struggles with
Chinese inputs, while the Chinese-CLIP model effectively
processes and generates Chinese outputs. Additionally, to
explore the distance between the visual features generated
by different encoders and the Chinese prompts, we plot t-
SNE visualizations for a more intuitive understanding. As
illustrated in Figure 6, the t-SNE further reveal that the
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visual features from Chinese-CLIP are more closely aligned
with the Chinese prompts.

3.3. Textual Guidance to Drive Visual Token Alignment

First of all, we have to address a key challenge: due to
the limited availability of non-English multimodal data, we
cannot rely on extensive multilingual datasets to enhance
the multilingual performance of MLLMSs. Therefore, it is
necessary to design a method that efficiently aligns visual
and textual features at the language level, rather than relying
on large multilingual data. Motivated by the pilot study, we
aim to directly align visual tokens with textual embeddings
at the language level. To this end, we propose PARROT, a
novel method that leverages textual guidance to facilitate the
multilingual alignment of visual features. PARROT enables
the transition of English-biased visual features acquired
through the OpenAI-CLIP to accommodate other languages,
ensuring language-specific visual tokens are generated for
LLMs based on multilingual inputs, thereby enhancing mul-
tilingual abilities.

First, we extract visual features through the vision encoder
and transform them into language embedding tokens H,,
using a projector. We obtain the embeddings H; € RV*¢
derived from text inputs via the word embedding table.
Subsequently, to convert the English-biased features into
language-specific ones, we employ a cross-modal cross-
attention mechanism to obtain H/, € R®:

clsErT
H/, = Attention(Q, K, V) = Softmax ( Cl ) H,,

where Q = H,, and both K and V are equivalent to H;.
H¢ € R represents the [CLS] token of H,. This process
allows the visual features to be dynamically adjusted and
transformed into language-specific semantic embeddings
based on multilingual inputs.

Since the projected language embedding tokens H, are
biased towards English, we need to convert them into
language-specific embeddings for different languages. To
this end, we introduce a lightweight Mixture-of-Experts
(MoE) module, which consists of a router and several lan-
guage transformation experts. The MoE router is a linear
layer that generates a probability distribution over the set of
experts £ = [eq, ea, -+ , e, effectively selecting and acti-
vating specific experts. Each expert is an MLP designed to
convert English-biased embeddings into language-specific
embeddings. The inputs to experts £ is H,, and the outputs
have the same dimensions as the inputs.

Subsequently, to obtain a normalized probability distribution
for activating language-specific experts, H/ is fed as input
to the router. The router network contains a linear layer
that computes the normalized weight matrix using H/, for

voting, producing P € R¥:
P = Softmax(Linear(H))), 3)

which selects and activates the appropriate experts. Next, we
process the English-biased embeddings H,, through the se-
lected experts to convert them into language-specific visual
representations:

k

MoE(H,) = Z Pli] - E(H,);. 4

i=1

This approach effectively aligns English-biased embeddings
with multiple languages, ensuring a more accurate and com-
prehensive representation across different linguistic con-
texts. To stabilize training and reduce the variance in visual-
semantic information, ensuring the model performs well
beyond the multilingual multimodal domain, we employ
MoE reweighting to obtain the final language-specific vi-
sual embeddings G:

G, = H, + aMoE(x), 5)

where « is a trade-off parameter. In conclusion, we first
fuse the visual and textual inputs via Eq. 2 to transform the
visual embeddings with textual guidance. The fused result
is then input into the MoE module, which selects and acti-
vates the most relevant language experts via Eq. 3 to obtain
language-specific embeddings as shown in Eq. 4. Finally,
MOoE reweighting is applied to convert visual embeddings
with less variance in original visual-semantic information 5.
This approach enables the MLLM to gain multilingual capa-
bilities using minimal multilingual data. Figure 5 illustrates
the architecture, the detailed MoE module, and the training
stages of PARROT.

3.4. Training Stage

Our goal is to enhance the multilingual capabilities of
MLLMs with minimal multilingual data. The training pro-
cedure is divided into two distinct stages:

Stage 1: Modality Alignment. In this stage, we freeze both
the vision encoder and the LLM weights, focusing solely
on optimizing the projectors to bridge the modality gap.
Notably, the MoE module is bypassed entirely, meaning
the image tokens do not pass through the MoE since the
primary goal of this stage is to train the projector using a
large number of image-text pairs. This enables the projector
to align image tokens and textual tokens effectively without
interference from the untrained MoE module.

Stage 2: Instruction Tuning for Multilingual Alignment.
We continue to freeze the vision encoder weights while
training all other modules. In this stage, we introduce multi-
lingual training data and randomly initialize the parameters
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Figure 5. The overall architecture of PARROT. It converts English-biased features to language-specific features based on the multilingual
MoE module, aiming to improve the multilingual capabilities. The training details within each stage are presented on the right.

of MoE. The MoE is optimized with textual guidance, which
drives the alignment of visual tokens while leveraging the
well-trained projector. The prior alignment achieved in the
pre-training stage facilitates efficient optimization of the
MoE during this phase. The entire training process of PAR-
ROT is outlined in pseudocode, as shown in Algorithm 1 in
the Appendix.

To address data scarcity in non-English languages, we use
a semi-automatic method similar to the one depicted in
Figure 3 to acquire image-text data. We randomly parti-
tion the ShareGPT4V dataset (Chen et al., 2023b) for each
language, extracting non-duplicate, non-parallel image-text
pairs for training, ultimately obtaining nearly 10K samples
per language. This two-stage training approach ensures
effective modality and multilingual alignment, even with
limited non-English data, aligning well with the challenges
of data scarcity in low-resource languages.

4. Experiments

In this section, we begin with an overview of the experi-
mental framework, providing details on specific implemen-
tations, evaluation benchmarks, and MLLMs used for com-
parative evaluation. Following this, we conduct a compre-
hensive comparison of PARROT with the state-of-the-art ap-
proaches using multilingual benchmarks. We also compare
PARROT with leading models across a range of multimodal
tasks. Finally, we conclude with ablation studies and visual-
ization of multilingual cases, highlighting the exceptional
ability of PARROT in handling multilingual tasks.

4.1. Experimental Setup

Implementation Details. In this study, we configure
PARROT with the pre-trained CLIP ViT-L/14 (Radford et al.,

2021) as the vision encoder. To validate the effectiveness
of PARROT, we select both Qwenl.5 and Qwen2 (Bai
et al., 2023a) as the backbones. The initial learning rates
for the two stages are set at 1e~3 and 2e~°, respectively,
with the batch size of 256 and 128. The entire training
process is optimized to 21 hours on the 16 xA100 GPUs
setup, benefiting from the relatively small training datasets.
Additionally, BF16 and TF32 precision formats are
employed to balance speed and accuracy throughout the
training process. As defined in Eq. 4, we set the number of
experts to six to correspond with the number of languages.
Each expert is an MLP composed of two linear layers with
SiLU (Elfwing et al., 2018) activation function. More
details are provided in Table 13.

Evaluation Benchmark. Our evaluation consists of two
parts: one assessing the multilingual capabilities of MLLMs,
while the other evaluating its overall performance. The
first part is conducted on two datasets: multilingual MM-
Bench (Liu et al., 2023c) and a newly developed bench-
mark MMMB. The second part of the evaluation spans a
wide range of multimodal tasks, such as MME (Fu et al.,
2023), MMStar (Chen et al., 2024), ScienceQA (Lu et al.,
2022), RealWorldQA (x.ai, 2024) and SEED-Bench (Li
et al., 2024a), with performance visualized in a radar chart
in Figure 7b.

Comparison Models. For comprehensive comparisons, we
select leading open-source models in MLLMs, including
LLaVA-1.5 (Li et al., 2023a), LLaVA-NeXT (Liu et al.,
2024), Monkey (Li et al., 2023d), VisualGLM (Du et al.,
2022), VisCPM (Hu et al., 2023), GLM-4v (GLM et al.,
2024), ShareGPT4V (Chen et al., 2023b), InstructBLIP (Dai
et al., 2023), mPLUG-OwI2 (Ye et al., 2023), Idefics3 (Lau-
rencon et al., 2024), LLaVA-OneVision (Li et al., 2024b),
and Qwen2-VL (Wang et al., 2024a). For the evaluation
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Table 1. Accuracy performance comparison on multilingual benchmarks. We report all compared methods with VLMEvalKit (Duan et al.,
2024). The best and second results are shown in bold and underline, respectively.

Method LLM MMMB MMBench
en zh pt ar tr ru en zh pt ar tr ru

VisualGLM (Du et al., 2022) ChatGLM-6B 31.05 18.07 19.42 1538 22.81 19.77 | 232 17.18 1143 292 6.62 533

VisCPM-Chat (Hu et al., 2023) CPM-Bee-10B | 53.10 47.54 28.19 2690 26.78 26.84 | 4588 4639 1581 146 9.19 1.20

Qwen-VL-Chat (Bai et al., 2023b) Qwen-7B 56.02 57.77 46.37 43.04 41.05 48.65 | 5429 56.52 43.12 3573 39.17 42.86
InstructBLIP (Dai et al., 2023) Vicuna-7B 3947 3292 3567 2380 2836 3637|2783 18.81 27.14 326 850 20.87
mPLUG-OwI2 (Ye et al., 2023) LLaMA2-7B 67.25 6099 59.70 45.78 4543 62.63 | 66.15 59.36 5824 37.88 47.68 60.39
Monkey (Li et al., 2023d) Qwen-VL-7B 66.02 58.18 46.31 38.83 37.66 4859 | 58.07 53.52 49.57 31.01 3135 45.18
LLaVA-1.5 (Liu et al., 2023a) Vicuna-v1.5-7B | 67.07 5883 59.76 43.50 4643 59.06 | 65.37 58.33 59.02 36.16 4390 56.95
LLaVA-NeXT (Liu et al., 2024) LLaMA3-8B 7092 6433 6321 4834 48.02 6635 | 69.80 63.31 61.83 47.64 47.03 64.99
DeepSeek-VL-7B (Lu et al., 2024a) | Deepseek-7B 72.66 6595 6441 49.70 49.07 67.57 | 70.71 64.03 62.61 48.05 4795 6553
GLM-4v-9B (GLM et al., 2024) GLM-4-9B 69.26 6283 61.59 4723 469 6435|6791 6131 60.01 46.13 457 63.09
ShareGPT4V (Chen et al., 2023b) Vicuna-v1.5-7B | 69.24 60.23 60.29 43.57 4526 61.23 | 69.59 61.6 59.62 37.37 43.38 59.45
Idefics3-8B (Laurencon et al., 2024) | LLaMA3-8B 7450 67.70 66.08 5091 5041 69.66 | 73.50 66.79 65.53 49.85 49.79 68.68
Qwen2-VL (Wang et al., 2024a) Qwen2-7B 80.51 80.23 78.11 74.07 71.72 79.33 | 78.59 7839 7593 74770 73.45 75.88
LLaVA-OneVision (Li et al., 2024b) | Qwen2-7B 79.03 7823 7591 7336 6779 7637 | 76.74 7530 7345 7044 6485 73.14
PARROT Qwenl.5-7B 70.00 68.13 67.31 62.69 58.01 66.26 | 70.70 70.36 65.12 57.82 58.43 64.00
PARROT Qwen2-7B 80.11 80.03 79.62 76.55 75.02 79.94 | 78.02 77.16 76.76 7592 74.05 77.71

LLaVAwith Chinese-CLIP

(©)
Parrot with OpenAI-CLIP
(©)

v

Chinese Prompt

LLaVA with OpenAI-CLIP

&

g

Figure 6. t-SNE visualizations of LLaVA and PARROT using dif-
ferent vision encoders.

Parrot with Chinese-CLIP

process, we employ the VLMEvalKit (Duan et al., 2024) in
OpenCompass, ensuring consistent configuration settings
across all methods to maintain fairness in comparison.

4.2. Main Results

As shown in Table 1, PARROT-Qwen2-7B achieves state-of-
the-art (SOTA) performance across four languages in both
the MMBench and MMMB benchmark, with English and
Chinese in second place. Figure 7b demonstrates that PAR-
ROT excels not only in multilingual capabilities but also in
handling complex multimodal tasks, such as MME (Fu et al.,
2023), MMStar (Chen et al., 2024), and SEED-Bench (Li
et al., 2024a). In Figure 7c, we infer PARROT using a Chi-
nese prompt and visualize the expert distributions within
the MoE, revealing the dynamic activation of different ex-
perts for different languages. Additionally, as illustrated
in Figure 4, PARROT achieves competitive performance in
existing multilingual benchmarks, utilizing less than 1% of
the data compared to other multilingual MLLMs.

To validate the effectiveness of the PARROT architecture,
we use a Chinese prompt (translated to English as “please
describe the image in detail”’), sample 50 images of ‘tiger

cat’ from ImageNet, and perform t-SNE (Van der Maaten
& Hinton, 2008) visualizations of both visual and textual
features in LLaVA and PARROT. As shown in Figure 6,
for LLaVA, the Chinese-CLIP-based visual features are
significantly closer in high-dimensional space compared
to OpenAI-CLIP. However, thanks to the architecture we
designed, PARROT bridges the gap with textual features
effectively, regardless of the vision encoder used.

4.3. Further Analysis

In this section, we explore several critical questions to com-
prehensively analyze PARROT.

¢ Are all components of PARROT equally effective?
As shown in Figure 7a, incorporating multilingual data
enhances performance across all languages. Addition-
ally, the MoE module contributes significantly to per-
formance improvements, validating the effectiveness
of our proposed method.

* How does PARROT handle the quality and imbal-
ance challenges? Large-scale translated multilingual
data, while seemingly abundant, often suffers from
quality issues (e.g., translation errors, cultural mis-
matches, noisy artifacts), particularly for low-resource
languages. Even with massive data volumes, low-
resource languages often remain underrepresented as
high-resource languages dominate training distribu-
tions (e.g., 90%+ of tokens in typical datasets). Forc-
ing higher proportions of low-resource data can risk
triggering the “curse of multilingualism,” where mod-
els sacrifice high-resource language performance to
accommodate low-resource languages, as observed in
prior work (Conneau et al., 2019; Chang et al., 2023;
Blevins et al., 2024). Our approach strategically priori-
tizes high-quality alignment signals over raw data quan-
tity. This avoids the pitfalls of noisy translation and
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Figure 7. Left: The ablation study of multilingual data and the MoE module using the MMBench benchmark. Middle: The performance
of PARROT on a broad range of multimodal tasks compared with existing models. Right: Expert distributions of MoE. We summarize the
activated experts during the feed-forward process using Chinese Prompts.
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the imbalance inherent to brute-force multilingual scal-
ing, ensuring stable performance across all languages
without compromising high-resource capabilities.

How does PARROT perform compared to a naive,
translation-based baseline? To assess this, we imple-
ment a baseline using the Google Translation API that
translates non-English queries to English, processes
them, and translates responses back to the original lan-
guage. As shown in Table 10, the results reveal a “see-
saw effect”: while this naive approach yields improve-
ments in certain languages like Chinese, it simultane-
ously causes performance degradation in others, par-
ticularly Russian and Portuguese. This phenomenon
highlights the fundamental limitations of relying solely
on translation services for addressing multilingualism
in multimodal tasks, underscoring the need for more
sophisticated approaches like PARROT.

Are the scaling laws effective in PARROT? To ex-
plore the effectiveness of scaling laws in multilingual
settings, we conduct experiments where the multilin-
gual data (excluding Chinese and English) is gradually
expanded until it matches the volume of Chinese data
(70K). As shown in Table11, the results indicate that
PARROT continues to follow the multilingual scaling
law. For example, the performance on Portuguese in-
creased by 3.0 points, and Arabic saw a 5.2-point gain.
Additionally, PARROT benefits from model size scaling,
as shown in Table 12.

Do the main performance gains come from the mul-
tilingual dataset? As shown in Table 9 and Figure 7a,
LLaVA shows limited improvements with the addition
of multilingual data. In contrast, PARROT achieves
substantial gains, significantly outperforming LLaVA.
Therefore, it is ensure that the primary performance
gains come from the design of PARROT.

4.4. Visualization of Multilingual Conversations

To enhance the intuitive understanding of the PARROT’s
multilingual capability, we prepare a comprehensive case
study accompanied by illustrative visuals. For instance,
as depicted in Figure 8, our framework demonstrates re-
markable multilingual capabilities. This underscores the
PARROT’s versatility in navigating different languages and
presents its potential in bridging linguistic gaps across di-
verse domains. Through careful analysis and visualization,
we aim to provide a deeper insight into the mechanism
driving this capability, illustrating its practical implications
and potential applications in real-world scenarios. This vi-
sualization serves as a strong indicator of the PARROT’s
solid architecture and its exceptional ability to understand,
process, and generate multiple languages with remarkable
efficiency. More multilingual conversation cases are shown
in Appendix F.

5. Conclusion

This paper addresses the critical challenge of improving the
multilingual capabilities of MLLMs and investigates the
misalignment of visual features across languages. We intro-
duce PARROT, a novel approach that leverages textual guid-
ance to align visual tokens at the language level, enabling
the conversion of English-biased visual embeddings into
language-specific ones through an MoE module. Extensive
experiments conducted on a newly introduced benchmark,
the Massive Multilingual Multimodal Benchmark (MMMB),
across six languages demonstrate that PARROT achieves
state-of-the-art performance compared to existing methods,
with particularly notable improvements in Turkish and Ara-
bic. PARROT not only advances the frontier of MLLMs but
also highlights the importance of equitable access to tech-
nological benefits across linguistic and cultural contexts.
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®

Arabic: %5 sall 8 (et L ey Al Al i) o L

[Arabic-English Trans: What sport is the person in the picture doing?] ]

[Arabic-English Trans: The person in the picture is playing tennis.] ]

[Output: o) i3 guall 8 ad )

Turkish: Sporcu hangi etkinligi kazand1 ve gorsele gore kag Grand Slam sampiyonlugu kazand1?
[Turkish-English Trans: What event did the athlete win and how many Grand Slam titles has the athlete won according to the image?]
Output: Sporcu, 2023 ABD Ag¢ik'1 kazand: ve gorsele gore 24 Grand Slam sampiyonlugu kazandi.
[Turkish-English Trans: The athlete won the US Open 2023, and according to the image, he has won 24 Grand Slam titles.]
Portuguese: Descreva as emogdes ou expressdes capturadas no rosto do atleta na imagem. O que isso sugere sobre os sentimentos dele em relagao a sua vitoria?
[Portuguese-English Trans: Describe the emotions or expressions captured in the athlete's face in the image. What does this suggest about their feelings regarding their victory?]

Output: O jogador de ténis, que esta em pé e segurando uma raquete de ténis, parece estar expressando felicidade e orgulho em relag@o a sua vitéria. Ele estéa sorrindo, o que
sugere que ele esta animado e feliz com o resultado de seu esforgo. A imagem captura um momento de realizagdo e conquista, com o jogador no centro do quadro, destacado
por uma cor vibrante e uma fonte proeminente que diz "Campedo". No geral, a imagem transmite uma sensagdo de orgulho, realizagdo e realizagao.

[Portuguese-English Trans: The tennis player, standing and holding a tennis racket, appears to be expressing happiness and pride about his victory. He is smiling, which
suggests he is excited and pleased with the outcome of his effort. The image captures a moment of achievement and conquest, with the player at the center of the frame,
highlighted by a vibrant color and a prominent font that says "Champion". Overall, the image conveys a sense of pride, accomplishment, and fulfillment.]

[ English: How are the overall colors and composition of the image? ]

(Output: The image features a painting of a deer and a swan standing near a river. The deer is positioned on the right side of the
painting, while the swan is on the left side. The river is surrounded by lush greenery, with many different types of flowers
scattered throughout the scene. The painting has a vibrant and colorful composition, with various shades of green, blue, and
\_white. The painting is done in a watercolor style, which adds to its artistic and artistic qualities.

,Chinese: B <P A A 25 4 7

[Chinese-English Trans: What animals are present in the image?] ]

-

(Output: A A b A Ffr st —R & EAGE A SRR, AR RIE AL, ]

[Chinese-English Trans: The picture features two animals: a swan swimming in the water and a deer standing on the shore.]

Russian: IToroga Ha H300payKEHUH - 9TO COTHEYHbIH JCHb.
[Russian-English Trans: What is the weather shown in this picture?]
A

\suitable for outdoor activities.]

[ Output: IToroza Ha 9T0i KapTHHKE BBIIUT O4eHb conHeunoi. Hebo unctoe, ¢ romyobmv HeOoM 1 GembiMu oOnakaMu, IpKuM
COJIHEUHBIM CBETOM, OKPY’KAFOILHIT Teii3a SPKHii 1 TIOJIOH JKI3HH. Best 00cTaHOBKA Ka)KeTCsl 09CHB CIIOKOIHO# U KPAaCHBOA,
TOZIXOJUT /ISl aKTUBHOTO OT/IBIXA HA CBEXKEM BO3TYXE.

[Russian-English Trans: The weather in this picture looks very sunny. The sky is clear, with blue sky and white clouds, bright
sunlight, and the surrounding scenery is bright and full of life. The overall environment appears very peaceful and beautiful,

Figure 8. Multimodal conversation cases of PARROT in multiple languages.
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A. The Details of Training Datasets

In this section, we analyze the multilingual data in LLaVA (Liu et al., 2023b). From Table 2 and Figure 9, it is evident that
during the pre-train stage, LLaVA solely utilizes multimodal image-text pairs data for training, comprising 558K of English
data. During the SFT stage, both multimodal and text-only data are incorporated into the training process. Multilingual data
appear only in the text-only dataset. Apart from English, the most prominent non-English data is Chinese, amounting to
just 3.1K, constituting 0.25% of the total dataset. Therefore, it is evident that LLaVA’s datasets are English-centric and
imbalanced. The specific language and abbreviation are as follows: English (en), Chinese (zh), Korean (ko), Spanish (es),
French (fr), Japanese (ja), German (de), Portuguese (pf), Traditional Chinese (zh-tw), Italian (if).

Table 2. The detailed information about LLaVA’s datasets.

(a) The language information in two stages.

Training Stage ‘ Type Total Size  English  Other Languages
Stage 1 (Pre-train) 1\’/[1“22:2?1?;1 55_8K SS_SK :
surcaiom ool s
(b) The top-10 multilingual information
Language en zh ko es fr ja de pt zh-tw it

Size 31K 3192 1219 1123 1049 551 435 422 305 234

Total Size

A

Yes

v

No [ The answer is WOﬂg.J

[The answer 1is correct.]

Men Wzh Wko Mes Mfr Mjg mde =pt wzh-tw Wit
Figure 10. An example of circular evaluation strategy.
Figure 9. The pie chart of LLaVA’s multilingual data.

B. Related Work

Multimodal Large Language Models. The domain of MLLMs has witnessed significant advances, particularly in the
enhancement of visual and language processing. Current MLLMs are usually a combination of visual encoders (Radford
et al., 2021; Sun et al., 2023; Fang et al., 2023; Zhang et al., 2022; Oquab et al., 2023; Zhai et al., 2023), LLMs, and
fusion modules. Innovations like Flamingo (Alayrac et al., 2022) have advanced visual representation by integrating a
Perceiver Resampler with vision encoders. BLIP-2 (Li et al., 2023b) and InstructBLIP (Dai et al., 2023) employ Q-Former
to connect the frozen LLM and vision encoder. InternVL (Chen et al., 2023c) trains huge ViT and QFormer to integrate
visual modalities through a multi-stage training method. MiniGPT4 (Zhu et al., 2023) leverages both a Q-Former and a
linear projector to bridge the gap between the vision module and LLM. Furthermore, LLaVA (Liu et al., 2023b) adopts
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Table 3. Details on the PARROT’s training data, which is derived from publicly available datasets.

Training Stage Datasets Samples  Total
LLaVA-1.5-pretrain (Liu et al., 2023b) 558K
Stage 1 Laion-Caption (Schuhmann et al., 2022) 12K 1.2M

CC12M-Caption (Changpinyo et al., 2021) 645K
LLaVA-1.5-finetune (Liu et al., 2023b) 665K

ShareGPT4V-zh (Chen et al., 2023b) 71K
ShareGPT4V-pt (Chen et al., 2023b) 14K

Stage 2 ShareGPT4V-ar (Chen et al., 2023b) g K
ShareGPT4V-tr (Chen et al., 2023b) 17K
ShareGPT4V-ru (Chen et al., 2023b) 14K

a simple MLP projector to promote the alignment between the LLM and vision encoder. mPLUG-Owl1 (Ye et al., 2023)
introduces an approach that begins to finetune the vision encoder and align visual features, followed by tuning the LLM
using LoRA (Hu et al., 2021). Qwen-VL (Bai et al., 2023b) improves visual module resolution to 448, aiming to refine the
model’s visual processing capabilities. Fuyu-8B (Bavishi et al., 2023) directly projects image patches before integration
with LLM. MM1 (McKinzie et al., 2024) has conducted ablative studies on connector design choices, revealing that the
modality adapter type is less critical than the number of visual tokens and the resolution. MiniGemini (Li et al., 2024d)
utilizes high-resolution visual tokens and high-quality data to narrow the performance gap with GPT-4 and Gemini. With the
rapid advancements in open-source models, proprietary models such as GPT-40 (OpenAl, 2024), Gemini (Team et al., 2023;
Reid et al., 2024), Qwen-VL-series (Wang et al., 2024a), and Claude3 (anthropic, 2024) have achieved outstanding results in
evaluations and practical applications. Some other recent works (Lu et al., 2024b; Zhu et al., 2025; Sun et al., 2025¢; Li
et al., 2025; Sun et al., 2025a; Dong et al., 2025; Zhang et al., 2024¢) provide valuable insights and future directions for
building and understanding vision-language models. In this work, owing to the simplicity of the LLaVA architecture, we
adopt a framework similar to LLaVA to design our model.

Multilingual Multimodal Models. Recent years have witnessed rapid progress in the expansion of multimodal models to
include a wider variety of languages. M3P (Ni et al., 2021) leverages English as a pivot and alternates between English-only
vision-language pre-training and multilingual masked language modeling. In contrast, UC? (Zhou et al., 2021) translates
English captions into various languages and uses images as the anchor. mCLIP (Chen et al., 2023a) enhances the CLIP
model by aligning it with a multilingual text encoder through knowledge distillation. Thanks to the expansion of the overall
capabilities of large language models (Al, 2024; Bai et al., 2023a; Jiang et al., 2023; Young et al., 2024), their multilingual
capacities have significantly improved. Integrating multilingual LLLMs with visual abilities has increasingly become a
research focus. In the domain of LLMs, PaLI (Chen et al., 2022) develops a 17B multilingual language-image model
that spans over 100 languages. Ying-VLM (Li et al., 2023c) discovers that instruction tuning in English can extend its
applicability to other languages. Ziya-Visual (Lu et al., 2023) illustrates the translation of English image-text datasets into
Chinese, using in-context learning for instruction-response generation. VisCPM (Hu et al., 2023) introduces a training
paradigm that fine-tunes the MLLM in a quasi-zero-shot manner based on a strong multilingual large language model.
Despite these advancements, they are primarily confined to two languages or rely on the massive translated corpus. On
the other hand, there is no suitable multilingual benchmark for MLLMSs to evaluate the performance of multiple languages.
There are also some multilingual research studies in other domains, such as multilingual machine translation (Zhao et al.,
2024; Pires et al., 2023; Purason & Tittar, 2022; Zhang et al., 2021).

C. Additional Experimental Results

In this section, we present additional experiments and ablation studies to further validate the generality and capability of PAR-
ROT across various tasks. Additionally, we elaborate on the training details for Figure 1 to provide a clearer understanding.

C.1. Bilingual Evaluation on LLaVA-Bench

VisCPM (Hu et al., 2023) extends the LLaVA-Bench dataset to the Chinese version for bilingual evaluation. To comprehen-
sively compare PARROT with other multilingual models, we conduct experiments on this benchmark. Due to the deprecation
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Table 4. Experimental results on LLaVA Test Set accessed by GPT-4. Con: Conversation, DD: Detailed Description, CR: Complex
Reasoning, AVG: the average score of three tasks. The symbol denotes that the data are judged following the version of GPT-4-1106-
preview because the GPT-4-0314 version is deprecated by OpenAl.

| LLM | English | Chinese
Model Backb

| PACKPON® 1 con DD CR | AVG | Con DD CR | AVG

Enolish MiniGPT-4 Vicuna-13B | 65.0 673 766 | 69.7 | - - - -

Mi del InstructBLIP Vicuna-13B 81.9 68.0 912 | 80.5 - - - -

LLaVA Vicuna-13B | 89.5 704 962 | 856 | - - - -
EnZh mPLUG-OWL | BLOOMZ-7B | 64.6 47.7 80.1 | 642 | 763 612 77.8 | 72.0
Bilimeual VisualGLM ChatGLM-6B | 62.4 63.0 80.6 | 68.7 | 76.6 87.8 83.6 | 82.7
Mo§e1 Qwen-VL-Chat Qwen-7B 824 769 919 | 838 | 823 934 89.5| 882
VisCPM-Balance | CPM-Bee-10B | 75.5 64.7 913 | 773 | 854 814 96.6 | 88.0
M“ﬁ‘éﬁ“al PARROT Qwenl.5-7B | 825 71.0 89.3 | 81.1 | 82.1 88.6 923 | 87.7

of the GPT-4-0314 version by OpenAl, we test PARROT in LLaVA-Bench following the version of GPT-4-1106-preview
for comparison. As shown in Table 4, PARROT not only demonstrates exceptional ability in the English version of this
benchmark but also presents competitive performance in the Chinese version.

Notably, as shown in Table 5, VisCPM uses 140M English data and 1M Chinese data to train the model. In comparison,
Qwen-VL-Chat uses 1.1B English data and 300M Chinese data, whereas PARROT only utilizes approximately 2M data
in total. Despite using less than 1% of the training data, PARROT achieves remarkable performance in both the English
and Chinese versions on LLaVA-Bench. Owing to the architecture we proposed, significant improvement in the model’s
multilingual capability can be achieved with minimal data usage.

Table 5. Comparison of vision encoders, LLMs, and training data in different models.

Model ‘ vision encoder LLM Training Data
mPLUG-Owl ViT-L/14 (0.3B) BLOOMZ-7B -

Visual GLM Q-Former (1.6B) ChatGLM-6B English: 300M; Chinese 30M
Qwen-VL-Chat | ViT-bigG (1.9B) Qwen-7B English: 1.1B; Chinese: 300M
VisCPM Muffin (0.7B) CPM-Bee-10B English: 140M; Chinese: 1M
PARROT ViT-L/14 (0.3B) Qwenl.5-Chat-7B | English: 1.8M; Chinese: 71K

C.2. Further Ablation Studies

Ablation study on each component. We conduct an ablation experiment on the multilingual data and the MoE module.
As shown in Figure 7a, using multilingual data improves performance in each language. Moreover, the MoE module
significantly improves performance, demonstrating the effectiveness of our proposed method.

Ablation study on different datasets. As shown in Table 6, it is evident that the inclusion of different multilingual datasets
continually improves performance on the MMBench benchmark, and all models with 7B parameters are used for this
experiment. This highlights the robustness and scalability of our approach to handling multiple languages effectively.

Ablation study on monolingual fine-tuning datasets. The ablation study presented in Table 14 evaluates the performance of
different monolingual datasets added incrementally to the baseline dataset LLaVA-1.5-finetune. It highlights the significant
impact of adding different multilingual datasets to a baseline model. Each dataset incrementally improves performance in
its respective language and, when combined, leads to overall enhanced performance across all evaluated languages. This
indicates the robustness and effectiveness of the proposed method in handling multilingual data, making it a scalable solution
for multilingual tasks.
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Table 6. Ablation study on different multilingual training datasets in MMBench benchmark. Models with 7B parameters are used for this
ablation.

Dataset ‘ English ‘ Chinese ‘ Portuguese ‘ Arabic ‘ Turkish ‘ Russian
LLaVA-1.5-finetune | 69.4 66.6 60.3 55.3 52.1 60.7
+zh 69.2 -0.2 68.6 +2.0 64.1 +3.8 59.1 +3.8 509 -1.2 61.6 +09
+ zh pt 711 +1.7 704  +3.8 654 +5.1 579 +2.6 52.1  +0.0 629 +22
+ zh ptar 71.0 +1.6 68.6 +2.0 657 +54 58.6  +3.3 522 +0.1 622 +1.5
+ zhptartr 704  +1.0 68.7 +2.1 649 +4.6 612 +59 597 +7.6 62.0 +1.3
+ zhptartrru 70.7 +1.3 704  +3.8 65.1 +4.8 57.8 +2.5 584 +6.3 640 +3.3

C.3. Comparison of Different Vision Encoders

We also compare the different vision encoders within the PARROT framework in Table 7. It shows that the Chinese-CLIP-
based model maintains comparable multilingual performance to the OpenAI-CLIP-based one. This demonstrates that our
framework can be compatible with different vision encoders and achieve multilingual alignment through the MoE module.

Table 7. The comparison of various vision encoders within the PARROT framework.

MMMB MMBench
en zh pt ar tr ru en zh pt ar tr ru

LLaVA-1.5 Vicuna-v1.5-7B | OpenAI-CLIP | 67.07 5883 59.76 43.50 46.43 59.06 | 6537 5833 59.02 36.16 4390 56.95
LLaVA-1.5 Vicuna-v1.5-7B | Chinese-CLIP | 66.45 59.23 59.22 42.68 46.11 5889 | 6592 57.85 5845 3690 44.82 56.32
ShareGPT4V | Vicuna-v1.5-7B | OpenAI-CLIP | 69.24 60.23 60.29 43.57 4526 61.23 | 69.59 61.60 59.62 3737 43.38 5945
ShareGPT4V | Vicuna-v1.5-7B | Chinese-CLIP | 68.65 60.85 59.49 4433 4490 61.88 | 70.28 6191 5883 37.00 42.55 5897
PARROT Qwenl.5-7B OpenAI-CLIP | 70.00 68.13 6731 62.69 58.01 66.26 | 70.70 70.36 65.12 57.82 5843 64.00
PARROT Qwenl.5-7B Chinese-CLIP | 69.22 69.24 6632 62.15 57.77 6431 | 6995 70.87 6492 5657 57.13 63.15

Method LLM Vision Encoder

Table 8. The performance of different vision encoders and LLMs on MMBench and MMMB. MMB refers to MMBench. “En/en”
represents the English version, and “CN/zh” represents the Chinese version.

Method Vision encoder LLM MMB-EN MMB-CN MMMB-en MMMB-zh
LLaVA  OpenAIl-CLIP ViT-L/14 Vicuna 7B 65.4 58.3 67.1 58.8
LLaVA  OpenAI-CLIP ViT-L/14 Qwenl.5-Chat 7B 68.8 66.4 68.2 62.4
LLaVA  Chinese-CLIP ViT-L/14 Qwenl.5-Chat 7B 68.1 68.3 67.6 66.1
PARROT OpenAI-CLIP ViT-L/14 Qwenl.5-Chat 7B 70.7 70.4 70.0 68.1

C.4. Comparison with LLaVA using the Same Data

To validate the effectiveness of our proposed approach, we conduct further experiments with an ablation study. Specifically,
we expand the baseline LLaVA method by incorporating the same multilingual data used in PARROT. Both models are
evaluated on the MMMB dataset, and the results are presented in the Table 9. From the results, we observe that while
LLaVA shows a slight improvement with the addition of multilingual data, the increase in performance is limited. In
contrast, our PARROT model demonstrates a substantial improvement when multilingual data is included, significantly
outperforming LLaVA. This highlights that simply adding multilingual data is not sufficient to bridge the multilingual gap,
further emphasizing the effectiveness of our proposed design.

C.5. Data Scaling and Model Size Scaling

To further investigate the scaling law in multilingual settings, we have conducted experiments where we progressively
expanded the multilingual data (excluding Chinese and English) until it reached a volume comparable to the amount of
Chinese data (~70K). The results, shown in the Table 11, demonstrate that PARROT still satisfies the multilingual scaling
law. For instance, the performance on Portuguese improved by 3.0 points, and Arabic saw a gain of 5.2 points. As we
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Table 9. The comparison of the baseline LLaVA and PARROT us- Table 10. The comparison of the translation-based baseline and
ing the same multilingual training data. LLaVA shows limited =~ PARROT. While the naive baseline shows some improvements

improvement with multilingual data, while PARROT achieves sig- 1! certain lapguages, such as Chu}ese, it leads to performance
nificant gains, greatly outperforming LLaVA. degradation in others, such as Russian and Portuguese.

MMMB MMMB
Method
Method ‘ en h pt ar o u ‘ en zh pt ar tr ru
LLaVA w/o Multilingual data | 67.1 58.8 59.8 435 464 59.1 LLaVA 67.1 58.8 598 435 464 59.1
LLaVA w/ Multilingual data | 67.0 59.1 603 442 48.1 597 LLaVA w/ translation | 67.1 60.7 58.6 473 48.6 589
PARROT 70.0 68.1 673 627 580 663 PARROT 700 68.1 673 627 580 663

increase the multilingual data, the model’s performance on the MMMB benchmark continues to improve, suggesting that
our model can handle imbalanced multilingual data while still achieving effective scaling and performance gains.

Table 11. The performance comparison on MMMB when scaling

. Table 12. The performance comparison on MMMB when scaling
the sample sizes of each language.

model sizes of Qwen-series LLM.

. MMMB
Sample Size en zh pt ar tr ru Method MMMB
zh pt ar tr ru
10K 700 68.1 673 627 580 66.3 PARROT-7B | 700 68.1 673 627 580 663
30K 701 680 67.6 641 599 667
PARROT-14B | 739 71.6 698 68.1 643 70.1
0K 699 679 678 648 614 672 PARROT-32B | 763 754 738 721 712 735
70K 703 684 683 657 632 674 - : : : : : :

Additionally, we extend PARROT’s LLM backbone from Qwen1.5-7B to Qwen1.5-32B, using the same model design and
configuration, and evaluate them on the MMMB dataset. As shown in Table 12, the results indicate that PARROT continues
to yield better performance even with a larger LLM backbone. This finding validates the idea that the scaling law for model
parameters still holds, and our design remains effective as the model size increases. While we are currently limited to the
Qwen1.5-32B model, these results suggest that our approach can scale well with model size, and we believe similar trends
would be observed with even larger models, such as those with 30B parameters or beyond.

D. More Implementation Details
D.1. MoE Training Strategy

During the first pre-training stage, the MoE module is initialized with random parameters but is not activated or included
in the training process. Instead, we focus exclusively on training the projector. This avoids the issue of training a good
projector under a randomly initialized MoE. In detail:

1) Pre-training Stage. In this stage, the MoE module is bypassed entirely, meaning the image tokens do not pass through
the MoE. The primary goal of this stage is to train the projector using a large number of image-text pairs. This enables the
projector to align image tokens and textual tokens effectively without interference from the untrained MoE module.

2) SFT Stage. Since the SFT stage requires the participation of MoE modules, we randomly initialize the parameters of the
MoE components prior to the SFT phase. Once the projector has been trained and achieves robust alignment capabilities in
the pre-training stage, we introduce multilingual training data and activate the MoE parameters. At this stage, the MoE is
optimized with textual guidance, which drives the alignment of visual tokens while leveraging the well-trained projector.
The prior alignment achieved in the pre-training stage allows the MoE to optimize efficiently during this phase.

We present the entire training process of PARROT in the form of pseudocode, as shown in Algorithm 1. It is clear from
the algorithm that during the pre-training phase, only the projector is trained. Before the start of the SFT phase, the MoE
modules are randomly initialized and incorporated into the training process during the SFT phase.
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Algorithm 1 PARROT for multilingual MLLM

Input: Pre-training datasets: D', SFT datasets: D?;

: Construct the training data in LLaVA format;

: Activate the parameters of the projector and freeze others;

: for each data in D' do

Optimize the projector to effectively bridge the modality gap;
: end for

: Randomly initialize the parameters of MoE.

: Activate the parameters of the projector, LLM, and MoE;

: for each data in D? do > SFT stage
Select the multilingual experts based on the textual guidance;

Optimize the projector, LLM, and MoE;

: end for

> Pre-training stage

S o0V AAU AW~

—_——

Table 13. The detailed training hyperparameters.

Config | Stage 1 Stage 2
Experts - 6

MLP expert network 2 Linear layers with SiLU
Deepspeed Zero2 Zero3
Image resolution 336x336

Image encoder Clip-ViT-L/14-336
Feature select layer -2

Image projector

2 Linear layers with GeLU

Epoch 1
Optimizer AdamW
Learning rate le-3 2e-5
Learning rate scheduler Cosine
Weight decay 0.0

Text max length 2048
Batch size per GPU 16 8
GPU 16 x A100-80G
Precision Bfl6
Gradient checkpoint True

D.2. More Experimental Details about Different Backbones

In the following, we provide detailed information to explain Figure 1. Firstly, to ensure a fair comparison between the
OpenAI-CLIP-based model and the Chinese-CLIP-based model, we train distinct models using the same training data
as LLaVA, as shown in Table 2a. The hyperparameters are listed in Table 13 without the MoE hyperparameters. As
depicted in Figure 1, the OpenAI-CLIP-based model struggles to generate Chinese outputs when given Chinese prompts
due to the English-centric training data. In contrast, despite the extremely scarce amount of Chinese training data, the
Chinese-CLIP-based model naturally acquires zero-shot capability to understand, process, and generate Chinese texts.
Furthermore, we compare both models on MMBench-CN and MMMB-zh to evaluate their Chinese capability. As shown in
Table 8, the performance of the Chinese-CLIP-based model is significantly higher than that of the OpenAI-CLIP-based
model. On the other hand, we empirically find that different LLMs have a significant impact on performance. Qwen (Bai
et al., 2023a) demonstrates superior Chinese capability compared to Vicuna (Chiang et al., 2023), yet its English capability
remains competitive.

D.3. Implementation Details of PARROT

As shown in Table 13, we provide the training hyperparameters for PARROT. Throughout all stages of training, we
consistently train for one epoch, with a batch size of 256 for the first stage and 128 for the second stage. We maintain an
image resolution of 336x336 for all two stages and enable the gradient checkpoint mode for each training stage.
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D.4. Analysis of the Translation-based Baseline

There is a naive baseline where we first translate the question into English and then translate the English answer back
to the target language. On the one hand, our experimental setting follows recent work in multilingual and multimodal
large language models (Hu et al., 2023; Zhang et al., 2024a; Hinck et al., 2024), where such a naive baseline has not been
commonly considered. While the translation-based approach could be a straightforward alternative, it faces some significant
challenges.

First, it is highly susceptible to translation noise, particularly issues related to polysemy and meaning ambiguity between
languages. Moreover, our benchmark includes a substantial number of cultural-specific questions, which require deep
cultural context knowledge that translation alone cannot effectively capture. In practical use, adding an additional translation
step would also introduce extra overhead, increasing both the time and computational cost.

Despite these challenges, we acknowledge the importance of evaluating this baseline and conducting experiments to assess
the performance of this translation-based baseline by using the Google Translation API. As shown in the Table 10, the
results reveal a "seesaw effect"—while the naive baseline shows some improvements in certain languages, such as Chinese,
it leads to performance degradation in others, such as Russian and Portuguese. This highlights the difficulty of addressing
multilingualism and multimodal tasks solely through translation.

E. Discussion

PARROT is a novel approach that leverages textual guidance to align visual tokens at the language level, enabling the
conversion of English-biased visual embeddings into language-specific ones through an MoE module. In future work, we
plan to incorporate more culture-related samples in various languages. This will enhance the representation of diverse cultural
contexts and ensure that our benchmark accurately reflects the complexities of multilingual interactions. Additionally, we
will focus on developing tasks that not only assess linguistic capabilities but also evaluate cultural nuances, which are crucial
for effective communication in multilingual settings. By doing so, we aim to provide a more comprehensive evaluation of
multilingual models and their performance across different cultural backgrounds.

F. More Visualization Results

In this section, we include additional visualization results between users’ questions and PARROT’s responses using multiple
languages. These pictures are selected from LLaVA (Liu et al., 2023b) and CuMo (Li et al., 2024c). As depicted in
Figures Figures 12 to 17, it is evident that PARROTpossesses superior multilingual capabilities for understanding, processing,
and generating multilingual texts. In certain specific cases, PARROT may also experience hallucinations. As depicted in the
upper case of Figure 12, it misidentifies Xiaomi SU7 as a Porsche Taycan.

Table 14. Ablation study on monolingual fine-tuning dataset in MMMB benchmark. The table shows an effect of performance on six
languages when using fine-tuning data from different languages. Models with 7B parameters are used for this ablation.

Dataset English Chinese Portuguese Arabic Turkish Russian

LLaVA-1.5-finetune  72.69 67.60 65.61 57.72 48.30 63.80
+ zh 71k 69.18 69.06 63.92 58.13 48.95 63.63
+ pt 14k 69.94 68.83 65.67 58.65 51.11 63.04
+ ar 12k 70.47 68.36 64.39 60.79 51.11 63.16
+tr 17k 70.82 69.01 64.85 60.76 60.70 64.39
+ ru 14k 69.59 68.07 64.27 60.35 53.92 64.15
+ zhptartrru 70.00 68.13 67.31 62.69 58.01 66.26

20



# Parrot: Multilingual Visual Instruction Tuning
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Figure 11. Several culture-related samples in different languages.
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( N\

English: What car is it in this image?
(S J

( B

Output: The turquoise blue car is Porsche Taycan.
& J

( N\

English: What animals are in this image?
(S J

( B

Output: A cat and a dog are in the image.
| J

Figure 12. More visualization results between the user and PARROT using English prompts. We highlight the hallucinations from the
responses of PARROT.

™ | Chinese: fR%n il iX 18 @ & i & #975?
BB | [Chinese-English Trans: Do you know who drew this painting]

@ Output: 3k H4 % B34
[Chinese-English Trans: Leonardo da Vinci]

( N\
(™ | Chinese: #2168 09 £ 2 N5

LA [Chinese-English Trans: Please describe the main content of this painting.]
& J

Output: X183 2 —18 H 428, #ET —NFRiTokIfrlk. HFE 42 EERE, L
BAEEHEM. WK RRFAZEN, BRR—ADAE., oyl EABEMEE, REFAAR
Gy, JEEME, RS HFINR, XigB g RAEL IR, €A AR KA F 8B A
= HAE, HAR® B F AR @ A HT, URRADIEF R . X183 F A IREAIEE
I SR e Y TR

[Chinese-English Trans: This painting is a portrait, depicting the head and shoulders of a young woman.
She is dressed in a black dress with gold embellishments. Her hair is dark brown and styled into a bun.
There are brown spots on her face, and her eyes are brown. She is smiling, indicating she is in a good
mood. The style of the painting is portraiture, characterized by the depiction of the subject's head and
shoulders. Portraits often use realistic techniques to capture the features and expressions of the person.
The attire and setting of the figure in this painting suggest it may be depicting an artist from the

@aissance period.] /

Figure 13. More visualization results between the user and PARROT using Chinese prompts.
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™ Portuguese: Qual ¢ o final deste filme?
[Portuguese-English Trans: What's the ending of this movie?]

/Output: O filme "Titanic" ¢ um romance histérico de 1997 que apresenta uma narrativa ficticia de uma\
mulher chamada Rose e um homem chamado Jack. A narrativa se passa durante o final do século XIX,

- quando o navio "Titanic" esta se preparando para sua viagem de luxo para Nova York. Jack e Rose se

@ enamoram e se casam, mas a viagem ¢ marcada por um desastre inesperado.
[Portuguese-English Trans: The movie "Titanic" is a 1997 historical romance that features a fictional
narrative about a woman named Rose and a man named Jack. The story is set during the late 19th century,
as the ship "Titanic" is preparing for its luxury voyage to New York. Jack and Rose fall in love and get

Qarried, but the journey is marked by an unexpected disaster.] /

Figure 14. More visualization results between the user and PARROT using Portuguese prompts.

£ | Arabic: s i) vie Leia 153 0580 of cang ) laSYI L
[Arabic-English Trans: What's the ending of this movie?]

/omput; Gilse gl o Al s S Al mlan) Jie dlaing jhlae sl (e 153 0585 O Gang caB sl 138 3 5 £ \
= e i) Jal el ale e 15355 o )53l e camg el 1) ALYl Alal oLl ) saall §f ) sl Jie il

Q A yay Al 4 e el edilall g plall i el pall il o 5 uilall ol s

[Arabic-English Trans: During the visit to this site, one should be cautious of any potential hazards, such

as wet surfaces, or water-related objects, or any potential obstacles, like rocks or boulders or aquatic
objects. Additionally, visitors should be aware of environmental factors, such as changes in weather,
Qmperature, or water conditions, to ensure a safe and satisfying experience. | /

Figure 15. More visualization results between the user and PARROT using Arabic prompts.
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Turkish: Bu malzemelerle hangi yemekleri yapabilirim?
[Turkish-English Trans: What are the meals that I can cook with these?]

=

ﬂtput: Buzdolabindaki ¢esitli malzemelerle, ¢ilekli bir salata, havuglu bir sandvig, meyveli bir yemelx
ve siit ve yogurtla bir yemek gibi ¢esitli yemekler yapilabilir. Buzdolabi, havug, ¢ilek ve yogurt gibi
diger gida maddelerini de igerir; bunlar ¢esitli yemekler yaratmak i¢in kullanilabilir. Birden fazla
yiyecek maddesi ve kaplarin olmasi, buzdolabinin iyi stoklandigini ve ¢esitli yemek seceneklerine
a olanak tanidigin1 gosterir.
@ [Turkish-English Trans: With the various items in the refrigerator, one can cook a variety of meals, such
as a salad with strawberries, a sandwich with carrots, a meal with berries, and a meal with milk and
yogurt. The refrigerator also contains other food items, such as carrots, strawberries, and yogurt, which
can be used to create a diverse range of dishes. The presence of multiple food items and containers
Qggests that the refrigerator is well-stocked, allowing for a variety of meal options. | /

Figure 16. More visualization results between the user and PARROT using Turkish prompts.

Russian: IToxxamyiicta, MIOMOTHTE MHE MPEICTABUTH 3TO MECTO Ha
dororpadum.

[Russian-English Trans: Please help me introduce the place in this
picture. ]

Output: Mecto, H300pakeHHOE Ha KAPTHHKE, - 3T0 codop Bacwims brnaxxeHHOro, opuuaibHO
@ n3BeCTHBIN Kak cobop [Tokposa [IpecBsiToir Boropomuusl Ha pBY. DTO 3HAKOBOE CTPOCHHE HAXOAUTCS B
@ Mockse, Poccust, Ha KpacHoi miomaiy.
[Russian-English Trans: The place depicted in the picture is the Saint Basil's Cathedral, officially known
as the Cathedral of the Intercession of the Most Holy Theotokos on the Moat. This iconic structure is
located in Moscow, Russia, on Red Square. ]

Figure 17. More visualization results between the user and PARROT using Russian prompts.
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