
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

GSNB: Gaussian Splatting With Neural Basis Extension
Anonymous Author(s)

Figure 1: Our proposed GSNB achieves impressively accurate visual effects and renders high-quality images in real-time.
Our progress relies on a Neural Basis Extension module to complement color calculation. This module enables adaptable
supplements to spherical harmonic basis functions, facilitating the modeling of intricate visual effects. Additionally, we employ
baking technique to precompute the network and devise an importance score for model pruning, further enhancing rendering
efficiency.

ABSTRACT
The 3D Gaussian Splatting (3D-GS) method has recently sparked
a revolution in novel view synthesis with its remarkable visual
effects and fast rendering speed. However, its reliance on simple
spherical harmonics for color representation leads to subpar per-
formance in complex scenes, particularly with effects like specular
highlights and light refraction. Also, 3D-GS adopts a periodic split
strategy, which significantly increases the model’s disk space and
hinders rendering efficiency. To tackle these challenges, we propose
Gaussian Splatting with Neural Basis Extension (GSNB), a novel
approach that substantially enhances the performance of 3D-GS in
demanding scenes while reducing storage consumption. Drawing
inspiration from basis function, GSNB utilizes a light-weight MLP
to share feature coefficients with Spherical Harmonics (SH). This
extends the color calculation of 3D Gaussians, resulting in more
accurate visual effect modeling. This combination allows GSNB to
achieve remarkable results even in scenes with challenging lighting
and reflection conditions. Additionally, GSNB uses pre-computation
to bake the MLP’s output, thereby alleviating inference workload
and subsequent speed loss. Furthermore, to leverage the capabilities
of Neural Basis Extension and eliminate redundant Gaussians,
we propose a new importance criterion to prune the converged
Gaussian model and obtain a more compact representation through
re-optimization. Our experimental results demonstrate that our
method delivers high-quality rendering in most scenarios and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

effectively reduces redundant Gaussians without compromising
rendering speed. Our code and real-time demos will be released
soon.

CCS CONCEPTS
• Computing methodologies → Rendering; Appearance and
texture representations.

KEYWORDS
novel view synthesis, radiance fields, 3D gaussians, real-time
rendering

1 INTRODUCTION
Novel view synthesis focuses on generating images from new
viewpoints using a collection of images captured from a scene. This
technology has broad applications in virtual reality, augmented
reality and 3D film production. Some approaches extract primitives
that can be rapidly rasterized, such as meshes [30] or points [19, 52],
facilitating scene reconstruction and swift rendering. In contrast to
these explicit methods, Neural Radiance Field (NeRF) [27] uses a
neural network to represent the scene’s geometry and appearance
information. It employs a classical volume rendering process to
query the network and delivers high-quality synthesis results.
However, the intensive network queries make it challenging to
apply to real-time rendering.

Following NeRF, 3D Gaussian Splatting (3D-GS) [16] has gained
widespread attention recently for its point-based approach, which
achieves state-of-the-art quality and rendering speed. This method
represents the scene as a set of 3D Gaussians with anisotropic
attributes. By leveraging GPU-accelerated and tile-based differen-
tiable rendering, it swiftly computes gradients corresponding to
each Gaussian’s attributes, thereby updating the underlying scene
representation.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Despite its superb performance, 3D-GS struggles with complex
effects such as specular reflection and light refraction, as shown
in Figure 4. This limitation stems from the low-degree spherical
harmonics used in 3D-GS, which are insufficient for capturing the
high-frequency information in such scenes. Additionally, the split-
ting strategy employed by 3D-GS significantly increases memory
consumption, millions of Gaussians place considerable demands on
the hardware, impacting rendering efficiency.

To address these challenges, we present Gaussian Splatting with
Neural Basis Extension (GSNB). This method combines spherical
harmonic functions with a set of neural network-based "basis
functions". This integration allows the model to capture rapidly
changing phenomena, such as specular highlights, significantly
improving the view synthesis performance of 3D-GS in complex
scenes. Concurrently, we improve the storage efficiency of the GS
representation through an extra pruning process, resulting in a
more compact and efficient model. Specifically, GSNB utilizes a
lightweight MLP, known as Neural Basis Extension, to capture
viewpoint-related colors. The result is then combined with the
base color obtained from the spherical harmonics to reproduce fine
visual effects. As depicted in Figure 1, GSNB markedly enhances
the performance of 3D-GS in scenarios with high-frequency
information. Additionally, by baking the network into images
that occupy minimal space, GSNB reduces the real-time network
inference cost during rendering, which increases linearly with the
number of Gaussians, thus ensuring minimal loss in rendering
speed. To further leverage the expressive capabilities of Neural
Basis Extension and achieve a more compact scene representation,
we propose a novel importance score to assess contribution of
each Gaussian to the imaging results during training. Then we
prune the converged Gaussian model based on this criterion. This
approach considerably decreases the model’s space consumption
with minimal impact on rendering quality.

By combining the above methods, GSNB has made striking
progress in visual quality, storage consumption, and rendering
speed simultaneously. Moreover, experiments demonstrate that
GSNB performs well not only in complex scenes but also achieves
state of the art results in general datasets.

In summary, our method makes the following contributions:
• A novel hybrid appearance model for Gaussian Splatting

that utilizes a lightweightMLP to extend the color expressed
by spherical harmonics and capable of capturing delicate
visual effects in complex scenes.

• An efficient baking method for real-time neural network in-
ference that maintains rendering speed within the Gaussian
rasterization framework.

• A new Gaussian pruning strategy that speeds up the
rendering process while preserving as much valid informa-
tion as possible, supported by our proposed Neural Basis
Extension.

2 RELATEDWORK
2.1 Neural Radiance Fields
Neural rendering has gained widespread attention in recent years
due to its obvious advantages in synthesizing photorealistic images
from novel views. Neural Radiance Fields (NeRF) [27] achieves

state of the art results at the time of proposal by combining volume
rendering with the implicit representation of neural networks. The
method uses differentiable rendering to learn from a series of scene
pictures and stores the information by multilayer perceptron(MLP)
in high quality. A large amount of follow-up work has extended the
application area of NeRF and further improved the performance of
the method, including rendering and geometry quality [1, 2, 26, 37,
44], few-shot reconstruction [5, 23, 50], 3D-aware generation [3, 4,
34], semantic segmentation [39, 43, 53], and pose estimation [32, 36].
Among them, Mip-NeRF360 [2], which uses a non-linear scene
parameterization and online distillation technique, achieves state
of the art rendering quality and is used as one of the baselines in
our experiments.

However, the ray-tracing approach indicates that NeRF requires a
network query at each sampling point. Muchwork has been devoted
to improving the efficiency of NeRF. One approach is to bake the
scene information stored in the MLP into data structures that can
be accessed quickly, such as voxel grids [14], octrees [49], smaller
MLPs [11, 31], mesh vertices [7], etc. The other class of methods
contains more innovations, often increasing the speed of training
and inference at the cost of memory. NSVF [22] models the scene as
a voxel radiance field, and the features are obtained by extracting the
learnable features on the voxels and then interpolating them, which
is a more efficient approach compared to the dense sampling of
NeRF. Instant-NGP [28], on the other hand, combines hash encoding
with voxel grid, and greatly improves the training and inference
speed of NeRF through a customized CUDA implementation,
achieving results similar to those of the original NeRF in just a
few seconds of training.

Although the above approaches achieve higher rendering quality
and faster rendering speed, they do not fundamentally alter the
rendering process of NeRF, which involves ray tracing with sample
point lookup. Our work is based on 3D-GS, which uses rasterized
rendering to significantly increase the rendering speed while
guaranteeing high visual quality compared to NeRF.

2.2 Differentiable Point-based Rendering
Point-based rendering methods can efficiently represent discontinu-
ous geometry in the scene and render at high speed through raster-
ization. The differentiable point-based rendering technique [40, 48]
has been widely discussed in recent years due to its ability to
automatically fit the scene, which can alleviate problems such as
artifacts and holes that may occur in traditional point rendering
methods and improve the scene quality. Notably, Pulsar [20]
implements a fast sphere rasterization pipeline, which inspired
3D-GS to use 3D Gaussian for scene representation and adopt a
tile-based rasterization approach.

As a recently proposed point-based rendering method, 3D-
GS simultaneously achieves the same or better quality as the
best-quality neural radiance fields based approach and real-time
rendering performance. Subsequent improvements quickly emerge
and expand the application areas of 3D-GS, including performance
optimization [25, 45, 51], mesh extraction [6, 12], dynamic scene [42,
46], 3D content generation [21, 38, 47], and virtual human [15,
18, 54]. Notably, Scaffold-GS [25] uses anchor points to place
local 3D Gaussians and predicts their attributes during runtime,

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

GSNB: Gaussian Splatting With Neural Basis Extension ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

thus regularizes the Gaussians distribution and improves the
performance in fine-scale details. SuGaR [12] extracts mesh from
3D-GS representations and attaches 3DGaussians tomesh to further
optimize the underlying Gaussians distribution.

While 3D-GS and its subsequent works have achieved state of
the art results in common scenes, there is still much room for
improvement in special scenes with high-frequency color changes,
such as specular highlights. In this work, we introduce a lightweight
network that extends the spherical harmonic function to achieve
accurate modeling and real-time rendering of complex scenes,
substantially improving the rendering efficiency of 3D-GS.

2.3 Model Pruning
The primary goal of model pruning is to strike a balance between
model performance and space occupied, reduce resource usage
by cutting parameters of relatively low importance and maintain
the performance of the pruned model as much as possible. Some
representative methods include Structured Pruning [24], Soft filter
Pruning [13], the Lottery Ticket Hypothesis [10].

Although the aforementioned approaches focus on pruning the
neural networks, their ideas can also be applied to 3D-GS as well [8].
To fit the fine geometric and textural content of the scene, 3D-
GS adopts a splitting strategy, which leads to a rapid increase in
the number of Gaussians. Millions of Gaussians impede a closer
improvement in rendering efficiency. In our work, we design the
pruning strategy with the granularity of a single Gaussian and
make full use of the power of Neural Extension. The strategy
effectively reduces the storage occupancy of GSNB and accelerates
the rendering speed.

3 OVERVIEW
The overview of our method is presented in Figure 2. For a target
scene, the input comprises photos from different angles. The
COLMAP [35] calibration process is used to obtain the camera
pose for each photo and a set of sparse points that provide initial
Gaussian parameters. Next, we use the differentiable rendering
method of 3D-GS [16] to update the model data, with spherical
harmonics as the initial Gaussian color expression. During training,
neural basis extension serves as auxiliary expressions to capture
complex lighting information, such as specular reflections, with
greater precision. This complements the base color captured by
traditional spherical harmonics, enabling more accurate color
calculations and enhancing the model’s performance in complex
scenes. With the help of the network, we can further reduce the
number of Gaussians by using novel importance indicators after
training convergence. Additionally, we can restore the loss of
infomation caused by pruning through a re-optimization process.

4 GAUSSIAN SPLATTINGWITH NEURAL
BASIS EXTENSION

Our proposed model, GSNB achieves high-quality novel view
synthesis quality in challenging scenes. It primarily consists of
a basic set of 3D Gaussians and a Neural Basis Extension module
for modeling intricate effects. The model supports high speed real-
time rendering by network baking and model pruning, which we
will detail as follows.

4.1 Gaussian Splatting Representation
The imaging principle of 3D-GS [16] aligns with the volume render-
ing method employed by NeRF [27]. However, a key difference is
that NeRF retrieves the volume density and color of each sampling
point along the ray using an MLP network. This approach results in
an inevitable network query that slows down the rendering process.

To address this issue, point-based rendering replaces the sample
points with explicit points and calculates the color through Eq. (1).
Each ray considers only the corresponding alpha and appearance
of the points to acquire the color.

𝐶 =
∑︁
𝑖∈𝑁

𝑐𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ) (1)

Furthermore, 3D-GS represents these points as 3D Gaussian func-
tion that can be updated in scale and rotation, further increasing
the flexibility of point-based rendering. Specifically, the Gaussian
function in 3D space can be defined by Eq. (2), where Σ denotes the
covariance matrix of this Gaussian function.

𝐺 (𝑥) = exp(−1
2
(𝑥)𝑇 Σ−1 (𝑥)) (2)

On the other hand, the color of each 3D Gaussian is represented
by spherical harmonics. For each color channel, 3D-GS uses
this basis function to match view-dependent colors in the scene.
The degree of the spherical harmonics is gradually increased
during the training process to simulate color variations from
coarse to fine. However, fixed spherical harmonics struggle to
express complex high-frequency color changes especially specular
highlights. To accurately represent such difficult scenarios using
spherical harmonics, the required degree of the basis functions
must be increased, resulting in increased space consumption and
training difficulty.

To address this challenge, we propose a solution that comple-
ments the spherical harmonics with a lightweight MLP, which we
call Neural Basis Extension, to capture view-dependent information.
This approach provides amore effective representation for scenarios
where fixed basis functions fall short and allows us to capture
subtle color variations in the scene, resulting in improved rendering
quality.

4.2 Neural Basis Extension
The core thinking of GSNB is to construct neural basis functions
defined by an MLP network parallel to the original 3D-GS spherical
harmonics and produce a hybrid appearance model.

For a 3D Gaussian 𝐺 in original 3D-GS [16], the color of each
channel can be modeled as a functionC𝐺 (𝒗) : 𝑹3 → 𝑹 with respect
to a direction vector 𝒗 : (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧) as follows.

C𝐺 (𝒗) =
𝑁∑︁
𝑛=1

𝑘
𝐺𝑠ℎ
𝑛 𝑆𝐻𝑛 (𝒗) , (3)

where 𝑆𝐻𝑛 (𝒗), 𝑛 = 1, . . . , 𝑁 are 𝑁 spherical harmonic basis
functions, and 𝑘𝐺𝑠ℎ

𝑛 are the corresponding SH coefficients. In this
paper, 𝑁 = 16 for the first three degrees of SH.

However, to express the high-frequency effect in a small range,
such as specular highlight, the spherical harmonic function requires
a large number of coefficients to incorporate higher-degree terms.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: Framework. Our pipeline begins with a set of images and the point cloud extracted by COLMAP [35]. For the initial
iteration, we use awarm-up phase to learn the low frequency color distribution through spherical harmonics without optimizing
the neural network. After that, we introduce Neural Basis Extension to capture complex lighting information, serving as a
supplement to the colors obtained from spherical harmonics and jointly optimize the 3D Gaussians parameter and the network.
Finally, we conduct an extra pruning process to reduce redundant Gaussians.

This not only significantly increases the model’s space require-
ments, but also makes learning these parameters more difficult.
While it is feasible to regress this function directly through a neural
network, this NeRF-like approach is very inefficient for real-time
rendering. We take inspiration from the form of spherical harmonic
basis and use a lightweight MLP network 𝐺𝜙 with parameters 𝜙 ,
namely Neural Basis Extension (NBE), to define𝑀 learnable neural
basis functions 𝑁𝐵𝑛 (𝒗), 𝑛 = 1, . . . , 𝑀 :

𝐺𝜙 : 𝒗 → (𝑁𝐵1, 𝑁𝐵2, ..., 𝑁𝐵𝑀 ) (4)

Similarly, we introduce a set of coefficients 𝑘𝐺𝑛𝑏𝑒
𝑛 for the neural

basis functions 𝑁𝐵𝑛 (𝒗), 𝑛 = 1, . . . , 𝑀 . For the spherical harmonic
functions and the neural basis functions, we use the same number
of coefficients, i.e.,𝑀 = 𝑁 . The color from a given viewpoint 𝒗 for
each 3D Gaussian is then calculated as follows:

C(𝒗) =
𝑁∑︁
𝑛=1

𝑘
𝐺𝑠ℎ
𝑛 𝑆𝐻𝑛 (𝒗) +

𝑁∑︁
𝑛=1

𝑘
𝐺𝑛𝑏𝑒
𝑛 𝑁𝐵𝑛 (𝒗) (5)

Nevertheless, using two different sets of coefficients simultane-
ously takes up a lot of extra space. In our experiments, we use a
coefficient sharing method, that is, the spherical harmonics and
NBE share the same set of basis function coefficients. For training
stability, we first perform a warm-up phase in the early stages of
training and train the model alone without introducing the neural
network. The color at this time is obtained from Eq. (3) to obtain
a reasonable initial value. After 3k iterations, we add NBE to the
rendering process and use Eq. (5) to calculate the color. Note that
at this point 𝑘𝐺𝑠ℎ

𝑛 and 𝑘𝐺𝑛𝑏𝑒
𝑛 represent the same coefficient. With

this approach, we can halve the number of coefficients required,
resulting in significant space savings without any noticeable loss
in quality. Our experiments show that when sharing coefficients,
spherical harmonics mainly use low-degree coefficients to represent
the basic color of the scene, while NBE is responsible for expressing
more complex visual effects. The two cooporate very well on the
same set of coefficients.

For the Neural Basis Extension network, we use the difference
between the 3DGaussian center position and the camera position as
the input vector. We perform positional encoding on the normalized
input values 𝑝 using the following formula, in all of our test scenes
and set 𝐿 = 6.

𝛾 (𝑝) = (sin(2𝑘𝜋𝑝), cos(2𝑘𝜋𝑝))𝐿−1
𝑘=0 (6)

4.3 Annealing Perturbation Against Overfitting
During the training process of NBE, the camera poses of the training
images are fixed, consequently, for each 3D Gaussian the direction
required for color query is also fixed. As a result, the NBE model
can develop an inclination to overfit at specific given angles, which
lead to abnormal color banding effects and decreased performance
in simple scenes. To address the issue, we introduce a perturbation
strategy that decays during the training process tomitigate the fixed
direction. This strategy adds random noise to the direction vector
(input of the network) during training to enhance the network’s
robustness and ensure more reasonable and continuous output
across viewing angle.

This random perturbation in direction can be expressed by as
follows:

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

GSNB: Gaussian Splatting With Neural Basis Extension ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

𝒗′ = 𝒗 + Δ𝒗 (𝑖)

Δ𝒗 (𝑖) = N(0, 𝐼 ) · 𝛼 · (1 − 𝑖

𝜏
)

(7)

Here, Δ𝒗 (𝑖) indicates the linearly attenuated noise added to
the input direction vector 𝒗 in the 𝑖-th training iteration. N(0, 𝐼 )
denotes a Gaussian distribution with zero vector as the mean and I
as the covariance matrix. The term 𝛼 is an empirically determined
scaling factor adjusting noise amplitude and is set to 0.3 during
training. The variable 𝜏 indicates the total number of training
iterations (empirically set to 30k).

Our experiments demonstrate that this strategy allows the model
to maintain a smooth color transition across different viewing
angles by transforming specific direction input into a vague range.
This mitigates abrupt change and unnatural color jump in the
rendering results and helps reduce overfitting. By preventing the
model from overfitting to specific views in the training data, this
perturbation enhances NBE’s robustness to generalize to unknown
views.

4.4 Bakery Based Real-Time Rendering
During rendering, the color of each 3D Gaussian is determined by
calculating the value of the spherical harmonics function in real-
time. However, when using Neural Basis Extension expressed by
MLP, real-time inference of the network can significantly impact
performance as NBE has higher computational complexity than
spherical harmonics, making it challenging to maintain efficiency in
real-time rendering. Therefore, it is essential to consider additional
optimization methods to accelerate NBE inference.

We note that the Neural Basis Extension can be viewed as a
function that takes a 2D direction vector 𝒗 = (𝜙, 𝜃 ) and outputs
values over 16 channels. Thus, we precompute the trained MLP and
store the result in 16 single-channel images. Each pixel in an image
serves as an NBE output value in a particular direction. These baked
images are stored in the GPU along with the Gaussian parameters
for real-time query. During color computation for each 3DGaussian,
we look up these images based on the current target direction of
the Gaussian. This strategy eliminates the need for MLP inference
during rendering, significantly reducing the per-frame overhead
while only marginally increasing the memory footprint (by about 2
MB in our implementation). Our experiments show that this baking
method can achieve high-speed real-time rendering with minimal
impact on rendering quality.

4.5 Gaussian Pruning With Network
Co-adaptation

The 3D-GS implementation uses a periodic splitting strategy based
on the gradient of the Gaussian to handle complex scenes. This
strategy improves the model’s expressive power but also requires
significant storage space due to the large number of 3D Gaussians
needed to fit a single scene. Each Gaussian requires storage of its
position, covariance matrix, and spherical harmonics coefficient.
Our approach integrates Neural Basis Extension and uses baked
images to facilitate real-time queries of NBE, which consumes
additional memory for acceleration purposes.

Figure 3: Gaussian importance score. For a Gaussian 𝐺𝑆 𝑗 , we
consider a ray 𝑟𝑖 that intersects it, that is, I(𝐺𝑆 𝑗 , 𝑟𝑖 ) = 1. Then
we calculate the weight of 𝐺𝑆 𝑗 during the color calculation
of 𝑟𝑖 , which should take into account other Gaussians like
𝐺𝑆𝑘 that occlude 𝐺𝑆 𝑗 .

To address this issue, we introduce a new Gaussian importance
score. This score assesses the contribution of each Gaussian to
every pixel in the training images and then aggregates these
values to determine the cumulative contribution of each Gaussian
to the entire training dataset. This score will be used to prune
the Gaussians, retaining those with larger contributions and
eliminating those with smaller ones. The score is calculated using
the following formula:

𝐼𝐺𝑆 𝑗
=

𝑇×𝐻×𝑊∑︁
𝑟𝑖

I(𝐺𝑆 𝑗 , 𝑟𝑖 )𝛼𝐺𝑆 𝑗

∏
𝐺𝑆𝑘

(1 − 𝛼𝐺𝑆𝑘 ) (8)

The above formula determines whether the calculation process
of each ray 𝑟𝑖 in𝑇 training images uses the 3D Gaussian𝐺𝑆 𝑗 .𝐻 and
𝑊 refer to the image height and width, respectively. If it is used,
we consider the weight of the current Gaussian on 𝑟𝑖 ’s final color.
𝐺𝑆𝑘 indicates all Gaussians that have an occlusion effect on 𝐺𝑆 𝑗 ,
and refer to Eq. (1), the weight can be expressed as the product of
the alpha value of 𝐺𝑆 𝑗 and the transmittance calculated using𝐺𝑆𝑘 .

After pruning the Gaussians, the model needs to be re-optimized
to restore the lost information. This is done by optimizing the
parameters of the Gaussian model and the Neural Basis Extension
together, which is similar to the prior training process. Our NBE
shows more potential to recover the scene compared to fixed
spherical harmonics during this joint optimization, allowing us
to maintain superior rendering quality even after pruning. Through
thismechanism, users can control the number of Gaussians based on
their requirements and balance memory consumption with model
performance.

5 EXPERIMENTS
5.1 Experimental Setting
5.1.1 Datasets and Metrics. To evaluate the performance of novel
view synthesis in static Scenes, our experiments are performed on
five widely used datasets: Shiny [41], Spaces [9], Mip-NeRF360 [2],
Tanks and Temples [17], and Synthetic NeRF [27]. The Shiny [41]

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

dataset contains several real-world scenes with complex light
and shadow variations, including specular highlights, refraction,
and reflection. The Spaces [9] dataset includes numerous image
sequences of indoor spaces, capturing geometric details and lighting
effects of different materials. Mip-NeRF360 [2] and Tanks and
Temples [17] are widely used view synthesis datasets that provide
detailed indoor scenes and a variety of outdoor scenes, such as
natural landscapes and cityscapes. Synthetic NeRF [27] consists
of 8 synthetic image sets for individual objects. Our experimental
dataset covers a wide range of scenarios, from indoor to outdoor
and from simple to complex scenes.

We apply the three widely-used metrics for evaluation, i.e., peak
signal-tonoise ratio (PSNR), structural similarity index measure
(SSIM), and the learned perceptual image patch similarity (LPIPS).
We additionally report the storage size (MB) and the rendering
speed (FPS) for model compactness and performance efficiency.

5.1.2 Implementation Details. In our implementation, the Neural
Basis Extension network is deployed using tiny-cuda-nn ([29]) and
consists of two hidden layers, each layer containing 64 neurons.
The activation function is LeakyReLU, and the network outputs a
16-dimensional vector through the tanh function. We use the same
loss function as the original 3D-GS [16]:

L = (1 − 𝜆) · L1 + 𝜆 · L𝑆𝑆𝐼𝑀 (9)

The L1 loss computes the absolute error between the predicted
image and the real image. L𝑆𝑆𝐼𝑀 represents the Structural Sim-
ilarity Index, which measures the visual similarity between two
images. We set 𝜆 to 0.2 to strike a balance between pixel-level error
and perceptual error in all of our experiments.

We keep the Gaussian parameter update strategy from 3D-
GS [16] and set the learning rate of the Neural Basis Extension
(NBE) to 0.001. We use the Adam optimizer to train the model for
30k iterations. To improve training stability, we initially use only
spherical harmonics and introduce neural basis functions after 3k
iterations to avoid abnormal jitter and overfitting problems in the
early stages of training. In addition, we set the scaling factor 𝛼 in
the perturbation strategy to 0.3. The number of shared coefficients
is set to be 16, which matches the spherical harmonics from 0 to
3rd degree. We set the prune ratio to be 60%, which is a suitable
number to maintain the optimal performance for the most scene.
While these settings are generally effective, fine-tuning may be
necessary for a minority of models to achieve higher accuracy. All
experiments were conducted on a dedicated workstation with an
Intel Core i9-10900 CPU, 64GB of RAM, and an NVIDIA GeForce
RTX 3090 GPU with 24GB VRAM.

5.1.3 Bakery and Pruning Implementation. We bake the NBE
network output into 16 images of 400 × 400 resolution and modify
the original 3D-GS rendering pipeline to load the baked data into
memory and pass it to the GPU for real-time rendering. This
modification supports network queries by the CUDA kernel without
compromising performance. To compute the importance score of
each 3DGaussian, we extend the original diff-gaussian-rasterization
module to capture the relevant indicators of each Gaussian while
rendering the image. After pruning, we re-optimize the network
and Gaussian parameters for 10k steps.

Figure 4: Qualitative results of our method in complex
scenes. Notice GSNB’s performence on reconstruct rainbow
ribbons on discs, light refraction in test tubes, and specular
reflections on glass.

5.2 Experimental Results
We compared GSNB to several state-of-the-art methods across
various datasets. Our comparisons were made with the most
relevant state-of-the-art methods, including 3D-GS [16], Scaffold-
GS [25], and several NeRF-based methods such as NeX [41],
Plenoxels [33], Instant-NGP [28], Mip-NeRF [1], Mip-NeRF360 [2],
and Point-NeRF [44]. We color each cell as best , second best and
third best .

5.2.1 Results on Shiny and Spaces Datasets. We report comparison
results of our method against NeX [41], 3D-GS [16], and Scaffold-
GS [25] on the Shiny and Spaces datasets in Table 1 and 2. We
also show qualitative results in Figure 4. These datasets exhibit
physical phenomena that challenge the original 3D-GS. We select
four representative scenes from the Shiny dataset for evaluation.
In the Spaces dataset, our method is assessed across eight scenes.
Our method demonstrates significant improvements, particularly

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

GSNB: Gaussian Splatting With Neural Basis Extension ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Quantitative comparisons across 4 scenes in
Shiny [41] dataset. Compared to the original model without
pruning, our pruned model exhibits the highest rendering
quality and the fastest speed at the same time.

Method | Metric PSNR↑ SSIM↑ LPIPS↓ FPS↑ MEM ↓
NeX [41] 29.00 0.939 0.143 - -
3D-GS [16] 28.51 0.913 0.128 211 320MB

Scaffold-GS [25] 29.69 0.918 0.118 66 223MB
Ours 30.13 0.925 0.115 224 266MB

Ours w/ pruning 30.20 0.922 0.121 353 105MB

Table 2: Quantitative results across 8 scenes in Spaces [9]
dataset. Our pruned model achieves the highest quality and
rendering speed at the same time.

Method | Metric PSNR↑ SSIM↑ LPIPS↓ FPS↑ MEM ↓
NeX [41] 36.13 0.986 0.084 - -
3D-GS [16] 31.69 0.921 0.152 494 85MB

Scaffold-GS [25] 37.41 0.973 0.046 126 76MB
Ours 38.94 0.975 0.053 421 77MB

Ours w/ pruning 40.63 0.980 0.051 550 32MB

Table 3: Quantitative results on the Mip-NeRF360 [2] and
Tanks&Temples [17] datasets show the average model
performance, underscoring the efficacy of our method across
the majority of cases.

Dataset Mip-NeRF360 Tanks&Temples
Method | Metric PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Plenoxels [33] 23.622 0.669 0.442 21.08 0.719 0.379

Instant-NGP [28] 26.751 0.751 0.298 21.92 0.745 0.305
Mip-NeRF360 [2] 29.087 0.842 0.209 22.22 0.759 0.257

3D-GS [16] 29.085 0.869 0.183 23.14 0.841 0.183
Scaffold-GS [25] 29.217 0.864 0.198 23.96 0.853 0.177

Ours 29.362 0.870 0.182 23.97 0.848 0.176

in rendering the color and brightness of highlights. Although
NeX shows better SSIM results, our method achieves superior
performance in terms of PSNR and LPIPS metrics. Furthermore, we
have significantly shortened the training time compared to NeX.
Taking the CD dataset as an example, we reduced the training
duration from the 18 hours required by NeX to under 30 minutes
on a single 3090 GPU.

5.2.2 Results on Mip-NeRF360 Datasets. The Mip-NeRF360 dataset
contains a collection of panoramic images that capture a variety
of scenes and lighting conditions with detailed 360-degree views.
Table 3 shows our method’s average performance on this dataset,
outperforming previous approaches such as Mip-NeRF360 [2], 3D-
GS [16], and Scaffold-GS [25] on all metrics. As shown in the Figure
5, our method significantly improves highlight detail.

5.2.3 Results on Synthetic Datasets. The Synthetic NeRF dataset is
a widely used synthetic dataset. Table 4 shows the stable rendering

Table 4: Quantitative results for 8 scenes in Synthetic NeRF
dataset. We use the metric results provided by original
papers except for 3D-GS, which were obtained in our own
experiments.

Method | Scene Mic Chair Ship Materials Lego Drums Ficus Hotdog Avg.

Plenoxels [33] 33.26 33.98 29.62 29.14 34.10 25.35 31.83 36.81 31.76
Instant-NGP [28] 36.22 35.00 31.10 29.78 36.39 26.02 33.51 37.40 33.18
Mip-NeRF [1] 36.51 35.14 30.41 30.71 35.70 25.48 33.29 37.48 33.09

Point-NeRF [44] 35.95 35.40 30.97 29.61 35.04 26.06 36.13 37.30 33.30
3D-GS [16] 36.67 35.52 31.67 30.49 36.08 26.28 35.49 38.10 33.79

Scaffold-GS [25] 37.25 35.28 31.17 30.65 35.69 26.44 35.21 37.73 33.68
Ours 36.89 35.68 31.81 30.65 36.40 26.68 35.66 38.08 33.98

quality of our method. However, synthetic scenes lack the complex
lighting conditions of the real world, in which case our model
cannot fully demonstrate its power.

Figure 5: Qualitative Results on Synthetic [27] and &Mip-
NeRF360 [2] datasets

5.2.4 Results on Tanks and Temples Datasets. Table 3 shows the
performance of various methods on this dataset. We select the
two scenes Truck and Train used in the original 3D-GS [16] for
experiments. While Scaffold-GS [25] uses anchor points to deeply
reform the original 3D-GS, our approach integrates a lightweight
neural network to achieve comparable results.

5.2.5 Results on Pruning & Re-optimization. We evaluated our
pruning approach on typical challenging scenes, such as CD
and Lab, characterized by rainbow light bands and refraction
phenomena. The results indicate that our method can effectively
prune redundant Gaussians while maintaining the performance of
both the original 3D-GS method and the enhanced GSNB. However,
as the 3D Gaussian distribution becomes excessively sparse, there
is an observable drop in performance. The Figure 7 illustrates that
GSNB maintains the performance comparable to the converged
3D-GS model even using only 10% of the original model parameters.
Notably, while we use the prune ratio for comparison, our method
requires fewer Gaussians at the same ratio, thanks to the enhanced
expressiveness provided by the Neural Basis Extension.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 6: Influence of the Pruning ratio on the performance
of the pruned model after the re-optimization process, our
strategy shows resistance to the reduction of Gaussians in
both GSNB and original 3D-GS model.

Table 5: Quantitative results on Baking Operation. Compared
to computing the network in real-time, ourmodel with baked
images achieve higher speedwithout hindering the rendering
quality.

Scene CD Lab
Method | Metric PSNR↑ SSIM↑ LPIPS↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑
3D-GS [16] 30.93 0.939 0.118 239.2 30.36 0.927 0.139 256.41

Ours w/o baking 34.35 0.954 0.098 27.21 33.04 0.952 0.110 32.92
Ours 34.42 0.955 0.1 294.12 33.05 0.953 0.112 253.16

Scene Tools Giants
Method | Metric PSNR↑ SSIM↑ LPIPS↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑
3D-GS [16] 27.68 0.921 0.153 75.76 25.09 0.866 0.103 58.69

Ours w/o baking 27.78 0.924 0.148 10.41 25.35 0.868 0.105 6.12
Ours 27.78 0.924 0.15 76.92 25.38 0.868 0.106 56.82

Table 6: Quantitative results on Perturbation Strategy

Scene Mic Chair Ship Materials Lego Drums Ficus Hotdog Avg

Ours w/o perturbation 36.87 35.42 31.69 30.58 36.41 26.27 35.44 37.94 33.82
Ours 36.89 35.68 31.81 30.65 36.40 26.68 35.66 38.08 33.98

5.3 Ablation Studies
We conducted ablation experiments on baking operations and
perturbation strategies. Our results show that baking can greatly
improve the rendering speed of the model while ensuring the
rendering quality. And the perturbation strategy can effectively
improve the generalization ability of GSNB in simple scenes to
avoid overfitting.

5.3.1 Baking Operation. Baking plays an important role in achiev-
ing the real-time rendering performance of GSNB. We test the
baking performance in some of the most challenging scenarios.
Experimental results in Table 5 show that the impact of baking
on rendering quality is almost negligible. Compared to real-time
neural network inference, this strategy significantly speeds up the
rendering.

5.3.2 Perturbation Strategy. To investigate whether the perturba-
tion strategy can increase the generalization ability of the model,
we conduct experiments on the Nerf synthetic dataset that is prone
to overfitting. The perturbation value is uniformly set to 0.3 to

evaluate the perturbation strategy. Experimental results in Table 6
show that the strategy achieves certain progress in most scenarios.

5.3.3 Sensitivity Analysis of Spherical Harmonic Degree. To in-
vestigate the effect of the degree of spherical harmonics, we test
spherical harmonics from 0 to 3 degree on the Lego and Drums
datasets. As shown in Figure 7, the results indicate that the spherical
harmonics primarily use the 0 degree part of the sharing coefficient
and the degree of spherical harmonics has little impact on the
overall performance of the model. We recommend using higher
degree for simpler models and vice versa.

Figure 7: The impact of different degrees of spherical
harmonics on our method. Despite the varying degrees, the
Neural Basis Extension consistently captures high-frequency
information.

6 CONCLUSION
We present Gaussian Splatting with Neural Basis Extension (GSNB),
a method that extends the capabilities of 3D-GS in rendering
complex visual environments while reducingmemory requirements.
Using a hybrid appearance model, GSNB supplements the color
computation of 3D-GS and amplify the fidelity of visual effects.
This integration is further strengthened by the incorporation of
a set of regularization methods to enhance the robustness of our
model in complex scenes. Our studies on both challenging dataset
and general dataset demonstrate GSNB’s ability to provide high
quality rendering while maintaining optimal efficiency.

Meanwhile, our method inherits some inherent limitations
from 3D-GS, particularly in geometric accuracy, as the use of
neural networks for modeling view-dependent effects can lead to
inaccuracies in capturing the inherent geometry of scenes. Future
research could explore incorporating geometric constraints such as
surface normals and depth maps into the training process of Neural
Basis Extension, guiding the neural network towards more precise
scene reconstruction.

REFERENCES
[1] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo

Martin-Brualla, and Pratul P. Srinivasan. 2021. Mip-NeRF: A Multiscale
Representation for Anti-Aliasing Neural Radiance Fields. ICCV (2021).

[2] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter
Hedman. 2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields.
CVPR (2022).

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

GSNB: Gaussian Splatting With Neural Basis Extension ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[3] Eric Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein.
2020. pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware
Image Synthesis. In arXiv.

[4] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan,
Shalini De Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh
Khamis, Tero Karras, and Gordon Wetzstein. 2021. Efficient Geometry-aware 3D
Generative Adversarial Networks. In arXiv.

[5] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi
Yu, and Hao Su. 2021. Mvsnerf: Fast generalizable radiance field reconstruction
from multi-view stereo. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 14124–14133.

[6] Hanlin Chen, Chen Li, and Gim Hee Lee. 2023. NeuSG: Neural Implicit Surface
Reconstruction with 3D Gaussian Splatting Guidance. arXiv:2312.00846 [cs.CV]

[7] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. 2023.
MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural
Field Rendering on Mobile Architectures. In The Conference on Computer Vision
and Pattern Recognition (CVPR).

[8] Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang
Wang. 2024. LightGaussian: Unbounded 3D Gaussian Compression with 15x
Reduction and 200+ FPS. arXiv:2311.17245 [cs.CV]

[9] John Flynn, Michael Broxton, Paul Debevec, Matthew DuVall, Graham Fyffe,
Ryan Overbeck, Noah Snavely, and Richard Tucker. 2019. Deepview: View
synthesis with learned gradient descent. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2367–2376.

[10] Jonathan Frankle and Michael Carbin. 2019. The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks. arXiv:1803.03635 [cs.LG]

[11] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien
Valentin. 2021. FastNeRF: High-Fidelity Neural Rendering at 200FPS. arXiv
preprint arXiv:2103.10380 (2021).

[12] Antoine Guédon and Vincent Lepetit. 2023. SuGaR: Surface-Aligned Gaussian
Splatting for Efficient 3D Mesh Reconstruction and High-Quality Mesh
Rendering. arXiv preprint arXiv:2311.12775 (2023).

[13] Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel Pruning for Accelerating
Very Deep Neural Networks. In 2017 IEEE International Conference on Computer
Vision (ICCV). 1398–1406. https://doi.org/10.1109/ICCV.2017.155

[14] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall, Jonathan T. Barron, and Paul
Debevec. 2021. Baking Neural Radiance Fields for Real-Time View Synthesis.
ICCV (2021).

[15] Yuheng Jiang, Zhehao Shen, Penghao Wang, Zhuo Su, Yu Hong, Yingliang
Zhang, Jingyi Yu, and Lan Xu. 2023. HiFi4G: High-Fidelity Human Performance
Rendering via Compact Gaussian Splatting. arXiv:2312.03461 [cs.CV]

[16] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis.
2023. 3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM
Transactions on Graphics 42, 4 (July 2023). https://repo-sam.inria.fr/fungraph/3d-
gaussian-splatting/

[17] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. Tanks
and temples: Benchmarking large-scale scene reconstruction. ACM Transactions
on Graphics (ToG) 36, 4 (2017), 1–13.

[18] Muhammed Kocabas, Rick Chang, James Gabriel, Oncel Tuzel, and Anurag
Ranjan. 2023. HUGS: Human Gaussian Splats. https://arxiv.org/abs/2311.17910

[19] Georgios Kopanas, Thomas Leimkühler, Gilles Rainer, Clément Jambon, and
George Drettakis. 2022. Neural Point Catacaustics for Novel-View Synthesis
of Reflections. 41, 6, Article 201 (nov 2022), 15 pages. https://doi.org/10.1145/
3550454.3555497

[20] Christoph Lassner and Michael Zollhofer. 2021. Pulsar: Efficient sphere-based
neural rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 1440–1449.

[21] Huan Ling, Seung Wook Kim, Antonio Torralba, Sanja Fidler, and Karsten
Kreis. 2024. Align Your Gaussians: Text-to-4D with Dynamic 3D Gaussians
and Composed Diffusion Models. arXiv:2312.13763 [cs.CV]

[22] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt.
2020. Neural Sparse Voxel Fields. NeurIPS (2020).

[23] Yuan Liu, Sida Peng, Lingjie Liu, QianqianWang, PengWang, Theobalt Christian,
Xiaowei Zhou, and Wenping Wang. 2022. Neural Rays for Occlusion-aware
Image-based Rendering. In CVPR.

[24] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. 2017. Learning Efficient
Convolutional Networks through Network Slimming. In 2017 IEEE International
Conference on Computer Vision (ICCV). IEEE Computer Society, Los Alamitos,
CA, USA, 2755–2763. https://doi.org/10.1109/ICCV.2017.298

[25] Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo
Dai. 2023. Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering.
arXiv:2312.00109 [cs.CV]

[26] Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla, Pratul P. Srinivasan,
and Jonathan T. Barron. 2022. NeRF in the Dark: High Dynamic Range View
Synthesis from Noisy Raw Images. CVPR (2022).

[27] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. 2021. NeRF: representing scenes as neural radiance
fields for view synthesis. Commun. ACM 65, 1 (dec 2021), 99–106. https:

//doi.org/10.1145/3503250
[28] ThomasMüller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant

Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. 41, 4, Article 102 (July 2022), 15 pages. https://doi.org/10.1145/3528223.
3530127

[29] Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-
time neural radiance caching for path tracing. ACM Trans. Graph. 40, 4, Article
36 (jul 2021), 16 pages. https://doi.org/10.1145/3450626.3459812

[30] Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen,
Alex Evans, Thomas Müller, and Sanja Fidler. 2022. Extracting Triangular 3D
Models, Materials, and Lighting From Images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 8280–8290.

[31] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. 2021. KiloNeRF:
Speeding up Neural Radiance Fields with Thousands of Tiny MLPs. In
International Conference on Computer Vision (ICCV).

[32] Antoni Rosinol, John J Leonard, and Luca Carlone. 2022. NeRF-SLAM: Real-
Time Dense Monocular SLAM with Neural Radiance Fields. arXiv preprint
arXiv:2210.13641 (2022).

[33] Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin
Recht, and Angjoo Kanazawa. 2022. Plenoxels: Radiance Fields without Neural
Networks. In CVPR.

[34] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. 2020. GRAF:
Generative Radiance Fields for 3D-Aware Image Synthesis. In Advances in Neural
Information Processing Systems (NeurIPS).

[35] Johannes L. Schönberger and Jan-Michael Frahm. 2016. Structure-from-Motion
Revisited. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 4104–4113. https://doi.org/10.1109/CVPR.2016.445

[36] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew Davison. 2021. iMAP:
Implicit Mapping and Positioning in Real-Time. In Proceedings of the International
Conference on Computer Vision (ICCV).

[37] Dor Verbin, Peter Hedman, BenMildenhall, Todd Zickler, Jonathan T. Barron, and
Pratul P. Srinivasan. 2022. Ref-NeRF: Structured View-Dependent Appearance
for Neural Radiance Fields. CVPR (2022).

[38] Alexander Vilesov, Pradyumna Chari, and Achuta Kadambi. 2023.
CG3D: Compositional Generation for Text-to-3D via Gaussian Splatting.
arXiv:2311.17907 [cs.CV]

[39] Suhani Vora, Noha Radwan, Klaus Greff, Henning Meyer, Kyle Genova, Mehdi
S. M. Sajjadi, Etienne Pot, Andrea Tagliasacchi, and Daniel Duckworth. 2021.
NeSF: Neural Semantic Fields for Generalizable Semantic Segmentation of 3D
Scenes. arXiv:2111.13260 [cs.CV]

[40] OliviaWiles, Georgia Gkioxari, Richard Szeliski, and Justin Johnson. 2020. Synsin:
End-to-end view synthesis from a single image. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 7467–7477.

[41] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon Yenphraphai, and
Supasorn Suwajanakorn. 2021. NeX: Real-time View Synthesis with Neural
Basis Expansion. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[42] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei,
Wenyu Liu, Qi Tian, and Wang Xinggang. 2023. 4D Gaussian Splatting for
Real-Time Dynamic Scene Rendering. arXiv preprint arXiv:2310.08528 (2023).

[43] Christopher Xie, Keunhong Park, Ricardo Martin-Brualla, and Matthew Brown.
2021. FiG-NeRF: Figure-Ground Neural Radiance Fields for 3D Object Category
Modelling. In International Conference on 3D Vision (3DV).

[44] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli,
and Ulrich Neumann. 2022. Point-NeRF: Point-based Neural Radiance Fields.
arXiv preprint arXiv:2201.08845 (2022).

[45] Zhiwen Yan, Weng Fei Low, Yu Chen, and Gim Hee Lee. 2023. Multi-scale 3d
gaussian splatting for anti-aliased rendering. arXiv preprint arXiv:2311.17089
(2023).

[46] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin.
2023. Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene
Reconstruction. arXiv preprint arXiv:2309.13101 (2023).

[47] Taoran Yi, Jiemin Fang, Junjie Wang, Guanjun Wu, Lingxi Xie, Xiaopeng
Zhang, Wenyu Liu, Qi Tian, and Xinggang Wang. 2024. GaussianDreamer:
Fast Generation from Text to 3D Gaussians by Bridging 2D and 3D Diffusion
Models. In CVPR.

[48] Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli, and Olga Sorkine-
Hornung. 2019. Differentiable Surface Splatting for Point-based Geometry
Processing. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH
ASIA) 38, 6 (2019).

[49] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa.
2021. PlenOctrees for Real-time Rendering of Neural Radiance Fields. In ICCV.

[50] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. 2021. pixelNeRF:
Neural Radiance Fields from One or Few Images. In CVPR.

[51] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. 2023.
Mip-splatting: Alias-free 3d gaussian splatting. arXiv preprint arXiv:2311.16493
(2023).

9

https://arxiv.org/abs/2312.00846
https://arxiv.org/abs/2311.17245
https://arxiv.org/abs/1803.03635
https://doi.org/10.1109/ICCV.2017.155
https://arxiv.org/abs/2312.03461
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://arxiv.org/abs/2311.17910
https://doi.org/10.1145/3550454.3555497
https://doi.org/10.1145/3550454.3555497
https://arxiv.org/abs/2312.13763
https://doi.org/10.1109/ICCV.2017.298
https://arxiv.org/abs/2312.00109
https://doi.org/10.1145/3503250
https://doi.org/10.1145/3503250
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3450626.3459812
https://doi.org/10.1109/CVPR.2016.445
https://arxiv.org/abs/2311.17907
https://arxiv.org/abs/2111.13260


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[52] Qiang Zhang, Seung-Hwan Baek, Szymon Rusinkiewicz, and Felix Heide. 2022.
Differentiable Point-Based Radiance Fields for Efficient View Synthesis. arXiv
preprint arXiv:2205.14330 (2022).

[53] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew J. Davison. 2021.
In-Place Scene Labelling and Understanding with Implicit Scene Representation.

[54] Wojciech Zielonka, Timur Bagautdinov, Shunsuke Saito, Michael Zollhöfer,
Justus Thies, and Javier Romero. 2023. Drivable 3D Gaussian Avatars. (2023).
arXiv:2311.08581 [cs.CV]

10

https://arxiv.org/abs/2311.08581

	Abstract
	1 Introduction
	2 Related Work
	2.1 Neural Radiance Fields
	2.2 Differentiable Point-based Rendering
	2.3 Model Pruning

	3 Overview
	4 Gaussian Splatting with Neural Basis Extension
	4.1 Gaussian Splatting Representation
	4.2 Neural Basis Extension
	4.3 Annealing Perturbation Against Overfitting
	4.4 Bakery Based Real-Time Rendering
	4.5 Gaussian Pruning With Network Co-adaptation

	5 Experiments
	5.1 Experimental Setting
	5.2 Experimental Results
	5.3 Ablation Studies

	6 Conclusion
	References

