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Figure 1: Our proposed GSNB achieves impressively accurate visual effects and renders high-quality images in real-time.
Our progress relies on a Neural Basis Extension module to complement color calculation. This module enables adaptable
supplements to spherical harmonic basis functions, facilitating the modeling of intricate visual effects. Additionally, we employ
baking technique to precompute the network and devise an importance score for model pruning, further enhancing rendering
efficiency.

ABSTRACT
The 3D Gaussian Splatting (3D-GS) method has recently sparked
a revolution in novel view synthesis with its remarkable visual
effects and fast rendering speed. However, its reliance on simple
spherical harmonics for color representation leads to subpar per-
formance in complex scenes, particularly with effects like specular
highlights and light refraction. Also, 3D-GS adopts a periodic split
strategy, which significantly increases the model’s disk space and
hinders rendering efficiency. To tackle these challenges, we propose
Gaussian Splatting with Neural Basis Extension (GSNB), a novel
approach that substantially enhances the performance of 3D-GS in
demanding scenes while reducing storage consumption. Drawing
inspiration from basis function, GSNB utilizes a light-weight MLP
to share feature coefficients with Spherical Harmonics (SH). This
extends the color calculation of 3D Gaussians, resulting in more
accurate visual effect modeling. This combination allows GSNB to
achieve remarkable results even in scenes with challenging lighting
and reflection conditions. Additionally, GSNB uses pre-computation
to bake the MLP’s output, thereby alleviating inference workload
and subsequent speed loss. Furthermore, to leverage the capabilities
of Neural Basis Extension and eliminate redundant Gaussians,
we propose a new importance criterion to prune the converged
Gaussian model and obtain a more compact representation through
re-optimization. Our experimental results demonstrate that our
method delivers high-quality rendering in most scenarios and
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effectively reduces redundant Gaussians without compromising
rendering speed. Our code and real-time demos will be released
soon.

CCS CONCEPTS
• Computing methodologies → Rendering; Appearance and
texture representations.

KEYWORDS
novel view synthesis, radiance fields, 3D gaussians, real-time
rendering

1 INTRODUCTION
Novel view synthesis focuses on generating images from new
viewpoints using a collection of images captured from a scene. This
technology has broad applications in virtual reality, augmented
reality and 3D film production. Some approaches extract primitives
that can be rapidly rasterized, such as meshes [30] or points [19, 52],
facilitating scene reconstruction and swift rendering. In contrast to
these explicit methods, Neural Radiance Field (NeRF) [27] uses a
neural network to represent the scene’s geometry and appearance
information. It employs a classical volume rendering process to
query the network and delivers high-quality synthesis results.
However, the intensive network queries make it challenging to
apply to real-time rendering.

Following NeRF, 3D Gaussian Splatting (3D-GS) [16] has gained
widespread attention recently for its point-based approach, which
achieves state-of-the-art quality and rendering speed. This method
represents the scene as a set of 3D Gaussians with anisotropic
attributes. By leveraging GPU-accelerated and tile-based differen-
tiable rendering, it swiftly computes gradients corresponding to
each Gaussian’s attributes, thereby updating the underlying scene
representation.

1
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Despite its superb performance, 3D-GS struggles with complex
effects such as specular reflection and light refraction, as shown
in Figure 4. This limitation stems from the low-degree spherical
harmonics used in 3D-GS, which are insufficient for capturing the
high-frequency information in such scenes. Additionally, the split-
ting strategy employed by 3D-GS significantly increases memory
consumption, millions of Gaussians place considerable demands on
the hardware, impacting rendering efficiency.

To address these challenges, we present Gaussian Splatting with
Neural Basis Extension (GSNB). This method combines spherical
harmonic functions with a set of neural network-based "basis
functions". This integration allows the model to capture rapidly
changing phenomena, such as specular highlights, significantly
improving the view synthesis performance of 3D-GS in complex
scenes. Concurrently, we improve the storage efficiency of the GS
representation through an extra pruning process, resulting in a
more compact and efficient model. Specifically, GSNB utilizes a
lightweight MLP, known as Neural Basis Extension, to capture
viewpoint-related colors. The result is then combined with the
base color obtained from the spherical harmonics to reproduce fine
visual effects. As depicted in Figure 1, GSNB markedly enhances
the performance of 3D-GS in scenarios with high-frequency
information. Additionally, by baking the network into images
that occupy minimal space, GSNB reduces the real-time network
inference cost during rendering, which increases linearly with the
number of Gaussians, thus ensuring minimal loss in rendering
speed. To further leverage the expressive capabilities of Neural
Basis Extension and achieve a more compact scene representation,
we propose a novel importance score to assess contribution of
each Gaussian to the imaging results during training. Then we
prune the converged Gaussian model based on this criterion. This
approach considerably decreases the model’s space consumption
with minimal impact on rendering quality.

By combining the above methods, GSNB has made striking
progress in visual quality, storage consumption, and rendering
speed simultaneously. Moreover, experiments demonstrate that
GSNB performs well not only in complex scenes but also achieves
state of the art results in general datasets.

In summary, our method makes the following contributions:
• A novel hybrid appearance model for Gaussian Splatting

that utilizes a lightweightMLP to extend the color expressed
by spherical harmonics and capable of capturing delicate
visual effects in complex scenes.

• An efficient baking method for real-time neural network in-
ference that maintains rendering speed within the Gaussian
rasterization framework.

• A new Gaussian pruning strategy that speeds up the
rendering process while preserving as much valid informa-
tion as possible, supported by our proposed Neural Basis
Extension.

2 RELATEDWORK
2.1 Neural Radiance Fields
Neural rendering has gained widespread attention in recent years
due to its obvious advantages in synthesizing photorealistic images
from novel views. Neural Radiance Fields (NeRF) [27] achieves

state of the art results at the time of proposal by combining volume
rendering with the implicit representation of neural networks. The
method uses differentiable rendering to learn from a series of scene
pictures and stores the information by multilayer perceptron(MLP)
in high quality. A large amount of follow-up work has extended the
application area of NeRF and further improved the performance of
the method, including rendering and geometry quality [1, 2, 26, 37,
44], few-shot reconstruction [5, 23, 50], 3D-aware generation [3, 4,
34], semantic segmentation [39, 43, 53], and pose estimation [32, 36].
Among them, Mip-NeRF360 [2], which uses a non-linear scene
parameterization and online distillation technique, achieves state
of the art rendering quality and is used as one of the baselines in
our experiments.

However, the ray-tracing approach indicates that NeRF requires a
network query at each sampling point. Muchwork has been devoted
to improving the efficiency of NeRF. One approach is to bake the
scene information stored in the MLP into data structures that can
be accessed quickly, such as voxel grids [14], octrees [49], smaller
MLPs [11, 31], mesh vertices [7], etc. The other class of methods
contains more innovations, often increasing the speed of training
and inference at the cost of memory. NSVF [22] models the scene as
a voxel radiance field, and the features are obtained by extracting the
learnable features on the voxels and then interpolating them, which
is a more efficient approach compared to the dense sampling of
NeRF. Instant-NGP [28], on the other hand, combines hash encoding
with voxel grid, and greatly improves the training and inference
speed of NeRF through a customized CUDA implementation,
achieving results similar to those of the original NeRF in just a
few seconds of training.

Although the above approaches achieve higher rendering quality
and faster rendering speed, they do not fundamentally alter the
rendering process of NeRF, which involves ray tracing with sample
point lookup. Our work is based on 3D-GS, which uses rasterized
rendering to significantly increase the rendering speed while
guaranteeing high visual quality compared to NeRF.

2.2 Differentiable Point-based Rendering
Point-based rendering methods can efficiently represent discontinu-
ous geometry in the scene and render at high speed through raster-
ization. The differentiable point-based rendering technique [40, 48]
has been widely discussed in recent years due to its ability to
automatically fit the scene, which can alleviate problems such as
artifacts and holes that may occur in traditional point rendering
methods and improve the scene quality. Notably, Pulsar [20]
implements a fast sphere rasterization pipeline, which inspired
3D-GS to use 3D Gaussian for scene representation and adopt a
tile-based rasterization approach.

As a recently proposed point-based rendering method, 3D-
GS simultaneously achieves the same or better quality as the
best-quality neural radiance fields based approach and real-time
rendering performance. Subsequent improvements quickly emerge
and expand the application areas of 3D-GS, including performance
optimization [25, 45, 51], mesh extraction [6, 12], dynamic scene [42,
46], 3D content generation [21, 38, 47], and virtual human [15,
18, 54]. Notably, Scaffold-GS [25] uses anchor points to place
local 3D Gaussians and predicts their attributes during runtime,

2
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thus regularizes the Gaussians distribution and improves the
performance in fine-scale details. SuGaR [12] extracts mesh from
3D-GS representations and attaches 3DGaussians tomesh to further
optimize the underlying Gaussians distribution.

While 3D-GS and its subsequent works have achieved state of
the art results in common scenes, there is still much room for
improvement in special scenes with high-frequency color changes,
such as specular highlights. In this work, we introduce a lightweight
network that extends the spherical harmonic function to achieve
accurate modeling and real-time rendering of complex scenes,
substantially improving the rendering efficiency of 3D-GS.

2.3 Model Pruning
The primary goal of model pruning is to strike a balance between
model performance and space occupied, reduce resource usage
by cutting parameters of relatively low importance and maintain
the performance of the pruned model as much as possible. Some
representative methods include Structured Pruning [24], Soft filter
Pruning [13], the Lottery Ticket Hypothesis [10].

Although the aforementioned approaches focus on pruning the
neural networks, their ideas can also be applied to 3D-GS as well [8].
To fit the fine geometric and textural content of the scene, 3D-
GS adopts a splitting strategy, which leads to a rapid increase in
the number of Gaussians. Millions of Gaussians impede a closer
improvement in rendering efficiency. In our work, we design the
pruning strategy with the granularity of a single Gaussian and
make full use of the power of Neural Extension. The strategy
effectively reduces the storage occupancy of GSNB and accelerates
the rendering speed.

3 OVERVIEW
The overview of our method is presented in Figure 2. For a target
scene, the input comprises photos from different angles. The
COLMAP [35] calibration process is used to obtain the camera
pose for each photo and a set of sparse points that provide initial
Gaussian parameters. Next, we use the differentiable rendering
method of 3D-GS [16] to update the model data, with spherical
harmonics as the initial Gaussian color expression. During training,
neural basis extension serves as auxiliary expressions to capture
complex lighting information, such as specular reflections, with
greater precision. This complements the base color captured by
traditional spherical harmonics, enabling more accurate color
calculations and enhancing the model’s performance in complex
scenes. With the help of the network, we can further reduce the
number of Gaussians by using novel importance indicators after
training convergence. Additionally, we can restore the loss of
infomation caused by pruning through a re-optimization process.

4 GAUSSIAN SPLATTINGWITH NEURAL
BASIS EXTENSION

Our proposed model, GSNB achieves high-quality novel view
synthesis quality in challenging scenes. It primarily consists of
a basic set of 3D Gaussians and a Neural Basis Extension module
for modeling intricate effects. The model supports high speed real-
time rendering by network baking and model pruning, which we
will detail as follows.

4.1 Gaussian Splatting Representation
The imaging principle of 3D-GS [16] aligns with the volume render-
ing method employed by NeRF [27]. However, a key difference is
that NeRF retrieves the volume density and color of each sampling
point along the ray using an MLP network. This approach results in
an inevitable network query that slows down the rendering process.

To address this issue, point-based rendering replaces the sample
points with explicit points and calculates the color through Eq. (1).
Each ray considers only the corresponding alpha and appearance
of the points to acquire the color.

𝐶 =
∑︁
𝑖∈𝑁

𝑐𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ) (1)

Furthermore, 3D-GS represents these points as 3D Gaussian func-
tion that can be updated in scale and rotation, further increasing
the flexibility of point-based rendering. Specifically, the Gaussian
function in 3D space can be defined by Eq. (2), where Σ denotes the
covariance matrix of this Gaussian function.

𝐺 (𝑥) = exp(−1
2
(𝑥)𝑇 Σ−1 (𝑥)) (2)

On the other hand, the color of each 3D Gaussian is represented
by spherical harmonics. For each color channel, 3D-GS uses
this basis function to match view-dependent colors in the scene.
The degree of the spherical harmonics is gradually increased
during the training process to simulate color variations from
coarse to fine. However, fixed spherical harmonics struggle to
express complex high-frequency color changes especially specular
highlights. To accurately represent such difficult scenarios using
spherical harmonics, the required degree of the basis functions
must be increased, resulting in increased space consumption and
training difficulty.

To address this challenge, we propose a solution that comple-
ments the spherical harmonics with a lightweight MLP, which we
call Neural Basis Extension, to capture view-dependent information.
This approach provides amore effective representation for scenarios
where fixed basis functions fall short and allows us to capture
subtle color variations in the scene, resulting in improved rendering
quality.

4.2 Neural Basis Extension
The core thinking of GSNB is to construct neural basis functions
defined by an MLP network parallel to the original 3D-GS spherical
harmonics and produce a hybrid appearance model.

For a 3D Gaussian 𝐺 in original 3D-GS [16], the color of each
channel can be modeled as a functionC𝐺 (𝒗) : 𝑹3 → 𝑹 with respect
to a direction vector 𝒗 : (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧) as follows.

C𝐺 (𝒗) =
𝑁∑︁
𝑛=1

𝑘
𝐺𝑠ℎ
𝑛 𝑆𝐻𝑛 (𝒗) , (3)

where 𝑆𝐻𝑛 (𝒗), 𝑛 = 1, . . . , 𝑁 are 𝑁 spherical harmonic basis
functions, and 𝑘𝐺𝑠ℎ

𝑛 are the corresponding SH coefficients. In this
paper, 𝑁 = 16 for the first three degrees of SH.

However, to express the high-frequency effect in a small range,
such as specular highlight, the spherical harmonic function requires
a large number of coefficients to incorporate higher-degree terms.

3
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Figure 2: Framework. Our pipeline begins with a set of images and the point cloud extracted by COLMAP [35]. For the initial
iteration, we use awarm-up phase to learn the low frequency color distribution through spherical harmonics without optimizing
the neural network. After that, we introduce Neural Basis Extension to capture complex lighting information, serving as a
supplement to the colors obtained from spherical harmonics and jointly optimize the 3D Gaussians parameter and the network.
Finally, we conduct an extra pruning process to reduce redundant Gaussians.

This not only significantly increases the model’s space require-
ments, but also makes learning these parameters more difficult.
While it is feasible to regress this function directly through a neural
network, this NeRF-like approach is very inefficient for real-time
rendering. We take inspiration from the form of spherical harmonic
basis and use a lightweight MLP network 𝐺𝜙 with parameters 𝜙 ,
namely Neural Basis Extension (NBE), to define𝑀 learnable neural
basis functions 𝑁𝐵𝑛 (𝒗), 𝑛 = 1, . . . , 𝑀 :

𝐺𝜙 : 𝒗 → (𝑁𝐵1, 𝑁𝐵2, ..., 𝑁𝐵𝑀 ) (4)

Similarly, we introduce a set of coefficients 𝑘𝐺𝑛𝑏𝑒
𝑛 for the neural

basis functions 𝑁𝐵𝑛 (𝒗), 𝑛 = 1, . . . , 𝑀 . For the spherical harmonic
functions and the neural basis functions, we use the same number
of coefficients, i.e.,𝑀 = 𝑁 . The color from a given viewpoint 𝒗 for
each 3D Gaussian is then calculated as follows:

C(𝒗) =
𝑁∑︁
𝑛=1

𝑘
𝐺𝑠ℎ
𝑛 𝑆𝐻𝑛 (𝒗) +

𝑁∑︁
𝑛=1

𝑘
𝐺𝑛𝑏𝑒
𝑛 𝑁𝐵𝑛 (𝒗) (5)

Nevertheless, using two different sets of coefficients simultane-
ously takes up a lot of extra space. In our experiments, we use a
coefficient sharing method, that is, the spherical harmonics and
NBE share the same set of basis function coefficients. For training
stability, we first perform a warm-up phase in the early stages of
training and train the model alone without introducing the neural
network. The color at this time is obtained from Eq. (3) to obtain
a reasonable initial value. After 3k iterations, we add NBE to the
rendering process and use Eq. (5) to calculate the color. Note that
at this point 𝑘𝐺𝑠ℎ

𝑛 and 𝑘𝐺𝑛𝑏𝑒
𝑛 represent the same coefficient. With

this approach, we can halve the number of coefficients required,
resulting in significant space savings without any noticeable loss
in quality. Our experiments show that when sharing coefficients,
spherical harmonics mainly use low-degree coefficients to represent
the basic color of the scene, while NBE is responsible for expressing
more complex visual effects. The two cooporate very well on the
same set of coefficients.

For the Neural Basis Extension network, we use the difference
between the 3DGaussian center position and the camera position as
the input vector. We perform positional encoding on the normalized
input values 𝑝 using the following formula, in all of our test scenes
and set 𝐿 = 6.

𝛾 (𝑝) = (sin(2𝑘𝜋𝑝), cos(2𝑘𝜋𝑝))𝐿−1
𝑘=0 (6)

4.3 Annealing Perturbation Against Overfitting
During the training process of NBE, the camera poses of the training
images are fixed, consequently, for each 3D Gaussian the direction
required for color query is also fixed. As a result, the NBE model
can develop an inclination to overfit at specific given angles, which
lead to abnormal color banding effects and decreased performance
in simple scenes. To address the issue, we introduce a perturbation
strategy that decays during the training process tomitigate the fixed
direction. This strategy adds random noise to the direction vector
(input of the network) during training to enhance the network’s
robustness and ensure more reasonable and continuous output
across viewing angle.

This random perturbation in direction can be expressed by as
follows:

4
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𝒗′ = 𝒗 + Δ𝒗 (𝑖)

Δ𝒗 (𝑖) = N(0, 𝐼 ) · 𝛼 · (1 − 𝑖

𝜏
)

(7)

Here, Δ𝒗 (𝑖) indicates the linearly attenuated noise added to
the input direction vector 𝒗 in the 𝑖-th training iteration. N(0, 𝐼 )
denotes a Gaussian distribution with zero vector as the mean and I
as the covariance matrix. The term 𝛼 is an empirically determined
scaling factor adjusting noise amplitude and is set to 0.3 during
training. The variable 𝜏 indicates the total number of training
iterations (empirically set to 30k).

Our experiments demonstrate that this strategy allows the model
to maintain a smooth color transition across different viewing
angles by transforming specific direction input into a vague range.
This mitigates abrupt change and unnatural color jump in the
rendering results and helps reduce overfitting. By preventing the
model from overfitting to specific views in the training data, this
perturbation enhances NBE’s robustness to generalize to unknown
views.

4.4 Bakery Based Real-Time Rendering
During rendering, the color of each 3D Gaussian is determined by
calculating the value of the spherical harmonics function in real-
time. However, when using Neural Basis Extension expressed by
MLP, real-time inference of the network can significantly impact
performance as NBE has higher computational complexity than
spherical harmonics, making it challenging to maintain efficiency in
real-time rendering. Therefore, it is essential to consider additional
optimization methods to accelerate NBE inference.

We note that the Neural Basis Extension can be viewed as a
function that takes a 2D direction vector 𝒗 = (𝜙, 𝜃 ) and outputs
values over 16 channels. Thus, we precompute the trained MLP and
store the result in 16 single-channel images. Each pixel in an image
serves as an NBE output value in a particular direction. These baked
images are stored in the GPU along with the Gaussian parameters
for real-time query. During color computation for each 3DGaussian,
we look up these images based on the current target direction of
the Gaussian. This strategy eliminates the need for MLP inference
during rendering, significantly reducing the per-frame overhead
while only marginally increasing the memory footprint (by about 2
MB in our implementation). Our experiments show that this baking
method can achieve high-speed real-time rendering with minimal
impact on rendering quality.

4.5 Gaussian Pruning With Network
Co-adaptation

The 3D-GS implementation uses a periodic splitting strategy based
on the gradient of the Gaussian to handle complex scenes. This
strategy improves the model’s expressive power but also requires
significant storage space due to the large number of 3D Gaussians
needed to fit a single scene. Each Gaussian requires storage of its
position, covariance matrix, and spherical harmonics coefficient.
Our approach integrates Neural Basis Extension and uses baked
images to facilitate real-time queries of NBE, which consumes
additional memory for acceleration purposes.

Figure 3: Gaussian importance score. For a Gaussian 𝐺𝑆 𝑗 , we
consider a ray 𝑟𝑖 that intersects it, that is, I(𝐺𝑆 𝑗 , 𝑟𝑖 ) = 1. Then
we calculate the weight of 𝐺𝑆 𝑗 during the color calculation
of 𝑟𝑖 , which should take into account other Gaussians like
𝐺𝑆𝑘 that occlude 𝐺𝑆 𝑗 .

To address this issue, we introduce a new Gaussian importance
score. This score assesses the contribution of each Gaussian to
every pixel in the training images and then aggregates these
values to determine the cumulative contribution of each Gaussian
to the entire training dataset. This score will be used to prune
the Gaussians, retaining those with larger contributions and
eliminating those with smaller ones. The score is calculated using
the following formula:

𝐼𝐺𝑆 𝑗
=

𝑇×𝐻×𝑊∑︁
𝑟𝑖

I(𝐺𝑆 𝑗 , 𝑟𝑖 )𝛼𝐺𝑆 𝑗

∏
𝐺𝑆𝑘

(1 − 𝛼𝐺𝑆𝑘 ) (8)

The above formula determines whether the calculation process
of each ray 𝑟𝑖 in𝑇 training images uses the 3D Gaussian𝐺𝑆 𝑗 .𝐻 and
𝑊 refer to the image height and width, respectively. If it is used,
we consider the weight of the current Gaussian on 𝑟𝑖 ’s final color.
𝐺𝑆𝑘 indicates all Gaussians that have an occlusion effect on 𝐺𝑆 𝑗 ,
and refer to Eq. (1), the weight can be expressed as the product of
the alpha value of 𝐺𝑆 𝑗 and the transmittance calculated using𝐺𝑆𝑘 .

After pruning the Gaussians, the model needs to be re-optimized
to restore the lost information. This is done by optimizing the
parameters of the Gaussian model and the Neural Basis Extension
together, which is similar to the prior training process. Our NBE
shows more potential to recover the scene compared to fixed
spherical harmonics during this joint optimization, allowing us
to maintain superior rendering quality even after pruning. Through
thismechanism, users can control the number of Gaussians based on
their requirements and balance memory consumption with model
performance.

5 EXPERIMENTS
5.1 Experimental Setting
5.1.1 Datasets and Metrics. To evaluate the performance of novel
view synthesis in static Scenes, our experiments are performed on
five widely used datasets: Shiny [41], Spaces [9], Mip-NeRF360 [2],
Tanks and Temples [17], and Synthetic NeRF [27]. The Shiny [41]
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dataset contains several real-world scenes with complex light
and shadow variations, including specular highlights, refraction,
and reflection. The Spaces [9] dataset includes numerous image
sequences of indoor spaces, capturing geometric details and lighting
effects of different materials. Mip-NeRF360 [2] and Tanks and
Temples [17] are widely used view synthesis datasets that provide
detailed indoor scenes and a variety of outdoor scenes, such as
natural landscapes and cityscapes. Synthetic NeRF [27] consists
of 8 synthetic image sets for individual objects. Our experimental
dataset covers a wide range of scenarios, from indoor to outdoor
and from simple to complex scenes.

We apply the three widely-used metrics for evaluation, i.e., peak
signal-tonoise ratio (PSNR), structural similarity index measure
(SSIM), and the learned perceptual image patch similarity (LPIPS).
We additionally report the storage size (MB) and the rendering
speed (FPS) for model compactness and performance efficiency.

5.1.2 Implementation Details. In our implementation, the Neural
Basis Extension network is deployed using tiny-cuda-nn ([29]) and
consists of two hidden layers, each layer containing 64 neurons.
The activation function is LeakyReLU, and the network outputs a
16-dimensional vector through the tanh function. We use the same
loss function as the original 3D-GS [16]:

L = (1 − 𝜆) · L1 + 𝜆 · L𝑆𝑆𝐼𝑀 (9)

The L1 loss computes the absolute error between the predicted
image and the real image. L𝑆𝑆𝐼𝑀 represents the Structural Sim-
ilarity Index, which measures the visual similarity between two
images. We set 𝜆 to 0.2 to strike a balance between pixel-level error
and perceptual error in all of our experiments.

We keep the Gaussian parameter update strategy from 3D-
GS [16] and set the learning rate of the Neural Basis Extension
(NBE) to 0.001. We use the Adam optimizer to train the model for
30k iterations. To improve training stability, we initially use only
spherical harmonics and introduce neural basis functions after 3k
iterations to avoid abnormal jitter and overfitting problems in the
early stages of training. In addition, we set the scaling factor 𝛼 in
the perturbation strategy to 0.3. The number of shared coefficients
is set to be 16, which matches the spherical harmonics from 0 to
3rd degree. We set the prune ratio to be 60%, which is a suitable
number to maintain the optimal performance for the most scene.
While these settings are generally effective, fine-tuning may be
necessary for a minority of models to achieve higher accuracy. All
experiments were conducted on a dedicated workstation with an
Intel Core i9-10900 CPU, 64GB of RAM, and an NVIDIA GeForce
RTX 3090 GPU with 24GB VRAM.

5.1.3 Bakery and Pruning Implementation. We bake the NBE
network output into 16 images of 400 × 400 resolution and modify
the original 3D-GS rendering pipeline to load the baked data into
memory and pass it to the GPU for real-time rendering. This
modification supports network queries by the CUDA kernel without
compromising performance. To compute the importance score of
each 3DGaussian, we extend the original diff-gaussian-rasterization
module to capture the relevant indicators of each Gaussian while
rendering the image. After pruning, we re-optimize the network
and Gaussian parameters for 10k steps.

Figure 4: Qualitative results of our method in complex
scenes. Notice GSNB’s performence on reconstruct rainbow
ribbons on discs, light refraction in test tubes, and specular
reflections on glass.

5.2 Experimental Results
We compared GSNB to several state-of-the-art methods across
various datasets. Our comparisons were made with the most
relevant state-of-the-art methods, including 3D-GS [16], Scaffold-
GS [25], and several NeRF-based methods such as NeX [41],
Plenoxels [33], Instant-NGP [28], Mip-NeRF [1], Mip-NeRF360 [2],
and Point-NeRF [44]. We color each cell as best , second best and
third best .

5.2.1 Results on Shiny and Spaces Datasets. We report comparison
results of our method against NeX [41], 3D-GS [16], and Scaffold-
GS [25] on the Shiny and Spaces datasets in Table 1 and 2. We
also show qualitative results in Figure 4. These datasets exhibit
physical phenomena that challenge the original 3D-GS. We select
four representative scenes from the Shiny dataset for evaluation.
In the Spaces dataset, our method is assessed across eight scenes.
Our method demonstrates significant improvements, particularly
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Table 1: Quantitative comparisons across 4 scenes in
Shiny [41] dataset. Compared to the original model without
pruning, our pruned model exhibits the highest rendering
quality and the fastest speed at the same time.

Method | Metric PSNR↑ SSIM↑ LPIPS↓ FPS↑ MEM ↓
NeX [41] 29.00 0.939 0.143 - -
3D-GS [16] 28.51 0.913 0.128 211 320MB

Scaffold-GS [25] 29.69 0.918 0.118 66 223MB
Ours 30.13 0.925 0.115 224 266MB

Ours w/ pruning 30.20 0.922 0.121 353 105MB

Table 2: Quantitative results across 8 scenes in Spaces [9]
dataset. Our pruned model achieves the highest quality and
rendering speed at the same time.

Method | Metric PSNR↑ SSIM↑ LPIPS↓ FPS↑ MEM ↓
NeX [41] 36.13 0.986 0.084 - -
3D-GS [16] 31.69 0.921 0.152 494 85MB

Scaffold-GS [25] 37.41 0.973 0.046 126 76MB
Ours 38.94 0.975 0.053 421 77MB

Ours w/ pruning 40.63 0.980 0.051 550 32MB

Table 3: Quantitative results on the Mip-NeRF360 [2] and
Tanks&Temples [17] datasets show the average model
performance, underscoring the efficacy of our method across
the majority of cases.

Dataset Mip-NeRF360 Tanks&Temples
Method | Metric PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Plenoxels [33] 23.622 0.669 0.442 21.08 0.719 0.379

Instant-NGP [28] 26.751 0.751 0.298 21.92 0.745 0.305
Mip-NeRF360 [2] 29.087 0.842 0.209 22.22 0.759 0.257

3D-GS [16] 29.085 0.869 0.183 23.14 0.841 0.183
Scaffold-GS [25] 29.217 0.864 0.198 23.96 0.853 0.177

Ours 29.362 0.870 0.182 23.97 0.848 0.176

in rendering the color and brightness of highlights. Although
NeX shows better SSIM results, our method achieves superior
performance in terms of PSNR and LPIPS metrics. Furthermore, we
have significantly shortened the training time compared to NeX.
Taking the CD dataset as an example, we reduced the training
duration from the 18 hours required by NeX to under 30 minutes
on a single 3090 GPU.

5.2.2 Results on Mip-NeRF360 Datasets. The Mip-NeRF360 dataset
contains a collection of panoramic images that capture a variety
of scenes and lighting conditions with detailed 360-degree views.
Table 3 shows our method’s average performance on this dataset,
outperforming previous approaches such as Mip-NeRF360 [2], 3D-
GS [16], and Scaffold-GS [25] on all metrics. As shown in the Figure
5, our method significantly improves highlight detail.

5.2.3 Results on Synthetic Datasets. The Synthetic NeRF dataset is
a widely used synthetic dataset. Table 4 shows the stable rendering

Table 4: Quantitative results for 8 scenes in Synthetic NeRF
dataset. We use the metric results provided by original
papers except for 3D-GS, which were obtained in our own
experiments.

Method | Scene Mic Chair Ship Materials Lego Drums Ficus Hotdog Avg.

Plenoxels [33] 33.26 33.98 29.62 29.14 34.10 25.35 31.83 36.81 31.76
Instant-NGP [28] 36.22 35.00 31.10 29.78 36.39 26.02 33.51 37.40 33.18
Mip-NeRF [1] 36.51 35.14 30.41 30.71 35.70 25.48 33.29 37.48 33.09

Point-NeRF [44] 35.95 35.40 30.97 29.61 35.04 26.06 36.13 37.30 33.30
3D-GS [16] 36.67 35.52 31.67 30.49 36.08 26.28 35.49 38.10 33.79

Scaffold-GS [25] 37.25 35.28 31.17 30.65 35.69 26.44 35.21 37.73 33.68
Ours 36.89 35.68 31.81 30.65 36.40 26.68 35.66 38.08 33.98

quality of our method. However, synthetic scenes lack the complex
lighting conditions of the real world, in which case our model
cannot fully demonstrate its power.

Figure 5: Qualitative Results on Synthetic [27] and &Mip-
NeRF360 [2] datasets

5.2.4 Results on Tanks and Temples Datasets. Table 3 shows the
performance of various methods on this dataset. We select the
two scenes Truck and Train used in the original 3D-GS [16] for
experiments. While Scaffold-GS [25] uses anchor points to deeply
reform the original 3D-GS, our approach integrates a lightweight
neural network to achieve comparable results.

5.2.5 Results on Pruning & Re-optimization. We evaluated our
pruning approach on typical challenging scenes, such as CD
and Lab, characterized by rainbow light bands and refraction
phenomena. The results indicate that our method can effectively
prune redundant Gaussians while maintaining the performance of
both the original 3D-GS method and the enhanced GSNB. However,
as the 3D Gaussian distribution becomes excessively sparse, there
is an observable drop in performance. The Figure 7 illustrates that
GSNB maintains the performance comparable to the converged
3D-GS model even using only 10% of the original model parameters.
Notably, while we use the prune ratio for comparison, our method
requires fewer Gaussians at the same ratio, thanks to the enhanced
expressiveness provided by the Neural Basis Extension.
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Figure 6: Influence of the Pruning ratio on the performance
of the pruned model after the re-optimization process, our
strategy shows resistance to the reduction of Gaussians in
both GSNB and original 3D-GS model.

Table 5: Quantitative results on Baking Operation. Compared
to computing the network in real-time, ourmodel with baked
images achieve higher speedwithout hindering the rendering
quality.

Scene CD Lab
Method | Metric PSNR↑ SSIM↑ LPIPS↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑
3D-GS [16] 30.93 0.939 0.118 239.2 30.36 0.927 0.139 256.41

Ours w/o baking 34.35 0.954 0.098 27.21 33.04 0.952 0.110 32.92
Ours 34.42 0.955 0.1 294.12 33.05 0.953 0.112 253.16

Scene Tools Giants
Method | Metric PSNR↑ SSIM↑ LPIPS↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑
3D-GS [16] 27.68 0.921 0.153 75.76 25.09 0.866 0.103 58.69

Ours w/o baking 27.78 0.924 0.148 10.41 25.35 0.868 0.105 6.12
Ours 27.78 0.924 0.15 76.92 25.38 0.868 0.106 56.82

Table 6: Quantitative results on Perturbation Strategy

Scene Mic Chair Ship Materials Lego Drums Ficus Hotdog Avg

Ours w/o perturbation 36.87 35.42 31.69 30.58 36.41 26.27 35.44 37.94 33.82
Ours 36.89 35.68 31.81 30.65 36.40 26.68 35.66 38.08 33.98

5.3 Ablation Studies
We conducted ablation experiments on baking operations and
perturbation strategies. Our results show that baking can greatly
improve the rendering speed of the model while ensuring the
rendering quality. And the perturbation strategy can effectively
improve the generalization ability of GSNB in simple scenes to
avoid overfitting.

5.3.1 Baking Operation. Baking plays an important role in achiev-
ing the real-time rendering performance of GSNB. We test the
baking performance in some of the most challenging scenarios.
Experimental results in Table 5 show that the impact of baking
on rendering quality is almost negligible. Compared to real-time
neural network inference, this strategy significantly speeds up the
rendering.

5.3.2 Perturbation Strategy. To investigate whether the perturba-
tion strategy can increase the generalization ability of the model,
we conduct experiments on the Nerf synthetic dataset that is prone
to overfitting. The perturbation value is uniformly set to 0.3 to

evaluate the perturbation strategy. Experimental results in Table 6
show that the strategy achieves certain progress in most scenarios.

5.3.3 Sensitivity Analysis of Spherical Harmonic Degree. To in-
vestigate the effect of the degree of spherical harmonics, we test
spherical harmonics from 0 to 3 degree on the Lego and Drums
datasets. As shown in Figure 7, the results indicate that the spherical
harmonics primarily use the 0 degree part of the sharing coefficient
and the degree of spherical harmonics has little impact on the
overall performance of the model. We recommend using higher
degree for simpler models and vice versa.

Figure 7: The impact of different degrees of spherical
harmonics on our method. Despite the varying degrees, the
Neural Basis Extension consistently captures high-frequency
information.

6 CONCLUSION
We present Gaussian Splatting with Neural Basis Extension (GSNB),
a method that extends the capabilities of 3D-GS in rendering
complex visual environments while reducingmemory requirements.
Using a hybrid appearance model, GSNB supplements the color
computation of 3D-GS and amplify the fidelity of visual effects.
This integration is further strengthened by the incorporation of
a set of regularization methods to enhance the robustness of our
model in complex scenes. Our studies on both challenging dataset
and general dataset demonstrate GSNB’s ability to provide high
quality rendering while maintaining optimal efficiency.

Meanwhile, our method inherits some inherent limitations
from 3D-GS, particularly in geometric accuracy, as the use of
neural networks for modeling view-dependent effects can lead to
inaccuracies in capturing the inherent geometry of scenes. Future
research could explore incorporating geometric constraints such as
surface normals and depth maps into the training process of Neural
Basis Extension, guiding the neural network towards more precise
scene reconstruction.
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