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Abstract

Account Takeover (ATO) fraud poses a significant challenge in consumer banking,
requiring high recall under strict latency while minimizing friction for legitimate
users. Production systems typically rely on tabular gradient-boosted decision
trees (e.g., XGBoost) that score sessions independently, overlooking the relational
and temporal structure of online activity that characterizes coordinated attacks
and “fraud rings.” We introduce ATLAS (Account Takeover Learning Across
Spatio-Temporal Directed Graph), a framework that reformulates ATO detection
as spatio-temporal node classification on a time-respecting directed session graph.
ATLAS links entities via shared identifiers (account, device, IP) and regulates
connectivity with time-window and recency constraints, enabling causal, time-
respecting message passing and latency—aware label propagation that uses only
labels available at scoring time, non-anticipative and leakage-free. We operational-
ize ATLAS with inductive GraphSAGE variants trained via neighbor sampling, at
scale on a sessions graph with 100M+ nodes and ~1B edges. On a high-risk digital
product at Capital One, ATLAS delivers +6.38% AUC and > 50% reduction in
customer friction, improving fraud capture while reducing user friction.

1 Introduction

Account Takeover (ATO) fraud occurs when an adversary gains unauthorized access to a legitimate
customer account via credential stuffing, phishing, device spoofing, or related tactics, and initiates
high-risk transactions (HRTs). HRTs are monetizable actions (e.g., funds transfers) that are prime
targets for fraudsters. In consumer banking, ATO drives both direct financial loss and customer-
experience degradation. Therefore, effective defenses must increase fraud capture while minimizing
friction for legitimate users.

A naive approach is to impose friction on every HRT in every online session (e.g., additional verifica-
tion). While simple, blanket friction creates a substantial customer burden, raising abandonment and
complaints, and can erode trust and retention. We instead adopt a risk-based approach: train a model
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to produce a real-time risk score per HRT online session and apply additional friction only to the
high-risk subset. This reduces overall friction while maintaining high fraud recall, yielding a more
favorable capture—friction trade-off.

Practically, ATO detection in banking faces extreme class imbalance, rapidly evolving attacker
behavior (concept drift), and a strict online latency budget (e.g., <250 ms). In this setting, production
systems have long relied on tabular gradient-boosted decision trees, XGBoost [Chen and Guestrin,
2016]], that score each session independently from engineered numerical features. Despite extensive
trials with deep architectures (fully connected neural networks [[Goodfellow et al., 2016], RNNs
[Hochreiter and Schmidhuber} [1997]], Transformers [[Vaswani et al., 2017]]), none consistently sur-
passed the boosted baseline under comparable latency and reliability constraints. Consequently, most
gains have historically come from feature-engineering improvements atop XGBoost, which remains
the dominant production solution.

Although XGBoost has established itself as the dominant in-production solution for tabular data
[Shwartz-Ziv and Armon), 2022], it scores each session in isolation, effectively assuming independent
and identically distributed (i.i.d.) observations. This flat, per-row view ignores the relational
structure (entity linkages via account/device/IP) and temporal structure (causal ordering/recency)
that characterize coordinated campaigns (“fraud rings”). As a result, the model cannot transfer
risk across connected sessions and discards high-signal cues such as historical neighbor labels
and temporal dependencies. Crucially, these shortcomings are intrinsic to the tabular formulation:
collapsing sessions into independent rows prevents any per-session learner (XGBoost, MLP, or
per-row Transformer) from representing time-respecting edges, path-based evidence sharing, or
non-anticipative (serve-time) past fraud label availability; capturing these signals requires an explicit
spatio-temporal structure representation.

To close this gap, we introduce ATLAS (Account Takeover Learning Across Spatio-Temporal
Directed Graph), which reformulates ATO detection as spatio-temporal node classification on a
time-respecting directed session graph. This framing enables time-respecting message passing across
connected sessions and lag-aware (partially observed) label propagation. More specifically, our
contributions are:

* We reformulate ATO as spatio-temporal graph learning with node classification over sessions on
a time-respecting directed acyclic graph, enabling causal, time-respecting message passing and
lag-aware label propagation that incorporates only serve-time-available historical evidence.

* We construct a directed temporal graph with strict causal ordering (past-to-future); link entities via
shared identifiers (account, device, IP); and regulate connectivity with designed time-window and
recency constraints. We operationalize this with an inductive GraphSAGE Hamilton et al.| [2017]
encoder trained via neighbor sampling, ensuring serve-time consistency and latency compliance.

* We conduct extensive experiments on a high-risk digital product dataset at Capital One financial
institution (100M+ nodes, ~1B edges), demonstrating the effectiveness of our approach: +6.38%
AUC and > 50% reduction in customer friction, improving fraud capture while lowering friction.

2 Method

We present ATLAS, a spatio-temporal directed-graph approach to ATO with three parts: (i) a time-
respecting session graph with causal edges and connectivity controlled by window T" and recency
cap K (Section [2.1)), (ii) serve-time—consistent (non-anticipative) label aggregation that appends
lagged neighbor-label features (Section [2.2)), and (iii) an inductive GraphSAGE encoder with mini-
batch neighbor sampling and relational/time-aware/attention variants (Section [2.3). This yields
leakage-free features and latency-compliant inference.

2.1 Graph Formulation Strategy

We model ATO as spatio-temporal node classification on a directed session graph G = (V, E)
depicted in Figure [I] Each node v € V is a high-risk transaction (HRT) session scored at serve time;
edges e € E encode temporal, identifier-based links from prior sessions.

Nodes. Each node v € V is uniquely keyed by (account_id, device_id, ip_address, timestamp) and
carries a feature vector x,, € R? (curated tabular features) and a binary label y,, € {0, 1} (1 = fraud,
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Figure 1: ATLAS graph formulation. Nodes are HRT sessions keyed by (account_id, device_id,
ip_address, timestamp). Directed edges point past—future between sessions sharing an identifier,
restricted by time window 7" and per-identifier recency cap K. Edge types correspond to the linking
identifier (account/device/IP).

0 = non-fraud). The model outputs a risk score s, = Pr(yv =1|Gzy, va) € [0, 1], where G,
is the subgraph of past neighbors of v (strictly earlier sessions) and X<, = {x, : u € V, t, <t,},
ensuring non-anticipative, leakage-free scoring.

Edges. For sessions u and v with timestamps ¢, < t,, we add a directed edge (u — v) if they
share an identifier m € M = {account_id, device_id, ip_address}. Edges are typed by m, yielding
E =U,,ca Em- Because t,, < t,, the graph is time-respecting (acyclic).

Graph Connectivity Regulation. To ensure non-anticipative connectivity and control degree/latency,
we enforce two connectivity constraints on graph edges :

o Time-window T include (u—v) only if 0 < ¢, — ¢, < T.

* Recency cap K: for each v and type m, keep at most the K most recent predecessors in F,,.

These constraints (i) preserve causal ordering, (ii) prioritize informative recent history, and (iii) cap
neighborhood size for stable sampling and serve-time latency.

Resulting Structure. The graph exposes cross-session patterns (e.g., coordinated “fraud rings”) and
supports causal, time-respecting message passing and serve-time—consistent lagged-label features
(Section [2.2), as well different GraphSAGE variants with neighbor sampling at scale (Section . 2.3).

2.2 Lag-aware Label Propagation

To incorporate historical evidence without leakage, we augment each session node with labels from
past, connected sessions whose ground truth is already known at the target’s serve time. Let v denote
the target session with serve time ¢,,. For any earlier session « with timestamp ¢,, < t,,, the binary
label y,, € {0, 1} becomes available at adjudication time 7,,. We therefore restrict propagation to
labels that would be known at serve time by enforcing 7, < ¢,,.

Starting from the directed session graph G = (V, E) (Section , we collect the in-neighborhood of
v within a finite history window 1" > 0:

Ny() = {u: (u—sv)eE, 0<t,—t, <T}. (1)
To control degree and latency, we keep only the K most recent predecessors:
R(v) = TopK (tu), 2)
ueNT (v)



so that |R(v)| < K. We then apply the delayed-label filter to mirror what is available online:
Av) = {ueR(v) s T <ty } 3)

Here, T (e.g., days) bounds how far back we look, K caps neighborhood size for stable sampling and
low latency, and the condition 7,, < ¢, ensures causal, serve-time—correct neighbor-label features.

From the available set .4(v) we compute simple aggregates:

nLab = ‘A(v)‘ (count of neighbors with known labels) %)
nf}raUd = Z Yu (count of known-fraud neighbors) &)
u€A(v)
nfraud
Ty = ——— (empirical fraud rate among known labels) (6)
max(1, nlab)
ay = 1[nI™ > 1] (any known fraud upstream) 7

We then form a label-propagation feature vector

Ev _ [nlab nfraud, To, av] (8)

v o) v

and append it to the node input used by the encoder:
W =[x 6], ©)

where x,, are the curated tabular features. During training, we apply the same 7', K, and 7, < ¢, rules
to avoid training—serving skew. If no labels are available (n!2 = 0), we set r, = 0 and a,, = 0. This
design preserves strict causal ordering, aligns with delayed supervision in production, and provides
the model with lightweight, high-signal context from truly known historical outcomes.

2.3 GNN Architecture

Our encoder is based on GraphSAGE [Hamilton et al.}2017]], chosen for its inductive capability and
support for mini-batch neighbor sampling, enabling training at our large scale. Each node begins with
h®

v = [xv ; EU} where x,, are curated tabular features and /,, are lagged label features (Section

Homogeneous GraphSAGE. We construct a time-respecting h-hop ego-graph around v using a
neighbor sampler that enforces the same 7" and K constraints (Section [2.1)). Let the per-hop fanouts
be f = (f1,..., fn) (at most fj, past neighbors sampled at hop k; when constant, f;, = f for all k).
Forlayer k = 1,..., L (with L < h), let S¥)(v) C N7 (v) denote the sampled in-neighbors used at
layer k. A GraphSAGE block aggregates neighbor states and updates the target:

m® — AG(;(’“)({h,(f—l) cue S® (u)}), (10)
h(h) = a(W(’f> (b1 mP] + b(’“)>7 (11)
optionally followed by ¢2-normalization and dropout. We use mean as the aggregator AGGH,

Relational GraphSAGE. As edges are typed by identifier (account/device/IP), we use a relational
variant that aggregates per type and then fuses the results. Let M be the set of relation types and let

sk (v) € Nz, (v) denote the sampled in-neighbors of type m used at layer k. We compute

m® = 3 ol (AGGE (b wesP)})), (12)
meM

where AGGg,’f) is a type-specific aggregator (we use mean) and <I>£,If) is a learnable type-specific

transform (e.g., a linear map or gate). The node update then follows equation[T1]



Time-aware / attention variant. To encode recency and relation importance, we incorporate simple
edge features (e.g., binned At = t,, — t,, and edge-type embeddings) either by concatenation into the
neighbor vector or via an attention aggregator:

agff) = softmaxu€5<k)(v) (aT[quyhgk_l) ; Wkeyhgﬁ_l) ; euvD, (13)
m® = 37 all) Weah(Y, (14)
ueS) (v)

where S(*) (v) C ./\/T_ (v) is the sampled in-neighborhood at layer k, e, encodes the (binned)
time gap and relation type for edge (u—v), and Wary, Wiey, Wyal and a are learnable parameters.
Optionally, a multi-head variant can replace (I3)—(T4) with head-wise projections and concatenation.

Neighbor sampling and depth. We train with mini-batches of seed nodes and per-layer fanouts
(fi,---, fr), sampling S*) (v) C N7 (v) under the same (T, K) constraints used at serve time to
avoid train-serve skew. In practice, shallow depth (L € {2,3}) with moderate fanouts provides a
good accuracy-latency trade-off.

Output and loss. The final embedding hq()L) is passed to a logistic head
sy = o(w ' h{) +b). (15)

We optimize a weighted binary cross-entropy to address class imbalance. Decision thresholds are
calibrated to the target friction envelope.

3 Results

We compare our GNNSs to the production XGBoost baseline and ablate graph hyperparameters.
Beyond a simple homogeneous GraphSAGE, added architectural complexity yields little benefit;
most gains come from the graph formulation and serve-time—consistent lagged labels. Prior trials
with FNNs and tabular Transformers matched XGBoost under the same features/latency, reinforcing
that improvements stem from exploiting graph structure rather than deeper per-row models.

3.1 Dataset

The dataset comprises tens of millions of sessions with a very low ATO base rate (extreme class
imbalance). To evaluate generalization to future traffic, we use a chronological split: 8 months for
training, 2 months for validation, and 5 months for testing (no overlap). All numerical features are
standardized using statistics computed on the training set only. We assemble features, labels, and
edge indices into PyTorch Geometric (PyG) data objects and employ PyG’s NeighborLoader for
efficient, out-of-core neighborhood sampling. This dynamic loading is essential for a continuously
growing graph. Owing to data sensitivity and confidentiality, we do not report descriptive statistics.
The corpus contains two major segments from a digital product at Capital One; due to confidentiality,
we anonymize them as Segment I and Segment 2.

3.2 Performance Comparison

The GNN consistently outperforms XGBoost for both segments. As shown in Table (1] the GNN
achieves an overall ROC AUC of 82.27 (vs. 79.83 for XGBoost), a +3.06% relative improvement.
By segment, gains are +3.43% (Segment 1) and +1.66% (Segment 2). The strongest results come
from homogeneous GraphSAGE with label propagation, yielding an overall ROC AUC of 84.46 and
a +5.8% relative improvement over XGBoost.

3.3 Hyperparameter Analysis (K and T)

We study the recency cap K and time window 7. As illustrated in Figure 2] increasing K from 1
to 10 steadily improves ROC AUC, indicating that incorporating more recent historical sessions is
beneficial. Likewise, extending 7" from 1 to 120 days yields consistent gains, underscoring the value
of a longer temporal context for detecting coordinated activity.



Table 1: Performance comparison of XGBoost (XGB) vs. GNN, with and without label propagation.
(ROC AUC reported as percentages; improvements are relative to XGB.)

Model AUC Overall AUC Segment1 AUC Segment 2

XGB 79.83 78.88 82.45

GNN 82.27 81.59 83.82

Improvement (vs. XGB) +3.06% +3.43% +1.66%

GNN + Label Propagation 84.46 83.92 85.45

Improvement (vs. XGB) +5.8% +6.38% +3.63%

Performance Progression Across Time Performance Progression Across Time
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Figure 2: Effect of K (left) and T' (right) on ROC AUC for Segment 1; similar trends hold for
Segment 2.

4 Related Work

ATO detection in industry commonly relies on tabular gradient-boosted trees such as XGBoost [Chen
and Guestrinl 2016[]; tree ensembles often remain strong on structured data [Shwartz-Ziv and Armon),
2022], but they struggle to capture cross-session relational patterns.

Foundational GNNs include GCNs for node classification [Kipf and Welling| 2017]], inductive
GraphSAGE with neighbor sampling [Hamilton et al.,|2017]], and attention-based GAT [Velickovic
et al.,[2018] [Kerdabadi et al., 2025} |[Hadizadeh Moghaddam et al.,|2025]. For evolving interactions,
temporal models such as Temporal Graph Networks (TGN) [Rossi et al., [2020], TGAT [Xu et al.,
2020], and DySAT [Sankar et al.| 2020]] incorporate time into message passing. Our work differs by
enforcing a time-respecting DAG and serve-time constraints to achieve non-anticipative inference
under strict latency at enterprise scale.

Recent graph-based approaches to transactional fraud explicitly model accounts, devices, and transac-
tions as graphs with temporal or entity-sharing edges. Semi-supervised credit-card fraud detection
via attribute-driven graph representations treats users/transactions as nodes and propagates attribute
signals [Xiang et al., [2023]]. For edge-level scoring, FraudGT applies a graph transformer with
edge-aware attention and message gating [Lin et al.,2024]. Under sparse labels, Barely Supervised
learning introduces structure-aware contrastive objectives [[Yu et al.,[2024]. On heterogeneous graphs,
DGA-GNN combats noisy neighborhoods via dynamic grouping [Duan et al., 2024]. Low-homophily
settings motivate label-aware aggregation and transformer encoders [Wang et al.||2023]].

5 Conclusion

We presented ATLAS, a spatio-temporal graph framework for ATO detection that operates on a
time-respecting directed session graph with connectivity regulated by a time window and recency cap.
By combining serve-time-consistent lagged label aggregation with inductive GraphSAGE variants
and neighbor sampling, ATLAS scales to 100M+ nodes and ~1B edges while remaining latency
compliant. On a high-risk digital product, it yields +6.38% AUC and > 50% reduction in customer
friction, improving fraud capture and user experience. Due to privacy and regulatory constraints at
Capital One, we cannot release data or detailed dataset statistics, and our evaluation is limited to
anonymized segments of an online digital product.
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the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: [NA|
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: we did not report it because the variation observed were very insignificant
across different seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

10


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:
Justification: We used AWS servers, but more detailes are confidential
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [NA|
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: [NA]

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: We do not release data or trained models due to institutional privacy and
regulatory constraints; therefore, release-specific safeguards are not applicable.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new public assets (datasets, models, or code) are released
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The work does not involve crowdsourcing or human-subject experiments.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:No human-subject studies were conducted; all analyses used de-identified
operational data under institutional governance.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs are not part of the core methodology; any language tooling was limited
to writing/editing and does not affect scientific results.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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