
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPIKINGVTG: SALIENCY FEEDBACK GATING
ENABLED SPIKING VIDEO TEMPORAL GROUNDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Video Temporal Grounding (VTG) seeks to retrieve consecutive intervals or spe-
cific clips from a video based on specified natural language queries. VTG requires
accurately aligning video segments with corresponding natural language instruc-
tions, highlighting the need for effective methodologies to capture semantic cor-
respondence and maintain temporal coherence. Spiking neural networks (SNNs),
previously underexplored in this domain, present a unique opportunity to tackle
VTG challenges from both the architectural and energy-efficiency perspectives.
In this paper, we leverage sparse spike-based communication of SNNs to propose
a multimodal architecture tailored for VTG tasks, namely SpikingVTG, providing
a biologically inspired and efficient solution. Leveraging temporal saliency feed-
back, our proposed spiking video-language model (VLM) achieves competitive
performance with non-spiking VLMs across diverse moment retrieval and high-
light detection tasks. We introduce a Saliency Feedback Gating (SFG) mechanism
that improves performance while reducing overall neural activity. To efficiently
train our spiking VLM, we analyze the convergence dynamics of each neuronal
layer and utilize equilibrium states to enable training using implicit differentiation
at equilibrium. This approach eliminates the need for computationally expensive
backpropagation through time while also enabling the use of knowledge distilla-
tion for efficient model training. To further improve operational efficiency and fa-
cilitate the on-chip deployability of our model, we leverage a multi-stage training
pipeline that focuses on eliminating non-local computations, such as softmax and
layer normalization, leading to the development of the Normalization Free (NF)-
SpikingVTG model. Additionally, we create an extremely quantized variant, a 1-
bit NF-SpikingVTG model, which vastly improves computational efficiency dur-
ing inference while maintaining minimal performance degradation from our base
model. Our work introduces the first spiking model to demonstrate competitive
performance on VTG benchmarks, including QVHighlights and Charades-STA.

1 INTRODUCTION

The rapid expansion of various social medias and portable smart technologies has triggered an un-
precedented surge in video content. This vast influx of data has intensified the need for efficient
methods to retrieve and analyze video information. Consequently, the field of Video Temporal
Grounding (VTG) (Lei et al., 2021; Lin et al., 2023) has emerged as an important area of research.
The main objective of VTG is to identify the precise segment of a video that corresponds to a given
natural language query, enabling accurate and context-driven video content retrieval. In this paper,
we focus on two tasks: moment retrieval (Zhang et al., 2020; Mun et al., 2020), which aims to
identify video intervals relevant to a given query, and highlight detection (Hong et al., 2020), which
retrieves the best candidate segment of the video in response to the query. Our work involves an-
alyzing multimodal data—combining video content with natural language queries—to develop an
effective solution to the problem. With the rise of foundation models like large language models
(LLMs) and video-language models (VLM), the field of VTG has seen significant advancements
(Liu et al., 2022; Lei et al., 2021). However, these models demand substantial computational power
and energy (Samsi et al., 2023) to operate. Furthermore, VTG is inherently resource-intensive, re-
quiring the analysis of long video sequences, leading to significant computational overhead. In this
work, we leverage sparse spike-based communication and simplified accumulation-based compu-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

tation in spiking neural networks (SNNs) (Ghosh-Dastidar & Adeli, 2009) to develop an efficient,
lightweight solution for VTG.

Beyond the computational efficiency of SNN-based frameworks, we also harness their temporal dy-
namics to propose a spiking transformer-based VLM (Fig. 1), namely SpikingVTG, that matches
or surpasses the performance of current state-of-the-art non-spiking VLM. The input video for the
VTG task typically consists of a long sequence of segments or clips. A key challenge in VTG is thus
accurately identifying salient segments (Lin et al., 2023) or temporally dependent segments that ex-
hibit a strong semantic correspondence with the given query. Our SNN-based VLM, operated over a
period of simulation time steps, allows us to leverage its intermediate temporal output as a feedback
to identify the salient segments. We use the average spiking rate (ASR) of the output of the spiking
transformer core in the SpikingVTG model to compute a dynamic saliency score of each video seg-
ment w.r.t the given query, which we then leverage as a mask for a multiplicative gating mechanism.
This improves performance of the model by enabling it to focus on relevant portions of the video,
while also reducing computational overhead by minimizing attention to irrelevant segments.

From a bio-plausibility perspective, as explored by Kar et al. (2019), feedback based connection
plays a prominant role in human visual cortex primarily responsible for object recognition. Fur-
thermore, the feedback connection maintains the layer-wise convergence of ASR at equilibrium,
enabling the implementation of an implicit differentiation framework (Xiao et al., 2021), allowing
for more efficient training of our model. This learning framework, leverages layer-wise converged
ASR values at equilibrium to train the spiking model in one backpropagation step, instead of us-
ing the computationally expensive backpropagation through time (BPTT) (Neftci et al., 2019). The
SpikingVTG framework further involves a multi-stage training pipeline aimed at developing spiking
models to facilitate potential deployment on resource-constrained edge-based device enabled with
neuromorphic chips. To allow for efficient training of our spiking model, we employ a knowledge
distillation strategy (Hinton et al., 2015), enabling knowledge transfer from a non-spiking UniVTG
model, used as the “teacher”, to our “student” SpikingVTG model. This process utilizes the ASR of
converged intermediate states at equilibrium, enabling efficient training of our spiking VLM.

Traditional transformer architectures (Vaswani et al., 2017) utilize non-local normalization op-
erations such as softmax and layer normalization, which present challenges for implementation
on neuromorphic hardware (Shrestha et al., 2022). To address this limitation, we introduce the
Normalization-Free (NF)-SpikingVTG model, which eliminates all layer normalization operations
and substitutes softmax spiking attention with a ReLU-based spiking attention mechanism. Al-
though, Softmax-free attention has been explored in the literature (Koohpayegani & Pirsiavash,
2024; Xu et al., 2024), it has predominantly been applied to vision tasks. While, ReLU-based at-
tention mechanisms have previously been explored in non-spiking domains (Shen et al., 2023), we
are the first to introduce this concept within a spiking attention mechanism. Additionally, to reduce
computational complexity, following works on quantization in analog LLMs (Wang et al., 2023),
we propose a 1-bit quantized variant of SpikingVTG. Our multi-stage training pipeline enables min-
imal performance degradation while enhancing computational efficiency during inference, in our
SpikingVTG models. To our knowledge, this work is the first to evaluate an operational spiking
VLM framework across various VTG tasks, including moment retrieval and highlight detection, on
datasets such as QVHighlights and Charades-STA.

The primary contributions of our work are as follows:

• SpikingVTG Model and Training Framework: We propose a transformer-based, multi-
modal spiking video language model with a spiking decoder module for moment retrieval
and highlight detection in VTG tasks. We leverage the layer-wise convergence dynamics in
our model to train our model using implicit differentiation at equilibrium, bypassing mem-
ory intensive BPTT. The result is the first spiking architecture to demonstrate competitive
performance on VTG.

• Saliency Feedback Gating Mechanism: We introduce a saliency feedback gating mech-
anism for input video, that leverages the ASR of the output of the spiking transformer
core at each time step. This temporal feedback enhances task-specific performance while
minimizing neural activity, ultimately reducing overall computational overhead.

• Multi-Stage Training Pipeline: We propose a multi-stage training pipeline for our Spik-
ingVTG framework, utilizing knowledge distillation and architectural modifications to cre-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Moment
Retrieval

Highlight
Detection

Spiking M
ulti-H

eaded
A

ttention

Interm
ediate Layer

Linear Layer

A
dd &

 N
orm

SpikingD
ecoder

Repeat N
times: LIF Neurons

Saliency Feedback
G

ating

Spiking Transformer Block

Video Features
Textual Q

uery

Feedback Connection

VTG

Figure 1: High-level overview of the proposed SpikingVTG architecture. The spiking Vision-
Language Model (VLM) takes video and textual features as inputs, employing a spiking transformer
core that utilizes Saliency Feedback Gating through temporal feedback connections. The model
incorporates a spiking decoder module that takes the output of the transformer core to predict pa-
rameters for the VTG task.

ate lightweight and computationally efficient spikingVTG variants. We replace computa-
tionally intensive non-local operations like layer normalization and softmax with hardware-
friendly alternatives. We further introduce extreme quantization, developing a 1-bit NF-
SpikingVTG model that significantly reduces memory as well as computational overhead.

2 RELATED WORKS

VTG Advancements: With the recent rise of multimodal LLM architectures, the field of video-
language modeling has opened new avenues for understanding and extracting key information from
video data. Moment-DETR (Lei et al., 2021), a transformer encoder-decoder model introduced
alongside the QVHighlights dataset, laid a strong foundation for subsequent VTG architectures.
UMT (Liu et al., 2022) introduced an unified framework for solving both highlight detection and
moment retrieval tasks. Due to the limited availability of trainable video data, UniVTG (Lin
et al., 2023) proposed an innovative solution by unifying various VTG tasks and labels under a
single formulation. This approach enabled the development of an LLM-like pretraining frame-
work, achieving state-of-the-art performance on VTG tasks. Although no fully spiking-based ar-
chitecture has been explored for VTG tasks, SpikeMba (Li et al., 2024)—primarily a non-spiking
model—integrates SNN components to generate proposal sets from video data. However, since its
core framework is derived from Mamba (Gu & Dao, 2023) and relies on floating-point matrix multi-
plications, SpikeMba cannot be considered a baseline for spiking models, which predominantly use
accumulation-based operations.

Spiking neural networks (SNNs): SNNs allow for event-driven computation and communica-
tion in neuromorphic hardware, significantly reducing energy consumption. SNNs have been im-
plemented in neuromorphic systems like IBM TrueNorth (DeBole et al., 2019) and Intel Loihi 2
(Davies et al., 2021), demonstrating approximately 75× greater energy efficiency compared to tra-
ditional neural networks running on low-power GPUs (Tang et al., 2020). SNNs, with their energy-
efficient computational framework, offer a promising solution to the resource-intensive demands of
multimodal VTG tasks. While SNNs for a long time were confined in simpler vision-based tasks
(Yamazaki et al., 2022) with relatively simple architectures, recent developments have scaled them
to transformer-based architectures for tasks ranging from vision to language modelling (Zhou et al.,
2022; Bal & Sengupta, 2024; Zhu et al., 2023), however majority of them rely on some normaliza-
tion techniques which are not implementable on a neuromorphic chip.

3 METHODOLOGY

In this section, we first present the VTG problem formulation, followed by a detailed explanation of
the SpikingVTG framework. We describe its core components, including the spiking transformer,
saliency feedback gating mechanism, and spiking decoder. Next, we elaborate on the scalable train-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

ing framework and then we introduce the multi-stage pipeline, that allows efficient training using
knowledge distillation and enables more efficient iterations of our architecture, facilitating the devel-
opment of lightweight SpikingVTG variants such as NF-SpikingVTG and 1-bit NF-SpikingVTG.

3.1 VIDEO TEMPORAL GROUNDING (VTG)

For a given video V and language query Q, we start by segmenting V into a sequence of Lv fixed-
length clips, denoted as {v1, . . . , vLv

}. Each clip vi has a length l and is centered at timestamp
ti. The textual query Q consists of Lq tokens, denoted as Q = {q1, . . . , qLq

}. Following previous
studies on VTG (Lin et al., 2023), we define three parameters for each clip vi = (fi, di, si), where
fi = 1 if the clip is in foreground, i.e. relevant else fi = 0. di = [dsi , dei] ∈ R2 represent the
temporal distance that converts the clip timestamp ti to its interval boundaries. Here, di is valid
when fi = 1. The term dsi denotes the distance between the start of the interval and ti, while
dei denotes the distance between the end of the interval and ti. si ∈ [0, 1] is a continuous score
that quantifies the relevance between the visual content of clip vi and the query Q. Our proposed
SpikingVTG model predicts these three parameters for each video clip. In this paper, we focus on
specific VTG tasks, which are carried out as follows:

Moment Retrieval: We rank the predicted clip boundaries {b̃i}Lv
i=1, where bi = [ti − dsi , ti + dei],

based on their associated probabilities given by {f̃i}Lv
i=1. Since the predicted Lv boundaries are

dense, we employ a 1-dimensional Non-Maximum Suppression (NMS) (Hosang et al., 2017) with a
threshold of 0.7 to eliminate highly overlapping boundary boxes, resulting in a final prediction.

Highlight Detection For each clip, we rank all clips based on their combined scores {f̃i + s̃i}Lv
i=1.

This combined value represents how well the chip i match with the underlying query. We then return
the top clips (e.g., Top-1) as predictions.

3.2 SPIKINGVTG: ARCHITECTURE OVERVIEW

The core computational unit of the proposed SpikingVTG model is a leaky integrate-and-fire (LIF)
neuron (Dutta et al., 2017). Neurons communicate with each other using sparse, spike-based acti-
vations instead of real-valued signals, significantly improving energy/power efficiency. The model
architecture includes a spiking transformer core for processing inputs, a saliency feedback gating
mechanism for dynamic input control, and a spiking decoder module to predict the parameters re-
quired for the VTG task, as described in Section 3.1.

3.2.1 SPIKING NEURAL NETWORKS

The discrete time dynamics of an LIF-based spiking neuron can be given as follows,

ui[t+ δ] = γui[t] +W(i−1)(s(i−1)[t]) + bi,

ui[t+ 1] = ui[t+ δ]− Vthi
si[t+ 1],

(1)

where, at time t, ui[t] is the membrane potential of the ith neuronal layer; bi indicates a bias term
and γ is the leaky term. W(i−1) represents the layer-specific operation; t+ δ is an intermediate time
step to determine if the neuron fired; Vthi

is the threshold of layer i. We use a ternary spiking model
(Guo et al., 2024) in our work for spike (s[t+ 1]) generation, thus the spiking operation is given as,

si[t+ 1] =


+1 if ui[t+ δ] ≥ Vthi

,

−1 if ui[t+ δ] ≤ −Vthi ,

0 otherwise
(2)

This approach enhances performance while avoiding the introduction of additional floating-point
multiplicative and accumulative (fp-MAC) operations. The average spiking rate (ASR) (Xiao et al.,
2021) of LIF neurons within each layer i at time t can be defined as a weighted-average function:

ai[t] =

∑t
τ=1 γ

t−τsi[τ]∑t
τ=1 γ

t−τ
. (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2.2 SPIKING TRANSFORMER CORE

The high-level overview of each encoder block of our spiking transformer architecture is demon-
strated in Fig. 1. The model consists of N encoder layers, each consists of a spiking multi-headed
attention block, followed by an intermediate layer and an output layer. Communication within and
between encoder layers occurs via spikes. Furthermore, all matrix multiplications involved in linear
layers and attention layer comprises of more efficient fp-accumulative (ACC) operations instead of
fp-MAC operations in conventional neural architectures. For this work we have used four encoder
layers and eight attention heads. The hidden size dimension is 1024. Detailed descriptions of each
layer are provided in the Appendix A.1. In Section 3.4.2, we replace non-local normalization oper-
ations and introduce a ReLU-based attention mechanism. In Section 3.4.3, we quantize all weights
in the linear layers, including those in the intermediate and output layers, to 1-bit precision.

3.2.3 SALIENCY FEEDBACK GATING (SFG)

Text
Features

SALIENCY FEEDBACK GATING (SFG)

Feedback
Connection

Element-wise
Multiply

Concat
Video

Features
Output

Attn.
Pooler

Cosine
Similarity

Figure 2: Overview of the in-
ternal operations of the saliency-
feedback gating mechanism. The
ASR of the output of the spiking
transformer core at each time step
is leveraged as the feedback signal
(Fig. 1).

SpikingVTG operates over a specific number of convergence
time steps (T), with the convergence dynamics detailed in Sec-
tion 3.3. This temporal processing allows us to leverage in-
termediate temporal outputs to dynamically update the input
to the model at every time step for better predictions. This
approach conforms to the feedback connections observed in
the human visual cortex (Kar et al., 2019), providing a bio-
plausible explanation for its efficacy. The ASR of the final
encoder layer of the Spiking Transformer core is used as a tem-
poral feedback to compute a dynamic saliency score with the
input query enabling the design of a gating mechanism, allow-
ing selective focusing on relevant segments of the video while
minimizing computation on irrelevant segments. The saliency
feedback gating mechanism is shown below,

F vi
s [t] = cos(aNv

i [t],M) :=
aNv

i [t] ·M
∥aNv

i [t]∥2∥M∥2
,

V̄ [t+ 1] = V ∗ F v
s [t],

I[t+ 1] = V̄ [t+ 1]⊕Q,

(4)

where, using attentive pooling operation, sentence represen-
tation M = QTSoftmax(QWp), M ∈ RD, textual query
features Q ∈ RLq×D, input video features V ∈ RLv×D and Wp ∈ RD×1 is a learnable embed-
ding. F vi

s [t] is the dynamic saliency score, at time t, for the i-th segment of the video. The ASR
of the output of the spiking transformer core is given as aN [t] ∈ R(Lv+Lq)×D. aNv

i [t] is ASR of
output of the spiking transformer core, corresponding to video segment i, at time t. The SFG layer
comprises O(Lv ·D) floating-point multiplication operations; however, the computational overhead
of this layer is significantly less than that of the more substantial transformer component which has
a complexity of O(L2 · D + L · D2), where L = Lv + Lq . and D is the hidden dimension of the
transformer. I[t + 1] is derived from the concatenation of saliency feedback gated video features
and query features and serves as the input to the spiking transformer core at time t+ 1.

The SFG mechanism not only results in better performance of our SpikingVTG architecture on
evaluation metrics (see Table 3) but also reduces overall neural activity by sparsifying input spikes.
As shown in Fig. 3b, empirical results confirm that the model with the gating mechanism exhibits
a lower neural activity, particularly in the input and spiking attention layers, compared to the model
without this mechanism.

3.2.4 SPIKING DECODER

The spiking decoder comprises of stacked 1-D convolutions followed by integrate-fire (IF) neuron
layers (γ = 1 in Eqn. 1), for spike generation. The spiking decoder used for predicting foreground
indicator (fi) per clip, applies n1 1-D convolution operations with kernel size k1, each followed

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Model Type

Input
Spiking Attn.
Interm.
Output

without SFG
with SFG

Reduction in
Activity

Layers

Layer-wise Convergence Dynamics Layer-wise Spiking Activity (𝒂𝒄𝒕)

(a) (b)

Figure 3: Results obtained upon passing a random input sample from QVHighlights dataset to our
SpikingVTG models. (a) Graph shows convergence dynamics of layer-wise mean ASR against
operating time steps for a randomly selected spiking transformer encoder layer (Fig. 1). It is to be
noted that since we allow ternary spikes ASR can be negative as well. (b) Graph shows, layer-wise
mean spiking activity (acti[t], averaged over number of neurons in that layer) against operating time
steps in x-axis. The model with SFG shows markedly reduced activity in both the input layer and
the spiking attention layer, underscoring its role in minimizing neuronal activity.

by an IF layer. The final layer consists of a single output channel, and its temporal mean is passed
through a sigmoid activation to produce the prediction. The spiking decoder used for di applies n2 1-
D convolution operations with kernel size k2, each followed by an IF layer, and the final convolution
layer has two output channels to predict di = [dsi , dei], after which we compute bi.

3.3 TRAINING LEVERAGING CONVERGENCE DYNAMICS

Following, Eqn. 1 & 3, we can formulate ai[t+ 1] = 1
Vthi

(f̂(a(i−1)[t+ 1]) + bi − ui[t+1]∑t
j=0 γj), where

f̂ is operation of layer i. As time approaches t → ∞, the layer-wise ASRs converge to equilibrium,
enabling the derivation of steady-state equations for linear layers (Xiao et al., 2021). Moreover,
surrogate steady-state functions can be formulated for non-linear layers (Bal & Sengupta, 2024) as,

a∗i = σ(
1

Vthi

(f̂(a∗i−1) + bi)) (5)

where, clipping function σ(x) clamps the values within [−1, 1]. This is because following Eqn.
2, we allow ternary spikes thus ASR must be with [−1, 1]. The empirical convergence of ASR is
shown in Fig. 3a. To analyze the overall layer-wise neural activity, which includes both positive and
negative spiking event, we present the layer-wise dynamics of the absolute spiking events in Fig. 3b,
i.e. acti[t] =

∑t
i=1 |si[t]|

t .

Training: As described in the Section 3.2.4, the SpikingDecoder is responsible for predicting f̃i
and d̃i for individual video clip i and s̃i is computed using the SFG module at equilibrium. Using
these three predictions, we design a loss function that combines various components. The total loss
over N clips in the training set is given by L = 1

N

∑N
i=1 (Lfi + Ldi

+ Lci), where Lf is the binary
cross-entropy loss for the indicator variable fi, Ld combines smooth L1 loss with generalized IoU
loss (Rezatofighi et al., 2019) for the predicted boundaries, and Lc is an optional loss incorporating
intra- and inter-video contranstive learning (Chen et al., 2020). A detailed mathematical formulation
of the loss functions can be found in the Appendix B.

During training, leveraging implicit differentiation (Bai et al., 2019) at equilibrium, only ASR values
at equilibrium are used,

∂L(a∗)

∂θ
= −∂L(a∗)

∂a∗
(J−1

gθ
|a∗)

∂fθ(a
∗)

∂θ
, (6)

where, θ is the model parameters, gθ(a) = fθ(a)− a, f is the steady-state equation of ASR, J−1 is
the inverse Jacobian of gθ when a = a∗, i.e., at equilibrium. Thus, unlike BPTT, we do not need to
store the intermediate computational graph and the model parameters can be updated using a single
backpropagation step.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Non-Spiking
Teacher

OPS: FP-MAC
wth Norm.

Spiking
Model

OPS: FP-AC
with Norm.

NF-Spiking
Model

OPS: FP-AC
 Norm. Free

1-Bit
NF-Spiking

Model
OPS: INT-AC
 Norm. Free

KD +
Fine-Tuning Fine-Tuning

INCREASING ENERGY-EFFICIENCY AND ON-CHIP DEPLOYMENT READINESS

Remove
Norm. Layers

1-BIT Quantized Linear Layers & Remove Norm. Layers
 Fine-Tuning

Figure 4: High-level overview of the multi-stage training framework for our proposed SpikingVTG
models, enabling the development of lightweight and computationally efficient spiking models. Be-
low each model we have noted the primary operations involved in that architecture.

3.4 MULTI-STAGED TRAINING PIPELINE

Training a multimodal spiking architecture like SpikingVTG is resource-intensive. To enhance the
efficiency of this process and develop computationally efficient variants of our model, we propose a
multi-staged training framework, as illustrated in Fig. 4. We utilize a non-spiking “teacher” VLM
to guide the training of our “student” SpikingVTG model. After this initial stage, we fine-tune
SpikingVTG using the true labels. Once the base SpikingVTG model is established, we modify
its architecture, as outlined in Sections 3.4.2 and 3.4.3, followed by additional fine-tuning to cre-
ate computationally efficient variants with minimal performance degradation. The resulting com-
putationally efficient, lightweight models are well-suited for deployment on neuromorphic chips,
enabling efficient inference.

3.4.1 LEVERAGING KNOWLEDGE DISTILLATION (KD)

To enable efficient training of our spiking multimodal architecture, we utilize Knowledge Distillation
(KD) techniques (Hinton et al., 2015; Tang et al., 2019; Jiao et al., 2019). We use the pre-trained
UniVTG, currently the state-of-the-art in VTG, as a “teacher” and rather than distilling based on
the prediction layer, we exploit the outputs of the internal layers of the “teacher”. We establish a
one-to-one mapping, by design, between the internal representations at equilibrium of our spiking
transformer and the corresponding layers of the “teacher”, ensuring that the number of layers in both
architectures remains consistent. The internal representation-based KD is formulated as,

LKD =

N∑
i=1

MSE(a∗riWd, Tri) (7)

where, Wd ∈ Rds×dt is a linear transformation that aligns the dimensionality of the layers of the
“student” with that of the corresponding layers of the “teacher”. a∗ri denotes the converged ASR at
equilibrium of the internal representation layer ri, which is the output from the spiking transformer
encoder layer i of the “student”. Tri is the representation of the the corresponding block i of the
teacher model. The KD process is an integral part of the framework and serves as the first stage of
our multi-stage pipeline, followed by fine-tuning on the true labels (Fig. 4).

3.4.2 REPLACING SOFTMAX AND REMOVING LAYER NORMALIZATION

In our work, we use a spiking attention mechanism (see Appendix A.1) which uses the key and
value inputs as spikes instead of real values. Given d-dimensional queries, keys, and values
{qi[t], ski [t], svi [t]}Li=1, at time t, the attention weights αij are computed as follows:

αij [t] = ϕ

(
1√
d

[
qi[t]

⊤sk1 [t], · · · , qi[t]⊤skL
[t]
])

j

(8)

where, ϕ is the softmax function and output of spiking attention layer at time t is attni[t] =∑L
j=1 αij [t]svj [t]. Given that softmax requires expensive non-local fp-MAC operations, we replace

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

it with the less costly ReLU() operation and perform a simple scaling with L−1. This replacement,
while maintaining competitive model performance, is only feasible when following the multi-stage
training process outlined in Fig. 4. This highlights the importance of the initial KD and fine-tuning
stages, which help stabilize the model. Additionally, we explore the removal of all layer normaliza-
tion layers, from Fig. 1, during training (as shown in Fig. 4), further streamlining the model design
for on-chip deployment. We refer to the resulting model, which uses ReLU in place of Softmax and
omits layer normalization, as a Normalization-Free (NF) spiking model.

3.4.3 1-BIT WEIGHT QUANTIZED SPIKINGVTG

Following prior work (Wang et al., 2023), 1-bit quantization consists of centering the weights W to
achieve a zero mean, followed by binarization to +1 or −1 using the signum function as shown,

Wq = sgn(W − α),

α =
1

nm

∑
ij

Wij
(9)

where, W ∈ Rn×m. The signum function, denoted as sgn(x), categorizes the element x based on
its sign. It outputs +1 when x is positive and −1 when x is zero or negative. The output of the
linear layer is scaled by a constant β = 1

nm

∑
ij |Wij |. Thus, with ternary activations, our model

now incorporates binary weights. Following the multi-stage learning approach illustrated in Fig. 4,
our 1-bit SpikingVTG model emerges as a light-weight multimodal spiking VLM, with all linear
layer weights quantized to 1-bit. Additionally, we empirically demonstrate that employing binary
weights while eliminating normalization layers achieves competitive performance, resulting in 1-
bit NF-SpikingVTG, enabling on-chip implementation and significantly improving computational
efficiency. Thus, in the resulting model the primary computational operation involve integer accu-
mulations since individual weight values are Wqij ∈ {−1, 1} and activations are s ∈ {−1, 0, 1}.

Table 1: Performance comparison of our SpikingVTG model with SFG against non-spiking VTG
solutions on the evaluation set of the QVHighlights and Charades-STA for moment retrieval task.

Method SNN QVHighlights Charades-STA
@0.3 @0.5 @0.7 mAP@avg @0.3 @0.5 @0.7 mIoU

UniVTG+PT (Lin et al., 2023) No 78.58 67.35 52.65 45.44 72.63 60.19 38.55 52.17
M-DETR (Lei et al., 2021) No - 53.94 34.84 32.20 65.83 52.07 30.59 45.54
2D-TAN (Zhang et al., 2020) No - - - - 58.76 46.02 27.5 41.25
LLaViLo (Ma et al., 2023) No - - - - - 55.72 33.43 -
UniVTG (Lin et al., 2023) No 71.81 59.74 40.90 36.13 70.81 58.01 35.65 50.1
UMT (Liu et al., 2022) No - 60.26 44.26 38.59 - 49.35 26.16 -
EaTR (Jang et al., 2023) No - 61.36 45.79 41.74 - - - -
QD-DETR (Moon et al., 2023) No - 62.68 46.66 41.22 - 57.31 32.55 -
EMTM (Liang et al., 2023) No - - - - 72.70 57.91 39.80 53.00
R2 - Tuning (Liu et al., 2024) No - 68.03 49.35 46.17 70.91 59.78 37.02 50.86
SpikeMba (Li et al., 2024) No - 65.32 51.33 44.84 71.24 59.65 36.12 51.74
SpikingVTG (Our Model) Yes 80.72 67.42 50.65 43.81 71.13 58.13 37.02 50.62

4 EXPERIMENTATION

We evaluate all proposed spiking video-language models on moment retrieval and highlight detec-
tion tasks using the QVHighlights and Charades-STA datasets. Since, to the best of our knowl-
edge, our proposed model is the first spiking VLM evaluated on VTG tasks, we benchmark its
performance against state-of-the-art non-spiking video-language models. Additionally, we perform
a study comparing our three model variants—Vanilla SpikingVTG, NF-SpikingVTG, and 1-bit NF-
SpikingVTG— on task specific performance and computational efficiency. Preliminary energy anal-
ysis further highlights the potential benefits of each model version.

4.1 EXPERIMENTAL DETAILS

The Spiking Transformer core in our model comprises four encoder layers, each with a hidden
dimension of 1024, with 8 attention heads. For the knowledge distillation phase, we employ a pre-
trained UniVTG model (Lin et al., 2023) that has been fine-tuned on our specific dataset. Additional

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

hyper-parameter and experimental details are provided in Appendix D. The experiments were run
on a NVIDIA RTX A6000 GPU with 48GB memory.

Dateset Details: QVHighlights (Lei et al., 2021) is the only public dataset that includes ground-
truth annotations for moment retrieval and highlight detection, allowing for a thorough evaluation
of the performance of our model and additional ablation studies. We also employ the Charades-
STA dataset (Gao et al., 2017) to conduct further assessments on additional moment retrieval tasks.
Additional details on datasets are available at Appendix C.

Evaluation Metrics: For QVHighlights, following previous work (Lei et al., 2021) we use Re-
call@1 with IoU thresholds of 0.3, 0.5 and 0.7 and average mean average precision (mAP) as the
evaluation metric for moment retrieval tasks. For highlight detection, we use mAP and HIT@1 (Lei
et al., 2021), where a clip is considered a true positive if it receives a score of ”Very Good” (Liu
et al., 2022). For Charades-STA, we employ Recall@1 with IoU thresholds of 0.3, 0.5, and 0.7,
along with the mean IoU (mIoU).

4.2 RESULTS

Table 2: Performance comparison of our Spik-
ingVTG model with SFG against other non-
spiking VTG solutions on the evaluation set of the
QVHighlights for highlight detection task.

Method SNN QVHighlights
mAP HIT@1

UniVTG+PT (Lin et al., 2023) No 41.34 68.77
DVSE (Liu et al., 2015) No 18.75 21.79
XML+ (Lei et al., 2021) No 35.38 55.06
M-DETR (Lei et al., 2021) No 35.65 55.55
EaTR (Jang et al., 2023) No 37.15 58.65
M-DETR + PT (Lei et al., 2021) No 37.70 60.32
UniVTG (Lin et al., 2023) No 38.83 61.81
QD-DETR (Moon et al., 2023) No 39.13 63.03
R2 - Tuning (Liu et al., 2024) No 40.75 64.20
UMT (Liu et al., 2022) No 39.85 -
SpikingVTG (Our Model) Yes 40.74 68.32

Our model outperforms non-spiking VTG
models, including EaTR (Jang et al., 2023),
2D-TAN (Zhang et al., 2020), M-DETR (Lei
et al., 2021), LLaViLo (Ma et al., 2023), UMT
(Liu et al., 2022), QD-DETR (Moon et al.,
2023) and non-pretrained UniVTG model (Lin
et al., 2023). Additionally, it achieves com-
petitive results compared to the current state-
of-the-art pretrained UniVTG model. It is im-
portant to note that SpikeMba (Li et al., 2024)
is not a fully spiking architecture; rather, one
component of its multi-stage network uses an
SNN. Our model establishes a baseline for fu-
ture spiking VLM architectures on VTG tasks.
The results are shown in Table 1 & 2.

Table 3: Performance comparison of the different SpikingVTG variants as highlighted in Fig. 4 on
the evaluation set of QVHighlights dataset.

Method QVHighlights-MR QVHighlights-HL Activity
@0.3 @0.5 @0.7 mAP@avg mAP HIT@1

Vanilla Spiking Transformer 78.65 65.10 47.46 42.56 40.60 67.42 0.41
SpikingVTG without KD 67.68 52.71 34.26 32.12 35.91 57.94 0.35
SpikingVTG 80.72 67.42 50.65 43.81 40.74 68.32 0.34
NF-SpikingVTG 79.87 66.45 48.27 42.68 40.54 67.61 0.25
1-bit NF-SpikingVTG 78.77 65.16 47.35 42.32 40.31 67.29 0.19
1-bit NF-SpikingVTG w/ ReLU 78.39 66.06 47.10 41.78 40.22 67.10 0.19

4.3 ABLATION STUDY

As demonstrated in Table 3, the inclusion of the Spike Feedback Gating (SFG) mechanism enhances
performance compared to the model without SFG, i.e. a vanilla spiking transformer. Furthermore, as
highlighted in Fig. 3 it results in reduced neuronal activity as well. KD plays a critical role in improv-
ing the performance of the model w.r.t evaluation metrics. Moreover, the computationally efficient
NF-SpikingVTG model with SFG performs competitively even when compared to other state-of-the-
art (SOTA) non-spiking VLMs. Although the 1-bit NF-SpikingVTG variant shows a slight reduction
in performance across evaluation metrics, it is highly memory efficient and involves simpler compu-
tations, making it well-suited for deployment on resource-constrained hardware. Furthermore, Table
3 also presents the average model-wide neural activity of the spiking model, calculated over T = 10
time steps. This metric represents the proportion of active neurons per timestep, averaged across
all layers. This demonstrates that the optimizations aimed at enhancing computational efficiency
(i.e. reducing non-local normalization operation and introducing quantized weights) also effectively

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

reduce overall neural activity in the model. We also implement a variant of 1-bit NF SpikingVTG
by replacing all GELU layers with hardware friendly ReLU layer Timcheck et al. (2023).

4.4 ANALYSIS OF ENERGY AND POWER EFFICIENCY

We conduct a preliminary energy analysis of the proposed SpikingVTG variants during test-time
inference and compare it to a non-spiking UniVTG model with comparable depth and hidden
state dimensions (also hidden dimension (D) is same as intermediate layer dimension in our im-
plementation). For this energy analysis, we focus solely on the cost of arithmetic operations,
excluding the cost of memory I/O transactions. From a simpler circuit design standpoint, for
our analysis we consider 45nm CMOS technology and 32-bit precision, thus floating point (fp)-
MAC operations consume 4.6pJ , fp-ACC operations consume 0.9pJ and integer(int)-ACC oper-
ations consume 0.1pJ (Han et al., 2015). The primary energy consumption is attributed to the
transformer encoder layers, which consist primarily of the attention mechanism and multiple lin-
ear layers (Wang et al., 2023). The primary computation cost, calculated for an input sequence
of length L, of each transformer encoder-layer of the non-spiking model can be expressed as:
EA = [(3LD2) + (LD2 + L2D) + (LD2) + (LD2)] fp-MAC operations, corresponding to the
three projection layers, the attention mechanism, the intermediate layer, and the output layer.

Figure 5: Graph depicting the perfor-
mance of each SpikingVTG variant on
the QVHighlights highlight detection
task, alongside their potential energy ef-
ficiency (Ef).

For the SpikingVTG model, per spiking transformer en-
coder layer the computational cost per time step is given
by: ESt

= [(3 · IFRin ·LD2)+ (IFRk ·LD2+ IFRv ·
L2D) + (IFRattn · LD2) + (IFRinterm. · LD2)] fp-
ACC operations, where each term is associated for each
component similar to the one specified above. IFRl rep-
resents the mean firing rate of the corresponding layer l.
The total energy cost for the spiking model is: ES =
(ESt ∗ T) fp-ACC operations, where T represents the
number of time steps the model is operated. The models
that include normalization also have an added cost of en-
ergy for normalization however, it is of the order O(LD)
so it has not been included in our computation. It is to
be noted that both our NF-SpikingVTG and 1-BIT NF-
SpikingVTG models are normalization free so they do not
incur this added cost. Moreover, for 1-bit SpikingVTG,
the core computations in matrix multiplications shift from using fp-ACC to int-ACC operations.

We define energy efficiency of the spiking model as Ef = EA/ES . Specific examples illustrating
energy efficiency of SpikingVTG models is provided in Appendix D. When operating the underlying
models for T = 10 time steps, the energy efficiency and performance of each model are illustrated
in Fig. 5. The average power efficiency for each model type is calculated as Pf = (EA/1)

(ES/T) =

Ef × T , demonstrating that our models are significantly more power-efficient (ranging from 12.5×
in SpikingVTG to up to 200× in 1-bit NF-SpikingVTG) compared to non-spiking models. This
efficiency arises from the ability of SNNs to unroll complex operations over time, thus providing
low-powered solutions for complex tasks unlike conventional non-spiking architecture. Although
this method of analysis does not account for architectural energy advantages, it provides a useful
approximation to gauge the potential benefits of spiking models over their non-spiking counterparts.

5 CONCLUSIONS

Our saliency feedback gating-enabled SpikingVTG model offers a computationally efficient ap-
proach for VTG tasks while maintaining competitive performance with state-of-the-art non-spiking
models. By harnessing layer-wise convergence dynamics, we efficiently train our model using
implicit differentiation at equilibrium. We employ a multi-stage training pipeline that incorpo-
rates knowledge distillation, using the non-spiking pretrained UniVTG model as the “teacher” and
the SpikingVTG model as the “student”. This training pipeline further enables architectural op-
timizations, leading to the development of Normalization Free (NF)-SpikingVTG and 1-bit NF-
SpikingVTG, enhancing computational efficiency and facilitating the on-chip deployment of these
complex models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 32, 2019.

Malyaban Bal and Abhronil Sengupta. Spikingbert: Distilling bert to train spiking language models
using implicit differentiation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 10998–11006, 2024.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Mike Davies, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel A Fonseca Guerra,
Prasad Joshi, Philipp Plank, and Sumedh R Risbud. Advancing neuromorphic computing with
loihi: A survey of results and outlook. Proceedings of the IEEE, 109(5):911–934, 2021.

Michael V DeBole, Brian Taba, Arnon Amir, Filipp Akopyan, Alexander Andreopoulos, William P
Risk, Jeff Kusnitz, Carlos Ortega Otero, Tapan K Nayak, Rathinakumar Appuswamy, et al.
Truenorth: Accelerating from zero to 64 million neurons in 10 years. Computer, 52(5):20–29,
2019.

Sangya Dutta, Vinay Kumar, Aditya Shukla, Nihar R Mohapatra, and Udayan Ganguly. Leaky
integrate and fire neuron by charge-discharge dynamics in floating-body mosfet. Scientific reports,
7(1):8257, 2017.

Jiyang Gao, Chen Sun, Zhenheng Yang, and Ram Nevatia. Tall: Temporal activity localization via
language query. In Proceedings of the IEEE international conference on computer vision, pp.
5267–5275, 2017.

Samanwoy Ghosh-Dastidar and Hojjat Adeli. Spiking neural networks. International journal of
neural systems, 19(04):295–308, 2009.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Yufei Guo, Yuanpei Chen, Xiaode Liu, Weihang Peng, Yuhan Zhang, Xuhui Huang, and Zhe Ma.
Ternary spike: Learning ternary spikes for spiking neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 12244–12252, 2024.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural networks, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Fa-Ting Hong, Xuanteng Huang, Wei-Hong Li, and Wei-Shi Zheng. Mini-net: Multiple instance
ranking network for video highlight detection. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIII 16, pp. 345–360. Springer,
2020.

Jan Hosang, Rodrigo Benenson, and Bernt Schiele. Learning non-maximum suppression. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp. 4507–4515,
2017.

Jinhyun Jang, Jungin Park, Jin Kim, Hyeongjun Kwon, and Kwanghoon Sohn. Knowing where to
focus: Event-aware transformer for video grounding. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 13846–13856, 2023.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351,
2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kohitij Kar, Jonas Kubilius, Kailyn Schmidt, Elias B Issa, and James J DiCarlo. Evidence that
recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior.
Nature neuroscience, 22(6):974–983, 2019.

Soroush Abbasi Koohpayegani and Hamed Pirsiavash. Sima: Simple softmax-free attention for
vision transformers. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 2607–2617, 2024.

Jie Lei, Tamara L Berg, and Mohit Bansal. Detecting moments and highlights in videos via natural
language queries. Advances in Neural Information Processing Systems, 34:11846–11858, 2021.

Wenrui Li, Xiaopeng Hong, and Xiaopeng Fan. Spikemba: Multi-modal spiking saliency mamba
for temporal video grounding. arXiv preprint arXiv:2404.01174, 2024.

Renjie Liang, Yiming Yang, Hui Lu, and Li Li. Efficient temporal sentence grounding in videos
with multi-teacher knowledge distillation. arXiv preprint arXiv:2308.03725, 2023.

Kevin Qinghong Lin, Pengchuan Zhang, Joya Chen, Shraman Pramanick, Difei Gao, Alex Jin-
peng Wang, Rui Yan, and Mike Zheng Shou. Univtg: Towards unified video-language temporal
grounding. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
2794–2804, 2023.

Wu Liu, Tao Mei, Yongdong Zhang, Cherry Che, and Jiebo Luo. Multi-task deep visual-semantic
embedding for video thumbnail selection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 3707–3715, 2015.

Ye Liu, Siyuan Li, Yang Wu, Chang-Wen Chen, Ying Shan, and Xiaohu Qie. Umt: Unified multi-
modal transformers for joint video moment retrieval and highlight detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3042–3051, 2022.

Ye Liu, Jixuan He, Wanhua Li, Junsik Kim, Donglai Wei, Hanspeter Pfister, and Chang Wen
Chen. r̂2-tuning: Efficient image-to-video transfer learning for video temporal grounding. arXiv
preprint arXiv:2404.00801, 2024.

Kaijing Ma, Xianghao Zang, Zerun Feng, Han Fang, Chao Ban, Yuhan Wei, Zhongjiang He, Yongx-
iang Li, and Hao Sun. Llavilo: Boosting video moment retrieval via adapter-based multimodal
modeling. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
2798–2803, 2023.

WonJun Moon, Sangeek Hyun, SangUk Park, Dongchan Park, and Jae-Pil Heo. Query-dependent
video representation for moment retrieval and highlight detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23023–23033, 2023.

Jonghwan Mun, Minsu Cho, and Bohyung Han. Local-global video-text interactions for tempo-
ral grounding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10810–10819, 2020.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Michaela Regneri, Marcus Rohrbach, Dominikus Wetzel, Stefan Thater, Bernt Schiele, and Manfred
Pinkal. Grounding action descriptions in videos. Transactions of the Association for Computa-
tional Linguistics, 1:25–36, 2013.

Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio Savarese.
Generalized intersection over union: A metric and a loss for bounding box regression. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 658–666,
2019.

Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas, Michael Jones,
William Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay Gadepally. From words to watts:
Benchmarking the energy costs of large language model inference. In 2023 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), pp. 1–9. IEEE, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kai Shen, Junliang Guo, Xu Tan, Siliang Tang, Rui Wang, and Jiang Bian. A study on relu and
softmax in transformer. arXiv preprint arXiv:2302.06461, 2023.

Amar Shrestha, Haowen Fang, Zaidao Mei, Daniel Patrick Rider, Qing Wu, and Qinru Qiu. A survey
on neuromorphic computing: Models and hardware. IEEE Circuits and Systems Magazine, 22
(2):6–35, 2022.

Min Sun, Ali Farhadi, and Steve Seitz. Ranking domain-specific highlights by analyzing edited
videos. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part I 13, pp. 787–802. Springer, 2014.

Guangzhi Tang, Neelesh Kumar, and Konstantinos P. Michmizos. Reinforcement co-learning of
deep and spiking neural networks for energy-efficient mapless navigation with neuromorphic
hardware. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 6090–6097, 2020. doi: 10.1109/IROS45743.2020.9340948.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin. Distilling task-
specific knowledge from bert into simple neural networks. arXiv preprint arXiv:1903.12136,
2019.

Jonathan Timcheck, Sumit Bam Shrestha, Daniel Ben Dayan Rubin, Adam Kupryjanow, Garrick
Orchard, Lukasz Pindor, Timothy Shea, and Mike Davies. The intel neuromorphic dns challenge.
Neuromorphic Computing and Engineering, 3(3):034005, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language
models. arXiv preprint arXiv:2310.11453, 2023.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Yisen Wang, and Zhouchen Lin. Training feed-
back spiking neural networks by implicit differentiation on the equilibrium state. Advances in
Neural Information Processing Systems, 34:14516–14528, 2021.

Boxun Xu, Hejia Geng, Yuxuan Yin, and Peng Li. Ds2ta: Denoising spiking transformer with
attenuated spatiotemporal attention. arXiv preprint arXiv:2409.15375, 2024.

Kashu Yamazaki, Viet-Khoa Vo-Ho, Darshan Bulsara, and Ngan Le. Spiking neural networks and
their applications: A review. Brain Sciences, 12(7):863, 2022.

Songyang Zhang, Houwen Peng, Jianlong Fu, and Jiebo Luo. Learning 2d temporal adjacent net-
works for moment localization with natural language. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 12870–12877, 2020.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. arXiv preprint
arXiv:2209.15425, 2022.

Rui-Jie Zhu, Qihang Zhao, and Jason K Eshraghian. Spikegpt: Generative pre-trained language
model with spiking neural networks. arXiv preprint arXiv:2302.13939, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A EXTENDED ARCHITECTURE OVERVIEW

A.1 SPIKING TRANSFORMER: LAYER-WISE DETAILS

The Spiking Transformer layer primarily consists of a spiking multi-head attention (MHA) block,
followed by a spiking feedforward network comprising an intermediate layer and an output layer
with both inter- and intra-layer communication happening using spikes. Details of the operations in
each layer are provided below.

Spiking Attention Block: In Spiking MHA, to enable computationally efficient accumulate based
operations the input to the attention layer are spikes instead of real-valued data. The spiking attention
mechanism is given as follows,

Attn(Xs[t],Ks[t], Vs[t]) = ϕ(d ∗Q(Xs[t]) · (Ks[t])
T) · Vs(t) (10)

Here, Q(Xs(t)) represents the Query, obtained by passing the input spikes Xs(t) at time t through
a linear layer (WQ). The spikes for the Key layer (Ks(t)) are generated by passing Xs(t) through
a linear mapping (WK), followed by an LIF neuron layer. Similarly, we generate spikes for Value.
d is a scaling constant. Since the input, key, and value matrices consist of spike trains rather than
real-valued data, the primary computations in all matrix multiplications are floating-point accu-
mulation operations rather than floating point multiplicative and accumulative operations. In the
NF-SpikingVTG variant, as discussed in the paper, we use ϕ as the ReLU function, significantly re-
ducing the computational overhead compared to employing ϕ as the non-local Softmax operation.
The output of the attention layer is fed to an LIF neuron, which outputs spikes. The convergence
dynamics of the layer at equilibrium is given as, a∗attn = σ(1

Vth
(Attn(a∗x, a

∗
k, a

∗
v) + battn), where

ax represents the ASR of the layer used to generate the Query, ak denotes the ASR of the Key, and
a∗v corresponds to the ASR of the Value. battn is a bias term.

Intermediate Layer: The intermediate layer takes as input the spikes generated from the pre-
ceding layer and maps it to an intermediate dimension with a linear layer. The output is then
passed through an LIF layer. The convergence dynamics of the layer at equilibrium is given as,
a∗interm. = σ(1

Vth
(gelu(Winterm.a

∗
p) + binterm.)), where Winterm. is the linear weight and gelu()

is the activation used for the layer. a∗p is the ASR at equilibrium for the previous layer. binterm. is
a bias term. During inference, all matrix multiplications involve accumulative operations due to the
nature of the input.

1D
-C

onvolution

: IF Neurons

Final 1-D
 C

onvolution

COut = D COut = 1 for fi

Spiking Transform
er

O
utput

Repeat n
times

COut = 2 for di

Output

Figure 6: High-level overview of the spiking
decoder.

Output Layer: The output layer takes as input
the spikes generated from the preceding layers as
shown in Fig. 1. The output is then passed
through an LIF layer. The convergence dynamics
of the layer at equilibrium is given as, a∗output =

σ(1
Vth

(norm(Woutputa
∗
interm. + a∗p) + boutput)),

where Woutput is the linear weight and layer norm is
used for normalization. a∗interm. is the ASR at equi-
librium for the previous intermediate layer. boutput
is a bias term. During inference, all matrix multipli-
cations involve accumulative operations due to the
nature of the input. In the NF-SpikingVTG model
we further remove the layer normalization to im-
prove on-chip deployability.

A.2 SPIKING DECODER

As discussed in the main paper, the spiking decoder processes the output spikes from the spik-
ing transformer core by applying a series of 1D convolutions followed by Integrate-and-Fire (IF)
neurons. This setup predicts two parameters: the foreground indicator (fi) for each clip, and
di = [dsi , dei]. For fi, the final layer has a single output channel, and its temporal mean is passed
through a sigmoid activation to generate the prediction. For di, the final convolutional layer outputs
two channels, as illustrated in Fig. 6.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B LOSS FUNCTION DETAILS

As described in the main paper, the total loss over N clips in the training set is defined as L =
1
N

∑N
i=1 (Lfi + Ldi

+ Lci), where Lf represents the binary cross-entropy loss for the indicator
variable fi, Ld combines the smooth L1 loss with the generalized IoU loss Rezatofighi et al. (2019)
for the predicted boundaries, and Lc is an optional loss term incorporating intra- and inter-video
contrastive learning Chen et al. (2020). We follow similar loss function construction as previous
works on VTG Lei et al. (2021); Lin et al. (2023). The loss for fore-ground parameter is given as
follows,

Lf = −λf

[
fi log f̃i + (1− fi) log(1− f̃i)

]
(11)

where, fi is the true label and f̃i is the model prediction. The loss for predicted boundaries is given
as follows,

Ld = 1fi=1

(
λL1LSmoothL1(d̃i, di) + λiouLiou(b̃i, bi)

)
(12)

where, di, bi are the true label and d̃i, b̃i is the model prediction. Lc = λinterLinter + λintraLintra is
used for inter-video and intra video contranstive learning (Lin et al., 2023). For each video V , we
randomly select a clip vi with fore-ground indicator = 1 and positive saliency score. Clips from
the same video, denoted as vj , with saliency scores sj < si are treated as negative samples. i.e.,
A = {j | sj < si, 1 ≤ j ≤ Lv}, and perform intra-video contrastive learning using the loss

Lintra = − log
exp(s̃i/τ)

exp(s̃i/τ) +
∑

j∈A exp(s̃j/τ)
(13)

. Furthermore, we treat textual queries from other samples within the batch (k ∈ S) as negative
samples, enabling inter-video contrastive learning for cross-sample supervision:

Linter = − log
exp(s̃i/τ)∑

k∈S exp(s̃ki /τ)
(14)

, where S is the training batch, s̃ki = cos(vi,Mk) and Mk is the sentence representation (Eqn. 4)
and cos is cosine similarity.

C DATASET DETAILS

QVHighlights: The QVHighlights dataset Lei et al. (2021) stands out as the sole dataset providing
annotations for both moment retrieval and highlight detection, making it an excellent resource for
benchmarking on both the VTG tasks. Comprising 10,148 videos with an average duration of 150
seconds. It features a total of 10,310 queries linked to 18,367 moments, resulting in an average of 1.8
distinct moments per query within each video. The dataset spans a variety of scenarios, including
daily vlogs, travel vlogs, and news events.

D ADDITIONAL EXPERIMENTAL DETAILS

In this subsection, we provide a concise overview of the implementation details and provide addi-
tional experimental details. The GPU specifications for the experiments are detailed in the main
paper, while the CPU utilized is an AMD Ryzen Threadripper 3960X 24-Core Processor. We have
used Python and the PyTorch framework to write the code. The video and textual feature are devel-
oped following previous work (Lei et al., 2021; Lin et al., 2023). We have used the Adam optimizer
to train our model. We list the hyper-parameters used in the work in Table 4. We perform 20 epochs
of KD with operating time steps T = 50. The memory requirement is 25GB considering batch size
of 32 and QVHighlights dataset. The clock time for 20 epochs of KD on 1 NVIDIA RTX A6000
GPU with 48GB memory was around 2 hours.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Hyper-parameters Range Optimal
N : Encoder Layers (2-6) 4
D: Hidden Dimension (768-2048) 1024
n1: f -decoder depth (1-5) 3
k1: f -decoder kernel size (3-9) 3
n2: d-decoder depth (1-5) 3
k2: d-decoder kernel size (3-9) 7
TKD: Timesteps for KD (5-100) 50
Tf : Timesteps for Finetuning (5-50) 10
Vth: Threshold Potential (0.5 - 2.0) 1.0
γ: Leaky-factor (0.9 - 1.0) 0.99
λf :Lf co-efficient (1 - 20) 10
λL1 :LSmoothL1 co-efficient (1 - 20) 10
λintra :Lintra co-efficient (0 - 1.0) 0.05
λinter :Linter-co-efficient (0 - 1.0) 0.01
λiou :Liou co-efficient (1 - 20) 10
lr: Learning Rate (1e−5 − 1e−6) 8e−6

wd: weight decay (1e−5 − 1e−3) 1e−4

Batch Size (8-64) 32
Epochs: KD 10-50 20
Epochs: Finetuning 20-200 100

Table 4: Hyper-parameters of our SpikingVTG model w/SFG. Optimal values for QVHighlights
dataset is also shown.

Target Clip

Fs Greater for Nearby Clips

Figure 7: Heatmap showing the scores per
clip (Fs) at equilibrium, with the target frame
for highlight detection corresponding to clip
index 28.

Charades-STA: The Charades-STA dataset com-
prises 16,128 indoor videos, each with an average
duration of 30.6 seconds. It includes 12,408 query-
interval pairs designated for training and 3,720
query-interval pairs reserved for testing.

D.1 VISUALIZING SFG MECHANISM

As highlighted in Section. 3.2.3, the SFG mecha-
nism computes dynamic saliency score (F vi

s [t]), at
time t, for the i-th segment of the video. As shown
in Fig. 7, we analyze the scores at equilibrium to
gain insights into the functioning of the SFG enabled
multiplicative gating mechanism. The clips neigh-
boring the clip of interest (for highlight detection
task) show higher scores at equilibrium, highlight-
ing the effectiveness of the SFG mechanism.

D.2 COMPARING IMPLICIT
DIFFERENTIATION AT EQUILIBRIUM WITH BPTT

We were unable to train our model using BPTT due to its significantly higher memory demands
during training. For example, training our SpikingVTG model on the QVHighlights dataset re-
quires 25GB of memory with a batch size of 32 and 50 time steps for convergence (T). In contrast,
the memory requirement for training with BPTT exceeds 100GB, as it requires storing the entire
computational graph throughout the training process. Consequently, training the model with BPTT
is not feasible. This also underscores the advantage of the equilibrium-based training mechanism
employed in this work.

D.3 ADDITIONAL EXPERIMENTS

We perform additional experiments on TaCOS dataset Regneri et al. (2013) for moment retrieval
tasks and Youtube Highlights dataset Sun et al. (2014) for highlight detection tasks. We present the
results in Table 5 and 6.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: Performance comparison of our SpikingVTG models against non-spiking VTG solutions
on the evaluation set of TaCOS dataset.

Method TaCOS
@0.3 @0.5 @0.7 mIoU

UniVTG+PT 56.11 43.44 24.27 38.63
2D TAN 40.01 27.99 12.92 27.22
VSLNet 35.54 23.54 13.15 24.99
MDETR 37.97 24.67 11.97 25.49
UniVTG 51.44 34.97 17.35 33.60
SpikingVTG w/o SFG 52.83 37.39 20.03 34.17
SpikingVTG 54.32 39.16 21.78 35.78

Table 6: Performance comparison of our SpikingVTG model with SFG against non-spiking VTG
solutions on the evaluation set of Youtube Highlights dataset.

Method Youtube-HL
Dog Gym. Skating Skiing Avg

UniVTG+PT 74.3 79.0 84.9 75.1 78.6
QD-DETR 72.2 77.4 72.7 72.8 74.4
UniVTG 71.8 76.5 73.3 73.2 75.2
MINI-Net 58.2 61.7 72.2 58.7 64.4
Joint-VA 64.5 71.9 62.0 73.2 71.8
UMT 65.9 75.2 71.8 72.3 74.9
SpikeMba 74.4 75.4 74.3 75.5 75.5
SpikingVTG 73.9 78.1 80.1 74.2 76.6

D.4 ENERGY ANALYSIS

Let us walk through a specific example of analyzing the energy consumption for the 1-bit NF-
SpikingVTG model. Consider a single transformer encoder layer. As discussed in the main paper,
the computational cost of the layer for a non-spiking model is given by: EA = [3LD2 + (LD2 +
L2D) + LD2 + LD2] ∗ (4.6mJ). In our implementation, we use D = 1024 and lets consider
total sequence length L = 200. Thus we get energy cost of each block is 5.98mJ . Now, energy
cost per time step of our 1-bit NF-SpikingVTG is given as, ESt

= [(3 · IFRin · LD2) + (IFRk ·
LD2 + IFRv · L2D) + (IFRattn · LD2) + (IFRinterm. · LD2)] ∗ (0.1pJ). Empirically we find
IFRin = 0.40, IFRk = 0.18, IFRv = 0.19, IFRattn = 0.03, IFRinterm. = 0.09.

Thus ESt
= 0.03mJ resulting in ES = ESt

∗ T = .3mJ , where T = 10. Thus efficiency factor is
Ef = EA/ES = 19.93.

17

	Introduction
	Related Works
	Methodology
	Video Temporal Grounding (VTG)
	SpikingVTG: Architecture Overview
	Spiking Neural Networks
	Spiking Transformer Core
	Saliency Feedback Gating (SFG)
	Spiking Decoder

	Training Leveraging Convergence Dynamics
	Multi-Staged Training Pipeline
	Leveraging Knowledge Distillation (KD)
	Replacing Softmax and Removing Layer Normalization
	1-BIT weight quantized SpikingVTG

	Experimentation
	Experimental Details
	Results
	Ablation Study
	Analysis of Energy and Power Efficiency

	Conclusions
	Extended Architecture Overview
	Spiking Transformer: Layer-wise Details
	Spiking Decoder

	Loss Function Details
	Dataset Details
	Additional Experimental Details
	Visualizing SFG mechanism
	Comparing Implicit Differentiation at Equilibrium with BPTT
	Additional Experiments
	Energy Analysis

