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Abstract

Grounded language acquisition is a major area of research combining aspects of
natural language processing, computer vision, and signal processing, compounded
by domain issues requiring sample efficiency and other deployment constraints. In
this work, we present a multimodal dataset of RGB+depth objects with spoken as
well as textual descriptions. We analyze the differences between the two types of
descriptive language and our experiments demonstrate that the different modalities
affect learning. This will enable researchers studying the intersection of robotics,
NLP, and HCI to better investigate how the multiple modalities of image, depth,
text, speech, and transcription interact, as well as how differences in the vernacular
of these modalities impact results.

1 Introduction

Grounded language acquisition is the process of learning language as it relates to the world—how
concepts in language refer to objects, tasks, and environments [46]. Embodied language learning
specifically is a significant field of research in NLP, machine learning, and robotics. While there is
substantial current effort on learning grounded language for embodied agents [11, 28, 63], in this work
we describe learning from multiple modalities, including text, transcribed speech, and speech audio.

Text is a common input domain when learning grounded language, yet many systems use speech once
deployed [75]. In practice, embodied agents are likely to need to operate on imperfectly understood
spoken language. Speech-based assistive devices have gained significant popularity in the last few
years, representing perhaps the first widely deployed, communicative ‘embodied agents’ in human
environments. Spoken language is critical for interactions in physical contexts, despite the inherent
difficulties: spoken sentences tend to be less well framed than written text, with more disfluencies
and grammatical flaws [56].

There are many ways in which robots learn grounded language [12, 16, 30, 43, 73, 76, 80], but they
all require either multimodal data or natural language data—usually both. Current approaches to
grounded language learning require data in both the perceptual (“grounded”) and linguistic domains.
While existing datasets have been used for this purpose [16, 31, 33, 51, 74], the language component
is almost always derived from either textual input or manually transcribed speech [44, 73].

To that end, we present the Grounded Language Dataset (GOLD), which contains images of com-
mon household objects and their description in multiple formats: text, speech (audio), and speech
transcriptions (see fig. 1). The primary contributions of this paper are as follows:
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Figure 1: GOLD has RGB and depth point cloud images of 207 objects in 47 categories. It includes
16500 text and 16500 speech descriptions; all spoken descriptions include automatic transcriptions.

1. We provide a publicly available, multimodal, multi-labelled dataset of household objects,
with image+depth data and textual and spoken descriptions with automated transcription.

2. We show that learning language groundings from transcribed or raw speech performs
similarly to models trained on typed text, while allowing those descriptions to be provided
in a more natural, convenient way.

3. We demonstrate that the dataset poses a number of interesting research challenges including
identifying bias in speech processing from the unique perspective of language grounding.

2 Related Work

Language acquisition can be used for interactions with robots [2, 10, 43, 73]. On a robot, the grounded
language acquisition task has a number of uses. Retrieving objects based on their descriptions [52] is
a necessary component of caretaking and domestic robots. Grounding landmarks and instructions can
aid robots in navigation of novel spaces [73, 79]. [71] surveyed the many machine learning methods
used, possible applications, and the human-robotic interaction implications of grounded language
learning on a robotic platform.

Grounded language acquisition is in the unique position of requiring a dataset that combines sensory
perception with language. These combined datasets are frequently handcrafted for the specific task
that the research seeks to accomplish [12, 59], often leading to narrower applications. For example,
CLEVR [31] was designed as a benchmark for question answering tasks. Objects in CLEVR are
limited to a small set of attributes which in turn limits the types of questions in both syntax and
content. In comparison, GOLD contains more complex real-world objects and does not limit the
scope of the annotations to a fixed set of characteristics.

We note that the image component of GOLD is heavily influenced by the University of Washington
RGB-D dataset [35]. Both datasets contain large numbers of everyday objects from multiple angles.
Our dataset is collected with a now state of the art sensor which enables us to capture smaller objects
at a finer level of detail (such as an Allen key, the diameter of which pushes the limits of the depth
sensor when laid on the table). Additionally, we select objects based on their potential utility for
specific human-robot interaction scenarios, such as things a person might find in a medicine cabinet
or first aid kit, enabling learning research relevant to eldercare and emergency situations [8].

Creating a dataset that includes speech has a high cost of collecting and transcribing audio. [59]
presents a grounded language system that can generate descriptions for targets within a scene of
colored rectangles. The visual data for this task is easily generated, but speech descriptions were
recorded and transcribed over a long period of time. The manual audio transcription task can take
four to ten hours per hour of audio [21, 85]. Such perfectly transcribed audio is also unrealistic for
real-world usage, which must rely on automation. We acknowledge this challenge, and we evaluate
automatically-produced transcriptions for their quality. We also include the automatically-produced
transcriptions along with the raw audio.

Recent datasets that include speech such as Flickr Audio Captions [24], SpokenCOCO [29], SPEECH-
COCO [26], Synthetically Spoken COCO, Synthetically Spoken STAIR get around this by generating
spoken descriptions from the text captions provided by the Flickr8K, COCO [38], and STAIR [86]
datasets. Speech COCO, Synthetically Spoken COCO [15], and Synthetically Spoken STAIR [27]
generate their speech through text to speech systems while Flickr Audio Captions and SpokenCOCO
use crowdsourced workers. Places Audio Captions [25] which uses the MIT Places 205 Database [87]
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Table 1: Classes of objects in GOLD.
Topic Classes of Objects

food potato, soda bottle, water bottle, apple, banana, bell pepper, food can, food jar,
lemon, lime, onion

home book, can opener, eye glasses, fork, shampoo, sponge, spoon, toothbrush, tooth-
paste, bowl, cap, cell phone, coffee mug, hand towel, tissue box, plate

medical band aid, gauze, medicine bottle, pill cutter, prescription medicine bottle, syringe
office mouse, pencil, picture frame, scissors, stapler, marker, notebook
tool Allen wrench, hammer, measuring tape, pliers, screwdriver, lightbulb

is the only other dataset in this area where the speech is collected directly from the spoken descriptions
of crowd workers, however the descriptions are of all the salient objects in an image instead of a
single object. All these datasets also only contain color images while GOLD extends this to include
depth images and pointclouds.

In our work we adopt the manifold alignment model form [49] which is similar to [52]. The latter
trained a grounded language model in order to retrieve objects with a robotic arm from natural
language descriptions. The robot learned the functionality of objects through text data gathered from
Wikipedia.

Embodied approaches [2, 72] are important for collecting multimodal data on robotic platforms. [77]
created a robot that learned from both language and sensed traits including the visual, proprioceptive,
and auditory characteristics of objects. However, the language was used only to identify named
objects. [4] developed a robot that memorized which objects it had seen before by combining
multimodal data about the object including visual, haptic, and researcher provided linguistic percepts.

Recently, manifold alignment has been used and outperformed traditional classification methods,
particularly for grounded language tasks [9, 49, 52]. One particular benefit of manifold alignment is
that it enables arbitrary embeddings to be used and aligned. In contrast to prior grounding approaches,
these embeddings do not have to be restricted to individual words, and instead can be computed for an
entire input (e.g., utterance). As a result, we use grounded language manifold alignment techniques
to experimentally validate GOLD.

3 GOLD: The Grounded Language Dataset

GOLD is a collection of visual and English natural language data in five high-level group-
ings: food, home, medical, office, and tools. In these groups, 47 object classes (see ta-
ble 1) contain 207 individual object instances. The dataset contains vision and depth im-
ages of each object from 450 different rotational views. From these, four representative
‘keyframe’ images were selected. These representative images were used to collect 16500
textual and 16500 spoken descriptions. The dataset contents are summarized in table 2.

Table 2: Components of GOLD.

Categories
(e.g., medicine) 5 Images

(vision + depth) 825

Classes (e.g., apple) 47 Text descriptions 16500
Object instances
(e.g., apple_3) 207 Spoken descriptions 16500

Visual inputs were collected by rotating ob-
jects on a turntable in front of a commod-
ity RGB-D (RGB + depth) video camera, as
in [35]). For each object, four keyframes
were manually selected to capture represen-
tative, diverse view angles of each object.
Amazon Mechanical Turk workers were shown all four images and asked to provide either spoken or
typed descriptions.

3.1 Vision + Depth Data Collection

Visual perception data were collected using a Microsoft Azure Kinect (i.e.., a Kinect 3), a low-cost,
high-fidelity commodity sensor that is widely used in robotics. For each object instance (i.e., for each
of the four staplers in the dataset), this sensor was used to collect raw image and point cloud videos.
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(a) Apple image frame. (b) Apple point cloud. (c) Hammer image frame. (d) Hammer point cloud.

Figure 2: Samples showing keyframes in GOLD, along with the aligned 3D point cloud with depth
information. Only the RGB image was shown to labelers.

The resulting dataset contains 207 90-second depth videos, one per instance, showing the object
performing one complete rotation on a turntable. To ensure that each object has diverse views, e.g.,
examples of a mug with the handle occluded and visible, we manually selected 825 pairs of image
and depth point cloud from 207 objects as representative frames, which we refer to as keyframes
(examples are shown in fig. 2).

Manually selecting keyframes avoids a known problem with many visual datasets: their tendency
to show pictures of objects taken from a limited set of ‘typical’ angles [7]. For example, it is rare
for a picture of a banana to be taken end-on. This aligns with our motivation of creating a dataset of
household objects to support research on grounded language learning in an unstaged environment, as
a robot looking at an object in a home may not see this typical view.

3.2 Text and Speech Description Collection

Quality Value Count
Perceived Gender Men 271

Women 274
Undet. 7

Accent Yes 279
No 273

Creak Yes 194
No 358

Hoarseness Yes 48
No 504

Muffledness 1 393
2 119
3 40

Volume 1 10
2 157
3 331
4 54

Background Noise 1 366
2 143
3 39
4 4

Table 3: Number of workers la-
beled with each characteristic.

All descriptions were collected using Amazon Mechanical Turk
(AMT).2 Keyframes for randomly-chosen object instances were
shown to the worker. They were asked to either type descriptions
of objects in one or two short, complete sentences, or record
descriptions using a microphone.

Collected speech was transcribed using Google’s Speech to Text
API, resulting in a spoken-language corpus of 16500 verbal de-
scriptions. It should be noted that, although Mechanical Turk does
not provide personally identifiable information about workers, it
is possible that users may be identified by their voice or other side-
channel information. For this reason, all collected language is
limited to factual descriptions of simple household objects, and no
value judgments, opinions, or emotional or potentially damaging
subjects are discussed.

3.2.1 Speaker Voice Qualities

We collected spoken descriptions from 552 Amazon Mechanical
Turk workers. We labeled each of these workers based on per-
ceived gender (man, woman, or undetermined),3 accent (whether
the speaker has a non-mid-American accent), creak (whether the
user has a raspy, low-register voice), hoarseness (whether the
speaker has a strained, breathy voice), muffled-ness (the level of distortion of the user’s microphone,
1 to 3), volume (1 to 4), and level of background noise (1 to 4). Section 3.2 shows the number of
workers to whom each label has been attributed.

We intend for this data to be used as a test-bed for bias studies and other research into the performance
of grounding models for different sub-populations. For example, a pilot study on this data has shown
that accented users are particularly affected by the bias of speech-to-text models and that learning
directly from raw speech can mitigate this bias.

2See Ethical Considerations section, appendix.
3Gender and sex are complex constructs. We asked annotators to choose the category that seemed to ‘best

describe’ the speaker, but acknowledge the limitations of this approach.
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3.2.2 Accuracy of Speech Transcriptions

Obtaining accurate transcriptions of speech in sometimes noisy environments is a significant obstacle
to speech-based interfaces [37]. To understand the degree to which learning is affected by ASR errors,
250 randomly selected transcriptions were manually evaluated on a 4-point scale (see table 4). Of
those, 80% are high quality (‘perfect’ or ‘pretty good’), while only 11% are rated ‘unusable.’

Table 4: Human ratings of 250 automatic transcrip-
tions. These ratings are designed strictly to assess the
accuracy of the transcription, not the correctness of
the spoken description with respect to the described
object.

Rating Transcription Quality Guidelines #

1 wrong or gibberish / unusable sound file 28
2 slightly wrong (missing keywords / concepts) 21
3 pretty good (main object correctly defined) 33
4 perfect (accurate transcription and no errors) 168

To get a more detailed understanding of tran-
scription accuracy, we compare the ASR
transcriptions and the human-provided tran-
scriptions using the standard word error rate
(WER) [55] and Bilingual Evaluation Un-
derstudy (BLEU) [54] scores. BLEU scores
are widely used to measure the accuracy of
language translations based on string simi-
larity; we adopt this system to evaluate the
goodness of transcriptions. BLEU is calcu-
lated by finding n-gram overlaps between
machine translation and reference transla-
tions. We use tri-grams for our BLEU scores since some descriptions are shorter than four words
such as “these are pliers”, rendering a 4-gram BLEU score meaningless.

Figure 3 shows that many of the 250 manually transcribed descriptions were perfectly transcribed
by automated speech-to-text. The marginal BLEU histogram shows more mistaken transcriptions
(the second peak around 0) due to known problems with using BLEU to evaluate short sentences and
tokens having mismatched capitalization or punctuation.

3.3 Comparative Analysis
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Figure 3: BLEU-3 and WER scores for 250
randomly selected speech transcriptions. A
WER of 0 and a BLEU of 1 (top left corner)
indicates perfect transcription. Marginal his-
tograms show that some descriptions were per-
fectly transcribed.

Our initial hypothesis was that people would use
more words when describing objects verbally than
when typing, as it is lower effort to talk than to
type. Accordingly, We find spoken descriptions
to be slightly longer than their textual counterparts
(p ≥ 13.71 using a Welch’s t-test) While speech has
more average words per description, 11.7, compared
to text at 10.46, when stop words are removed the
averages are 6.1 and 5.89 respectively. The larger
mean drop in the speech descriptions is likely due
to the tendency of ASR systems to interpret noise or
murmur utterances as filler words, the inclusion of
which has been shown to detract from meaning [68].
Text descriptions are a more consistent length than
speech, with a standard deviation of 6.7 words for
text, versus 9.51 for transcribed speech. When we remove stop words, the standard deviation is 3.63
for text and 4.69 for speech.

Table 5 shows the top 20 most frequent words in both modalities. There is substantial overlap, as
expected, since the same objects are being described, with colors dominating the lists. People use
more filler words when describing the objects using speech; for example, the word ‘like’ appears 889
times in speech data whereas it was not significant in the text data.

Using the Stanford Part-of-Speech Tagger [78] to count the number of nouns, adjectives, and verbs
between the two modalities yields no significant differences between the modalities. However, the
word ‘used’ appears frequently (see table 5), typically to describe functionality. Developing grounded
language models around functionality for the analysis of affordances in objects [52] is an important
research avenue that our dataset enables, which is not possible in prior datasets that do not contain
the requisite modalities.

3.4 Dataset Distribution
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Table 5: Top 20 most frequently used words in text
(left) and speech (right) by percentage of occur-
rence in descriptions.

Token % Frequency

black 13.24
white 10.66
blue 9.97

bottle 9.50
red 9.45

yellow 9.02
object 7.99
small 6.44
green 5.82
pair 5.27
used 5.21

handle 4.58
plastic 4.40
silver 3.88
box 3.69
label 2.92
metal 2.79
pink 2.66
light 2.44

scissors 2.43

Token % Frequency

black 13.92
white 12.85
blue 10.23
red 9.13

yellow 8.97
bottle 8.50
small 7.96
used 7.21

object 6.41
green 5.85
plastic 5.30
color 5.22

handle 4.85
like 4.62

looks 3.99
silver 3.66

turntable 3.33
pair 3.32
box 3.21
label 3.01

The data is publicly available as a GitHub repos-
itory4. The repository contains three high-level
datatypes: perception and language. The percep-
tual data is split into RGB-D images and depth
data in the form of point clouds [60]. Each of
these sets of data is subdivided by object class
(e.g., “apple”) and then further by instance (e.g.,
“apple #4”). The language is subdivided simi-
larly, and for each object instance contains mul-
tiple speech descriptions (as .wav files) along
with ASR transcriptions of that speech. Each
instance also has multiple associated typed de-
scriptions, which are not related to the spoken
descriptions—they were provided by different
workers at a separate time.

Each description of an instance also includes as-
sociated meta-data describing the data collection
process. This includes: (1) a numeric identifier
for the worker who provided each description;
(2) the amount of time each description took to
provide; and (3) the ground-truth category and
instance label for each object.

4 Experiments

GOLD is designed to enable multiple research directions. In our evaluation we will demonstrate initial
baseline results for classification, retrieval, and speech recognition tasks that are enabled by GOLD.
Each experiment will combine the RGB+depth images with one of the three language domains: text,
transcribed speech, and speech audio. We also perform a fourth learning experiment on a combination
of text and transcribed speech to test how the combination of the two might boost learning. In each
case the goal is to learn how to ground the unconstrained natural language descriptions of objects
with their associated visual percepts of color and depth. This allows research investigating the impact
of information lost via reductions from raw speech, to text, to noisier ASR text. The textual inputs
naturally lack the inflection and tonal characteristics that will be critical for user interaction with a
robot, but not easily studied with current datasets. Since speech is a natural mode of communication
for humans, and information such as inflection are lost after transcription, we would like to move in a
direction where speech audio is the primary input into our models, forgoing transcription entirely.

Figure 4: A high-level view of a manifold
alignment model. Vision and language do-
mains are embedded into a shared lower
dimensional space. Pairs of vision and text
are aligned to be closer to each other within
the embedded space.

Manifold Alignment. As noted in section 2, we use
manifold alignment [3, 82, 83] with triplet loss [6, 49]
to embed the visual percepts and language data from
GOLD into a shared lower dimensional space. Within
this space, a distance metric is applied to embedded
feature vectors in order to tell how well a particular
utterance describes an image, with shorter distances
implying a better description. The manifold alignment
model is shown in fig. 4.

For example, a picture of a lemon and the description
“The object is small and round. It is bright yellow and
edible.” should be closer together in the embedded
space than the same picture of a lemon and the unrelated description “This tool is used to drive nails
into wood,” since the latter description was used to describe a hammer. Through this technique, even
novel vision or language inputs should be aligned, meaning that a new or different description of a
lemon should still be closely aligned in the embedded space. We would additionally expect other
similar objects, such as an orange, to be described in a somewhat similar way, allowing for potential
future learning of categorical information.

4https://github.com/iral-lab/gold
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Vision. The vision feature vectors are created following the work of [20] and [58]. Color and depth
images are passed through CNNs that have been pretrained on ImageNet [17] with the prediction
layer removed so that the final layer is a learned feature vector. Depth images are “colorized” to
enable classification re-using the same network [58]. The two vectors, one from color and one from
depth, are concatenated into a 4096-dimensional visual feature vector.

Text and Speech Transcriptions. The language features of text and transcribed speech data are
extracted using BERT [18]. Each natural language description is fed to a BERT pretrained model.
We obtain the final embedding by concatenating the last four hidden layers of BERT. The resulting
3072-dimensional vector is taken as the description’s language feature vector and associated to the
visual feature vector of the frame it describes.

Speech. Self supervised pretrained models inspired by NLP methods have recently shown success
in speech representation. We use wav2vec 2.0 [5], a self-supervised speech model that learns over
continuous representations of raw speech through a BERT [18] inspired masked language modeling
task. Similarly to the text featurization, features are then learned by performing average-pooling over
the concatenation of the last four layers of the transformer.

To evaluate the benefit of using a pre-trained model, we also consider 40 dimensional Mel-frequency
cepstral coefficient (MFCC) features [47] that are extracted from the raw audio with a 10 ms frame
shift. Due to the lower-dimensional nature of MFCCs, the language network is modified to include
a Long Short-Term Memory (LSTM) network. 64-dimensional outputs from the final 32 hidden
states [13] are concatenated together to form a fixed length 2048-dimensional speech vector which are
passed to a fully connected layer and output into the same embedded dimension as the visual network.

Triplet Loss. The triplet loss function [6, 62] uses one training example as an “anchor” and two
more points, one of which is in the same class as the anchor (the positive), and one which is not (the
negative). For example, while classifying tools the anchor might be a hammer, the positive would be
a different hammer, and the negative would be a screwdriver. The loss function then encourages the
network to align the anchor and positive in the embedded space while repelling the anchor and the
negative. In order to align the networks to each other and keep each network internally consistent, the
anchor, positive, and negative instances are chosen randomly (balanced across cases) from either the
vision or language domains at training time.

For anchors (A), positive instances (P ), and negative instances (N ), we compute embeddings of
these points, then compute triplet loss in the standard fashion with a default margin α = 0.4 [62]
where f is the relevant model for the domain of the input:

L = max(0, ‖f(A)− f(P )‖2 − ‖f(A)− f(N)‖2 + α) (1)

Training. Five models are trained from the data. Each combines the visual data with a different
language domain out of text, transcribed speech, text + transcribed speech, and speech audio. Vision
data are matched with language data by their instance names and approximately 80% is reserved
for training, 10% for validation and 10% for testing for a total of 13,040 text and speech training
examples.

The models are trained with the ADAM optimizer on a 20GB Quadro RTX 6000 GPU. Each model
is trained for a different number of epochs to balance for the variation in size of the training sets.
Text, transcribed speech and speech are trained for 300, and the combined text and transcribed speech
model is trained for 150 epochs. Each model outputs into a 1024-dimensional embedded space.

5 Evaluation

A held out testing set containing at least one of each object class is used for evaluation. A given
image can only appear in one of the training and testing sets. We have found that the manifold
alignment approach does not perform well on unseen object classes. We evaluate the models in two
ways. We calculate the precision, recall, and F1 metrics by classifying based on the proximity to a
target embedded datum. This method is further explained in Section 5.1. Finally, we calculate the
Mean Reciprocal Rank (MRR) of two mock object retrieval tasks.

7



5.1 Grounded Language as Classification
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Figure 5: Precision, recall, and F1 on the validation
set as a function of the threshold for classification for
a combination of text and transcribed speech (peak
F1=0.93). Graphs for pure text and pure speech show
a very similar shape, reaching peak F1 of 0.91 and
0.94 respectively.

The manifold alignment models we employ
from [49] do not output a binary yes/no clas-
sification. Instead, classification is based on
the proximity within the embedded space.
This raises the question of how to define
when two embedded vectors are “close”
enough to be classified as related. To test
this, we normalize the distances within our
validation set to be between 0 and 1 by di-
viding the cosine distance by 2. Given a
distance threshold between 0 and 1, we then
classify positive instances as being within
the threshold distance and negative instances
as being outside the threshold. We then cal-
culate the precision, recall, and F1 measure
on our testing data as a function of the thresh-
old. The F1 score at different thresholds for
the combined text and speech transcription
model can be seen in section 5.1.

We see the best F1 results on the validation
set with thresholds in the range [0.35, 0.45].
When those thresholds are applied to the testing set, the F1 for the text, transcribed speech, and
combined models are .84, .94, and .92, respectively as shown in Table 6.

5.2 Grounded Language as Retrieval

Table 6: Mean Reciprocal Rank and F1 score on the testing set for
models trained on Text and Speech descriptions over 5 runs. Triplet
MRR is calculated from a query of the target and a positively and
negatively associated test data point. Subset MRR is calculated from
the target and a subset of four random test data points. The F1 score is
calculated using the optimal threshold for each model.

Model F1 score Triplet MRR Subset MRR
Text 300 epochs 0.84 0.85 0.89

Transcribed Speech 300 epochs 0.94 0.87 0.96

T + TS 150 epochs 0.92 0.87 0.94
(Test on T) - 0.87 0.96

(Test on TS) - 0.87 0.94

wav2vec 2.0 300 epochs 0.83 0.85 0.86

MFCC + LSTM 300 epochs 0.67 0.69 0.49

Random Baseline - 0.61 0.46

The Mean Reciprocal Rank
(MRR) is calculated by find-
ing the distance of an em-
bedded query vector to a
list of possible embedded
query response vectors, or-
dering them by cosine dis-
tance, and finding the rank
of the target instance in
the ordered list. The re-
ciprocals of these ranks are
summed over the testing set
and then averaged by the
number of testing examples.
When the number of testing
examples is very high, the
MRR can quickly approach
zero even when the rank of
the instance near the top of query responses, rendering the metric difficult to interpret. To counteract
this and to evaluate our model on a scenario that is more realistic to what it might be used for, such as
object retrieval, instead of ranking the entire testing set we rank a select few instances. Our Triplet
MRR metric is calculated from a triplet of the target, positive, and negative instances and the Subset
MRR is calculated from a subset of the target and four other randomly selected instances.

The combined “T + TS” model is evaluated three separate times. First, it is tested individually on held-
out sets where L is drawn first from text, then from speech. It is then evaluated on the combination of
the two held-out sets. From our F1 evaluation, the transcribed speech model performs better than the
other models, including the text model. These results seem to indicate that, despite potential errors in
the transcription process, spoken input may be more linguistically meaningful than typed input. In all
testing scenarios, there is little difference between the transcribed speech model and the combined
text and transcription model.
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All of our models perform better on the Subset MRR task than the Triplet MRR. This is likely due to
the fact that the Subset MRR task does not intentionally contain a distracting positive instance. In a
realistic environment, a robot could be faced with cluttered scenes with many distracting instances,
both positive and negative, that it would need to distinguish between.
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Figure 6: Threshold classification results for the
speech models on the validation set. The wav2vec 2.0
model achieves a peak of 0.85 while the mfcc model
stagnates at 0.66.

We train two models for grounding speech
to images using manifold alignment. The
first one uses the wav2vec 2.0 [5] represen-
tations as speech features and the second
one uses MFCCs. We train both models
for 300 epochs. The wav2vec 2.0 model
achieves comparable performance to the
model trained on transcribed speech on the
Triplet MRR, showcasing that the speech
data in our dataset is suitable for direct
grounding of speech. However, the Subset
MRR results show that there is a gap in per-
formance between the two modalities.

The MFCC model did not learn much. Fig-
ure 6 shows that the model achieves peak
performance when the threshold is 1, classifying every pair as positive. The MRR results for the
MFCC model in table 6 tell the same story with the model performing similarly to the random base-
line. These results indicate that leveraging the semantic information learned by highly pretrained
models such as wav2vec 2.0 significantly improves the quality of our grounding.

6 Conclusion

We introduced a new dataset that has four modalities of input (text, speech, RGB and depth) and
allows us to tackle new challenges in grounded language learning such as learning directly from
speech audio. Our investigation of the dataset establishes the quality of the data. Specifically we
showed the feasibility of learning from typed text, transcriptions and raw speech. We also showed
that the difference between the results of learning from typed or spoken descriptions is marginal. Our
introduced baseline results show utility of the modalities and room for future methods to address
issues not handled by current tools.
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