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ABSTRACT

Neural Radiance Fields (NeRF) have significantly advanced the field of novel
view synthesis, yet their generalization across diverse scenes and conditions re-
mains challenging. Addressing this, we propose the integration of a novel brain-
inspired normalization technique Neural Generalization (NeuGen) into leading
NeRF architectures which include MVSNeRF and GeoNeRF. NeuGen extracts
the domain-invariant features, thereby enhancing the models’ generalization ca-
pabilities. It can be seamlessly integrated into NeRF architectures and cultivates a
comprehensive feature set that significantly improves accuracy and robustness in
image rendering. Through this integration, NeuGen shows improved performance
on benchmarks on diverse datasets across state-of-the-art NeRF architectures, en-
abling them to generalize better across varied scenes. Our comprehensive evalu-
ations, both quantitative and qualitative, confirm that our approach not only sur-
passes existing models in generalizability but also markedly improves rendering
quality. Our work exemplifies the potential of merging neuroscientific principles
with deep learning frameworks, setting a new precedent for enhanced generaliz-
ability and efficiency in novel view synthesis. A demo of our study is available at
https://neugennerf.github.io.

1 INTRODUCTION

The problem of novel view synthesis in computer vision and graphics has caught the attention of
researchers in recent years. The ability to generate previously unseen perspectives of an object or
scene is not just a technical challenge but a gateway to transformative applications in virtual reality,
3D modeling, and beyond. While the potential is vast, the problem is intricate: Given a set of images,
along with their camera pose, the goal is to render photo-realistic images of the scene through
novel viewpoints that accurately represent the actual scene. Recently, differential neural rendering
methods, such as Neural Radiance Fields (NeRF) (35) and others (57; 31; 29; 27) have showcased
the potential of deep learning techniques in producing high-fidelity reconstructions from input views.
By representing scenes as continuous volumetric scene functions, methodologies like NeRF have set
new benchmarks in the field, enabling the synthesis of intricate scenes with remarkable accuracy.
However, as with many cutting-edge solutions, there are nuances to consider. The bottleneck of long
per-scene optimization limits the practicality of these methods. Many works (55; 5; 16) propose
different architectures to overcome the issue, but we believe that data representation techniques can
be adopted to optimize the generalizability of NeRFs. Specifically, we take inspiration from the
mammalian brain on how it perceives different visual stimuli. Much work has been done on how
the mammalian visual cortex encodes visual data (20; 22). Building on the foundation of brain-
inspired computational models and the challenges inherent in novel view synthesis, in this work, we
present two major contributions to the field of computer vision and novel view synthesis, described
as follows:

1. Introducing NeuGen (Neural Generalization), a neuro-inspired layer, that draws on the
neural signal regulation mechanisms found in the mammalian visual cortex, tailored for
enhancing domain generalization in NeRFs.

2. Through NeuGen, we offer a novel data representation approach that captures high-
frequency, domain-invariant features, significantly enhancing the view synthesis capabili-
ties of NeRFs.
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Figure 1: Block diagram of the proposed methodology: The figure shows the comprehensive
overview of our domain-invariant data representation pipeline. The original images (I) are first
partitioned into patches and then processed by each layer in the pipeline, as shown by the equa-
tions. The output after processing from all the blocks of the NeuGen layer is a NeuGen image
(IG). The inspiration for this approach is taken from the mammalian visual cortex, which simi-
larly interprets scenes. The next step merges NeuGen images with the original images, producing
NeuGen-enhanced images (IE), contributing to better feature extraction for input to NeRF. The
right part of the figure illustrates the volumetric rendering step, a fundamental process shared by
all NeRF methods like MVSNeRF (5) and GeoNeRF (16). However, it is essential to note that the
specific details and implementations of feature volume vary with each architecture, tailored to their
unique enhancements and optimization strategies.

2 RELATED WORK

Neural scene representations: Representing the geometry and appearance of a 3D scene from
2D images has been a promising direction for researchers in recent years. Earlier methods
(1; 12; 15; 37; 38) demonstrated Multi-Layered Perceptrons’ (MLP) ability to implicitly rep-
resent shapes, where the weight of the network maps continuous spatial coordinates to either
occupancy or signed distance values. Improvements in differentiable rendering methods paved
the way for advancements in neural scene representations where multi-view observations were
used to learn the geometric and appearance details. One method that drove more innovations
in this domain was NeRF (35). The NeRF method is proposed to optimize a continuous 5D
neural radiance field. It combines MLPs with differentiable volume rendering and achieves
photo-realistic view synthesis. NeRF opened up many research frontiers in neural rendering such
as dynamic view synthesis (26; 39), relighting (8; 2), real-time rendering (54), pose estimation
(32), and editing (52; 6). However, a significant constraint with NeRF and the following methods
is that it needs to be optimized for each scene, which requires extensive time to produce good results.

Domain generalization in NeRFs: Researchers have focused on proposing novel architectures
to tackle the problem of per-scene optimization. GRF (46), pixelNeRF (55), and MINE (23)
tried to render novel views with a limited number of source views, but their ability to adapt to
unseen challenging scenes remained limited. Later, IBRNet (49) was introduced, which draws
inspiration from both Image-based rendering (IBR) and NeRF, along with novel ray transformers
that aggregate and blend information from multiple views and incorporate more long-range context
along the ray. More recently, MuRF (53) proposed a multi-baseline radiance field approach that
handles both small and large baseline settings through a target view frustum volume representation
and CNN-based decoder. Apart from this, MVSNeRF (5) and GeoNeRF (16) methods have been
proposed that build cost volumes from 2D image features, which are eventually used to construct
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radiance fields. MVSNeRF, more specifically, constructs a neural encoding volume from a low-cost
volume that helps achieve better generalised results. GeoNeRF constructs feature volumes at
multiple resolutions to capture and use more refined features. While these methods are currently
state-of-the-art, they struggle with homogenous and shiny geometry and thin structures in the scene.

Biologically-inspired techniques: The field of computer vision has been profoundly shaped
by insights drawn from the brain’s complex mechanisms. Hierarchical models, mirroring the
layered processing of the visual cortex, have unlocked new perspectives in object recognition (44).
With its foundation in neural network architectures inspired by neural processes, deep learning
has catalyzed significant computational vision breakthroughs (24; 20; 48). Techniques such as
residual learning and deeper convolutions, though not exact replicas of neural processes are guided
by the fundamental principles of neural functioning. This ongoing integration of brain-inspired
methodologies has been pivotal across the computational vision landscape. Notable efforts include
the computational modeling of the brain’s central visual system (11) and investigations into the
recurrent connections of the visual cortex (20) among others (44; 25). These efforts have signifi-
cantly enhanced computational tasks and deepened our comprehension of the relationship between
biological vision and computational methodologies (3; 22; 40; 42; 17). Despite their innovative
design and theoretical promise, these models often encounter challenges when benchmarked against
real-world datasets.

Our proposed approach is data-centric; instead of changing the architecture of the existing methods
that use spatial features as a core part of their methodology, we present a brain-inspired feature-
enhancing technique that captures high-frequency domain-invariant features from input source im-
ages and ultimately improves the performance of generalized NeRF models on challenging scenes.

3 NEUGEN: NEURAL GENERALIZATION

We introduce a novel neuro-inspired layer called Neural Generalization (NeuGen), designed to cap-
ture the neural signal regulation characteristics of certain excitatory neurons in the mammalian visual
cortex (56; 4; 41; 9). These neurons are distinguished by their ability to intricately encode con-
trasting elements and structural nuances of visual stimuli, with variable firing sequences that align
closely with variations in visual contrast. By emulating this capability, NeuGen produces refined
and contextually aware representations, which are particularly beneficial for scene reconstruction
tasks requiring adaptability and a nuanced understanding of visual inputs. NeuGen implements
three key mechanisms inspired by the visual cortex’s contrast processing: patch-based processing
analogous to neural receptive fields, local contrast normalization reflecting neural adaptation, and
multi-scale feature integration similar to hierarchical visual processing. This biologically inspired
design enables robust feature extraction that remains consistent across varying domains and viewing
conditions. We integrate this process into deep learning models as a preprocessing layer using a
high-level mathematical formulation that mimics these biological mechanisms.

To mathematically implement NeuGen, we process an input image I ∈ RW×H×C , where W , H ,
and C represent its width, height, and channel count, respectively. Our goal is to form a domain-
independent representation, denoted as IG. The image I is segmented into patches of size s, repre-
sented as P = {ps1 , ps2 , . . . , psn}, where each patch p of size s encircles a pixel k at coordinates
i, j including all channels. For each patch, its mean µps

and standard deviation σps
are calculated

to construct IG:

1. Mean and Standard Deviation for each ps:

σps
=

(
1
s2

∑
i,j∈p,s(kij − µps)

2
)1/2

, µps = 1
s2

∑
i,j∈p,s kij

2. Domain-independent Representation, IG:
z = max{σps1

, σps2
, . . . , σpsn

} , IG =
σps

z

By leveraging the standard deviation, σps
, NeuGen emphasizes the contrast of local features within

each patch, leading to the formation of a domain-independent representation, IG. This represen-
tation is achieved by normalizing the standard deviations of patches across the image to highlight

3
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SSIM: 0.61, SIFT: 8

SSIM: 0.64, SIFT: 36

SSIM: 0.70, SIFT: 31

SSIM: 0.63, SIFT: 68

SSIM: 0.64, SIFT: 14

SSIM: 0.65, SIFT: 40

SSIM: 0.77, SIFT: 40

SSIM: 0.67, SIFT: 75

SSIM: 0.48, SIFT: 5

SSIM: 0.33, SIFT: 4

SSIM: 0.45, SIFT: 65

SSIM: 0.31, SIFT: 7

SSIM: 0.62, SIFT: 16

SSIM: 0.54, SIFT: 7

SSIM: 0.53, SIFT: 80

SSIM: 0.42, SIFT: 14

SSIM: 0.35, SIFT: 103

SSIM: 0.41, SIFT: 70

SSIM: 0.42, SIFT: 33

SSIM: 0.20, SIFT: 21

SSIM: 0.56, SIFT: 120

SSIM: 0.46, SIFT: 78

SSIM: 0.45, SIFT: 40

SSIM: 0.35, SIFT: 22

A. Qualitative performance representation using SSIM and SIFT metrics with our technique on Realistic Synthetic, DTU and LLFF datasets

 B. Performance boost with our technique in Realistic Synthetic dataset C. Performance boost with our technique in LLFF dataset

D. Performance boost with our technique in DTU dataset

Figure 2: Feature enhancement with NeuGen across datasets. The top images (A) from left to right
illustrate samples from the Realistic Synthetic (35), DTU (14), and LLFF (33) datasets, respec-
tively, paired with their NeuGen versions. The NeuGen images result in notably higher SSIM scores
and a greater count of SIFT feature matches, signifying improved feature detection. The graphs
below (B,C,D) detail these improvements: each dot represents the average SSIM score between one
reference image and the rest within a category, while the overlaying lines trace the general pattern
of quality enhancement—yellow for the original and purple for NeuGen mages — demonstrating
NeuGen’s consistent efficacy in feature emphasis across all 3 datasets.

contrast without bias towards specific domain characteristics. The domain-independent representa-
tion IG showcases the contrast normalization capability of NeuGen, making feature extractors in
NeRFs more flexible across various domains without a strong inclination towards specific domain-
related features. The concept of “domain-independent” highlights the NeuGen layer’s capability
to process the input image I in a way that is not constrained to a specific domain or task, thereby
augmenting the model’s generalizability. This property is qualitatively shown in Figure 2 (A) and
is discussed in detail in section 6.1.

4 NERF ARCHITECTURES

To demonstrate how NeuGen boosts the performance of generalized NeRFs, we choose two state-
of-the-art methods: MVSNeRF (5) and GeoNeRF (16). Both methods follow the classical volume
rendering from the vanilla NeRF (34) architecture and have proven to perform well in benchmark
tests against other architectures, demonstrating superior generalization across different scenes; This
rationale firmly establishes them as prime candidates for our experimental analysis.

A NeRF encodes a scene as a continuous volumetric radiance field f of color and density. Specif-
ically, for a 3D point x ∈ R3 and viewing direction unit vector d ∈ R3, f returns a differential
density σ and RGB color c: f(x, d) = (σ, c).

The volumetric radiance field can then be rendered into a 2D image via:

4
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Ĉ(r) =

∫ tf

tn

T (t)σ(t)c(t) dt (1)

where T (t) = exp(−
∫ t

tn
σ(s)ds) handles occlusion. For a target view with pose P , a camera ray

can be parameterized as r(t) = o + td, where o is the camera origin and t is the distance along the
viewing direction d. The final color Ĉ(r) of a pixel is computed by integrating the contributions of
all points along the ray r, from near tn to far tf bounds. This effectively accumulates the color and
density information, rendering the scene as perceived from the given viewpoint.

MVSNeRF (5) divides its architecture into three essential components. First, the image features
are extracted using a stack of 2D CNN layers. In the second step, the cost volume generation
component takes the extracted feature maps as input and generates a plane-swept cost volume. This
cost volume contains important information about the depth as well as the appearance of the scene.
Although this cost volume can be used to further perform view synthesis, MVSNeRF introduces
another component called Neural Encoding Volume that further refines the cost volume. A 3D CNN
then extracts meaningful encoding from the volume itself which ultimately leads to better view
synthesis results. For the final step, which is neural radiance field construction, the conventional
volumetric rendering from (35) is used.

GeoNeRF (16) uses MVSNeRF as a baseline and proposes a number of improvements in
the architecture. First and foremost, MVSNeRF uses a low-resolution 3D cost volume which
makes it challenging to render good quality detailed images. To counter this constraint, GeoNeRF
proposes a geometry reasoner; it constructs a hierarchy of cost volumes, inspired by CasMVSNet
(13), for each nearby source view, which is then used to infer the geometry and appearance
of the unseen scene. As opposed to MVSNeRF, cascade cost volumes are constructed at three
different resolutions which ultimately create a more dense feature volume. They also propose
an improvement in the neural field construction wherein the sampled points along the ray are
processed through an attention-based mechanism (47; 10) to infer geometry and appearance from
the cost volumes. This attention mechanism allows GeoNeRF to learn long-range dependencies and
aggregate information from multiple source views.

5 METHODOLOGY

As explained in section 4, both MVSNeRF and GeoNeRF create a feature volume by first extracting
2D image features and finally warping these to a plane sweep volume. To reiterate, MVSNeRF
creates a low-resolution feature volume while GeoNeRF creates a high-resolution cascaded volume
using multi-scale feature volumes. The quality of the extracted 2D features determines the quality
of feature volumes which ultimately influences the quality of volumetric rendering when using less
number of source images for generalized models.

While the research community has come up with many novel architectures that have achieved rea-
sonable performance on generalization tasks, there is still room for improvement. The current state-
of-the-art methods (5; 16) struggle against challenging geometry where finer details are not rendered
well. Moreover, these methods also struggle against reflective and homogeneous surfaces. These
limitations can be seen in Figures 3, 4 and 5. Instead of a new architectural change, our proposed
approach (NeuGen) is focused more on introducing a new data representation that is capable of high-
frequency domain-invariant features. When this data representation is merged with the original data,
we get a features-enhanced form of data. This is illustrated in Figure 1.

Understanding this more formally: Given two sets of N images, {I1, I2, . . . , IN} and
{IG1 , IG2 , . . . , IGN}, each with three channels. The channel-wise merged image IEi for each i is
obtained as follows:

IEi = Ii ⊕ IGi for i = 1, 2, . . . , N (2)
where ⊕ denotes the channel-wise addition operation, I denotes the original images, IG denotes the
NeuGen images, and IE denotes the NeuGen-enahnced images. We use IE as input to 2D feature
extractors of MVSNeRF and GeoNeRF; the details for each integration are explained below.

5
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Application of NeuGen to the MVSNeRF architecture: A deep 2D CNN, denoted by F , is
utilized within the MVSNeRF architecture to process 2D image features for each unique view-
point. These extracted features are indicative of the localized visual characteristics present in the
images. The network architecture is composed of layers that downsample, thereby reformulating
the NeuGen-enhanced input image IEi , of dimensions Hi ×Wi × C, into a dense feature map Fi,
which is represented as RHi/4×Wi/4×C :

Fi = F(IEi ) (3)

where H and W define the image’s height and width respectively, and C signifies the generated
feature channels’ quantity.

Application of NeuGen to the GeoNeRF architecture: For GeoNeRF, NeuGen is applied by
initially channeling images through a Feature Pyramid Network, as referred to in ((28)), to procure
2D features across three distinct levels of scale:

f (l)
v = FPN(IEv ) ∈ R

H

2l
×W

2l
×2lC ∀l ∈ {0, 1, 2} (4)

In this context, the FPN stands for the Feature Pyramid Network, f (l)
v is a 2D feature map for source

view v at scale level l, IE is the NeuGen-enhanced image, C denotes the number of channels at the
initial scale, and H and W denote the image’s height and width.
The primary goal of NeuGen-enhanced images is to assist with extracting invariant 2D features.
MVSNeRF and GeoNeRF further use their own methodologies to construct feature volumes but
with better sets of features due to NeuGen. For supervision in rendering, original images (I) are
used as it is. The implementation and training details can be found in the supplementary material.

6 EXPERIMENTS & RESULTS

6.1 THE NEUGEN EFFECT

First, we conduct a two-part experiment to assess NeuGen’s impact on image quality and feature
extraction. The primary quantitative analysis, shown in Figure 2 (B, C, D), involved calculating
and averaging Structural Similarity Index (SSIM) (50) scores across each class by comparing the
first image with all others in both NeuGen IG, and original I versions. This provided insights into
NeuGen’s consistent emphasis on features. Additionally, Figure 2 (A) presents a qualitative com-
parison, where NeuGen images are visually contrasted with their originals, alongside their SSIM
scores and Scale-Invariant Feature Transform (SIFT) (30) matches. This part of the experiment
highlights NeuGen’s effectiveness in improving image structure and feature robustness. NeuGen’s
enhancement of SSIM scores demonstrates its proficiency in preserving the structural details of im-
ages, with SSIM being an established metric for assessing image quality through local pixel patterns.
Elevated SSIM values reflect the alignment of structural content, brightness, and texture fidelity in
images. NeuGen’s design to accentuate contrasting features ensures the structural consistency of
images, contributing to superior reconstructions. Moreover, the higher number of SIFT matches
with NeuGen usage highlights its effectiveness in extracting and defining image features.

This improvement indicates that NeuGen reinforces the distinctiveness and resilience of SIFT-
generated features, thus improving image correspondence across various transformations. The in-
troduction of NeuGen introduces a novel data representation for NeRF models, optimizing the way
visual information is processed and utilized. This representation’s usefulness is evidenced by our
experiments, where NeuGen’s ability to preserve structural integrity and enhance distinctive high-
frequency features is showcased. The efficacy of this new data representation is apparent in both the
qualitative and quantitative improvements visible in Figure 2 and supported by our results. Such
representations are helpful for NeRF models, primarily when tasked with the complex challenge of
novel view synthesis, as they rely heavily on accurate and robust feature detection for successful
execution. With NeuGen features incorporated, state-of-the-art methods for NeRF domain general-
ization, such as MVSNeRF and GeoNeRF, can gain major improvements in the results, as shown by
our quantitative as well as qualitative results.

6
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Table 1: Comparative performance analysis
of MVSNeRF models with and without
NeuGen enhancement on the Realistic Syn-
thetic Dataset (35) (“ft” denotes per-scene
optimization).

Mean
PSNR↑ SSIM↑ LPIPS↓

MVSNeRFft 26.29 0.884 0.172
(MVSNeRF + NeuGen)ft 26.39 0.886 0.169

Table 2: Comparative performance analysis
of GeoNeRF models with and without Neu-
Gen enhancement on a subset of the DTU
Dataset (14).

Mean
PSNR↑ SSIM↑ LPIPS↓

GeoNeRF [2] 29.18 0.937 0.095
GeoNeRF + NeuGen 29.28 0.938 0.094

6.2 TRAINING FROM SCRATCH WITH NEUGEN

To demonstrate the effectiveness of NeuGen, we conduct experiments with two leading NeRF mod-
els, MVSNeRF and GeoNeRF, as shown in Table 1 and Table 2. For MVSNeRF, we train the model
from scratch both with and without integrating NeuGen. Our findings reveal that incorporating Neu-
Gen from the outset significantly improves performance, especially in the per-scene optimized mod-
els. This suggests that NeuGen enhances the model’s ability to optimize scenes effectively, leading
to superior results. The per-scene optimized MVSNeRF model shows notable enhancements in im-
age quality and structural consistency, indicating that NeuGen plays a crucial role in refining the
feature extraction and rendering processes. The improved performance in terms of PSNR, SSIM,
and LPIPS metrics underscores the impact of NeuGen in facilitating better scene understanding and
reconstruction. Similarly, for GeoNeRF, training from scratch with NeuGen for the same duration
demonstrates significant performance improvements across all metrics, even without the need for
subsequent fine-tuning. This highlights NeuGen’s capability to boost performance from the out-
set, making the model more robust and effective in handling complex and diverse scenes. The
results show that NeuGen-enhanced GeoNeRF models exhibit higher fidelity in rendering and better
generalization across different datasets. These experiments showcase NeuGen’s ability to enhance
generalization in NeRF models. The integration of NeuGen boosts the performance metrics and also
ensures that the models can handle a wider range of scenes and conditions with greater accuracy.
By leveraging the biologically inspired normalization techniques, NeuGen provides a significant
advancement in the development of NeRFs, making a strong case for its integration into advanced
NeRF architectures.

6.3 FINETUNING PRE-TRAINED MODELS WITH NEUGEN

To test the efficacy of NeuGen in off-the-shelf pre-trained models, we carry out experiments fine-
tuning these models with NeuGen integration. The quantitative outcomes are delineated in Tables
3, 4 and 5, exhibiting improvements across the three datasets; Realistic Synthetic (35), LLFF (33)
and DTU (14). Notably, integrating NeuGen with MVSNeRF and GeoNeRF invariably leads to
enhancements in PSNR and SSIM metrics, suggesting that NeuGen facilitates the models’ rendering
higher fidelity reconstructions. The Realistic Synthetic dataset, comprising elements with reflective
and intricate textures like drums, materials, and ship, showcase marked improvements. The LLFF
dataset, containing natural complexities such as fern, flower, leaves, and orchids, also benefit from
NeuGen’s enhancements, evident from the increased metric scores, which imply an enriched capture
of subtle geometric nuances. Finally, for DTU, we observe that our approach eliminates most of the
noise in the background and renders better details regardless of the lighting condition of the scene.

6.4 QUANTITATIVE RESULTS

We comprehensively evaluate our approach on three different datasets used for benchmarking across
generalized NeRF methods. Table 3 shows the results of MVSNeRF and GeoNeRF on Realistic
Synthetic data. In this case, we observe a particular trend across both methods for scans such as
drums, ficus, ship, and materials. These scans either contain homogenous or shiny surfaces or have
delicate, detailed structures that are difficult to render for per-scene optimized NeRF models, let
alone generalized models. Results for the Forward Facing dataset (LLFF) are shown in Table 4.
These numbers further strengthen our claim that NeuGen is capable of capturing high-frequency

7
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Table 3: Comparative performance analysis of NeuGen-enhanced models on the Realistic Synthetic
dataset (35).

Realistic Synthetic
Drums Ficus Ship Materials Lego Chair Hotdog Mic

PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑
MVSNeRF (5) 21.66/0.846 25.59/0.917 25.75/0.754 24.37/0.885 25.69/0.869 26.32/0.904 32.04/0.948 28.82/0.953
MVSNeRF + NeuGen 23.01/0.910 26.70/0.931 25.83/0.757 24.91/0.890 25.97/0.875 26.43/0.904 32.05/0.948 28.85/0.954
GeoNeRF (16) 22.52/0.884 22.52/0.884 24.41/0.828 23.99/0.904 26.333/0.926 30.372/0.962 33.455/0.969 27.612/0.952
GeoNeRF + NeuGen 23.98/0.915 23.82/0.900 24.43/0.830 24.50/0.909 26.445/0.928 30.508/0.963 33.723/0.971 27.847/0.956

Table 4: Comparative performance analysis of NeuGen-enhanced models on the LLFF Dataset
(33).

LLFF
Fern Flower Leaves Orchids Fortress Horns TRex

PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑
MVSNeRF (5) 21.67/0.642 25.06/0.793 19.897/0.689 18.91/0.581 27.33/0.807 24.38/0.791 23.66/0.826
MVSNeRF + NeuGen 21.72/0.645 25.10/0.796 19.901/0.693 18.93/0.582 27.38/0.809 24.48/0.811 23.69/0.830
GeoNeRF (16) 22.95/0.736 27.59/0.871 29.34/0.853 24.97/0.841 18.81/0.658 18.80/0.593 23.29/0.829
GeoNeRF + NeuGen 23.07/0.740 27.64/0.876 29.41/0.867 24.98/0.845 18.82/0.660 18.85/0.596 23.35/0.831

features that can better express the granularity of the objects. For instance, LLFF contains scans that
contain plants and trees with complicated geometry, such as wiry structures, thin stems, and sharp
petals, that can be hard to synthesize. Subsequently, Table 5, shows results on DTU test scans that
were not part of the training. In this case, NeuGen-enhanced NeRF is able to perform better in all
of the scans convincingly. We observe that in real scenes with background, like in DTU scans, our
method renders background in images significantly better than the existing methods. Further details
are mentioned in the qualitative results section.

6.5 QUALITATIVE RESULTS

MVSNeRF MVSNeRF+OursFicus Ground Truth Ground TruthGeoNeRF GeoNeRF+Ours

Drums

Ficus

Drums

Figure 3: Qualitative comparison on Realistic Synthetic for MVSNeRF (5) and GeoNeRF (16)
along with our approach. We show results on Ficus and Drums rendered with 3 source images. Our
method synthesizes homogenous regions and complex geometries better.

The visual results highlight the effectiveness of our proposed approach. NeuGen-enhanced images
improve fine-grained details and render challenging textures. As shown in Figure 3, results from

Table 5: Comparative performance analysis of NeuGen-enhanced models on the DTU Dataset (14).

DTU
Scan1 Scan8 Scan21 Scan103 Scan114 Scan110

PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑
MVSNeRF (5) 18.55/0.737 22.24/0.682 18.93/0.728 23.78/0.806 27.75/0.828 26.88/0.814
MVSNeRF + NeuGen 18.63/0.738 22.35/0.686 18.96/0.728 23.85/0.806 27.90/0.833 26.95/0.814
GeoNeRF (16) 28.14/0.929 29.79/0.919 24.04/0.902 28.63/0.914 30.03/0.947 30.16/0.965
GeoNeRF + NeuGen 28.82/0.937 29.96/0.921 24.24/0.906 29.18/0.919 30.23/0.953 30.26/0.969
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MVSNeRF MVSNeRF+OursFern GeoNeRF GeoNeRF+OursGround Truth Ground Truth

Horns

Figure 4: Qualitative comparison on LLFF Dataset for MVSNeRF (5) and GeoNeRF (16) along
with our approach. While our method performs better on wiry structures in plants, it performs
significantly well on reflective/transparent surfaces as well.

MVSNeRF MVSNeRF+OursScan 110 Ground Truth Ground TruthGeoNeRF GeoNeRF+Ours

Scan 1

Scan 21

Scan 1

Figure 5: Qualitative comparison on DTU Dataset for MVSNeRF (5) and GeoNeRF (16) along
with our approach. Our method performs better regardless of light conditions while also preventing
cloudy artefacts or noise in the background.

the realistic synthetic dataset are convincing. The pot of the ficus is distorted in MVSNeRF and
GeoNeRF, but is well synthesized with our approach. For drums, we show results for two differ-
ent views. Our method produces finer details in MVSNeRF, and for GeoNeRF, NeuGen enhances
homogeneous regions in the scene, where state-of-the-art methods struggle. GeoNeRF without Neu-
Gen produces artifacts in uniform areas, highlighting NeuGen’s impact. Results on LLFF (Figure
4) show our method’s ability to handle thin structures like leaves on the fern scan. For both MVS-
NeRF and GeoNeRF, NeuGen produces superior quality results. We show patches from the horns
scans for both models, and NeuGen outperforms the existing methods. Finally, we qualitatively
show NeuGen on three DTU test scans (Figure 5). For scan110, NeuGen avoids cloudy artifacts in
low-light regions, while MVSNeRF suffers from this noise. For scan21, NeuGen captures granular
details, and for scan1, it assures notable improvement in scenes with backgrounds. We demonstrate
several instances in synthetic and real scenes where NeuGen significantly improves the handling of
challenging geometric and texture properties for generalized NeRF models.

7 DISCUSSION

It is crucial to contextualize our results within the broader landscape of generalizable NeRF re-
search. The improvements demonstrated by our NeuGen approach, while numerically modest, rep-
resent a significant step forward in this challenging domain. In the field of generalizable NeRFs,
incremental yet consistent improvements signify meaningful progress. Our method exhibits such
consistency across multiple datasets, suggesting a robust trend rather than statistical variance. This
pattern aligns with recent advancements in the field, where modest quantitative gains frequently
accompany substantial qualitative enhancements. For instance, the work of (45) reports moder-
ate improvements without conclusive results, noting that GNT (Generalizable NeRF Transformer)

9
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does not consistently outperform other methods across all metrics and datasets. Similarly, the work
of (7) on efficient 3D Gaussian Splatting reported improvements of 0.11 in PSNR and 0.004 in
SSIM—comparable to our results—while achieving notable visual quality improvements. Here, it
is imperative to acknowledge the limitations of traditional metrics like PSNR and SSIM in fully
capturing perceptual quality, particularly for fine-grained details where our method excels. This
phenomenon has been well-documented in the literature (21), highlighting that pixel-wise metrics
often fail to reflect improvements in texture and intricate visual features that are readily apparent to
human observers.

While the quantitative metrics provide a standardized basis for comparison, the qualitative improve-
ments, offer crucial insights into the visual enhancements achieved by NeuGen. These improve-
ments are particularly evident in challenging scenarios such as homogeneous surfaces, shiny mate-
rials, and intricate geometric structures—areas where generalized NeRF models traditionally strug-
gle. Given these considerations, the true value of our contribution lies in the consistent quantitative
improvements coupled with the significant qualitative enhancements across diverse datasets and
challenging scenarios.

Finally, it is worth noting that our approach is draws inspiration from the mammalian visual cortex,
which excels at detecting high-frequency components in visual stimuli. NeuGen, as a neuro-inspired
layer, encapsulates the response normalization property observed in a specific group of excitatory
neurons in the visual cortex, known for their encoding of both structure and contrast (43; 18). This
biological mechanism has been implemented through a high-level mathematical formulation in Neu-
Gen, as explained in section 3, allowing it to enhance domain-invariant features. NeuGen-enhanced
images emphasize high-frequency details, improving the robustness of NeRF models across diverse
scenes. Similar bio-inspired approaches (19; 36) have demonstrated that brain-like representations
enhance model robustness, while recent works (51; 58) further emphasize the importance of high-
frequency features for generalization in visual models.

8 CONCLUSION

In this study, we introduce a novel neuro-inspired layer, NeuGen (Neural Generalization), into Neu-
ral Radiance Fields (NeRF) models, with a specific focus on enhancing domain generalization (per-
scene optimization). By drawing inspiration from the neural signal regulation characteristics ob-
served in the mammalian visual cortex, NeuGen significantly improves the performance of NeRF
models such as MVSNeRF and GeoNeRF, particularly in challenging scans involving complex ge-
ometries and textures. Our experiments demonstrate that NeuGen enhances the models’ ability
to generalize across diverse scenes by emphasizing high-frequency, domain-invariant features. By
processing the input images to create NeuGen-enhanced images, we ensure better feature extrac-
tion, which translates to improved structural similarity and reduced artifacts in the rendered scenes.
The integration of NeuGen into NeRF architectures, both during the initial training and fine-tuning
phases, has resulted in noticeable improvements in rendering quality and robustness, making it a
valuable addition to advanced NeRF architectures. The quantitative and qualitative evaluations con-
firm that NeuGen improves generalizability and also markedly improves the rendering quality of
NeRFs across different datasets, including Realistic Synthetic, LLFF, and DTU. These improve-
ments highlight NeuGen’s potential to address the limitations of current NeRF models, particularly
their struggle with homogeneous and reflective surfaces, as well as thin structures.

Despite the promising results, further testing on additional NeRF models is necessary to fully vali-
date NeuGen’s effectiveness across various architectures. Expanding the scope of NeuGen’s applica-
bility to other NeRF variants and more complex real-world datasets will help confirm its robustness
and establish its role as a versatile enhancement across different NeRF-based approaches. Future
work will involve testing NeuGen on emerging methods, such as Gaussian Splatting to assess its
impact in settings that leverage sparse views and neural point representations. Ablation study, im-
plementation details and analysis of LPIPS results can be found in the Appendix.

REFERENCES

[1] Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai Maron, and Yaron Lipman. Con-
trolling neural level sets. Advances in Neural Information Processing Systems, 32, 2019.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

[2] Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Miloš Hašan, Yan-
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A APPENDIX

B ABLATION STUDY

Finding optimal value for NeuGen integration: In our study, we conducted a comprehensive
sweep to evaluate the impact of varying the weight of NeuGen on the performance of Neural Radi-
ance Fields (NeRF) models. This sweep was crucial in determining the optimal setting for NeuGen,
a key component in our approach to enhance the domain generalization capabilities of NeRF mod-
els. The methodology involved systematically adjusting the weight of NeuGen across a range of
values from 0.5 to 3.0, observing the corresponding changes in the models’ performance metrics.
This process explored how different weightings of NeuGen influence the model’s ability to process
and render complex visual scenes. The primary focus was on understanding the balance between
preserving the original image characteristics and incorporating the enhanced features provided by
NeuGen. Some top-performing results from this extensive sweep can be seen in Supplementary
Table 1. During this extensive sweep, we discovered that a NeuGen weight of 0.5 yielded the most
promising results. This specific weighting provided an optimal balance, enhancing the model’s per-
formance, particularly in rendering scenes with intricate details and challenging textures. It allowed
the models to leverage NeuGen’s strengths effectively without overwhelming the original image
data. Equation 2 of the main manuscript now becomes a representation of the optimal setting dis-
covered in our NeuGen sweep. In this equation, Ii(e) denotes the enhanced image, while Ii and
Ii(n) represent the original image and the NeuGen-processed image, respectively. This formulation
demonstrates the combination of the original image with the NeuGen-enhanced image, where the
weight of NeuGen is set to 0.5:

IEi = Ii ⊕ (IGi ∗ 0.5) for i = 1, 2, . . . , N (5)

This weight effectively balances the original and enhanced features, ensuring that the final image
retains essential characteristics while benefiting from the improved feature representation offered
by NeuGen. The success of this setting underscores the potential of NeuGen in enhancing the
capabilities of NeRF models, particularly in challenging scenarios that require a nuanced balance of
feature enhancement and preservation. This process can be seen in Supplementary Figure 1.

Supplementary Table 6: Comparison of Mean PSNR values for MVSNeRF with and without
NeuGen integration at various weights on the Realistic Synthetic Dataset (35). The table highlights
the impact of different NeuGen weight settings on the performance of MVSNeRF, with a focus on
the optimal setting of 0.5, which yields the highest Mean PSNR.

Model Mean PSNR
MVSNeRF [1] 23.60
MVSNeRF + NeuGen (0.5) 22.96
MVSNeRF + NeuGen (1.2) 22.91
MVSNeRF + NeuGen (2.9) 22.87
MVSNeRF + NeuGen (0.74) 22.88
MVSNeRF + NeuGen (0.72) 22.91
MVSNeRF + NeuGen (0.55) 22.92
MVSNeRF + NeuGen (1.5) 22.86

While insightful, the findings from our NeuGen sweep reveal an intriguing aspect of the enhanced
models’ performance. After base training, the NeuGen-enhanced models did not outperform
the original MVSNeRF model [1]. However, this initial observation does not fully capture the
efficacy of NeuGen. As detailed in the main manuscript, a significant shift in performance was
observed following per-scene optimization. This optimization phase allowed the NeuGen-enhanced
models to demonstrate their improved capabilities truly. The enhanced performance of our models,
post-optimization, is comprehensively documented across various datasets and scenarios in Tables
1, 2, 3 (main manuscript), and Supplementary Tables 3, 4, 5 and 6. These tables present a clear
comparative analysis, showcasing the instances where the NeuGen-enhanced models’ optimal
NeuGen weight of 0.5 surpassed the original MVSNeRF model in rendering quality and accuracy.
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Supplementary Figure 6: Visualization of combining original images (I) - left column, with NeuGen
images (I(n)) - middle column, to get NeuGen enhanced images (I(e)) - right column. In the figure,
⊕ denotes the channel-wise addition operation

This outcome highlights the potential of NeuGen in refining and elevating the performance of
NeRF models, especially when they are fine-tuned to specific scenes, paving the way for more
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sophisticated and accurate visual rendering in computational vision tasks.

Integerating NeuGen with features fusion: To find out the best way to utilize the features-rich
NeuGen images, we experimented with a features fusion method. As mentioned in the main
manuscript, MVSNeRF first extracts the 2D features from images before creating a 3D cost volume.
We tried to extract the features from the original and NeuGen images separately before “fusing”
them into a single feature set, which we believed could be more efficient.

More specifically, MVSNeRF uses a feature pyramid network (FPN) to extract hierarchical features
from images. With our approach, initial convolutional layers conv0, conv1, and conv2 extract fea-
tures from both sets of images (original and NeuGen) independently in a bottom-up pathway. Each
layer doubles the number of channels and downsamples the spatial dimensions by 2x; this results
in 32 feature maps. These features from each image set are then concatenated along the channel
dimension, resulting in the features from both streams into a unified set of features with 64 chan-
nels. The 64-channel feature map then goes through a set of ”fusion” convolutional layers Fusion1
and Fusion2. Fusion1 takes as input the concatenated features, which is a tensor of shape (B, 64,
H/4, W/4), where B is the batch size, H is the height and W is the width. It then applies a convo-
lution with kernel size 3x3 and padding size 1. So it will convolve over the spatial dimensions H/4
and W/4. Notably, Fusion1 outputs 32 feature maps. This fuses the information from both streams
and projects it down to a 32-dimensional representation. Fusion2 takes this 32-channel fused repre-
sentation from Fusion1 as input and applies another 3x3 convolution, further integrating the fused
features into a shared embedding.

Ultimately, we wanted to design an architecture that takes features from both sets of images and
utilizes the best features from both sets in a learnable manner. We trained MVSNeRF from scratch
with the features fusion incorporated. We observed that fusing features did not produce better results
as shown in Supplementary Table 2.

Supplementary Table 7: Quantitative comparison of features fusion method with original MVS-
NeRF.

Mean
Model PSNR↑
MVSNeRF 23.571
MVSNeRF + NeuGen (Features Fusion) 23.461

C DATASETS

The DTU, Realistic Synthetic, and LLFF datasets provide a comprehensive suite for assessing the
performance of view synthesis methodologies like NeRF. The DTU dataset features 80 scenes
from fixed camera positions with high-resolution structured light scans, ideal for testing multi-view
stereopsis [4]. The Realistic Synthetic dataset, optimized for continuous volumetric scene function
representation, contains scenes such as “lego”, “drums”, “ficus”, “mic”, “hotdog”, “materials”,
“chair”, and “ship”, which are instrumental for NeRF’s view synthesis [3]. Lastly, the LLFF dataset,
with its real-world forward-facing images, challenges algorithms to handle varying lighting and
complex dynamics, offering scenes like “leaves”, “flowers”, “ferns”, “orchids”, “room”, “trex”,
“horns”, and “fortress” for rigorous real-world testing [5]. Together, these datasets benchmark the
accuracy of algorithms like NeRF and their robustness in diverse and complex environments.

DTU dataset: The DTU dataset, introduced by Jensen et al., serves as a comprehensive benchmark
for multi-view stereopsis methodologies [4]. Comprising 80 diverse scenes, the dataset offers
various environments captured from 49 or 64 precise camera positions. Each scene is further
enriched with reference structured light scans, meticulously acquired using a 6-axis industrial robot.
This dataset’s granularity and diversity make it an invaluable resource for evaluating the robustness
and accuracy of algorithms like NeRF. Given NeRF’s emphasis on synthesizing novel views from
sparse inputs, the DTU dataset, with its varied camera positions and detailed scans, provides a
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rigorous testing ground to assess NeRF’s performance in real-world scenarios.

Realistic Synthetic dataset: The Realistic Synthetic dataset is intrinsically tied to the NeRF
methodology, designed to represent scenes as continuous volumetric scene functions [3]. This
representation is optimized using a limited set of input views, emphasizing NeRF’s capability to
interpolate and extrapolate scene information. The dataset contains scenes that, when processed
through NeRF, can be reconstructed with remarkable accuracy. This high-fidelity reconstruction is
pivotal for synthesizing novel views, even in complex scenes. The dataset contains a total of 106
images spanning various scenes. These scenes include ”lego”, ”drums”, ”ficus”, ”mic”, ”hotdog”,
”materials”, ”chair”, and ”ship”.

Real Forward Facing (LLFF) dataset: The LLFF dataset, introduced by Mildenhall et al., is a
curated collection of real-world scenes designed for the task of view synthesis [5]. It consists of
forward-facing images captured in natural settings. The dataset is particularly suited for evaluating
methods that require handling diverse lighting conditions, occlusions, and scene dynamics. Each
scene in the LLFF dataset is accompanied by high-quality images and precise camera pose infor-
mation. The dataset’s focus on real-world, forward-facing scenes makes it an essential resource
for developing and benchmarking view synthesis methods that aspire to operate outside of con-
trolled laboratory conditions and in the wild. The dataset consists of the scenes: ”leaves”, ”flowers”,
”ferns”, ”orchids”, ”room”, ”trex”, ”horns”, and ”fortress”.

D EXTENDED RESULTS ANALYSIS - LPIPS

Expanding on section 7 of the main manuscript, in the supplementary material, we provide an analy-
sis of the Learned Perceptual Image Patch Similarity (LPIPS) results for MVSNeRF and GeoNeRF
models to complement the primary PSNR and SSIM metrics. LPIPS is a perceptually-motivated
metric that quantifies image similarity in terms of visual perception, offering a valuable perspective
for assessing nuanced image quality differences.

The Supplementary Tables 3, 4, and 5, expand on the PSNR and SSIM results from Tables 1, 2,
and 3 in the main manuscript, providing an in-depth analysis using the Learned Perceptual Image
Patch Similarity (LPIPS) metric. These tables elucidate the impact of the NeuGen enhancement
on the perceptual image quality of MVSNeRF and GeoNeRF across multiple datasets. The LPIPS
scores, which reflect a perceptually higher image quality, generally show an improvement with the
integration of NeuGen, as evidenced by the consistently lower scores for MVSNeRF with NeuGen
in Supplementary Table 3 for the Realistic Synthetic dataset [3]. Similarly, Supplementary Ta-
ble 4 demonstrates that GeoNeRF with NeuGen improves on the LLFF dataset [5]. However, the
enhancements in the DTU dataset [4] are modest (Supplementary Table 5). These supplemen-
tary insights underscore the general efficacy of NeuGen in refining the visual perception of images,
crucial for applications where detail quality is of utmost importance.

The decision to reserve the LPIPS analysis for the supplementary material was guided by the desire
to maintain a clear and straightforward narrative in the main manuscript. Since PSNR and SSIM are
conventionally higher-is-better metrics, their inclusion in the main results allows for a more direct
comparison with previous works and a more immediate comprehension of the model’s performance.
In contrast, due to its inverted scale, the LPIPS metric’s lower-is-better nature could complicate the
direct comparison narrative. Including it in the supplementary material allows a comprehensive view
of the model’s performance without over-complicating the main discussion.

E IMPLEMENTATION DETAILS

Networks’ details. In our approach, we fine-tuned MVSNeRF for 10k iterations. On the other
hand, we fine-tuned GeoNeRF for 1k iterations, as its authors have reported that their model, when
fine-tuned for just 1k iterations, can achieve up to 98.15% of the performance level attained after
10k iterations. Although we were able to reproduce the results for the generalized model using the
released code for the MVSNeRF method, we were not able to reproduce the per-scene optimiza-
tion results mentioned in Table 1 of the paper. It is worth mentioning that the authors of GeoNeRF
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Supplementary Table 8: Performance analysis of MVSNeRF and GeoNeRF models on the Realistic
Synthetic Dataset [3] using the LPIPS metric. The models are evaluated with and without NeuGen
enhancement. Lower LPIPS scores indicate better perceptual image quality and bold indicates
better performance.

Realistic Synthetic
Drums Ficus Ship Materials Lego Chair Hotdog Mic
LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓

MVSNeRF [1] 0.215 0.164 0.302 0.167 0.183 0.139 0.096 0.120
MVSNeRF + NeuGen 0.207 0.157 0.297 0.165 0.173 0.137 0.094 0.117
GeoNeRF [2] 0.147 0.147 0.205 0.133 0.100 0.0533 0.057 0.070
GeoNeRF + NeuGen 0.145 0.144 0.204 0.125 0.099 0.0532 0.057 0.068

Supplementary Table 9: Performance analysis of MVSNeRF and GeoNeRF models on the
LLFF Dataset [5] using the LPIPS metric. The models are evaluated with and without NeuGen
enhancement. Lower LPIPS scores indicate better perceptual image quality and bold indicates
better performance.

LLFF
Fern Flower Leaves Orchids Fortress Horns TRex

LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓
MVSNeRF [1] 0.310 0.208 0.283 0.331 0.202 0.256 0.219
MVSNeRF + NeuGen 0.309 0.206 0.283 0.331 0.201 0.254 0.218
GeoNeRF [2] 0.256 0.136 0.260 0.317 0.149 0.210 0.262
GeoNeRF + NeuGen 0.252 0.134 0.255 0.312 0.147 0.204 0.260

Supplementary Table 10: Performance analysis of NeuGen-enhanced models on the DTU Dataset
[6] using the LPIPS metric. The models are evaluated with and without NeuGen enhancement.
Lower LPIPS scores indicate better perceptual image quality and bold indicates better performance.

DTU
Scan1 Scan8 Scan21 Scan103 Scan114 Scan110

LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓
MVSNeRF [1] 0.321 0.402 0.304 0.318 0.285 0.341
MVSNeRF + NeuGen 0.318 0.400 0.304 0.318 0.282 0.339
GeoNeRF [2] 0.089 0.113 0.108 0.149 0.080 0.086
GeoNeRF + NeuGen 0.088 0.111 0.105 0.136 0.072 0.070
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also directly quoted the result from the MVSNeRF paper. Furthermore, we used three source im-
ages for inference for both methods to ensure a fair comparison. We maintained consistent training
parameters and settings across both the original image fine-tuning and the NeuGen-enhanced im-
age fine-tuning processes. This consistency was critical in ensuring a fair and accurate comparison
between the two approaches, allowing us to confidently attribute any observed differences in perfor-
mance to the influence of the NeuGen layer rather than to variations in the training and fine-tuning
regimen. For results and insights on the training of NeRF models from scratch on NeuGen-enhanced
images, the details of the datasets used, and results on other metrics please refer to the supplementary
materials.

We trained MVSNeRF and GeoNeRF from scratch using the NeuGen-enhanced images. For MVS-
NeRF [1] we trained it using NeuGen-enhanced images for 6 epochs using 3 source views. While
for GeoNeRF [2], we trained the model from scratch for 25k steps using 6 source views. Further,
for fine-tuning, we follow the same settings as mentioned in our main manuscript. For MVSNeRF,
we used 3 source views, while for GeoNeRF, we used 9 source views. Evaluation and rendering are
performed using 3 source views across both methods.

For all our experiments, we use 1 x Tesla V100 GPU. The training, testing, and evaluation time for
all our experiments are the same as MVSNeRF and GeoNeRF. Since our method uses a new data
representation and no architectural change, our approach does not add to the time overhead.

F NEUGEN’S RESULTS ON OTHER DOWNSTREAM TASKS

2D medical image segmentation: To explore the effect of NeuGen for segmentation tasks, we
selected a human brain imaging dataset from ISEG-2017 challenge dataset (1). The focus of this
challenge was to segment 6-month infant brain tissues from T1 and T2-weighted MRI imaging data.
We utilize 2D U-Net (2), a common model used for segmentation. Training settings were kept the
same across all the domain shift experiments for both with and without NeuGen. For comparison,
we select the neuroimaging dataset of T1 (for training) and T2 (for testing) modalities and observe
the performance of 2D U-Net on segmenting three brain regions (White Matter (WM), Grey Matter
(GM), and Cerebrospinal Fluid (CSF)) in the testing sets, with and without adding NeuGen-layer
in the existing architectures. We observe a performance boost (mean score of all three regions)
of 40.3% increase in DICE score, 60.4% increase in IoU, 23.8% decrease in Hausdorff distance,
and 48.05% decrease in MSD (mean surface distance) by adding NeuGen-layer in the 2D U-Net as
seen in Supplementary Table 11. These remarkable improvements in segmentation accuracy, as
quantified by the substantial enhancements in widely accepted metrics, highlight the impact of the
NeuGen layer when integrated into the 2D U-Net architecture. The substantial gain in DICE score
and IoU, along with the significant reduction in Hausdorff distance and MSD, not only demonstrates
the enhanced precision and reliability of the model but also the potential of NeuGen to serve as a
pivotal addition to standard segmentation practices. These findings are promising for the field of
medical imaging, where such advancements can lead to more accurate diagnostic tools, thereby
facilitating improved patient outcomes.

Supplementary Table 11: Performance comparison of 2D U-Net on T1 and T2 modalities with and
without adding NeuGen-layer in the architecture. Models are trained on one modality and tested
on the other modality and vice-versa. We selected a human brain imaging dataset from ISEG-2017
challenge. The focus of this challenge was to segment 6-month-old infant brain tissues from T1 and
T2-weighted MRI imaging data, acquired at UNC-Chapel Hill.

DICE score Hausdorff distance IoU score MSD score
Train-T1 (plain) → Test-T2 52.8 20.1 37.2 3.08
Train-T1 (NeuGen) → Test-T2 74.1 15.31 59.7 1.60
Train-T2 (plain) → Test on T1 59.9 18.3 44.2 2.56
Train-T2 (NeuGen) → Test on T1 70.1 17.9 55.4 1.93

3D brain registration: We also explored NeuGen’s effect in a 3D brain registration task. We
utilized the OASIS-3 dataset (3). This dataset contains MR sessions from normal participants
along with individuals undergoing cognitive decline. The MRI imaging data spans T1-weighted,
T2-weighted, FLAIR, ASL, SWI, time of flight, resting-state BOLD, and DTI domains. For our
experimentation, we shortlist T1-weighted and T2-weighted MRI scans and remained agnostic to
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the participants’ cognitive health. We use it to assess the performance of our NeuGen-enhanced
model optimized for image registration. In this context, Supplementary Table 12 demonstrates the
proficiency of NeuGen in refining the registration process. Structural Similarity Index (SSIM) and
Normalized Cross Correlation (NCC) were employed as loss functions during the training phase
to guide the model towards higher fidelity transformations. The FourierNet (4) initially registers
SSIM scores of 0.1857 for T1 → T2 transformations and 0.1309 for T2 → T1 transformations.
Upon using the NeuGen integrated model, we observe a notable enhancement in quality, with
SSIM scores increasing to 0.6231 (T1 → T2) and 0.6568 (T2 → T1) for our model with the
SSIM loss function, and our model with the NCC loss function’s scores also showing substantial
improvements with SSIM of 0.6434 (T1 → T2) and 0.6214 (T2 → T1). These improved metrics
validate the effectiveness of NeuGen in boosting the structural integrity and similarity of the
registered images—attributes that are vital in medical image analysis for accurate diagnosis and
treatment planning.

Supplementary Table 12: Quantitative results (SSIM score) on OASIS-3 dataset. This dataset con-
tains MR sessions from normal participants along with individuals undergoing cognitive decline.
The MRI imaging data spans T1-weighted, T2-weighted, FLAIR, ASL, SWI, time of flight, resting-
state BOLD, and DTI domains. For our experimentation, we shortlist T1-weighted and T2-weighted
MRI scans and remained agnostic to the participants’ cognitive health. We use it to assess the per-
formance of our NeuGen-enhanced model optimized for image registration.

Model T1 → T2 T2 → T1
Fourier Net [4] 0.1857 0.1309
NeuGen + SSIM 0.6231 0.6568
NeuGen + NCC 0.6434 0.6214

Supplementary Table 13: The table compares pretrained DNNs’ (including CNN and ViT based
NAS architectures) accuracies across a range of domain transfer tasks (with and without NeuGen).
Rows list the models, and columns specify the domain transfer tasks from the source to the target
(source → target) domains. The domains involved are MNIST (M), SVHN (S), USPS (U), and
MNIST-M (MM). Entries in bold indicate an enhancement in performance due to the NeuGen adap-
tation, and underlined values signify models that have achieved competitive benchmarking scores.

Models M
→

U
M
→

S
M
→

M
M

U→
M

U→
S

U→
M

M

S→
M

S→
U

S→
M

M

M
M
→

M

M
M
→

U

M
M
→

S

VGG19+NeuGen 74.2 24.5 62.6 48.4 20.4 30.5 51.3 28.4 38.4 96.2 74.3 33.6
VGG19 70.9 13.7 39.7 66.2 13.9 19.9 47.2 32.5 33.9 94.3 76.7 22.5
DenseNet121+NeuGen 26.4 15.9 50.8 43.1 14.8 21.0 49.1 20.0 32.6 85.2 54.0 26.3
DenseNet121 74.3 11.7 38.4 39.5 11.4 20.9 34.1 22.1 31.5 96.6 73.3 21.3
ShuffleNet+NeuGen 7.0 56.1 71.1 22.6 36.2 27.2 32.1 27.5 28.9 84.8 7.6 50.4
ShuffleNet 9.3 19.0 14.1 44.9 12.2 13.0 26.1 31.1 19.7 38.7 3.2 18.3
Xception+NeuGen 61.9 20.9 59.7 41.3 15.9 25.8 48.8 16.4 37.7 95.7 31.8 33.1
Xception 62.4 19.4 56.0 20.9 11.9 21.1 42.7 14.2 34.2 97.9 77.8 25.6
NASNetMobile+NeuGen 45.4 21.1 47.5 25.5 10.4 16.9 47.6 16.5 35.1 95.6 58.3 31.1
NASNetMobile 33.0 12.7 36.0 24.8 10.1 21.4 46.0 23.8 32.6 90.0 63.7 20.3
SPOS+NeuGen 38.3 90.8 55.0 83.4 34.7 46.5 75.5 50.9 59.5 98.4 88.4 69.0
SPOS 17.8 93.2 20.5 79.6 16.6 21.1 70.0 66.2 51.5 95.9 81.8 25.6
Autoformer+NeuGen 91.0 38.0 73.5 93.8 36.9 66.1 60.5 41.2 48.9 98.5 90.2 42.1
Autoformer 95.2 26.2 79.8 92.9 30.7 68.4 56.5 47.8 45.3 99.1 83.6 24.6

Image classification: We compare pre-trained DNNs, including popular CNNs and novel NAS-
based architectures, across a range of domain transfer tasks with and without NeuGen. The datasets
involved are MNIST (M) (5), SVHN (S) (6), USPS (U) (7), and MNIST-M (MM) (8), which are
commonly used benchmarks for evaluating image classification performance under domain shifts.

MNIST is a dataset of handwritten digits (5), SVHN contains images of house numbers from Google
Street View (6), USPS is another dataset of handwritten digits from the U.S. Postal Service (7), and
MNIST-M is a variant of MNIST with blended color backgrounds from random patches of color
images (8). We evaluate the classification accuracy of the DNNs on various domain adaptation
scenarios, such as training on one dataset and testing on another, to assess the models’ robustness to
domain shifts. By incorporating NeuGen layers into the existing architectures, we aim to enhance
the models’ ability to generalize across different domains.
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Our results, as presented in Supplementary Table 13, demonstrate that integrating NeuGen layers
leads to improved classification performance across the different domain transfer tasks. Specifically,
we observe significant accuracy improvements when models are trained on one dataset and tested
on another, indicating enhanced generalization capabilities. This suggests that NeuGen can effec-
tively enhance the representational quality of neural network outputs, improving their robustness
and accuracy in image classification tasks under domain shifts.

Supplementary Table 14: Comparison of Mean IoU Scores for SAM and SAM + NeuGen fine-tuned
on daytime images of the Cityscapes dataset and tested on nighttime images of the Dark Zurich
Dataset.

Mean IoU Score
SAM 0.21
NeuGen-SAM 0.23

2D natural image segmentation. We integrate NeuGen into the Segment Anything Model (SAM)
architecture, fine-tuning it on the Cityscapes dataset with daytime urban scenes (14) and testing on
the Dark Zurich dataset with nighttime environments (15). This setup assesses the model’s adapt-
ability to significant illumination changes. Results show a notable performance boost, with the mean
IoU score increasing from 0.21 to 0.23, demonstrating NeuGen’s capacity to enhance domain gen-
eralization in image segmentation tasks despite minimal fine-tuning, as shown in Supplementary
Table 14.

These results collectively demonstrate that NeuGen is capable of enhancing the representational
quality of neural network outputs across diverse architectures, thereby solidifying its utility in do-
mains where high fidelity and accurate image representation are critical.
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