
Causal Climate Emulation with Bayesian Filtering

Sebastian Hickman1,4,∗ Ilija Trajkovic2 Julia Kaltenborn3,4 Francis Pelletier4

Alex Archibald1 Yaniv Gurwicz5 Peer Nowack2 David Rolnick3,4 Julien Boussard3,4

1Yusuf Hamied Department of Chemistry, University of Cambridge, UK
2Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Germany

3School of Computer Science, McGill University, Canada
4Mila - Quebec AI Institute, Canada

5Intel Labs, Israel
∗now at the European Centre for Medium-Range Weather Forecasts, UK

Abstract

Traditional models of climate change use complex systems of coupled equations to
simulate physical processes across the Earth system. These simulations are highly
computationally expensive, limiting our predictions of climate change and analyses
of its causes and effects. Machine learning has the potential to quickly emulate data
from climate models, but current approaches are not able to incorporate physically-
based causal relationships. Here, we develop an interpretable climate model
emulator based on causal representation learning. We derive a novel approach
including a Bayesian filter for stable long-term autoregressive emulation. We
demonstrate that our emulator learns accurate climate dynamics, and we show the
importance of each one of its components on a realistic synthetic dataset and data
from two widely deployed climate models.

1 Introduction

In order to respond to climate change, it is necessary to understand future climates as precisely as
possible, under different scenarios of anthropogenic greenhouse gas emissions. Earth system models
(ESMs), which couple together complex numerical models simulating different components of the
Earth system, are the primary tool for making these projections, but require solving vast numbers of
equations representing physical processes and are thus computationally expensive [Balaji et al., 2017,
Mansfield et al., 2020]. This severely limits the number of future scenarios that can be simulated and
attribution studies investigating the influence of climate change on extreme events. Reduced physical
models, such as Simple Climate Models [Leach et al., 2021], are commonly used to speed up the
process, but at the expense of oversimplifying necessary complex processes.

In contrast, data-driven models are flexible and efficient but often lack the physical grounding of
Simple Climate Models [Watson-Parris et al., 2022], as they rely on correlations in data. Deep
learning (DL) models have shown considerable success in medium-range weather forecasting up
to a few weeks ahead [Bi et al., 2023, Lam et al., 2023, Lang et al., 2024, Bodnar et al., 2024], but
many such models become physically unrealistic or unstable when performing long-term climate
projections [Chattopadhyay et al., 2024, Karlbauer et al., 2024]. Recent approaches for climate
emulation [Watt-Meyer et al., 2024, Cachay et al., 2024, Guan et al., 2024, Cresswell-Clay et al.,
2024] have achieved stable long-term simulations suitable for climate modeling, with small biases in
climate statistics. However, it is unclear whether these models learn physical climate processes, and
they may not always respect known causal relationships [Clark et al., 2024].

A potential reconciliation of the respective advantages of physics-based and data-driven models lies
in causal discovery, the automatic discovery of causal dependencies from available data [Runge et al.,
2023, Rohekar et al., 2021], which has emerged as a valuable tool to improve our understanding
of physical systems across various fields, including Earth sciences [Runge et al., 2019a,b]. Many
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causal representation learning tools have been developed recently, especially after Zheng et al. [2018]
introduced a fully differentiable framework to learn causal graphs using continuous optimization.
This framework was extended to derive Causal Discovery with Single-parent Decoding (CDSD), a
causal representation learning method for time series [Brouillard et al., 2024].

In this work, we move beyond CDSD to develop a physically-guided model for causal climate
emulation and demonstrate that it effectively captures important climate variability, generates stable
long-term climate projections, and provides the capacity for counterfactual experiments. This work is
a step towards trustworthy, physically-consistent emulation of climate model dynamics.

Main contributions:

• We develop a novel machine learning algorithm for causal emulation of climate model dynamics,
incorporating (i) additional losses that ensure invariant properties of the data are preserved, (ii)
a Bayesian filter that allows for stable long-term emulation when autoregressively rolling out
predictions.

• We demonstrate the performance of our model on a synthetic dataset that mimics atmospheric
dynamics and on a dataset from a widely deployed climate model, and we perform ablation studies
to show the importance of each component of the model.

• We perform counterfactual experiments using our causal emulator, illustrating its capacity to model
the physical drivers of climate phenomena, and its interpretability.

2 Related work

2.1 Causal learning for time series

Causal discovery for time series data can be approached as a constraint- or score-based task.
Constraint-based methods [Runge, 2015, Rohekar et al., 2023] build a graph by iteratively test-
ing all known variable pairs for conditional independence, and have been widely used in climate
science [Debeire et al., 2025], particularly PCMCI [Runge, 2018, Runge et al., 2019a, Runge, 2020,
Gerhardus and Runge, 2020]. PCMCI can be combined with dimensionality reduction methods to
obtain low-dimensional latent variables before learning causal connections between these latents
[Nowack et al., 2020, Tibau et al., 2022, Falasca et al., 2024]. Constraint-based methods scale poorly
and become intractable for high-dimensional data, especially when considering non-linear relation-
ships. Score-based methods address this issue by finding a graph that maximizes the likelihood of
observed data, using differentiable acyclicity constraints to ensure identifiability [Zheng et al., 2018].
These methods have been extended to time series data, and non-linear data [Pamfil et al., 2020, Sun
et al., 2023]. However, they only account for causal connections between observed variables and do
not tackle the problem of learning a causal latent representation from high-dimensional data.

Causal representation learning aims to address this gap. Under certain conditions, it is possible to
disentangle relevant latent variables from high-dimensional observed data [Hyvarinen and Morioka,
2017, Hyvarinen et al., 2019, Khemakhem et al., 2020]. Recent work demonstrated that a latent
representation and a causal graph between latent variables can be learned simultaneously [Lachapelle
et al., 2020, Schölkopf et al., 2021] via a fully differentiable framework [Zheng et al., 2018, Brouillard
et al., 2020]. CDSD [Brouillard et al., 2024, Boussard et al., 2023] aims to recover both the latent
variables and the temporal causal graph over these latents from a high-dimensional time series, where
the causal graph is shown to be identifiable under the strong single-parent decoding assumption – i.e.
each observed variable is mapped to a single latent, while each latent can be the parent of multiple
observed variables.

In our setting, this assumption imposes that the latents correspond to single climate modes in a
geographic region which interact through the causal graph. While strong, the assumption is well-
suited to modeling long-range climate dynamics and teleconnections, where variations in distinct
regions around the world can causally affect the climate in other regions. The learned latents mirror
simplified climate indices (e.g., scalar indices representing climate variables in fixed regions) that
climate scientists widely rely on to describe large-scale atmospheric dynamics. Climate scientists
often use simple representations of complex processes for interpretable, parsimonious description
of large-scale phenomena. Our work parallels such methods closely. Furthermore, the single-
parent assumption is a principled first step towards interpretable and trustworthy data-driven climate
models. It makes our tool interpretable for climate scientists and gives theoretical guarantees of
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causal identifiability. This allows exploration of the effect of interventions through counterfactual
experiments, which we hope will be useful for attribution studies by domain scientists.

2.2 Climate model emulation

Recent years have seen extensive work on developing large deep learning models for Earth sciences.
Focus has been placed on medium-range weather forecasting [Keisler, 2022, Bi et al., 2023, Lam
et al., 2023, Lang et al., 2024, Bodnar et al., 2024, Pathak et al., 2022], but a growing body of work has
considered long-term climate projections (a much longer time horizon than weather), where physical
realism and out-of-distribution generalization to unseen future scenarios are primary challenges.

Building on the success of deep learning-based weather forecasts, several studies have considered
autoregressively rolling out shorter-term prediction models, typically trained to predict the next
timestep at 6 or 12 hour intervals, to emulate climate models on longer time-scales [Nguyen et al.,
2023, Duncan et al., 2024, Cresswell-Clay et al., 2024]. Most are deterministic models based on
U-Net or SFNO architectures [Ronneberger et al., 2015, Bonev et al., 2023, Wang et al., 2024], with
one recent study employing a diffusion model to make probabilistic climate projections [Cachay
et al., 2024]. In all these cases, generating stable long-term projections is difficult, as the models do
not necessarily capture physical principles governing long-term climate dynamics and often require
careful parameter tuning and design choices [Guan et al., 2024]. Watt-Meyer et al. [2024] incorporate
simple corrections to preserve some physical consistency, while Guan et al. [2024] focus on matching
a physical quantity, the spatial spectrum, to improve stability of long-term rollouts.

2.3 Modeling spatiotemporal climate dynamics

More principled statistical approaches aim at learning a dynamical system from the data [Yu and
Wang, 2024]. These approaches integrate physical principles as inductive biases or constraints,
aiming to automatically discover relationships between different variables [Shen et al., 2024]. Similar
to our work, these approaches focus on modeling the underlying climate dynamics to capture natural
oscillations and stochasticity in the climate system (internal climate variability) and inform seasonal-
to-decadal predictions [Van den Dool et al., 2006, Rader and Barnes, 2023, Cosford et al., 2025].
These approaches have often focused on specific known climate phenomena [Spuler et al., 2025] and
have been used for attribution studies to determine the causal drivers of these phenomena [Sippel
et al., 2024]. Here, we use causal representation learning to model internal climate dynamics, predict
natural variability in temperature around the world, and enable attribution studies.

3 Methods

To meet the challenges of learning causal structure, physical realism, and interpretability, we introduce
the PICABU model (Physics-Informed Causal Approach with Bayesian Uncertainty). We describe
each aspect of this approach here, and the overall pipeline is illustrated in Figure 1, showing the latent
representation, the loss used during training, the Bayesian filter, and counterfactual experiments.

3.1 Core framework

Our framework leverages CDSD [Brouillard et al., 2024], which jointly learns latent variables Z and
a mapping from Z to the high-dimensional observations X, and proves identifiability of the causal
graph under the single-parent assumption (for details, see Appendix B). This latent-to-observation
graph is parameterized by a matrix W and neural networks. Latents at time t are mapped to latents at
previous timesteps through a directed acyclic graph (DAG) and neural networks. The parameters are
learned by maximizing an evidence lower bound (ELBO). The augmented Lagrangian method (ALM,
Nocedal and Wright, 2006) is used to optimize the loss under the constraint C{λ,µ}

single-parent and ensure
that W is orthogonal and satisfies the assumptions needed for identifiability. A penalty Pλ

sparsity is
added to the loss to sparsify the DAG and retain only causally-relevant links between latents.

Unlike in CDSD, we constrain (C{λ,µ}
sparsity) rather than penalize (Pλ

sparsity) the number of causal connec-
tions, to encode domain knowledge in the causal graph [Trenberth et al., 1998] and improve model
convergence [Gallego-Posada et al., 2022]. Below, the terms incorporate the corresponding ALM
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Figure 1: High-level schematic of the PICABU pipeline. The key features of the PICABU pipeline
are illustrated: the latent embeddings under the single-parent assumption, the learned causal graph
over these latents, the loss used during training, the Bayesian filter allowing for stable autoregressive
rollouts, and the possibility of counterfactual experiments.

coefficients, {λ, µ}.
L{λ,µ}

core = ELBO + C{λ,µ}
single parent + C{λ,µ}

sparsity, (1)

3.2 Additional loss functions

To improve the predictions of the learned model for longer rollouts, we include a second loss term,
the continuous ranked probability score (CRPS; Matheson and Winkler [1976], Hersbach [2000]), a
measure of probabilistic next-timestep prediction accuracy.

LCRPS =

∫ ∞

−∞

[
F (X̂)− 1{X≤X̂}

]2
dX̂ (2)

X is the true next timestep from the training data and F (X̂) is the cumulative distribution function
of the predicted next timestep. Furthermore, to ensure that the model preserves the spatiotemporal
structure of the data, we incorporate loss terms measuring the ℓ1 difference between the true and
inferred spatial spectrum of the data, and between the true and inferred temporal spectra for each grid
cell:

Lspatial =
∑
k

|Fspat[X](k)−Fspat[X̂](k)|; Ltemporal =
∑
j

|Ftemp[X](j)−Ftemp[X̂](j)| (3)

where Fspat denotes the spatial Fourier transform, k the spatial frequencies, Ftemp the temporal
Fourier transform, and j the temporal frequencies. We choose these quantities as learning accurate
power spectra is necessary for realistic emulation. Learning higher frequencies for decaying spectra
is difficult with neural networks [Rahaman et al., 2019], and the ℓ2 norm suffers from small gradients
when learning wavenumbers associated with high frequencies [Chattopadhyay et al., 2024]. We
therefore use the ℓ1 norm across the whole spectrum [Shokar et al., 2024].

The full training objective is as follows, with λCRPS, λs and λt the penalty coefficients:

L{λ,µ}
core + λCRPSLCRPS + λsLspatial + λtLtemporal (4)

We find that the coefficients of the penalty terms and the initial values of the ALM for the constraints
need to be carefully chosen to ensure effective model training. Appendix O discusses the coefficients
and hyperparameter choices, and gives the values used in our experiments.
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3.3 Bayesian filtering for stable autoregressive rollouts

Once trained, our model gives a distribution over latent variables given the latents at previous
timesteps: p(zt|z<t) (the learned transition model). To perform long-term climate prediction, we use
an autoregressive model that predicts the next timestep sequentially. Rather than predicting at each
step zt from the mean of p(z<t), we perform recursive Bayesian estimation and sample N values
from p(zt|z<t), to preserve the full distribution through time. Furthermore, as each latent is mapped
to a prediction in the observation space, we add a particle filtering step. For each sample z≤t

n at time
≤ t, we sample R values from p(zt+1|z≤t

n ), and assign a likelihood to each of them, which encode
whether the samples are mapped to an observation satisfying the desired statistics of the data. By
keeping the sample with the highest likelihood value, we prevent error accumulation or convergence
to the mean and obtain a set of N stable trajectories from our autoregressive rollout.

When performing recursive Bayesian estimation for a state-space model, we typically aim to compute
the posterior distribution for the latents given a sequence of observations as follows:

p(zt|x≤t) ∝ p(xt|zt)p(zt|x≤t−1). (5)

To sample from this posterior distribution, we can estimate p(zt|x<t) (learned encoder model).
However, in our context we do not observe xt as we are performing prediction and cannot sample
from p(xt|zt). We therefore propose using the Fourier spatial spectrum at each timestep as a proxy for
our observations: we assume that it is constant through time and treat its value as the true observation.
We then compute p(x̃|zt) where x̃ is the constant spatial spectrum of the climate variable over Earth,
obtained from available data. We then sample from the posterior distribution p(zt|x̃t, z<t), and
eliminate samples with low importance score: if a sample corresponds to a spatial spectrum that is
very far from the true spatial spectrum, it will be assigned a low probability and thus will be discarded.
We represent p(x̃|zt) using a Laplace distribution L(x̃t, σ̃). The mean x̃t is obtained by decoding zt

and mapping them to observations xt, which are then Fourier-transformed to obtain x̃t. The variance
σ̃ is estimated directly from the observations and assumed constant through time. Contrary to the
standard Bayesian filter approach, we choose not to use the variance estimated by the model, which is
empirically higher than the observations’ variance. The choice of constant variance helps to constrain
the model and obtain better projections. More details on this choice can be found in Appendix J.

In practice, one could use any known statistic of the data. We focus on the spatial spectrum as
predicting an accurate spatial spectrum is necessary to prevent models from propagating errors during
rollouts [Chattopadhyay et al., 2024, Guan et al., 2024]. This approach could be applied to many
statistics known to be constant or invariant through time, including conserved quantities [White et al.,
2024]. Once the spatial spectrum, assumed fixed, is computed by taking the mean of spatial spectra
across observed NorESM2 data, our autoregressive rollout proceeds as given in Algorithm 1.

Algorithm 1 Autoregressive rollout with Bayesian filtering
Input: Observations x≤T , trained encoder p(z≤t|x≤t), trained decoder x = f(z), learned
transition model p(zt|z<t), ground truth spatial spectrum x̃ with standard deviation σ̃, number of
sampled trajectories N and sample size R, prediction time range m
Initialization: Get N samples z≤T

n ∼ p(z≤T |x≤T )
for i = 1 to m do

Sample, for each n ≤ N , R samples zT+i
n,r ∼ p(zT+i|z<T+i)

For each n ≤ N, r ≤ R, decode xT+i
n,r = f(zT+i

n,r ) and use FFT to get the associated spectrum
x̃T+i
n,r and weights wT+i

n,r = L(x̃|x̃T+i
n,r , σ̃)

For each n ≤ N , sample one value from {zT+i
n,r } using unnormalized weights {wT+i

n,r ·
p(zT+i

n,r |z<T+i
n )}

end for
Output: N latent trajectories {zT≤t≤T+m

n≤N }
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4 Experiments

4.1 Recovering a known causal graph

The spatially averaged vector autoregressive (SAVAR) model [Tibau et al., 2022] allows the creation
of time series with known underlying causal relations, designed to benchmark causal discovery
methods. The model generates data following an autoregressive process, with modes of variability
interacting through defined connections mimicking those in the climate system [Nowack et al., 2020].
It exhibits two essential properties of climate models: spatial aggregation (each grid cell is influenced
by neighboring cells) and both local and long-range dependencies. Although it is a simplified model
that does not fully capture real-world climate systems, it provides a controlled setting with a known
ground truth causal structure. Thus, SAVAR allows us to rigorously assess the ability of PICABU to
accurately recover causal relationships from high-dimensional data.

Data. We generate several datasets with N = 4, 25, or 100 latents, and four varying levels of
difficulty. In the “easy” dataset, latents depend only on themselves at one previous timestep. In the
“med-easy” dataset, they additionally depend on each latent at a previous timestep with probability
p = 1/(N − 1). This probability grows to p = 2/(N − 1) for the “med-hard” and p = 1/2 for the
“hard” dataset. The causal dependencies are restricted to the five previous timesteps. The expected
number of edges in the true graph is thus M = N + N · (N − 1) · p. The strength values of the
autoregressive causal links are drawn from a beta distribution B(4, 8) with mean 1/3 and standard
deviation 0.13, chosen to keep most link strengths moderate and away from 0 or 1, and are then
normalized. The generative process of the SAVAR data is linear. Noise is added to the datasets with
variance equal to the signal variance. SAVAR datasets are illustrated in Appendix C.

Models. We compare PICABU to two baseline methods: CDSD [Brouillard et al., 2024] and Varimax-
PCMCI (V-PCMCI) [Runge et al., 2015]. We report in Table 1 the F1-score 2

recall−1+precision−1 for
all three methods. The F1-score ranges from 0 to 1, indicating how well the true graph is learned,
with 1 indicating a perfect graph. For all methods, we set the number of latent variables equal to the
true latent dimension of the SAVAR datasets and use linear transition and decoding models. We run
PICABU without the spectral components of the loss (i.e. λs = λt = 0) as the data is not complex
enough to require additional penalties. For a fair comparison, all models retain the true number of
edges M in their graphs. As V-PCMCI scales poorly, we do not report results on the 100 latent
datasets due to the extensive computational resources this experiment would require. The details of
the training procedure and hyperparameter search are given in Appendix C.2.

N latents 4 25 100

Difficulty Easy Med Med Hard Easy Med Med Hard Easy Med Med Hard
easy hard easy hard easy hard

PICABU 1 1 1 1 1 0.97 0.95 0.81 0.98 0.99 0.95 0.84
CDSD 1 1 1 0.82 0.96 1 0.96 0.83 0.98 0.98 0.96 0.80

V-PCMCI 1 0.8 0.48 0.66 0.76 0.44 0.42 0.22 - - - -

Table 1: PICABU recovers the true SAVAR causal graph with high accuracy. F1 score of three
methods, PICABU, CDSD, and V-PCMCI on 12 SAVAR datasets with three different dimensionalities
(N latents 4, 25, 100) and four difficulty levels (easy, med-easy, med-hard, hard) corresponding to the
increasing number of expected edges in the graph.

Results. PICABU achieves high F1-scores on all datasets of various dimensionalities and difficulties,
and performs slightly better than CDSD. Both methods disentangle the latents very well in all datasets.
The additional losses are not needed here to achieve high accuracy, as the SAVAR datasets are of
relatively low complexity. When tested on climate model data, CDSD predictions diverge (see §4.2),
showing the fundamental importance of the additional loss terms when modeling real climate model
data. Another benefit of PICABU is the possibility to control the final sparsity of the graph directly
via a constraint. CDSD, in contrast, requires careful early-stopping or a thorough hyperparameter
search over its sparsity penalty coefficient.
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V-PCMCI achieves lower accuracy, even on datasets of lower complexity or latent dimensionality.
We argue that because the latents are learned using Varimax-PCA before the causal connections are
learned, it might not disentangle the latents correctly, especially as noise increases (Appendix C.3).

4.2 Pre-industrial climate model emulation

Data. To assess performance in emulating widely used climate models, we evaluate PICABU
on monthly NorESM2 [Seland et al., 2020] and CESM2-FV2 [Danabasoglu et al., 2020] surface
temperature data at a resolution of 250 km, re-gridded to an icosahedral grid. In this section, we focus
on pre-industrial data, using 800 years of data provided by two NorESM2 simulations initialized
with different initial conditions. We normalize and deseasonalize the data by subtracting the monthly
mean and dividing by the monthly standard deviation at each grid point. Figure 10 shows an example
of six successive timesteps. The 800 years of data are split into 90% train and 10% test sets. Results
for NorESM2 are reported below; for CESM2-FV2, refer to Appendix I.

Models. PICABU is trained to take five consecutive months as input and predict the next month.
An example prediction is shown in Figure 2. V-PCMCI learns a causal graph and a mapping from
latents to observables, but not the full transition model. We enhance it by fitting, for each latent, a
regression on the previous latents it causally depends on, according to the learned PCMCI graph.
This allows us to predict the next timestep, given the five previous timesteps. We also train a Vision
Transformer [Dosovitskiy et al., 2021] with a positional encoding adapted from Nguyen et al. [2023],
referred to as “ViT + pos. encoding”. Details on this model are given in Appendix D. Furthermore,
we perform a study in which we individually ablate each term in PICABU’s loss. After training, we
sample initial conditions from the test set and, for each initial condition, autoregressively project 100
years forward. PICABU, ablated models, and V-PCMCI use our Bayesian filter, whereas “ViT + pos.
encoding” does not, as it is deterministic.

Figure 2: An example next timestep PICABU prediction. A) normalized temperature of NorESM2
(target), B) prediction from PICABU for the target month, C) difference between target and prediction.
All data is on an icosahedral grid, normalized, and deseasonalized.

Results. As climate model data is chaotic, high-dimensional, and driven by complex spatiotem-
poral dynamics, we seek a model that has both low mean bias over long rollouts and captures the
spatiotemporal variability of the data. To capture these properties, we evaluate the mean, standard
deviation, range, and log-spectral distance (LSD) of key climate variables, with the goal being for
ML models to come as close as possible to the ground truth values for each of these statistics. We
compute these values for two climate variables of great relevance to long-term climate dynamics:
the normalized global mean surface temperature (GMST) and the Niño3.4 index, which represents
the El Niño Southern Oscillation (ENSO) (the most important natural source of variability in the
climate system). The GMST and Niño3.4 index statistics are computed over ten 50-year periods from
NorESM2 pre-industrial data. In Table 2, we compare values for the ground truth NorESM2 data and
the models PICABU, V-PCMCI, “ViT + pos. encoding”, and ablations.

Overall, we find that PICABU comes closest to matching the ground truth across all statistics for the
GMST and Niño3.4 indices. By contrast, CDSD diverges and is unable to fit the data at all. V-PCMCI
gives predictions with unrealistically low spatiotemporal variability (as captured in the std. dev. and
range being far from ground truth values) for both climate variables, and the ViT with positional
encoding exhibits overly high variability, especially for GMST. Our tests also affirm the value of the
different PICABU components. Removing the CRPS term leads to a higher range in GMST, while
removing the spectral term leads to much higher bias. Removing the orthogonality constraint leads
to poorer performance for GMST and comes at the expense of identifiability and interpretability.
PICABU without the Bayesian filter or sparsity term both diverge.
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GMST Niño3.4
Mean Std. Dev. Range LSD Mean Std. Dev. Range LSD

Ground truth 0 0.177 1.357 0 0 0.927 5.73 0

CDSD Diverges - - - Diverges - - -
V-PCMCI 0.0676 0.078 0.73 0.250 0.196 0.346 3.45 0.180

ViT + pos. encoding -0.0036 0.458 4.91 0.442 -0.0053 0.620 6.26 0.326

PI
C

A
B

U



Unfiltered Diverges - - - Diverges - - -
No sparsity Diverges - - - Diverges - - -

No ortho 0.0624 0.527 3.28 0.583 0.0867 0.987 5.94 0.267
No spectral 0.0796 0.619 3.81 0.658 -0.225 1.52 9.34 0.334
No CRPS -0.0424 0.536 3.65 0.595 0.0148 0.953 5.80 0.300
PICABU -0.0518 0.277 2.02 0.444 -0.0914 1.05 5.99 0.191

Table 2: PICABU shows a small bias and captures climate variability better than comparable
methods. The left section shows the mean, standard deviation, range, and log spectral distance (LSD)
of the GMST, and the same for the Niño3.4 index on the right. The first row shows the values of
the metrics for the ground truth NorESM2, followed by comparison methods, and then PICABU
ablations. For all metrics, being closer to the ground truth is better.

We also consider the power spectral density (PSD, Froyland et al. [2021]) of the Niño3.4 index and
GMST for NorESM2 data and the different models (Figure 3). We find that PICABU captures the
temporal dynamics of Niño3.4 index and GMST better than all other models. In particular, the power
spectrum of the Niño3.4 index shows a peak at a period of three years, and the power spectrum of
PICABU closely approximates the ground truth around this peak, illustrating that the model has
learned accurate climate dynamics, while the other models do not perform as well (Figure 11).

Figure 3: PICABU learns accurate temporal variability for ENSO, and outperforms other
methods in learning GMST variability. We run PICABU for ten different 50-year emulations, and
compute the mean and standard deviation of the spectra, doing the same for ten different 50-year
periods of NorESM2 data. On the left, the power spectra for the Niño3.4 index, for PICABU, the ViT,
V-PCMCI, and ground truth data (NorESM2) are shown. The same is shown for GMST on the right.

However, we note that, while outperforming the other models, PICABU exhibits too much power
at very high frequencies for Niño3.4 and GMST (Appendix F, Figure 12), suggesting room for
further improvement in emulating large-scale variability at short timescales. Similar plots for the
ablated PICABU models are given in Figure 4, with all ablations showing a decrease in performance,
illustrating the importance of the additional loss terms.

Results for two further important known patterns of variability, the Indian Ocean Dipole (IOD) and
the Atlantic Multidecadal Oscillation (AMO) [Saji et al., 1999, Kerr, 2000, McCarthy et al., 2015], are
shown in Appendix H, and are consistent with the above results for ENSO and GMST. Additionally,
performance on the CESM2-FV2 climate model (Appendix I) is similar to the results for NorESM2
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Figure 4: PICABU outperforms ablated models in learning ENSO and GMST variability. We
run PICABU for ten different 50-year emulations, and compute the mean and standard deviation
of the spectra, doing the same for ten different 50-year periods of NorESM2 data. On the left, the
power spectra for the Niño3.4 index, for PICABU and ablations, and ground truth data (NorESM2)
are shown. On the right, the same is shown for GMST.

data. To complement Table 2, the average annual temperature range for each grid cell is calculated
for both NorESM2 and for PICABU, and compared in Figure 14. The spatial pattern of the annual
range of projected temperatures is reasonable, but has a greater range in some regions (Appendix G).

4.3 Learning a causal model improves PICABU’s generalization performance

On pre-industrial data, we train PICABU and two ablated models, where the sparsity and orthogo-
nality constraints are separately dropped from the loss (Appendix M). We evaluate these models by
examining their next-timestep predictions of surface temperature when provided with 256 random
initial conditions from three different emissions scenarios, sampled from SSP2-4.5, SSP3-7.0, and
SSP5-8.5 between years 2070 and 2100. These correspond to a considerably warmer climate than
the pre-industrial data used for training. Note that we do not include the anthropogenic emissions as
inputs to the emulator; instead, these experiments evaluate the ability of the models to generalize to a
new distribution of initial conditions. Table 3 shows the mean absolute error (MAE), coefficient of
determination (R2), and LSD for next timestep predictions.

Scenario picontrol SSP2-4.5 SSP3-7.0 SSP5-8.5

Metric MAE R2 LSD MAE R2 LSD MAE R2 LSD MAE R2 LSD

PICABU 0.70 0.11 0.059 0.72 -0.17 0.052 0.75 -0.41 0.048 0.75 -0.91 0.031
No sparsity 0.74* 0.03* 0.046* 0.77* -0.30* 0.042* 0.78* -0.50* 0.048 0.81* -1.2* 0.034*

No ortho 0.77* 0.01* 0.054* 0.80* -0.42* 0.047* 0.80* -0.63* 0.049 0.84* -1.4* 0.034*

Table 3: Learning a causal graph helps generalization to new emission scenarios. Next-timestep
prediction results when given initial conditions from out-of-distribution data. For each scenario, three
metrics are shown: MAE (lower is better), R2 (higher is better), and LSD (lower is better). We
evaluate PICABU, PICABU without the sparsity constraint, and PICABU without the orthogonality
constraint with initial conditions corresponding to scenarios SSP2-4.5, SSP3-7.0, and SSP5-8.5 (from
left to right, diverging further from the training distribution). ∗ indicates a statistically significant
difference with the corresponding PICABU score, obtained using a t-test. For R2, the relative
difference is taken with respect to 1, reflecting how much further the metric is from the ideal R2 = 1.

For the pre-industrial control data, the models perform relatively similarly, but the full causal model,
with both sparsity and orthogonality enforced, performs better for out-of-distribution initial conditions.
This suggests that learning the causal dynamics aids out-of-distribution generalization.
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4.4 Counterfactual experiments for attribution of extreme events

Climate models are crucial for attribution studies. When large anomalies occur, e.g. a particularly hot
year, climate scientists typically perturb the inputs to ESMs and observe any changes in the projected
climate to attribute causal drivers to these events [Kosaka and Xie, 2013]. This is compute- and
time-consuming, particularly if many experiments are needed to capture the probabilistic nature of
the simulations. With PICABU, due to its causal interpretability, we can directly intervene on the
input data to carry out counterfactual experiments. As a case study, we consider the anomalously
warm series of months around November 1851 in the NorESM2 data. We identify the Niño 3.4
index grid cells that correspond to sea surface temperatures in the equatorial eastern Pacific, a widely
used indicator of ENSO. We then carry out a counterfactual experiment: we intervene on these grid
cells, manually setting their values to new, perturbed values, and observe the resulting change in the
next-timestep prediction for November 1851. No other alteration to the observational space, latent
variables or causal graph is made.

These intervened grid cells influence the value of their parent latent variables, which then interact
through the learned causal graph to generate latents at the next timestep, which are in turn decoded
to produce temperature fields. Figure 5 shows that if El Niño had been stronger, then temperatures
would have been even higher globally, according to the learned causal model. In Appendix P, we
illustrate additional interventions on Alaskan and IOD temperatures. We also intervene in latent
space rather than the observation space, which is possible as latents map to distinct regions of the
world following the single-parent assumption. We show interventions on the latent variable that
controls equatorial Pacific temperatures, and the direct correspondence between latent-space values
and observation-space temperatures (Figure 26). Unlike traditional models, generating multiple
counterfactual projections is simple and rapid in our framework.

Intervened latent

A) B) C)A)
Latent assignment

A) B) C)

Figure 5: Intervention on the grid cells that describe the ENSO state. The left panel shows
mapping from latents to observations (colored grid points), and the intervened grid cells. We increase
their value, which then influences the latents at the current and next timestep through the learned
causal graph. No other grid cells or latent variables are intervened on. The middle panel shows the
original, unintervened next-step prediction, and the right panel shows the intervened prediction.

5 Discussion

We present a novel approach for interpretable climate emulation, developing a causal representation
learning model to identify internal causal drivers of climate variability and generate physically
consistent outputs over climate timescales. By propagating probabilistic predictions through the
Bayesian filter, our model provides a distribution over projections and encodes uncertainty. The causal
nature of the model allows for counterfactual experiments that uncover the drivers of large-scale
climate events and aids generalization to unseen climate scenarios, which is critical if emulators are
used to explore different emission scenarios.

Limitations and future work. The main limitation of our model arises from the single-parent
decoding assumption, which effectively partitions the observation space into subspaces mapped to
each latent. A high latent dimension is required to represent certain complex prediction spaces, which
may contribute to the high-frequency noise we observe in GMST. While single-parent decoding
remains a necessary assumption to enable the recovery of causal structure under our framework,
relaxing this assumption would be a promising area of future inquiry. On the climate science side,
considering anthropogenic emissions and allowing the model to represent connections between the
different variables in the climate system are natural next steps for improved emulation of climate
model data under different emission scenarios. Training the model to attribute present-day extreme
events to climate change (using reanalysis data) is also a promising avenue for future work.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We show that our model accurately captures long-term dynamics of climate
main modes of variability (ENSO, GMST, IOD), and is interpretable (as shown by the coun-
terfactual experiment). We illustrate the importance of each one of the model components
by reporting ablation studies.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our model in the Discussion section, mainly the
“single-parent" assumption. The model is small and lightweight compared to competing
methods.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The climate model dataset used in the paper is publicly available, while the
code to reproduce the synthetic data experiment is given in the supplementary material. The
parameters used in the model are given in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided in a .zip file as part of the supplementary material, and
will be made public through GitHub upon acceptance of the paper. The synthetic data
experiment can be fully reproduced using the provided code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, in the appendix. An analysis of the main hyperparameters is also provided
in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars in Figure 2 (and power spectral density plots of the
appendix) to reflect the models’ uncertainty, and report standard deviation of the or p-values
in tables to assess statistical significance of the differences.

Guidelines:

• The answer NA means that the paper does not include experiments.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix N describes the GPUs and time of execution needed to train our
model.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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A Data availability

Processed data used in this work are available at a Zenodo repository
(https://zenodo.org/records/14773929). Raw NorESM2 data can be downloaded from the
ESGF CMIP6 data store.

B Causal Discovery with Single-Parent Decoding

B.1 CDSD generative model

CDSD considers a generative model where dx-dimensional variables {xt}Tt=1 are observed across T
time steps. These observations, xt, are influenced by dz-dimensional latent variables zt. For instance,
xt could represent climate measurements, while zt might represent unknown regional climate trends.

The model considers a stationary time series of order τ over these latent variables. Binary matrices{
Gk

}τ

k=1
represent the causal relationships between latents at different time steps. Specifically, an

element Gk
ij = 1 indicates that zt−k

j is a causal parent of zti , capturing the lagged causal relations
between the time-steps t−k and t. The adjacency matrix F delineates the causal connections between
the latent variables z and the observed variables x. Each observed variable xi has at most one latent
parent, adhering to the single-parent decoding structure.

Figure 6: Generative model. Variables z are latent, and x are observable. G (full arrows) represents
latent connections across different time lags. F (dashed arrows) connects latents to observables.

At any given time step t, the latents are assumed to be independent given their past, and each
conditional is parameterized by a non-linear function gj . h is chosen to be a Gaussian density
function.

p(zt | zt−1, . . . , zt−τ ) :=

dz∏
j=1

p(ztj | zt−1, . . . , zt−τ ); (6)

p(ztj | z<t) := h(ztj ; gj([G
1
j: ⊙ zt−1, . . . , Gτ

j: ⊙ zt−τ ]) ), (7)

The observable variables xt
j are assumed to be conditionally independent where fj : R → R, and

σ2 ∈ Rdx
>0 are decoding functions:

p(xt
j | ztpaF

j
) := N (xt

j ; fj(z
t
paF

j
), σ2

j ), (8)

The model’s complete density is:

p(x≤T , z≤T ) :=

T∏
t=1

p(zt | z<t)p(xt | zt). (9)

Maximizing p(x≤T ) =
∫
p(x≤T , z≤T ) dz≤T unfortunately involves an intractable integral, hence

the model is fit by maximizing an evidence lower bound (ELBO) [Kingma and Welling, 2014,
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Girin et al., 2021] for p(x≤T ). The variational approximation of the posterior p(z≤T | x≤T ) is
q(z≤T | x≤T ).

q(z≤T | x≤T ) :=

T∏
t=1

q(zt | xt); q(zt | xt) := N (zt; f̃(xt), diag(σ̃2)), (10)

log p(x≤T ) ≥
T∑

t=1

[
Ezt∼q(zt|xt)

[
log p(xt | zt)

]
− Ez<t∼q(z<t|x<t)KL

[
q(zt | xt) || p(zt | z<t)

]]
.

(11)

The graph between the latent z and the observable x is parameterized using a weighted adjacency
matrix W . To enforce the single-parent decoding, W is constrained to be non-negative with or-
thonormal columns. Neural networks are optionally used to parameterize encoding and decoding
functions gj , fj , f̃ . The graphs Gk are sampled from Gk

ij ∼ Bernoulli(σ(Γk
ij)), with Γk being

learnable parameters. The objective is optimized using stochastic gradient descent, leveraging the
Straight-Through Gumbel estimator [Jang et al., 2017] and the reparameterization trick [Kingma and
Welling, 2014].

B.2 Inference with CDSD: Objective and Optimization

In this section, we present how inference and optimization are carried out when using CDSD
[Brouillard et al., 2024].

Continuous optimization. The graphs Gk are learned via continuous optimization. They are
sampled from distributions parameterized by Γk ∈ Rdz×dz that are learnable parameters. Specifically,
Gk

ij ∼ Bernoulli(σ(Γk
ij)), where σ(·) is the sigmoid function. This results in the following

constrained optimization problem, with ϕ denoting the parameters of all neural networks (rj , gj , f̃ )
and the learnable variance terms at Equations 8 and 10:

max
W,Γ,ϕ

EG∼σ(Γ)

[
Ex [Lx(W,Γ, ϕ)]

]
− λs||σ(Γ)||1

s.t. W is orthogonal and non-negative,
(12)

Lx is the ELBO corresponding to the right-hand side term in Equation (11) and λs > 0 a coefficient
for the regularization of the graph sparsity. The non-negativity of W is enforced using the projected
gradient on R≥0, and its orthogonality enforced using the following constraint:

h(W ) := WTW − Idz
.

This results in the final constrained optimization problem, relaxed using the augmented Lagrangian
method (ALM):

max
W,Γ,ϕ

EG∼σ(Γ)

[
Ex[Lx(W,Γ, ϕ)]

]
− λs||σ(Γ)||1 − Tr

(
λT
Wh(W )

)
− µW

2
||h(W )||22, (13)

where λW ∈ Rdz×dz and µW ∈ R>0 are the coefficients of the ALM.

This objective is optimized using stochastic gradient descent. The gradients w.r.t. the parameters Γ are
estimated using the Straight-Through Gumbel estimator [Jang et al., 2017]. The ELBO is optimized
following the classical VAE models [Kingma and Welling, 2014], by using the reparametrization
trick and a closed-form expression for the KL divergence term since both q(zt | xt) and p(zt | z<t)
are multivariate Gaussians. The graphs G and the matrix W are thus learned end-to-end.

B.3 Parameter sharing

The original model parameterizes the distribution of the observations with one neural network per grid
point and variables, and the transition model with one neural network per latent variable, leading to a
linear increase in neural networks with the number of latents and input dimensions. We implement
parameter sharing for computational efficiency. More precisely, there is now a single neural network
to parameterize the mapping and a single neural network to parameterize the transition model. The
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neural networks take as input a positional embedding that is learned through training, and represents
each grid location and input variable (non-linear mapping from latents to observations), and each
latent (non-linear transition model).
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C SAVAR datasets

Figure 7: SAVAR datasets with 4, 25, and 100 latent dimensions. A) An example SAVAR dataset
generated with four latent dimensions. The first row shows five timesteps of observed data; the
second shows the four modes of variability, each corresponding to a latent, and the third row shows
the adjacency matrix representing the connections between the latents at time t and the five previous
timesteps. B) and C) show, respectively, for the 25 and 100 latent datasets, the adjacency matrix
corresponding to the four levels of difficulty.
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C.1 Distribution of links strengths

Figure 8: Probability distribution function of the distribution of SAVAR link strengths. The beta
distribution B(4, 8) was chosen to have mostly moderate link strengths, centered around 1/3, with
few values very close to 0 and 1 and relatively low standard deviation (0.13).

C.2 Details on the training procedure for all models

Here, we give training details for Varimax-PCMCI, CDSD, and PICABU.

PICABU was trained using the parameters shown in Table 7. The only difference was the sparsity
constraint “Constrained value", which was set to match the expectation of the causal graph, as
explained in Section 4.1.

CDSD was trained using the same parameters, except that instead of a sparsity constraint, it uses a
penalty. The coefficient µ was thus fixed. We performed a hyperparameter search over µ and tested
values 10−16, 10−14, ..., 102. We retained the value leading to the highest F1 score. Moreover, we
stopped the training when the sparsity was reaching its expected value.

PCMCI was trained using ParCorr to perform the conditional independence tests, and the significance
value of the tests was replaced to keep the M most significant instead, where M is the expected
number of edges in the graph.

An advantage of PICABU is the possibility to control the final sparsity of the graph directly, as it is
optimized using a constraint. We thus set the sparsity equal to the expected number of edges in the
true graph M . In comparison, CDSD utilizes a penalty to optimize for sparsity. One drawback is that
if the penalty coefficient is too high or training lasts too long, the learned graph will be too sparse.
For fair comparison, we stop the training of CDSD when the number of connections of strength at
least 0.5 is equal to M . We train with various values for the sparsity penalty coefficient, and report
the maximum F1 score obtained. PCMCI instead computes conditional independence tests between
all possible pairs of latent variables, and keeps edges when the test rejects conditional independence.
The test is parameterized by a threshold for p-values: if the test’s p-value is above the threshold,
conditional independence is rejected. For fair comparison, we modify its procedure to keep links for
the M conditional independence tests with the highest p-values. The final parameters used for the
three methods are given in Appendix C.
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C.3 Inferring causally-relevant latents improves accuracy

Figure 9: PICABU disentangles latents well. The top row shows the four modes of variability
identified by PICABU, in the dataset shown in Figure 7 (A). The bottom row shows the four modes
identified by Varimax-PCMCI. The latents are not very well disentangled, as they are inferred
independently of the causal graph, and PCA exhibits timescale mixing and exhibit timescale mixing
Aubry et al. [1993]. Varimax-PCA is not able to disentangle them because of the autoregressive
dependencies present in the data.

D Training details for ViT + positional encoding model

The ViT + pos. encoding model is adapted from ClimaX [Nguyen et al., 2023]. This architecture is
originally designed to take multiple variables as input. We adapted it to only emulate temperature.
We trained it with various hyperparameters and report results with the best test loss. We tried different
network depths (from 1 to 8) and got best results with 2, various learning rates (from 0.00001 to 0.1)
and got best results with 0.0001, various batch sizes (from 16 to 512) and got best results with 64.
The best architecture is significantly smaller than the original one since it is trained to emulate one
variable. Moreover, it is trained to predict multiple timesteps into the future by having a fixed encoder
and multiple prediction heads, each corresponding to a different prediction horizon. Here, we train it
to predict 1, 2, 3, 4, or 5 timesteps into the future to compare to PICABU with τ = 5. During rollouts,
we select the prediction head corresponding to τ = 1 to emulate monthly trajectories.

The architecture is adapted from an approach designed to be trained with more data sources and input
variables, and at multiple time resolutions. We find that when trained on a smaller dataset, it is unable
to learn the dynamics of the system directly. The architecture is trained with a latitude-weighted mean
squared error [Rasp et al., 2020], which will suffer from learning low spatial frequencies. Hence, the
model has low bias but very high range and variability.

E Example time series of NorESM2 data

Figure 10 shows an example time series of NorESM2 data, illustrating six consecutive months of data.
These data have been normalized and deseasonalized. This time series illustrates important features
of seasonal and climate variability. For example, while the Pacific Ocean shows relatively unchanging
temperatures, temperatures in the extratropics are much more variable and less predictable. Note that
for our experiments on NorESM2 data, PICABU takes as input the previous five months (here, t− 5
to t− 1), and then learns to predict timestep t based on these past timesteps.
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Figure 10: Example time series of six months of NorESM2 data. Here we illustrate an example of
a 6-month time series of NorESM2 data. PICABU takes as input the previous five months, and then
aims to predict timestep t.

F Further climate emulation results

To describe the performance of PICABU for long rollouts, we illustrate an example time series of the
Niño3.4 index over a 50-year rollout, and similarly, we show the time series of normalized global
mean surface temperature in Figure 11. These rollouts are generated from a randomly chosen initial
condition. The ENSO variability generated by the emulator is realistic, capturing the distribution
of observed variability well without drift. While the GMST similarly does not drift away from the
expected mean value, our emulator exhibits too much variance over short timescales.

Figure 11: PICABU generates realistic ENSO variability, but shows too much short-term
variability in GMST. We compare ENSO, as measured by the Niño3.4 index, and GMST for the
ground truth NorESM2, the ViT architecture, and PICABU over 50 years. While PICABU captures
ENSO variability well and generates more realistic variability compared to the ViT model, it fails to
represent the short-term variability of GMST accurately.

This observation is confirmed by the power spectra for ENSO and GMST. While the ENSO power
spectrum generated by PICABU is accurate at both low and high frequencies, the power for GMST is
too high at high frequencies, as shown in Figure 4. This is true across all variants of PICABU that we
train. The V-PCMCI model, however, has a more accurate spectrum at high frequencies but very little
power at low frequencies. We also show the spectra at higher frequencies, on a log scale in Figure 12,
where it is clear that PICABU captures the high frequencies of ENSO much better than for GMST.

31



Figure 12: PICABU captures the high-frequencies of ENSO well, but not of GMST. The power
spectra for ENSO and GMST, focused on the high frequencies, and plotted on a log scale, showing that
PICABU performs better than competing methods, but has too much power at very high frequencies.

Figure 13: PICABU captures the power spectrum of both ENSO and GMST better than ablated
models. The power spectra for ENSO and GMST, focused on the high frequencies, and plotted on
a log scale, showing that PICABU better approximates the ground truth compared to the ablated
models.
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G Annual temperatures ranges generated by PICABU

Here we illustrate the average intra-annual temperature range for NorESM2 and PICABU simulations
over a 100-year simulation. For each grid cell, for each year, we take the month with the maximum
value, and the month with the minimum value, and then compute the difference to give the intra-
annual range. This quantity is then averaged over the 100 years of simulation for both NorESM2
and PICABU to generate Figure 14. The spatial distribution of the ranges is reasonable, with some
notable exceptions over land (such as sub-Saharan Africa), where the range is much too small. The
ranges over the ocean largely agree.

Figure 14: Annual temperature range of NorESM2 and PICABU. The range is defined as the
intra-annual range of temperatures at each grid cell, averaged over a 100-year simulation. While the
spatial distribution of the temperature ranges agrees well, the emulator exhibits a greater intra-annual
range in temperature than the climate model.

H Indian Ocean Dipole and Atlantic Multidecadal Oscillation emulation

We also evaluated the performance of PICABU in emulating the variability of two other major modes
of climate variability, the Indian Ocean Dipole (IOD) and the Atlantic Meridional Oscillation (AMO),
which have wide-ranging effects on climate variability across the globe [Saji et al., 1999, Kerr,
2000, McCarthy et al., 2015]. The IOD is determined by fluctuations in sea surface temperatures,
where the western Indian Ocean is warmer or colder (positive and negative phases) than the eastern
Indian Ocean. The index is the monthly difference in temperature anomalies between the western
(10◦S - 10◦N, 50◦ - 70◦E) and eastern parts of the Indian Ocean (10◦S - 0◦, 90◦ - 110◦E). The
Atlantic Multidecadal Oscillation is calculated as the anomaly in sea surface temperatures in the
North Atlantic, typically between 0° and 60°N.

Figure 15 shows example time series of NorESM’s simulated IOD and AMO, alongside PICABU’s
emulation, and also shows the power spectra of the time series of both modes of variability. The
quantitative performance is given in Table 4.

The performance of PICABU shows a similar trend to the performance for ENSO and GMST. More
predictable, smaller spatial-scale variability, in this case IOD variability, is modeled well, with closely
matching power spectra and realistic time series. However, the larger-scale feature (in both time and
space), AMO, is less accurately emulated, with too much variability at high frequencies, similar to
the results for GMST, though more muted.
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Figure 15: PICABU generates realistic IOD variability, but does not capture AMO short-term
variability. The figure shows example time series of the IOD and AMO for the ground truth climate
model NorESM2, the ViT model, and PICABU. The power spectra of the time series, including on a
log scale, are also shown.

Mean Std. Dev. Range LSD

IOD
ViT + pos. encod. 0.324 0.231 3.11 0.343
PICABU 0.186 0.753 5.36 0.0772
Ground truth -8.44e-8 0.877 7.36 Truth

AMO
ViT + pos. encod. 0.187 0.897 4.17 0.712
PICABU 0.0538 0.445 3.27 0.248
Ground truth -7.11e-8 0.368 2.58 Truth

Table 4: Evaluation of PICABU for IOD and AMO emulation of NorESM2. The results show the
quantitative performance of PICABU in simulating IOD and AMO variability in NorESM2, across
five 100 year simulations for both NorESM2 and PICABU.
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I Results of CESM2-FV2 emulation

In addition to training and evaluating PICABU for NorESM2 emulation, we also separately trained
and evaluated on a second climate model, CESM2-FV2. We did this to investigate whether our model
is able to emulate another climate model, how sensitive PICABU’s training is to hyperparameters,
and whether our findings regarding PICABU’s performance are consistent for another climate model.
It should be noted that NorESM2 is based on CESM2 and, therefore, has many shared model
components. NorESM2 has a different model for the ocean, ocean biogeochemistry, and atmospheric
aerosols. It also includes specific modifications and tunings of the dynamics of the atmosphere model
[Seland et al., 2020]. However, the two models are not completely independent.

With only minimal hyperparameter tuning, we train PICABU on CESM2-FV2, and illustrate compa-
rable performance as when emulating NorESM2. While training with the same hyperparameters as
for NorESM2 produced stable rollouts immediately, we improved performance by decreasing one
hyperparameter, the spatial spectral coefficient, by 50%. This shows that PICABU is robust and can
be trained with minimal hyperparameter tuning to easily emulate different climate models.

In Figure 16 we illustrate example time series of global mean surface temperature (GMST), Niño3.4,
the IOD, and the AMO, as also shown for NorESM2, giving a qualitative illustration of the variability
generated by PICABU for each. Figure 17 and Figure 18 show the power spectra of PICABU and the
ground truth CESM2 model for the different indices, showing the spectra on a standard and log plot,
respectively. The quantitative results are presented in Table 5.

The results are similar to PICABU’s performance in emulating NorESM2 data. The modes with
shorter-term variability are modeled well, capturing relevant peaks for Niño3.4 and the IOD, while
the temporal variability at larger scales is also not captured accurately.

Figure 16: For CESM2-FV2, similar to NorESM2, PICABU generates realistic ENSO and IOD
variability, but does not capture GMST short-term variability. We provide example time series
of the Niño3.4 index and GMST for both the ground truth climate model CESM2-FV2 and PICABU
over 50 years. Example time series of the IOD and AMO are also shown.
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Figure 17: CESM2-FV2 emulation results are consistent with the NorESM2 emulation results.
The power spectra for four measures of climate variability, the Niño 3.4 index, IOD, GMST, and AMO
are shown, both for the ground truth CESM2-FV2 model and for rollouts generated by PICABU.
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Figure 18: PICABU predictions exhibit too much power at high frequencies. The power spectra
on a log scale for four measures of climate variability, ENSO, IOD, GMST, and AMO are shown,
both for the ground truth CESM2-FV2 model, and rollouts generated by PICABU.

Mean Std. Dev. Range LSD

GMST PICABU 0.0407 0.310 2.60 0.493
Ground truth 0 0.171 1.30 0

Niño3.4 PICABU -0.0182 1.10 7.57 0.231
Ground truth 0 0.954 5.22 0

IOD PICABU -0.424 1.12 7.56 0.0729
Ground truth 0 1.15 8.50 0

AMO PICABU 0.138 0.503 3.81 0.265
Ground truth 0 0.377 2.76 0

Table 5: Evaluation of PICABU for CESM2-FV2 climate model emulation. The results show the
quantitative performance of PICABU in simulating various modes of variability in the CESM2-FV2
climate model.

J Choice of constant variance in the Bayesian filter

When running a standard Bayesian filter, the variance for the distribution of the predicted samples is
typically the variance of the distribution observed in the model. Table 2 shows that PICABU learns a
distribution with higher variance than the observations. To avoid propagating this higher uncertainty
through the prediction, we instead use the assumption of constant variance, which is well-suited to
the pre-industrial control data, and estimate this constant variance from the observations directly.
Table 6 shows summary statistics when using constant variance vs. the model’s inferred variance.
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Mean Std. Dev. Range LSD Mean Std. Dev. Range LSD
GMST Niño3.4

Ground truth 0 0.177 1.357 0 0 0.927 5.73 0
Constant var. -0.0518 0.277 2.02 0.444 -0.0914 1.05 5.99 0.191
Inferred var. -0.0742 0.324 2.15 0.464 -0.198 1.27 7.70 0.206

IOD AMO
Ground truth 0 0.877 7.36 0 0 0.368 2.58 0
Constant var. 0.186 0.753 5.36 0.0772 0.0538 0.445 3.27 0.248
Inferred var. 0.110 0.845 5.46 0.0753 0.0157 0.498 3.27 0.261

Table 6: Using the model’s estimated variance in the Bayesian filter slightly degrades the
predictions. The table shows statistics (mean, standard deviation, range, log-spectral distance) for the
ground truth, prediction using a constant variance estimated from the observations, and the model’s
inferred variance. The predictions degrade slightly when using the inferred variance, especially the
standard deviation and range, as PICABU tends to overestimate the variance of the data.

K Ablation of number of latents and sparsity coefficient

We investigate the performance of PICABU when we vary the number of latent variables. Figure 19
shows the clustering for different numbers of latent variables. Across different numbers of latents,
PICABU learns similar clustering, with larger clusters being progressively split up as the number
of latents increases, while some prominent clusters remain for most numbers of latents. Figure 20
shows the power spectra for Niño3.4 and GMST for models trained with different numbers of latents.
All models are stable, though notably for small numbers of latents, PICABU does not represent the
3-year peak in the ENSO power spectrum.

Similarly, we vary the sparsity coefficient, finding that it does not have a considerable effect on the
power spectra of the generated rollouts.

L Multivariable emulation

While most results in this work focus on a single variable, skin temperature, we illustrate that
multivariable emulation is possible. PICABU can be extended to include multiple variables by
learning latents for each individual variable, and allowing all of these latents to influence each other,
including across variables (this is increasingly expensive if the number of variables and the number of
latents is large). Figure 22 shows two previous timesteps of data, the reconstruction from the model
(simply encoding and decoding the given timestep), and the next timestep prediction.

M Training objective for non-causal model

In Section 4.3, the following objectives are optimized when training the model without sparsity
(Equation (14)) and without orthogonality (Equation (15)), respectively:

L{λ,µ}
no sparsity = ELBO + C{λ,µ}

single parent + λCRPSLCRPS + λsLspatial + λtLtemporal, (14)

L{λ,µ}
no orthogonality = ELBO + C{λ,µ}

sparsity + λCRPSLCRPS + λsLspatial + λtLtemporal, (15)

N Experiments compute resources

To train PICABU on 800 years of climate model data, we used the following compute resources: 2
RTX8000 GPUs, with 48GB of RAM each, for ≈10 hours. These resources scale linearly with the
number of variables, number of latents, or number of input timesteps τ . The synthetic experiments
are much faster (≈0.5 hour on 1 RTX8000 GPU), as it is lower dimensional. For our autoregressive
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Figure 19: Spatial aggregation learned by PICABU for different numbers of latent variables.
The spatial aggregation learned by PICABU shows variation as the number of latents is varied.
However, some clusters are reasonably consistent across the different numbers of latents.

rollouts emulating climate model data, the use of the Bayesian filter introduces some computational
overhead compared to direct deterministic rollouts. However, the operations required for the Bayesian
filter (sampling, decoding, and fast Fourier transforms) can be batched at each step and performed
rapidly. In general, we are able to simulate 100 years (1200 months) in less than 6 minutes on a
single RTX8000 GPU with 48GB memory, with N = 300 and R = 10 (with the computational time
scaling linearly with N ·R).

All experiments were run on an internal cluster. We conducted hyperparameter tuning on these
resources (Appendix O).
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Figure 20: PICABU is stable when training with different numbers of latent variables. When
varying the number of latent variables, the models are stable and perform well in simulating ENSO,
though if the number of latents is small (e.g. 30), the model struggles to represent the 3-year peak in
ENSO. Overall, however, this further illustrates that the models are generally stable, not requiring
extensive hyperparameter tuning to generate stable rollouts.

Figure 21: PICABU is stable when training with different sparsities. Varying the sparsity
constraint produces stable models that perform well in simulating ENSO, keeping all other hyperpa-
rameters the same. This illustrates that the models are stable, can be used flexibly, and do not require
extensive hyperparameter tuning.

O Hyperparameter values

We provide the values of the hyperparameters that we use for the model training and for the Bayesian
filtering in Table 7. These hyperparameters were determined with manual tuning, with the values of
the spectral penalties being important for model performance. We performed a search over the 20
parameters described in Table 7, with 100 runs of PICABU.

We also found that the initial values of the ALM coefficients were important for effective model
training. We empirically observed that if the initial coefficients for the sparsity constraint were
too large, the model immediately learned a sparse causal graph before it learned to make accurate
predictions or a good latent representation, leading to poor performance. However, if the causal graph
was sparsified only later in the training, with smaller initial ALM coefficients, then the model could
generate accurate predictions as it first learned causally-relevant latents, only later sparsifying the
causal graph to retain important connections.

After the initial set of parameters was selected on NorESM2, we performed minimal parameter tuning
to train PICABU on CESM2, as described in Appendix I, and the hyperparameters performed well on
the simulated dataset (SAVAR) where only the sparsity of the final graph was changed. These results
suggest that in practice, our hyperparameters will provide a sound baseline for adaptation to other
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Figure 22: PICABU may be used for multivariable emulation. Each row shows a different variable,
starting from the top: 1) Skin temperature, 2) surface temperature, 3) sea-level pressure, and 4)
precipitation. The first column shows the ground truth at t− 1 (previous timestep), and the second
column shows the ground truth at time t. The third column shows the reconstruction of each variable,
and the fourth column shows PICABU’s prediction at time t.

climate models. Moreover, Appendix M shows that our default hyperparameters are robust while
varying other aspects of the model (e.g., number of latents, sparsity).

Hyperparameter Value
Learning Rate 0.0003
Batch size 128
Iterations 200000
Optimizer rmsprop
Number of latents 90
τ , number of input timesteps 5
CRPS coefficient 1
Spatial spectrum coefficient 3000
Temporal spectrum coefficient 2000

Transition model Hidden Layers 2
Neurons per Layer 8

Encoder-decoder model Hidden Layers 2
Neurons per Layer 16

Sparsity constraint

Initial µ 1e-1
Multiplication factor µ 1.2
Threshold 1e-4
Constrained value 0.5

Orthogonality constraint
Initial µ 1e5
Multiplication factor µ 1.2
Threshold 1e-4

Bayesian filtering N 300
R 10

Table 7: Hyperparameter values used for training PICABU and reported results.

41



P Observation-space interventions

In addition to intervention in observation space on ENSO, we carried out interventions in observation
space to perturb the IOD, to explore whether the model responded to these interventions in a manner
consistent with known teleconnections (Figure 23). We directly increase the temperature value in the
region for the Niño 3.4 intervention, while for the IOD we simply increase the temperature of the
western Indian Ocean to increase the IOD index. In line with expected teleconnections, increasing El
Niño, as measured by the Niño 3.4 index, causes increased global temperatures with a correlation of
0.9. We also observed, in line with Cai et al. [2009], that in the model there is a causal teleconnection
between the springtime strength of the Indian Ocean Dipole and temperatures over Australia, with
a correlation of 0.87. Furthermore, interventions over Alaska of a similar magnitude had minimal
effects on GMST, with a correlation of 0.08 (not shown).

Figure 23: Intervention in the Niño 3.4 region leads to increased GMST, while intervention in
the IOD region increases temperatures in Australia. (Left) Intervened temperatures for the Niño
3.4 region (x-axis) are positively correlated with GMST (y-axis). (Right) Intervened temperatures for
the IOD region (x-axis) are positively correlated with temperatures over Australia (y-axis).

The maps of these interventions are shown in Figure 24, where we intervene to increase the tempera-
ture anomaly over Niño 3.4 and Alaska by 2 standard deviations, and we increase the value of the
IOD index by 0.5.

Q Intervention in latent space

We can also directly intervene on latent variables to explore the effect of interventions on latents
which correspond to known modes of climate variability. In Figure 25, which illustrates the effect of
intervening on the latent variable that most closely overlaps with the region of the Pacific used to
define the Niño 3.4 index.

The single-parent structure allows for a clear correspondence between latents and the physical quantity
in the climate model. We verified that the learned Niño 3.4 latent variable is positively correlated with
the state of ENSO before performing the counterfactual experiment, by plotting the decoding function
from this latent to the corresponding observations (Figure 26). This yielded a linear relationship with
a correlation of 0.98.
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Figure 24: Maps of the effect of an intervention in observation space where we separately
increase the temperature over the Niño 3.4 area and Alaska, and increase the IOD. (Top row)
Increased global temperatures are observed for the Niño intervention, showing a large effect in the
tropics and a smaller effect outside the tropics. (Middle row) Little difference is observed when
intervening on Alaskan temperatures, despite the similarity of the magnitude of the intervention.
(Bottom row) The increase in the IOD index leads to an increase in temperatures over Australia and
Africa.

Intervened latent

Figure 25: Intervention on the latent variable that describes the ENSO state. The left panel
shows mapping from latents to observations (colored grid points), and the intervened latent variable.
We increase its value, which then influences the latents at the next timestep through the learned causal
graph. No other latent variables are intervened on. The middle panel shows the original, unintervened
next-step prediction, and the right panel shows the intervened prediction.

R Licenses for existing assets

The datasets used in this work are CMIP6, associated with the Creative Commons Attribution
4.0 International license (CC BY 4.0), and CESM2, provided by UCAR. This work builds upon
ClimateSet, published in NeurIPS 2023 and publicly available on arXiv, CDSD, publicly available on
arXiv, and SAVAR, associated with the GPLv3 license.
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Figure 26: Effect of the intervention on latent variable 16 (most overlapping with the Niño3.4 region)
on the physical quantity of temperature in the grid cells within the Niño 3.4 region.
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