
Under review as a conference paper at ICLR 2022

COUNTERFACTUAL GRAPH LEARNING
FOR LINK PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning to predict missing links is important for many graph-based applications.
Existing methods were designed to learn the association between two sets of vari-
ables: (1) the observed graph structure (e.g., clustering effect) and (2) the exis-
tence of link between a pair of nodes. However, the causal relationship between
these variables was ignored. We visit the possibility of learning it by asking a
counterfactual question: “would the link exist or not if the observed graph struc-
ture became different?” To answer this question, we leverage causal models con-
sidering the information of the node pair (i.e., learned graph representations) as
context, global graph structural properties as treatment, and link existence as out-
come. In this work, we propose a novel link prediction method that enhances
graph learning by counterfactual inference. It creates counterfactual links from
the observed ones, and learns representations from both the observed and coun-
terfactual links. Experiments on benchmark datasets show that this novel graph
learning method achieves state-of-the-art performance on link prediction.

1 INTRODUCTION

Link prediction seeks to predict the likelihood of edge existence between node pairs based on the
observed graph. Given the omnipresence of graph-structured data, link prediction has copious appli-
cations such as movie recommendation (Bennett et al., 2007), chemical interaction prediction (Stan-
field et al., 2017), and knowledge graph completion (Kazemi & Poole, 2018). Graph machine learn-
ing methods have been widely applied to solve this problem. Their standard scheme is to first learn
the representation vectors of nodes and then learn the association between the representations of
a pair of nodes and the existence of the link between them. For example, graph neural networks
(GNNs) use neighborhood aggregation to create the representation vectors: the representation vec-
tor of a node is computed by recursively aggregating and transforming representation vectors of its
neighboring nodes (Kipf & Welling, 2016a; Hamilton et al., 2017; Wu et al., 2020). Then the vec-
tors are fed into a binary classification model to learn the association. GNN methods have shown
predominance in the task of link prediction (Kipf & Welling, 2016b; Zhang et al., 2020a).

Unfortunately, the causal relationship between graph structure and link existence was largely ignored
in previous work. Existing methods that learn from association only were are not able to capture
essential factors to accurately predict missing links in the test data. Take social network as an
example. Suppose Alice and Adam live in the same neighborhood and they are close friends. The
association between neighborhood belonging and friend closeness could be too strong to discover
the essential factors of the friendship such as common interests or family relationship which could be
the cause of being living in the same neighborhood. So, our idea is asking a counterfactual question:
“would Alice and Adam still be close friends if they were not living in the same neighborhood?” If a
graph learning model could learn the causal relationship by answering the counterfactual questions,
it would improve the accuracy of link prediction with the novel knowledge it captured. Generally, the
questions can be described as “would the link exist or not if the graph structure became different?”

As known to many, counterfactual question is a key component of causal inference and have been
well defined in the literature. A counterfactual question is usually framed with three factors: context
(as a data point), manipulation (e.g., treatment, intervention, action, strategy), and outcome (van der
Laan & Petersen, 2007; Johansson et al., 2016). (To simplify the language, we use “treatment” to
refer to the manipulation in this paper, as readers might be familiar more with the word “treatment.”)

1

Under review as a conference paper at ICLR 2022

AliceAdam

Bob

Helen

(Alice, Adam) (Helen, Bob)Most similar with a
different treatment

Factual link: 1 Counterfactual link: 1

(a) Find counterfactual link as the most sim-
ilar node pair with a different treatment.

AliceAdam

Factual treatment:
Same neighborhood

Counterfactual treatment:
Different neighborhoods

Factual link: 1

Counterfactual link: 1

Shared
GNN

Encoder Adam

Alice
Decoder

Decoder

(b) Train a GNN-based link predictor to predict factual and
counterfactual links given the corresponding treatments.

Figure 1: The proposed CFLP learns the causal relationship between the observed graph structure
(e.g., neighborhood similarity, considered as treatment variable) and link existence (considered as
outcome). In this example, the link predictor would be trained to estimate the individual treatment
effect (ITE) as 1− 1 = 0 so it looks for factors other than neighborhood to predict the factual link.

Given certain data context, it asks what the outcome would have been if the treatment had not been
the observed value. In the scenario of link prediction, we consider the information of a pair of nodes
as context, graph structural properties as treatment, and link existence as outcome. Recall the social
network example. The context is the representations of Alice and Adam that are learned from their
personal attributes and relationships with others on the network. The treatment is living in the same
neighborhood, which can be identified by community detection. And the outcome is their friendship.
In this work, we present a counterfactual graph learning method for link prediction (CFLP) that
trains graph learning models to answer the counterfactual questions. Figure 1 illustrates this two-
step method. Suppose the treatment variable is defined as one type of global graph structure, e.g.,
the neighborhood assignment discovered by spectral clustering or community detection algorithms.
We are wondering how likely the neighborhood distribution makes a difference on the link (non-
)existence for each pair of nodes. So, given a pair of nodes (like Alice and Adam) and the treatment
value on this pair (in the same neighborhood), we find a pair of nodes (like Helen and Bob) that
satisfies two conditions: (1) it has a different treatment (in different neighborhoods) and (2) it is the
most similar pair with the given pair of nodes. We call these matched pair of nodes as “counterfactual
links.” Note that the outcome of the counterfactual link can be either 1 or 0, depending on whether
there exists an edge between the matched pair of nodes (Helen and Bob). The counterfactual link
provides unobserved outcome to the given pair of nodes (Alice and Adam) under a counterfactual
condition (in different neighborhoods). After counterfactual links are created for all (positive and
negative) training examples, CFLP trains a link predictor (which can be GNN-based) to learn the
representation vectors of nodes to predict both the observed factual links and the counterfactual links.
In this Alice-Adam example, the link predictor is trained to estimate the individual treatment effect
(ITE) of neighborhood assignment as 1 − 1 = 0, where ITE is a metric for the effect of treatment
on the outcome and zero indicates the given treatment has no effect on the outcome. So, the learner
will try to discover the essential factors on the friendship between Alice and Adam. CFLP leverages
causal models to find these factors for graph learning models to accurately predict missing links.

Contributions. Our main contributions can be summarized as follows. (1) This is the first work that
proposes to improve link prediction by causal inference, specifically, learning to answer counter-
factual questions about link existence. (2) This work introduces CFLP that trains GNN-based link
predictors to predict both factual and counterfactual links. It learns the causal relationship between
global graph structure and link existence. (3) CFLP outperforms competitive baseline methods on
several benchmark datasets. We analyze the impact of counterfactual links as well as the choice
of treatment variable. This work sheds insights for improving graph machine learning with causal
analysis, which has not been extensively studied yet, when the other direction (machine learning for
causal inference) has been studied for a long time.

2 PROBLEM DEFINITION

Notations Let G = (V, E) be an undirected graph of N nodes, where V = {v1, v2, . . . , vN} is
the set of nodes and E ⊆ V × V is the set of observed links. We denote the adjacency matrix as

2

Under review as a conference paper at ICLR 2022

A ∈ {0, 1}N×N , whereAi,j = 1 indicates nodes vi and vj are connected and vice versa. We denote
the node feature matrix as X ∈ RN×F , where F is the number of node features and xi (bolded)
indicates the feature vector of node vi (the i-th row of X).

In this work, we follow the commonly accepted problem definition of link prediction on graph
data (Zhang & Chen, 2018; Zhang et al., 2020a; Cai et al., 2021): Given an observed graph G (with
validation and testing links masked off), predict the link existence between every pair of nodes.
More specifically, for the GNN-based link prediction methods, they learn low-dimensional node
representations Z ∈ RN×H , where H is the dimensional size of latent space such that H � F , and
then use Z for the prediction of link existence.

3 PROPOSED METHOD

3.1 IMPROVING GRAPH LEARNING WITH CAUSAL MODEL Z

?T

Y

Z?

T

Y

Treatment Effect
Estimation

Graph
Representation
Learning

Figure 2: Causal modeling (not the
target of our work but related to the
idea we propose): Given Z and ob-
served outcomes, find treatment ef-
fect of T on Y .

Z

?T

Y

Z?

T

Y

Treatment Effect
Estimation

Graph
Representation
Learning

Figure 3: Graph learning with
causal model (the proposed idea):
leverage the estimated ATE(Y |T)
to improve the learning of Z.

Leveraging Causal Model(s) Counterfactual causal infer-
ence aims to find out the causal relationship between treat-
ment and outcomes by asking the counterfactual questions
such as ”would the outcome be different if the treatment was
different?” (Morgan & Winship, 2015). Figure 2 is a typ-
ical example, in which we denote the context (confounder)
as Z, treatment as T , and the outcome as Y . Given the
context, treatments, and their corresponding outcomes, coun-
terfactual inference methods aim to find the effect of treat-
ment on the outcome, which is usually measured by individ-
ual treatment effect (ITE) and its expectation averaged treat-
ment effect (ATE) (van der Laan & Petersen, 2007; Weiss et al.,
2015). For a binary treatment variable T = {0, 1}, denoting
g(z, T) as the outcome of z given the treatment T , we have
ITE(z) = g(z, 1)− g(z, 0), and ATE = Ez∼Z ITE(z).

Ideally, we need all possible outcomes of the contexts under
all kinds of treatments to study the causal relationships (Mor-
gan & Winship, 2015). However, in reality, the fact that we
can only observe one potential outcome under one particu-
lar treatment prevents the ITE from being known (Johansson
et al., 2016). Traditional causal inference methods use statisti-
cal learning approaches such as Neyman–Rubin casual model (BCM) and propensity score matching
(PSM) to predict the value of ATE (Rubin, 1974; 2005).

In this work, we look at link prediction with graph learning, which is essentially learning the best
node representations Z for the prediction of link existence. Therefore, as shown in Figure 3, where
the outcome Y is the link existence, the objective is different from classic causal inference. In
graph learning, we can estimate the effect of treatment on the outcome (ATE(Y |T)), and we want
to improve the learning of Z with the estimation. More specifically, in graph learning for link
prediction, for each pair of nodes (vi, vj), its ITE can be estimated with

ITE(vi,vj) = g((zi, zj), 1)− g((zi, zj), 0) (1)

and we use this information to improve the learning of Z, i.e., P (Z|Y).

We denote the observed adjacency matrix as the factual outcomes A and the unobserved adja-
cency matrix when the treatment is different as the counterfactual outcomes ACF . We denote
T ∈ {0, 1}N×N as the binary factual treatment matrix, where Ti,j indicates the treatment of the
node pair (vi, vj). We denote TCF as the counterfactual treatment matrix where TCF

i,j = 1 − Ti,j .
We are interested in (1) estimating the counterfactual outcomes ACF via observed data, (2) learn-
ing with the counterfactual adjacency matrix ACF to enhance link prediction, and (3) learning the
causal relationship between graph structural information (treatment) and link existence (outcome).

Treatment Variable Previous work on graph machine learning (Velickovic et al., 2019; Park et al.,
2020) showed that the graph’s global structural information could improve the quality of representa-
tion vectors of nodes learned by GNNs. This is because the message passing-based GNNs aggregate

3

Under review as a conference paper at ICLR 2022

local information in the algorithm of representation vector generation and the global structural in-
formation is complementary with the aggregated information. Therefore, for a pair of nodes, one
option of defining the treatment variable is its global structural role in the graph. Without the loss
of generality, we use Louvain (Blondel et al., 2008), an unsupervised approach that has been widely
used for community detection, as an example. Louvain discovers community structure of a graph
and assigns each node to one community. Then we can define the binary treatment variable as
whether these two nodes in the pair belong to the same community. Let c : V → N be any graph
mining/clustering method that outputs the index of community/cluster/neighborhood that each node
belongs to. The treatment matrix T is defined as Ti,j = 1 if c(vi) = c(vj), and Ti,j = 0 otherwise.
For the choice of c, we suggest methods that group nodes based on global graph structural informa-
tion, including but not limited to Louvain (Blondel et al., 2008), K-core (Bader & Hogue, 2003),
and spectral clustering (Ng et al., 2001).

3.2 COUNTERFACTUAL LINKS

To implement the solution based on above idea, we propose counterfactual links. As aforemen-
tioned, for each node pair, the observed data contains only the factual treatment and outcome, mean-
ing that the link existence for the given node pair with an opposite treatment is unknown. Therefore,
we use the outcome from the nearest observed context as a substitute. This type of matching on co-
variates is widely used to estimate treatment effects from observational data (Johansson et al., 2016;
Alaa & Van Der Schaar, 2019). That is, we want to find the nearest neighbor with the opposite
treatment for each observed node pairs and use the nearest neighbor’s outcome as a counterfactual
link. Formally, ∀(vi, vj) ∈ V × V , we want to find its counterfactual link (va, vb) as below:

(va, vb) = arg min
va,vb∈V

{h((vi, vj), (va, vb)) | Ta,b = 1− Ti,j}, (2)

where h(·, ·) is a metric of measuring the distance between a pair of node pairs (a pair of contexts).
Nevertheless, finding the nearest neighbors by computing the distance between all pairs of node pairs
is extremely inefficient and infeasible in application, which takes O(N4) comparisons (as there are
totally O(N2) node pairs). Hence we implement Eq. (2) using node-level embeddings. Specifically,
considering that we want to find the nearest node pair based on not only the raw node features
but also structural features, we take the state-of-the-art unsupervised graph representation learning
method MVGRL (Hassani & Khasahmadi, 2020) to learn the node embeddings X̃ ∈ RN×F̃ from
the observed graph (with validation and testing links masked off). We use X̃ to find the nearest
neighbors of node pairs. Therefore, ∀(vi, vj) ∈ V × V , we define its counterfactual link (va, vb) as

(va, vb) = arg min
va,vb∈V

{d(x̃i, x̃a) + d(x̃j , x̃b) | Ta,b = 1− Ti,j , d(x̃i, x̃a) + d(x̃j , x̃b) < 2γ}, (3)

where d(·, ·) is specified as the Euclidean distance on the embedding space of X̃, and γ is a hyperpa-
rameter that defines the maximum distance that two nodes are considered as similar. When no node
pair satisfies the above equation (i.e., there does not exist any node pair with opposite treatment that
is close enough to the target node pair), we do not assign any nearest neighbor for the given node
pair to ensure all the neighbors are similar enough (as substitutes) in the feature space. Thus, the
counterfactual treatment matrix TCF and the counterfactual adjacency matrix ACF are defined as

TCF
i,j , ACF

i,j =

{
1− Ti,j , Aa,b , if ∃ (va, vb) ∈ V × V satisfies Eq. (3);
Ti,j , Ai,j , otherwise.

(4)

It is worth noting that the node embeddings X̃ and the nearest neighbors are computed only once
and do not change during the learning process. X̃ is only used for finding the nearest neighbors.
We also note that X̃ must be structural embeddings rather than positional embeddings (as defined in
(Srinivasan & Ribeiro, 2020)).

Learning from Counterfactual Distributions Let PF be the factual distribution of the observed
contexts and treatments, and PCF be the counterfactual distribution that is composed of the observed
contexts and opposite treatments. We define the empirical factual distribution P̂F ∼ PF as P̂F =

{(vi, vj , Ti,j)}Ni,j=1, and define the empirical counterfactual distribution P̂CF ∼ PCF as P̂CF =

{(vi, vj , TCF
i,j)}Ni,j=1. Unlike traditional link prediction methods that take only P̂F as input and use

the observed outcomes A as the training target, the idea of counterfactual graph learning is to take
advantage of the counterfactual distribution by having P̂CF as a complementary input and use the
counterfactual outcomes ACF as the training target for the counterfactual data samples.

4

Under review as a conference paper at ICLR 2022

3.3 THE COUNTERFACTUAL GRAPH LEARNING MODEL

In this subsection, we present the design of our model as well as the training method. The input of
the model in CFLP includes (1) the observed graph data A and raw feature matrix X, (2) the factual
treatments TF and counterfactual treatments TCF , and (3) the counterfactual graph data ACF . The
output contains link prediction logits in Â and ÂCF for the factual and counterfactual adjacency
matrices A and ACF , respectively.

Graph Learning Model The model consist of two trainable components: a graph encoder f and
a link decoder g. The graph encoder generates representation vectors of nodes from graph data
G. And the link decoder projects the representation vectors of node pairs into the link prediction
logits. The choice of the graph encoder f can be any end-to-end GNN model. Without the loss of
generality, here we use the commonly used graph convolutional network (GCN) (Kipf & Welling,
2016a). Each layer of GCN is defined as

H(l) = f (l)(A,H(l−1);W(l)) = σ(D̃−
1
2 ÃD̃−

1
2H(l−1)W(l)), (5)

where l is the layer index, Ã = A + I is the adjacency matrix with added self-loops, D̃ is the
diagonal degree matrix D̃ii =

∑
j Ãij , H(0) = X, W(l) is the learnable weight matrix at the l-th

layer, and σ(·) denotes a nonlinear activation such as ReLU. We denote Z = f(A,X) ∈ RN×H

as the output from the encoder’s last layer, i.e., the H-dimensional representation vectors of nodes.
Following previous work (Zhang et al., 2020a), we compute the representation of a node pair as
the Hadamard product of the vectors of the two nodes. That is, the representation for the node pair
(vi, vj) is zi � zj ∈ RH , where � stands for the Hadamard product.

For the link decoder that predicts whether a link exists between a pair of nodes, we opt for simplicity
and adopt a simple decoder based on multi-layer perceptron (MLP), given the representations of
node pairs and their treatments. That is, the decoder g is defined as

Â = g(Z,T), where Âi,j = MLP([zi � zj , Ti,j]), (6)

ÂCF = g(Z,TCF), where ÂCF
i,j = MLP([zi � zj , T

CF
i,j]), (7)

where [·, ·] stands for the concatenation of vectors, and Â and ÂCF can be used for estimating the
observed ITE as aforementioned in Eq. (1).

During the training process, data samples from the empirical factual distribution P̂F and the em-
pirical counterfactual distribution P̂CF are fed into decoder g and optimized towards A and ACF ,
respectively. That is, for the two distributions, the loss functions are as follows:

LF =
1

N2

N∑
i=1

N∑
j=1

Ai,j · log Âi,j + (1−Ai,j) · log(1− Âi,j), (8)

LCF =
1

N2

N∑
i=1

N∑
j=1

ACF
i,j · log ÂCF

i,j + (1−ACF
i,j) · log(1− ÂCF

i,j). (9)

Balancing Counterfactual Learning In the training process, the above loss minimizations train
the model on both the empirical factual distribution P̂F ∼ PF and empirical counterfactual dis-
tribution P̂CF ∼ PCF that are not necessarily equal – the training examples (node pairs) do not
have to be aligned. However, at the stage of inference, the test data contains only observed (factual)
samples. Such a gap between the training and testing data distributions exposes the model in the
risk of covariant shift, which is a common issue in counterfactual learning (Johansson et al., 2016;
Assaad et al., 2021).

To force the distributions of representations of factual distributions and counterfactual distributions
to be similar, we use the discrepancy distance (Mansour et al., 2009; Johansson et al., 2016) as
another objective to regularize the representation learning. That is, we use the following loss term
to minimize the distance between the learned representations from P̂F and P̂CF :

Ldisc = disc(P̂F
f , P̂

CF
f), where disc(P,Q) = ||P −Q||F , (10)

5

Under review as a conference paper at ICLR 2022

where || · ||F denotes the Frobenius Norm, and P̂F
f and P̂CF

f denote the node pair representations
learned by graph encoder f from factual distribution and counterfactual distribution, respectively.
That is, the learned representations for (vi, vj , Ti,j) and (vi, vj , T

CF
i,j) are [zi � zj , Ti,j] (Eq. (6))

and [zi � zj , T
CF
i,j] (Eq. (7)), respectively.

Training During the training of CFLP, we want the model to be optimized towards three targets:
(1) accurate link prediction on the observed outcomes (Eq. (8)), (2) accurate estimation on the coun-
terfactual outcomes (Eq. (9)), and (3) regularization on the representation spaces learned from P̂F

and P̂CF (Eq. (10)). Therefore, the overall training loss of our proposed CFLP is

L = LF + α · LCF + β · Ldisc, (11)

where α and β are hyperparameters to control the weights of counterfactual outcome estimation
(link prediction) loss and discrepancy loss.

Algorithm 1: CFLP: Counterfactual graph learning
for link prediction
Input : f , g, A, X, n epochs, n epoch ft

1 Compute T as presented in Section 3.1 ;
2 Compute TCF ,ACF by Eqs. (3) and (4) ;
/* model training */

3 Initialize Θf in f and Θg in g ;
4 for epoch in range(n epochs) do
5 Z = f(A,X) ;
6 Get Â and ÂCF via g with Eqs. (6) and (7) ;
7 Update Θf and Θg with L ; // Eq. (11)
8 end
/* decoder fine-tuning */

9 Freeze Θf and re-initialize Θg ;
10 Z = f(A,X) ;
11 for epoch in range(n epochs ft) do
12 Get Â via g with Eq. (6) ;
13 Update Θg with LF ; // Eq. (8)
14 end
/* model inferencing inference */

15 Z = f(A,X) ;
16 Get Â and ÂCF via g with Eqs. (6) and (7) ;

Output: Â for link prediction, ÂCF

Summary Algorithm 1 summarizes
the whole process of CFLP. The first
step is to compute the factual and
counterfactual treatments T, TCF as
well as the counterfactual outcomes
ACF . Then, the second step trains the
graph learning model on both the ob-
served factual data and created coun-
terfactual data with the integrated loss
function (Eq. (11)). Note that the dis-
crepancy loss (Eq. (10)) is computed
on the representations of node pairs
learned by the graph encoder f , so the
decoder g is trained with data from
both P̂F and P̂CF without balancing
the constraints. Therefore, after the
model is sufficiently trained, we freeze
the graph encoder f and fine-tune g
with only the factual data. Finally,
after the decoder is sufficiently fine-
tuned, we output the link prediction
logits for both the factual and counter-
factual adjacency matrices.

Complexity The complexity of the
first step (finding counterfactual links with nearest neighbors) is proportional to the number of node
pairs. When γ is set as a small value to obtain indeed similar node pairs, this step (Eq. (3)) uses con-
stant time. Moreover, the computation in Eq. (3) can be parallelized. Therefore, the time complexity
is O(N2/C) where C is the number of processes. For the complexity of the second step (training
counterfactual learning model), the GNN encoder has time complexity of O(LH2N +LH|E|) (Wu
et al., 2020), where L is the number of GNN layers and H is the size of node representations. Given
that we sample the same number of non-existing links as that of observed links during training, the
complexity of a three-layer MLP decoder is O(((H + 1) · dh + dh · 1)|E|) = O(dh(H + 2)|E|),
where dh is the number of neurons in the hidden layer. Therefore, the second step has linear time
complexity w.r.t. the sum of node and edge counts.

Limitations First, as mentioned above, the computation of finding counterfactual links has a
worst-case complexity of O(N2). Second, CFLP performs counterfactual prediction with only a
single treatment; however, there are quite a few kinds of graph structural information that can be
considered as treatments. Future work can leverage the rich structural information by bundled treat-
ments (Zou et al., 2020) in counterfactual graph learning.

6

Under review as a conference paper at ICLR 2022

Table 1: Link prediction performances measured by Hits@20. Best performance and best baseline
performance are marked with bold and underline, respectively.

CORA CITESEER PUBMED FACEBOOK OGB-DDI

Node2Vec 49.96±2.51 47.78±1.72 39.19±1.02 24.24±3.02 23.26±2.09
MVGRL 19.53±2.64 14.07±0.79 14.19±0.85 14.43±0.33 10.02±1.01
VGAE 45.91±3.38 44.04±4.86 23.73±1.61 37.01±0.63 11.71±1.96
SEAL 51.35±2.26 40.90±3.68 28.45±3.81 40.89±5.70 30.56±3.86
LGLP 62.98±0.56 57.43±3.71 – 37.86±2.13 –
GCN 49.06±1.72 55.56±1.32 21.84±3.87 53.89±2.14 37.07±5.07
GSAGE 53.54±2.96 53.67±2.94 39.13±4.41 45.51±3.22 53.90±4.74
JKNet 48.21±3.86 55.60±2.17 25.64±4.11 52.25±1.48 60.56±8.69

Our proposed CFLP with different graph encoders
CFLP w/ GCN 60.34±2.33 59.45±2.30 34.12±2.72 53.95±2.29 52.51±1.09
CFLP w/ GSAGE 57.33±1.73 53.05±2.07 43.07±2.36 47.28±3.00 75.49±4.33
CFLP w/ JKNet 65.57±1.05 68.09±1.49 44.90±2.00 55.22±1.29 86.08±1.98

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We conduct experiments on five benchmark datasets including citation networks (CORA, CITE-
SEER, PUBMED (Yang et al., 2016)), social network (FACEBOOK (McAuley & Leskovec, 2012)),
and drug-drug interaction network (OGB-DDI (Wishart et al., 2018)) from the Open Graph Bench-
mark (OGB) (Hu et al., 2020). For the first four datasets, we randomly select 10%/20% of the
links and the same numbers of disconnected node pairs as validation/test samples. The links in the
validation and test sets are masked off from the training graph. For OGB-DDI, we used the OGB
official train/validation/test splits. Statistics and details for the datasets are given in Appendix. We
use K-core (Bader & Hogue, 2003) clusters as the default treatment variable. We evaluate CFLP
on three commonly used GNN encoders: GCN (Kipf & Welling, 2016a), GSAGE (Hamilton et al.,
2017), and JKNet (Xu et al., 2018). We compare the link prediction performance of CFLP against
Node2Vec (Grover & Leskovec, 2016), MVGRL (Hassani & Khasahmadi, 2020), VGAE (Kipf &
Welling, 2016b), SEAL (Zhang & Chen, 2018), LGLP (Cai et al., 2021), and GNNs with MLP de-
coder. We report averaged test performance and their standard deviation over 20 runs with different
random parameter initializations. Other than the most commonly used of Area Under ROC Curve
(AUC), we report Hits@20 (one of the primary metrics on OGB leaderboard) as a more challenging
metric, as it expects models to rank positive edges higher than nearly all negative edges.

Besides performance comparison on link prediction, we will answer two questions to suggest a way
of choosing a treatment variable for creating counterfactual links: (Q1) Does CFLP sufficiently learn
the observed averaged treatment effect (ATE) derived from the counterfactual links? (Q2) What is
the relationship between the estimated ATE learned in the method and the prediction performance?
If the answer to Q1 is yes, then the answer to Q2 will indicate how to choose treatment based
on observed ATE. To answer the Q1, we calculate the observed ATE (ÂTEobs) by comparing the
observed links in A and created counterfactual links ACF that have opposite treatments. And
we calculate the estimated ATE (ÂTEest) by comparing the predicted links in Â and predicted
counterfactual links ÂCF . Formally, ÂTEobs and ÂTEest are defined as

ÂTEobs =
1

N2

N∑
i=1

N∑
j=1

{T� (A−ACF) + (1N×N −T)� (ACF −A)}i,j . (12)

ÂTEest =
1

N2

N∑
i=1

N∑
j=1

{T� (Â− ÂCF) + (1N×N −T)� (ÂCF − Â)}i,j . (13)

The treatment variables we will investigate are usually graph clustering or community detection
methods, such as K-core (Bader & Hogue, 2003), stochastic block model (SBM) (Karrer & New-
man, 2011), spectral clustering (SpecC) (Ng et al., 2001), propagation clustering (PropC) (Raghavan
et al., 2007), Louvain (Blondel et al., 2008), common neighbors (CommN), Katz index, and hierar-
chical clustering (Ward) (Ward Jr, 1963). We use JKNet (Xu et al., 2018) as default graph encoder.

7

Under review as a conference paper at ICLR 2022

Table 2: Link prediction performances measured by AUC. Best performance and best baseline per-
formance are marked with bold and underline, respectively.

CORA CITESEER PUBMED FACEBOOK OGB-DDI

Node2Vec 84.49±0.49 80.00±0.68 80.32±0.29 86.49±4.32 90.83±0.02
MVGRL 75.07±3.63 61.20±0.55 80.78±1.28 79.83±0.30 81.45±0.99
VGAE 88.68±0.40 85.35±0.60 95.80±0.13 98.66±0.04 93.08±0.15
SEAL 92.55±0.50 85.82±0.44 96.36±0.28 99.60±0.02 97.85±0.17
LGLP 91.30±0.05 89.41±0.13 – 98.51±0.01 –
GCN 90.25±0.53 71.47±1.40 96.33±0.80 99.43±0.02 99.82±0.05
GSAGE 90.24±0.34 87.38±1.39 96.78±0.11 99.29±0.04 99.93±0.02
JKNet 89.05±0.67 88.58±1.78 96.58±0.23 99.43±0.02 99.94±0.01

Our proposed CFLP with different graph encoders
CFLP w/ GCN 92.55±0.50 89.65±0.20 96.99±0.08 99.38±0.01 99.44±0.05
CFLP w/ GSAGE 92.61±0.52 91.84±0.20 97.01±0.01 99.34±0.10 99.83±0.05
CFLP w/ JKNet 93.05±0.24 92.12±0.47 97.53±0.17 99.31±0.04 99.94±0.01

Table 3: Results of CFLP with different treat-
ments on CORA. (sorted by Hits@20)

Hits@20 ÂTEobs ÂTEest

K-core 65.6±1.1 0.002 0.013±0.003
SBM 64.2±1.1 0.006 0.023±0.015
CommN 62.3±1.6 0.007 0.053±0.021
PropC 61.7±1.4 0.037 0.059±0.065
Ward 61.2±2.3 0.001 0.033±0.012
SpecC 59.3±2.8 0.002 0.033±0.011
Louvain 57.6±1.8 0.025 0.138±0.091
Katz 56.6±3.4 0.740 0.802±0.041

Table 4: Results of CFLP with different treat-
ments on CITESEER. (sorted by Hits@20)

Hits@20 ÂTEobs ÂTEest

SBM 71.6 ±1.9 0.004 0.005 ±0.001
K-core 68.1±1.5 0.002 0.010±0.002
Ward 67.0±1.7 0.003 0.037±0.009
PropC 64.6±3.6 0.141 0.232±0.113
Louvain 63.3±2.5 0.126 0.151±0.078
SpecC 59.9±1.3 0.009 0.166±0.034
Katz 57.3±0.5 0.245 0.224±0.037
CommN 56.8±4.9 0.678 0.195±0.034

Implementation details and supplementary experimental results (e.g., sensitivity on γ, ablation study
on LCF and Ldisc) can be found in Appendix. Source code is available in supplementary material.

4.2 EXPERIMENTAL RESULTS

Link Prediction Tables 1 and 2 show the link prediction performance of Hits@20 and AUC by
all methods. LGLP on PUBMED and OGB-DDI are missing due to the out of memory error when
running the code package from the authors. We observe that our CFLP on different graph encoders
achieve similar or better performances compared with baselines. The only exception is the AUC
on FACEBOOK where most methods have close-to-perfect AUC. As AUC is a relatively easier met-
ric comparing with Hits@20, most methods achieved good performance on AUC. We observe that
CFLP with JKNet almost consistently achieves the best performance and outperforms baselines sig-
nificantly on Hits@20. Specifically, comparing with the best baseline, CFLP improves relatively by
16.4% and 0.8% on Hits@20 and AUC, respectively. Comparing with the best performing baselines,
which are also GNN-based, CFLP benefits from learning with both observed link existence (A) and
our defined counterfactual links (ACF).

ATE with Different Treatments Tables 3 and 4 show the link prediction performance, ÂTEobs,
and ÂTEest of CFLP (with JKNet) when using different treatments. The treatments in Tables 3 and 4
are sorted by the Hits@20 performance. Bigger ATE indicates stronger causal relationship between
the treatment and outcome, and vice versa. We observe: (1) the rankings of ÂTEest and ÂTEobs

are positively correlated with Kendell’s ranking coefficient (Abdi, 2007) of 0.67 and 0.57 for CORA
and CITESEER, respectively. Hence, CFLP was sufficiently trained to learn the causal relationship
between graph structure information and link existence; (2) ÂTEobs and ÂTEest are both negatively
correlated with the link prediction performance, showing that we can pick a proper treatment prior
to training a model with CFLP. Using the treatment that has the weakest causal relationship with
link existence is likely to train the model to capture more essential factors on the outcome, in a way
similar to denoising the unrelated information from the representations.

8

Under review as a conference paper at ICLR 2022

5 RELATED WORK

Link Prediction With its wide applications, link prediction has draw attention from many research
communities including statistical machine learning and data mining. Stochastic generative methods
based on stochastic block models (SBM) are developed to generate links (Mehta et al., 2019). In data
mining, matrix factorization (Menon & Elkan, 2011), heuristic methods (Philip et al., 2010; Martı́nez
et al., 2016), and graph embedding methods (Cui et al., 2018) have been applied to predict links in
the graph. Heuristic methods compute the similarity score of nodes based on their neighborhoods.
These methods can be generally categorized into first-order, second-order, and high-order heuristics
based on the maximum distance of the neighbors. Graph embedding methods learn latent node
features via embedding lookup and use them for link prediction (Perozzi et al., 2014; Tang et al.,
2015; Grover & Leskovec, 2016; Wang et al., 2016).
In the past few years, GNNs have showed promising results on various graph-based tasks with their
ability of learning from features and custom aggregations on structures (Kipf & Welling, 2016a;
Hamilton et al., 2017; Wu et al., 2020)(Cotta et al., 2021). With node pair representations and
an attached MLP or inner-product decoder, GNNs can be used for link prediction (Zhang et al.,
2020a; Davidson et al., 2018; Yang et al., 2018). For example, VGAE used GCN to learn node
representations and reconstruct the graph structure (Kipf & Welling, 2016b). SEAL extracted a local
subgraph around each target node pair and then learned graph representation from local subgraph for
link prediction (Zhang & Chen, 2018). Following the scheme of SEAL, Cai & Ji (2020) proposed to
improve local subgraph representation learning by multi-scale graph representation learning. And
LGLP inverted the local subgraphs to line graphs before learning representations (Cai et al., 2021).
However, very limited work has studied to use causal inference for improving link prediction.
Counterfactual Prediction As a mean of learning the causality between treatment and outcome,
counterfactual prediction has been used for a variety of applications such as recommender sys-
tems (Wang et al., 2020; Xu et al., 2020), health care (Alaa & van der Schaar, 2017; Pawlowski
et al., 2020), vision-language tasks (Zhang et al., 2020b; Parvaneh et al., 2020), and decision mak-
ing (Coston et al., 2020; Pitis et al., 2020; Kusner et al., 2017). To infer the causal relationships,
previous work usually estimated the ITE via function fitting models (Gelman & Hill, 2006; Chipman
et al., 2010; Wager & Athey, 2018; Assaad et al., 2021). Peysakhovich et al. (2019) and Zou et al.
(2020) studied counterfactual prediction with multiple agents and bundled treatments, respectively.
Causal Inference Causal inference methods usually re-weighted samples based on propensity
score (Rosenbaum & Rubin, 1983; Austin, 2011) to remove confounding bias from binary treat-
ments. Recently, several works studied about learning treatment invariant representation to predict
the counterfactual outcomes (Shalit et al., 2017; Li & Fu, 2017; Yao et al., 2018; Yoon et al., 2018;
Hassanpour & Greiner, 2019a;b; Bica et al., 2020). Few recent works combined causal inference
with graph learning (Sherman & Shpitser, 2020; Bevilacqua et al., 2021; Lin et al., 2021; Feng et al.,
2021). For example, Sherman & Shpitser (2020) proposed a new concept in causal modeling, called
“network intervention”, to study the effect of link creation on network structure changes. Bevilac-
qua et al. (2021) studied the task of out-of-distribution (OOD) graph classification, and showed how
subgraph densities can be used to build size-invariant graph representations, which alleviates the
train-test gap when learning from OOD data.

6 CONCLUSION AND FUTURE WORK

In this work, we presented a counterfactual graph learning method for link prediction (CFLP). We
introduced the idea of counterfactual prediction to improve link prediction on graphs. CFLP accu-
rately predicted the missing links by exploring the causal relationship between global graph structure
and link existence. Extensive experiments demonstrated that CFLP achieved the state-of-the-art per-
formance on benchmark datasets. This work sheds insights that a good use of causal models (even
basic ones) can greatly improve the performance of (graph) machine learning tasks, which in our
case is link prediction. We note that the use of more sophistically designed causal models may lead
to larger improvements for other machine learning tasks, which could be a valuable future research
direction for the community. Other than our use of global graph structure as treatment, other treat-
ments choices (with both empirical and theoretical analyses) are also worth exploring. Moreover,
as CFLP first generates counterfactual links and then learns from both observed and counterfactual
link existence, the underlying philosophy of our methodology could be considered as graph data
augmentation. Therefore, investigating the relationship between counterfactual graph learning and
graph data augmentation is also a possible future research direction.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Hervé Abdi. The kendall rank correlation coefficient. Encyclopedia of Measurement and Statistics.
Sage, Thousand Oaks, CA, pp. 508–510, 2007.

Ahmed Alaa and Mihaela Van Der Schaar. Validating causal inference models via influence func-
tions. In International Conference on Machine Learning, pp. 191–201. PMLR, 2019.

Ahmed M Alaa and Mihaela van der Schaar. Bayesian inference of individualized treatment effects
using multi-task gaussian processes. Advances in Neural Information Processing Systems, 2017.

Serge Assaad, Shuxi Zeng, Chenyang Tao, Shounak Datta, Nikhil Mehta, Ricardo Henao, Fan Li,
and Lawrence Carin Duke. Counterfactual representation learning with balancing weights. In
International Conference on Artificial Intelligence and Statistics, pp. 1972–1980. PMLR, 2021.

Peter C Austin. An introduction to propensity score methods for reducing the effects of confounding
in observational studies. Multivariate behavioral research, 46(3):399–424, 2011.

Gary D Bader and Christopher WV Hogue. An automated method for finding molecular complexes
in large protein interaction networks. BMC bioinformatics, 4(1):1–27, 2003.

James Bennett, Stan Lanning, et al. The netflix prize. In Proceedings of KDD cup and workshop,
volume 2007, pp. 35. Citeseer, 2007.

Beatrice Bevilacqua, Yangze Zhou, and Bruno Ribeiro. Size-invariant graph representations for
graph classification extrapolations. arXiv preprint arXiv:2103.05045, 2021.

Ioana Bica, Ahmed M Alaa, James Jordon, and Mihaela van der Schaar. Estimating counterfactual
treatment outcomes over time through adversarially balanced representations. arXiv preprint
arXiv:2002.04083, 2020.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008
(10):P10008, 2008.

Lei Cai and Shuiwang Ji. A multi-scale approach for graph link prediction. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pp. 3308–3315, 2020.

Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph neural networks for link prediction.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Hugh A Chipman, Edward I George, Robert E McCulloch, et al. Bart: Bayesian additive regression
trees. The Annals of Applied Statistics, 4(1):266–298, 2010.

Amanda Coston, Edward H Kennedy, and Alexandra Chouldechova. Counterfactual predictions
under runtime confounding. Advances in Neural Information Processing Systems, 2020.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph repre-
sentations. Advances in Neural Information Processing Systems, 34, 2021.

Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. A survey on network embedding. IEEE Transac-
tions on Knowledge and Data Engineering, 31(5):833–852, 2018.

Tim R Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M Tomczak. Hyperspheri-
cal variational auto-encoders. arXiv preprint arXiv:1804.00891, 2018.

Fuli Feng, Weiran Huang, Xiangnan He, Xin Xin, Qifan Wang, and Tat-Seng Chua. Should graph
convolution trust neighbors? a simple causal inference method. In Proceedings of the 44th In-
ternational ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
1208–1218, 2021.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

10

Under review as a conference paper at ICLR 2022

Thorben Funke and Till Becker. Stochastic block models: A comparison of variants and inference
methods. PloS one, 14(4), 2019.

Andrew Gelman and Jennifer Hill. Data analysis using regression and multilevel/hierarchical mod-
els. Cambridge university press, 2006.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864, 2016.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. arXiv preprint arXiv:1706.02216, 2017.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International Conference on Machine Learning, pp. 4116–4126. PMLR, 2020.

Negar Hassanpour and Russell Greiner. Counterfactual regression with importance sampling
weights. In IJCAI, pp. 5880–5887, 2019a.

Negar Hassanpour and Russell Greiner. Learning disentangled representations for counterfactual
regression. In International Conference on Learning Representations, 2019b.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Fredrik Johansson, Uri Shalit, and David Sontag. Learning representations for counterfactual infer-
ence. In International conference on machine learning, pp. 3020–3029. PMLR, 2016.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in networks.
Physical review E, 83(1):016107, 2011.

Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in knowledge graphs.
In Advances in Neural Information Processing Systems, volume 31, 2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016b.

Matt J Kusner, Joshua R Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. Advances
in Neural Information Processing Systems, 2017.

Sheng Li and Yun Fu. Matching on balanced nonlinear representations for treatment effects estima-
tion. In Advances in Neural Information Processing Systems, 2017.

Wanyu Lin, Hao Lan, and Baochun Li. Generative causal explanations for graph neural networks.
PMLR, 2021.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning bounds
and algorithms. arXiv preprint arXiv:0902.3430, 2009.

Vı́ctor Martı́nez, Fernando Berzal, and Juan-Carlos Cubero. A survey of link prediction in complex
networks. ACM computing surveys (CSUR), 49(4):1–33, 2016.

Julian J McAuley and Jure Leskovec. Learning to discover social circles in ego networks. In
Advances in Neural Information Processing Systems, volume 2012, pp. 548–56, 2012.

Nikhil Mehta, Lawrence Carin Duke, and Piyush Rai. Stochastic blockmodels meet graph neural
networks. In International Conference on Machine Learning, pp. 4466–4474. PMLR, 2019.

Aditya Krishna Menon and Charles Elkan. Link prediction via matrix factorization. In Joint eu-
ropean conference on machine learning and knowledge discovery in databases, pp. 437–452.
Springer, 2011.

11

Under review as a conference paper at ICLR 2022

Stephen L Morgan and Christopher Winship. Counterfactuals and causal inference. Cambridge
University Press, 2015.

Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
Advances in neural information processing systems, 14:849–856, 2001.

Chanyoung Park, Jiawei Han, and Hwanjo Yu. Deep multiplex graph infomax: Attentive multiplex
network embedding using global information. Knowledge-Based Systems, 197:105861, 2020.

Amin Parvaneh, Ehsan Abbasnejad, Damien Teney, Qinfeng Shi, and Anton van den Hengel. Coun-
terfactual vision-and-language navigation: Unravelling the unseen. Advances in Neural Informa-
tion Processing Systems, 33, 2020.

Nick Pawlowski, Daniel C Castro, and Ben Glocker. Deep structural causal models for tractable
counterfactual inference. Advances in Neural Information Processing Systems, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

Alexander Peysakhovich, Christian Kroer, and Adam Lerer. Robust multi-agent counterfactual pre-
diction. Advances in Neural Information Processing Systems, 2019.

S Yu Philip, Jiawei Han, and Christos Faloutsos. Link mining: Models, algorithms, and applications.
Springer, 2010.

Silviu Pitis, Elliot Creager, and Animesh Garg. Counterfactual data augmentation using locally
factored dynamics. Advances in Neural Information Processing Systems, 2020.

Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm to detect
community structures in large-scale networks. Physical review E, 76(3):036106, 2007.

Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational
studies for causal effects. Biometrika, 70(1):41–55, 1983.

Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
Journal of educational Psychology, 66(5):688, 1974.

Donald B Rubin. Causal inference using potential outcomes: Design, modeling, decisions. Journal
of the American Statistical Association, 100(469):322–331, 2005.

Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect: gener-
alization bounds and algorithms. In International Conference on Machine Learning, pp. 3076–
3085. PMLR, 2017.

Eli Sherman and Ilya Shpitser. Intervening on network ties. In Uncertainty in Artificial Intelligence,
pp. 975–984. PMLR, 2020.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter conference
on applications of computer vision (WACV), pp. 464–472. IEEE, 2017.

Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node em-
beddings and structural graph representations. In International Conference on Learning Repre-
sentations, 2020.

Zachary Stanfield, Mustafa Coşkun, and Mehmet Koyutürk. Drug response prediction as a link
prediction problem. Scientific reports, 7(1):1–13, 2017.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th international conference on world
wide web, pp. 1067–1077, 2015.

Mark J van der Laan and Maya L Petersen. Causal effect models for realistic individualized treat-
ment and intention to treat rules. The international journal of biostatistics, 3(1), 2007.

12

Under review as a conference paper at ICLR 2022

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR (Poster), 2019.

Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using
random forests. Journal of the American Statistical Association, 113(523):1228–1242, 2018.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings of
the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
1225–1234, 2016.

Zifeng Wang, Xi Chen, Rui Wen, Shao-Lun Huang, Ercan E Kuruoglu, and Yefeng Zheng. Informa-
tion theoretic counterfactual learning from missing-not-at-random feedback. Advances in Neural
Information Processing Systems, 2020.

Joe H Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the American
statistical association, 58(301):236–244, 1963.

Jeremy Weiss, Finn Kuusisto, Kendrick Boyd, Jie Liu, and David Page. Machine learning for
treatment assignment: Improving individualized risk attribution. In AMIA Annual Symposium
Proceedings, volume 2015, pp. 1306. American Medical Informatics Association, 2015.

David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu, Jason R Grant, Tanvir
Sajed, Daniel Johnson, Carin Li, Zinat Sayeeda, et al. Drugbank 5.0: a major update to the
drugbank database for 2018. Nucleic acids research, 46(D1):D1074–D1082, 2018.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 2020.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Adversarial coun-
terfactual learning and evaluation for recommender system. Advances in Neural Information
Processing Systems, 2020.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pp. 5453–5462. PMLR, 2018.

Hong Yang, Shirui Pan, Peng Zhang, Ling Chen, Defu Lian, and Chengqi Zhang. Binarized at-
tributed network embedding. In 2018 IEEE International Conference on Data Mining (ICDM),
pp. 1476–1481. IEEE, 2018.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Liuyi Yao, Sheng Li, Yaliang Li, Mengdi Huai, Jing Gao, and Aidong Zhang. Representation
learning for treatment effect estimation from observational data. Advances in Neural Information
Processing Systems, 31, 2018.

Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. Ganite: Estimation of individualized
treatment effects using generative adversarial nets. In International Conference on Learning Rep-
resentations, 2018.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Advances in
Neural Information Processing Systems, 2018.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Revisiting graph neural networks
for link prediction. arXiv preprint arXiv:2010.16103, 2020a.

Zhu Zhang, Zhou Zhao, Zhijie Lin, Xiuqiang He, et al. Counterfactual contrastive learning for
weakly-supervised vision-language grounding. Advances in Neural Information Processing Sys-
tems, 33:18123–18134, 2020b.

13

Under review as a conference paper at ICLR 2022

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. arXiv preprint arXiv:2006.04131, 2020.

Hao Zou, Peng Cui, Bo Li, Zheyan Shen, Jianxin Ma, Hongxia Yang, and Yue He. Counterfactual
prediction for bundle treatment. Advances in Neural Information Processing Systems, 33, 2020.

14

Under review as a conference paper at ICLR 2022

Table 5: Statistics of datasets used in the experiments.
Dataset CORA CITESEER PUBMED FACEBOOK OGB-DDI

nodes 2,708 3,327 19,717 4,039 4,267
links 5,278 4,552 44,324 88,234 1,334,889
validation node pairs 1,054 910 8,864 17,646 235,371
test node pairs 2,110 1,820 17,728 35,292 229,088

APPENDICES

A ADDITIONAL DATASET DETAILS

In this section, we provide some additional dataset details. All the datasets used in this work are
publicly available. Statistics for the datasets are shown in Table 5.

Citation Networks CORA, CITESEER, and PUBMED are citation networks that were first used
by Yang et al. (2016) and then commonly used as benchmarks in GNN-related literature (Kipf &
Welling, 2016a; Veličković et al., 2017). In these citation networks, the nodes are published papers
and features are bag-of-word vectors extracted from the corresponding paper. Links represent the
citation relation between papers. We loaded the datasets with the DGL1 package.

Social Network The FACEBOOK dataset2 is a social network constructed from friends lists from
Facebook (McAuley & Leskovec, 2012). The nodes are Facebook users and links indicate the
friendship relation on Facebook. The node features were constructed from the user profiles and
anonymized by McAuley & Leskovec (2012).

Drug-Drug Interaction Network The OGB-DDI dataset was constructed from a public Drug
database (Wishart et al., 2018) and provided by the Open Graph Benchmark (OGB) (Hu et al., 2020).
Each node in this graph represents an FDA-approved or experimental drug and edges represent the
existence of unexpected effect when the two drugs are taken together. This dataset does not contain
any node features, and it can be downloaded with the dataloader3 provided by OGB.

B EXPANDED RELATED WORK

With the rapid development of graph machine learning in the past few years, researchers have been
attempting to relate graph neural networks (GNNs) with causal models. Recently, several works
have been proposed to improve graph learning with causal models (Sherman & Shpitser, 2020;
Bevilacqua et al., 2021; Lin et al., 2021; Feng et al., 2021). Sherman & Shpitser (2020) proposed a
new concept in causal modeling, called “network intervention”, that is a type of structural interven-
tion in network contexts. Sherman & Shpitser (2020) modeled social network with causal DAG and
studied the effect of network intervention (link creation and removal) on network structure changes.
Lin et al. (2021) formulated the problem of post-hoc explanation generation for GNNs as a causal
learning task and proposed a causal explanation model with a loss designed based on Granger causal-
ity. Feng et al. (2021) formulated node classification of GNNs with a causal DAG, which estimated
the causal effect of the local structure on the prediction and adaptively chose whether to aggregate
from the neighbors. Bevilacqua et al. (2021) studied the task of out-of-distribution (OOD) graph
classification, and showed how subgraph densities can be used to build size-invariant graph repre-
sentations. They modeled OOD graph classification with a twin network DAG causal model, which
learned approximately environment-invariant graph representations that better extrapolate between
train and test data. The last three works, i.e., Lin et al. (2021), Feng et al. (2021), Bevilacqua et al.
(2021), proposed to use causal models to improve the performance of three different types of graph
machine learning tasks such as GNN explanation (subgraph) generation, node-level classification,

1https://github.com/dmlc/dgl
2https://snap.stanford.edu/data/ego-Facebook.html
3https://ogb.stanford.edu/docs/linkprop/#data-loader

15

https://github.com/dmlc/dgl
https://snap.stanford.edu/data/ego-Facebook.html
https://ogb.stanford.edu/docs/linkprop/#data-loader

Under review as a conference paper at ICLR 2022

and graph-level classification. Compared with them, our work has three points of uniqueness. First,
to the best of our knowledge, our work makes the first attempt to use causal model to improve the
performance of link prediction which is also an important graph learning task. Second, to make the
attempt successful, our work presents a novel concept of “counterfactual link” and proposes a novel
method CFLP that learns from both factual and counterfactual link existence. Third, the proposed
method CFLP is flexible with the choice of treatment variables and is able to suggest good treatment
choices prior to training via ÂTEobs.

C DETAILS ON IMPLEMENTATION AND HYPERPARAMETERS

All the experiments in this work were conducted on a Linux server with Intel Xeon Gold 6130
Processor (16 Cores @2.1Ghz), 96 GB of RAM, and 4 RTX 2080Ti cards (11 GB of RAM each).
Our method are implemented with Python 3.8.5 with PyTorch. Source code is available in
the supplementary materials. A list of used packages can be found in requirements.txt.

Baseline Methods For baseline methods, we use official code packages from the authors for MV-
GRL4 (Hassani & Khasahmadi, 2020), SEAL5 (Zhang & Chen, 2018), and LGLP6 (Cai et al., 2021).
We use a public implementation for VGAE7 (Kipf & Welling, 2016b) and OGB implementations8

for Node2Vec and baseline GNNs. For fair comparison, we set the size of node/link representations
to be 256 of all methods.

CFLP We use the Adam optimizer with a simple cyclical learning rate scheduler (Smith, 2017),
in which the learning rate waves cyclically between the given learning rate (lr) and 1e-4 in ev-
ery 70 epochs (50 warmup steps and 20 annealing steps). We implement the GNN encoders with
torch_geometric9 (Fey & Lenssen, 2019). Same with the baselines, we set the size of all hid-
den layers and node/link representations of CFLP as 256. The graph encoders all have three layers
and JKNet has mean pooling for the final aggregation layer. The decoder is a 3-layer MLP with
a hidden layer of size 64 and ELU as the nonlinearity. As the Euclidean distance used in Eq. (3)
has a range of [0,∞), the value of γ depends on the distribution of all-pair node embedding dis-
tances, which varies for different datasets. Therefore, we set the value of γ as the γpct-percentile
of all-pair node embedding distances. Commands for reproducing the experiments are included in
README.md.

Hyperparameter Searching Space We manually tune the following hyperparameters over range:
lr ∈ {0.005, 0.01, 0.05, 0.1, 0.2}, α ∈ {0.001, 0.01, 0.1, 1, 2}, β ∈ {0.001, 0.01, 0.1, 1, 2}, γpct ∈
{10, 20, 30}.

Treatments For the graph clustering or community detection methods we used as treatments, we
use the implementation from scikit-network10 for Louvain (Blondel et al., 2008), SpecC (Ng
et al., 2001), PropC (Raghavan et al., 2007), and Ward (Ward Jr, 1963). We used implementation of
K-core (Bader & Hogue, 2003) from networkx.11 We used SBM (Karrer & Newman, 2011) from
a public implementation by Funke & Becker (2019).12 For CommN and Katz, we set Ti,j = 1 if the
number of common neighbors or Katz index between vi and vj are greater or equal to 2 or 2 times
the average of all Katz index values, respectively. For SpecC, we set the number of clusters as 16.
For SBM, we set the number of communities as 16. These settings are fixed for all datasets.

4https://github.com/kavehhassani/mvgrl
5https://github.com/facebookresearch/SEAL_OGB
6https://github.com/LeiCaiwsu/LGLP
7https://github.com/DaehanKim/vgae_pytorch
8https://github.com/snap-stanford/ogb/tree/master/examples/

linkproppred/ddi
9https://pytorch-geometric.readthedocs.io/en/latest/

10https://scikit-network.readthedocs.io/
11https://networkx.org/documentation/
12https://github.com/funket/pysbm

16

https://github.com/kavehhassani/mvgrl
https://github.com/facebookresearch/SEAL_OGB
https://github.com/LeiCaiwsu/LGLP
https://github.com/DaehanKim/vgae_pytorch
https://github.com/snap-stanford/ogb/tree/master/examples/linkproppred/ddi
https://github.com/snap-stanford/ogb/tree/master/examples/linkproppred/ddi
https://pytorch-geometric.readthedocs.io/en/latest/
https://scikit-network.readthedocs.io/
https://networkx.org/documentation/
https://github.com/funket/pysbm

Under review as a conference paper at ICLR 2022

Table 6: Link prediction performances measured by Hits@50. Best performance and best baseline
performance are marked with bold and underline, respectively.

CORA CITESEER PUBMED FACEBOOK OGB-DDI

Node2Vec 63.64±0.76 54.57±1.40 50.73±1.10 43.91±1.03 24.34±1.67
MVGRL 29.97±3.06 26.48±0.98 16.96±0.56 17.06±0.19 12.03±0.11
VGAE 60.36±2.71 54.68±3.15 41.98±0.31 51.36±0.93 23.00±1.66
SEAL 51.68±2.85 54.55±1.77 42.85±2.03 57.20±1.85 40.85±2.97
LGLP 71.43±0.75 69.98±0.16 – 56.22±0.49 –
GCN 64.93±1.62 63.38±1.73 39.20±6.47 69.90±0.65 73.70±3.99
GSAGE 63.18±3.39 61.71±2.43 54.81±2.67 62.53±4.24 86.83±3.85
JKNet 62.64±1.40 62.26±2.10 45.16±3.18 68.81±1.76 91.48±2.41

Our proposed CFLP with different graph encoders
CFLP w/ GCN 72.61±0.92 69.85±1.11 55.00±1.95 70.47±0.77 62.47±1.53
CFLP w/ GSAGE 73.25±0.94 64.75±2.27 58.16±1.40 63.89±2.08 83.32±3.61
CFLP w/ JKNet 75.49±1.54 77.01±1.92 62.80±0.79 71.41±0.61 93.07±1.14

Table 7: Link prediction performances measured by Average Precision (AP). Best performance and
best baseline performance are marked with bold and underline, respectively.

CORA CITESEER PUBMED FACEBOOK OGB-DDI

Node2Vec 88.53±0.42 84.42±0.48 87.15±0.12 99.07±0.02 98.39±0.04
MVGRL 76.47±3.07 67.40±0.52 82.00±0.97 82.37±0.35 81.12±1.77
VGAE 89.89±0.50 86.97±0.78 95.97±0.16 98.60±0.04 95.28±0.11
SEAL 89.08±0.57 88.55±0.32 96.33±0.28 99.51±0.03 98.39±0.21
LGLP 93.05±0.03 91.62±0.09 – 98.62±0.01 –
GCN 91.42±0.45 90.87±0.52 96.19±0.88 99.42±0.02 99.86±0.03
GSAGE 91.52±0.46 89.43±1.15 96.93±0.11 99.27±0.06 99.93±0.01
JKNet 90.50±0.22 90.42±1.34 96.56±0.31 99.41±0.02 99.95±0.01

Our proposed CFLP with different graph encoders
CFLP w/ GCN 93.77±0.49 91.84±0.20 97.16±0.08 99.40±0.01 99.60±0.03
CFLP w/ GSAGE 93.55±0.49 90.80±0.87 97.10±0.08 99.29±0.06 99.88±0.04
CFLP w/ JKNet 94.24±0.28 93.92±0.41 97.69±0.13 99.35±0.02 99.96±0.01

D ADDITIONAL EXPERIMENTAL RESULTS AND DISCUSSIONS

Link Prediction Tables 6 and 7 show the link prediction performance of Hits@50 and Average
Precision (AP) by all methods. LGLP on PUBMED and OGB-DDI are missing due to the out of
memory error when running the code package from the authors. Similar to the results in Tables 1
and 2, we observe that our CFLP on different graph encoders achieve similar or better performances
compared with baselines, with the only exception of AP on FACEBOOK where most methods have
close-to-perfect AP. From Tables 1, 2, 6 and 7, we observe that CFLP achieves improvement over all
GNN architectures (averaged across datasets). Specifically, CFLP improves 25.6% (GCN), 12.0%
(GSAGE), and 36.3% (JKNet) on Hits@20, 9.6% (GCN), 5.0% (GSAGE), and 17.8% (JKNet)
on Hits@50, 5.6% (GCN), 1.6% (GSAGE), and 1.9% (JKNet) on AUC, and 0.8% (GCN), 0.8%
(GSAGE), and 1.8% (JKNet) on AP. We note that CFLP with JKNet almost consistently achieves the
best performance and outperforms baselines significantly on Hits@50. Specifically, compared with
the best baseline, CFLP improves relatively by 6.8% and 0.9% on Hits@50 and AP, respectively.

Ablation Study on Losses For the ablative studies of LCF (Eq. (9)) and Ldisc (Eq. (10)), we
show their effect by removing them from the integrated loss function (Eq. (11)). Table 8 shows the
results of CFLP on CORA and CITESEER under different settings (α = 0, β = 0, α = β = 0, and
original setting). We observe that CFLP in the original setting achieves the best performance. The
performance drops significantly when having α = 0, i.e., not using any counterfactual data during
training. We note that having β = 0, i.e., not using the discrepancy loss, also lowers the perfor-
mance. Therefore, both LCF and Ldisc are essential for improving the link prediction performance.

17

Under review as a conference paper at ICLR 2022

Table 8: Link prediction performance of CFLP (w/ JKNet) on CORA and CITESEER when removing
LCF or Ldisc or both versus normal setting.

CORA CITESEER
Hits@20 AUC Hits@20 AUC

CFLP (α = 0) 58.58±0.23 89.16±0.93 65.49±2.18 91.01±0.64
CFLP (β = 0) 62.27±0.84 92.96±0.34 66.92±1.84 91.98±0.17
CFLP (α = β = 0) 58.52±0.83 88.79±0.28 64.69±3.25 90.61±0.64
CFLP 65.57±1.05 93.05±0.24 68.09±1.49 92.12±0.47

Table 9: Link prediction performance of CFLP (w/ JKNet) on CORA and CITESEER with node
embeddings (X̃) learned from different methods.

CORA CITESEER OGB-DDI
Hits@20 AUC Hits@20 AUC Hits@20 AUC

(MVGRL) 65.57±1.05 93.05±0.24 68.09±1.49 92.12±0.47 86.08±1.98 99.94±0.01
(GRACE) 62.54±1.41 92.28±0.69 68.68±1.75 93.80±0.36 82.30±3.32 99.93±0.01
(DGI) 61.04±1.52 92.99±0.49 72.17±1.08 93.34±0.51 85.61±1.66 99.94±0.01

Ablation Study on Node Embedding X̃ As the node embedding X̃ is used in the early step of
CFLP for finding the counterfactual links, the quality of X̃ may affect the later learning process.
Therefore, we also evaluate CFLP with different state-of-the-art unsupervised graph representation
learning methods: MVGRL (Hassani & Khasahmadi, 2020), DGI (Velickovic et al., 2019), and
GRACE (Zhu et al., 2020). Table 9 shows the link prediction performance of CFLP (w/ JKNet) on
CORA and CITESEER with different node embeddings. We observe that the choice of the method
for learning X̃ does have an impact on the later learning process as well as the link prediction
performance. Nevertheless, Table 9 shows CFLP’s advantage can be consistently observed with
different choices of methods for learning X̃, as CFLP with X̃ learned from all three methods showed
promising link prediction performance.

Sensitivity Analysis of α and β Figure 4 shows the AUC performance of CFLP on CORA with
different combinations of α and β. We observe that the performance is the poorest when α = β = 0
and gradually improves and gets stable as α and β increase, showing that CFLP is generally robust
to the hyperparameters α and β, and the optimal values are easy to locate.

Sensitivity Analysis of γ Figure 5 shows the Hits@20 and AUC performance on link prediction
of CFLP (with JKNet) on CORA and CITESEER with different treatments and γpct. We observe that
the performance is generally good when 10 ≤ γpct ≤ 20 and gradually get worse when the value of
γpct is too small or too large, showing that CFLP is robust to γ and the optimal γ is easy to find.

Sensitivity to Noisy Data We note that robustness w.r.t. noisy data is not within our claim of
technical contributions. Nevertheless, CFLP is not more vulnerable than other link prediction base-
lines. We conduct experiments with random attacks on the Cora dataset (randomly removing links
and adding noisy links). Table 10 shows the AUC performances of our proposed CFLP (w/ JKNet)
compared to the strongest baseline methods under different levels of random attacks (0%, 2%, 5%,
and 10%). We can observe that as the attack strength goes up, the link prediction performance of all
methods go down. We also note that our proposed CFLP still outperforms the baseline methods.

Generalization to Graphs with Weighted Edges As our proposed CFLP uses GNN as the graph
encoder and GNNs are usually able to take weighted graph as input (e.g., the adjacency matrix A
for GCN can be weighted), the model should be able to handle weighted graphs as given. Note the
link prediction losses (Eqs. (8) and (9)) need to be slightly modified considering the task. When the
task is to predict the link existence, the label adjacency matrix used in Eqs. (8) and (9) must be of
binary values. When the task is to predict the link weights, the BCE loss functions (Eqs. (8) and (9))
need to be changed to regression loss functions such as MSE.

18

Under review as a conference paper at ICLR 2022

alpha

0.0 0.5 1.0 1.5 2.0

beta
0.0

0.5
1.0

1.5
2.0

AUC

0.89
0.90
0.91
0.92
0.93

0.91

0.92

0.93

(a) AUC performance.

alpha

0.0 0.5 1.0 1.5 2.0
beta

0.0
0.5

1.0
1.5

2.0

Hi
ts
@
20

0.56
0.58
0.60
0.62
0.64
0.66

0.60

0.62

0.64

(b) Hits@20 performance.

Figure 4: Performance of CFLP on CORA w.r.t different combinations of α and β.

0 5 10 15 20 25 30
γpct

0.620

0.625

0.630

0.635

0.640

0.645

Hi
ts
@
20

0.924

0.926

0.928

0.930

0.932
AU

C

(a) Performances of CFLP on CORA when using
K-core as treatment.

0 5 10 15 20 25 30
γpct

0.610

0.625

0.640

0.655

0.670

Hi
ts
@
20

0.920

0.924

0.928

0.932

0.936

AU
C

(b) Performances of CFLP on CORA when using
SBM as treatment.

0 5 10 15 20 25 30
γpct

0.682

0.686

0.690

0.694

0.698

0.702

Hi
ts
@
20

0.915

0.917

0.919

0.921

0.923

0.925

AU
C

(c) Performances of CFLP on CITESEER when
using K-core as treatment.

0 5 10 15 20 25 30
γpct

0.722

0.727

0.732

0.737

0.742

Hi
ts
@
20

0.938

0.940

0.942

0.944

0.946

AU
C

(d) Performances of CFLP on CITESEER when
using SBM as treatment.

Figure 5: Hits@20 and AUC performances of CFLP (w/ JKNet) on CORA and CITESEER with
different treatments w.r.t. different γpct value.

Table 10: Link prediction performances measured by AUC on CORA when the graph is randomly
perturbed at different levels. Best performances are marked with bold.

0% 2% 5% 10%

SEAL 92.55±0.50 87.81±1.37 87.90±0.79 87.64±0.89
LGLP 91.30±0.05 90.70±0.15 90.38±0.17 88.61±0.15
JKNet 89.05±0.67 88.85±0.75 88.14±0.59 87.64±0.89
CFLP w/ JKNet 93.05±0.24 92.93±0.17 92.77±0.18 91.58±0.23

19

	Introduction
	Problem Definition
	Proposed Method
	Improving Graph Learning with Causal Model
	Counterfactual Links
	The Counterfactual Graph Learning Model

	Experiments
	Experimental Setup
	Experimental Results

	Related Work
	Conclusion and Future Work
	Additional Dataset Details
	Expanded Related Work
	Details on Implementation and Hyperparameters
	Additional Experimental Results and Discussions

