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Abstract

Understanding the macroscopic characteristics
of biological complexes demands precision and
specificity in statistical ensemble modeling. One
of the primary challenges in this domain lies in
sampling from particular discrete subsets of the
state-space, driven either by existing structural
knowledge or specific areas of interest within the
state-space. We propose a method that enables
sampling from distributions that rigorously ad-
here to arbitrary sets of geometric constraints in
Euclidean spaces. This is achieved by integrat-
ing a constraint projection operator within the
well-regarded architecture of Denoising Diffu-
sion Probabilistic Models, a framework founded
in generative modeling and probabilistic infer-
ence. The significance of this work becomes
apparent, for instance, in the context of deep
learning-based drug design, where it is impera-
tive to sample from the discrete structures of the
solution space.

1. Introduction

Infinitesimal Dynamics in classical mechanics is com-
monly formalized by lagrangians. By solving for function-
als that extremize the lagrangian one obtains equations of
motion. In molecular systems, e.g. Molecular Dynamics,
the EOM are: M% = —VU = >, A\aVo,, where M is
the diagonal mass matrix, = the cartesian coordinates, ¢ is
time, and U is the potential energy. The o, are a set of holo-
nomic constraints and ), are the Lagrange multiplier coef-
ficients. To generalize from holonomic to nonholonomic
constraints, one can use slack variables to transform the
latter into the first.

Neural ODE [Che+18] which generalizes to Denoising Dif-
fusion Probabilistic Models [HJA20] have the same in-
finitesimal nature as our previous EOM which makes it ac-
ceptable to apply sets of constraints via Langrange’s Multi-
pliers, analogous to solving our EOM and thus one can in-
sure the continual satisfaction of a set of constraints using

a generalization of the SHAKE algorithm from Molecular
Dynamics.

The problem we hope to model are non-linear constraints
where constrained subsets of atoms determine the uncon-
strained subset to a high degree. We argue these types of
non-linear constraints are important in the field of gener-
ative drug development where generated molecules must
satisfy certain structural or analytic properties a priori. Ad-
ditionally, we not that the solution space of physically
meaningful configurations can be modelled as a discrete
distribution. We are considering a situation where the un-
derlying discrete distribution is unknown, and we aim to
sample from it based on sets of progressively refined con-
straints defining discrete manifolds.

Given a discrete space X, partitioned into topologically
disjoint subsets (regions) X1, Xo, ..., X} by progressively
added or refined constraints, or the multi-valued solution
set of the constraint set. It is difficult to directly sample
from X due to the discrete nature of the space. However,
denoising diffusion probabilistic models (DDPMs) can aid
in this situation by modeling the discrete distribution as a
diffusion process.

Consider a Markov chain Zy, Z1, ..., Z7 where Zp is dis-
tributed according to the desired discrete distribution on X
(which we wish to sample from) and Z; is an easily sam-
pled noise distribution (e.g., uniform or Gaussian). The
DDPM defines a reverse process where Z; is obtained by
denoising Z; 1, modeled as Z; = g¢(Z;41,e;) for each
t=T-1,...,0, where g, are deterministic denoising func-
tions and €, are independent noise variables. Training in-
volves learning the g;’s from data. To sample, we start
from Zy and apply the sequence of learned constrained-
denoising functions to obtain a sample from the desired
discrete distribution on X.

In the following, we will give a summary of the SHAKE
algorithm and extend it to our setting. We suggest a con-
tinuous transformation of the constraints such that they are
always satisfied in the latent space, and become more re-
strictive throughout the integration. We continue by de-
scribing the formal definition of such a constraint projec-
tion method and show simple examples where complex
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constraints are satisfied within small molecules. We high-
light areas of continued research to better understand the
discrete solution space. We leave to future work the study
of this methodology to larger systems, and more applica-
tion based studies.

2. Previous Research

Generative models of graphs have been a subject of inter-
est in recent years. A number of different approaches have
been proposed in the literature. [HN19] generates valid
Euclidean distance matrices ensuring the resulting molec-
ular structures are physically realistic which are then re-
constructed in 3D space. In [Noé+19], Boltzmann Genera-
tors sample equilibrium states of many-body systems with
deep learning, useful for generating molecular configura-
tions that thermodynamics distributions.

[SHW21] proposed Equivariant Graph Neural Networks,
which can be applied to model molecules and pro-
teins while ensuring that their predictions are consis-
tent under different orientations and permutations of the
molecule.[Hoo+23] further extended the concept to the dif-
fusion process for 3D molecule generation. [Cor+23] ap-
plied similar methodologies to diffusion models on protein
ligand complexes, and [Jin+23] devise a method of protein
generation models that diffuse over harmonic potentials.

The shake algorithm, described in a parallelized fashion by
[ERH11], enforces linear constraints on molecular dynam-
ics simulations of chemicals and biomolecules. This al-
gorithm is conventionally used in simulations to get rid of
high frequency motions, i.e. those seen in bonds between
atoms.

3. Constrained Generative Processes
3.1. Geometric Constraints in Shake

First, we define the constraint functions for the pairwise
distance (not necessarily between bonded atoms), bond an-
gle, and dihedral angle.

Od;; = (dU — dij,0)2 =0 (1)
06, = (Oijk — 0ijr0)’ =0 2)
i = Wigkl — Vijrio)’ =0 (3)

These constraint functions compare the current pairwise
distance, bond angle, and dihedral angle with their target
values, and the goal is to minimize the difference. We
can additionally create nonholonomic constraints via slack
variables. For example, we can add a slack variable y > 0
and define d; as the boundary of a nonholonomic con-
straint. Then, we can express the constraint as:

0o = ||Taj—Tan|F—d;j <0 = [|20j—2ar|3—d;+y = 0.

Next, modify the constraint matrix in the SHAKE algo-
rithm to include pairwise distance, bond angle, and dihedral
angle constraints seen in equation 4, where 77, ijk, and ikl
sum over the pairwise, bond angles, and torsion constraints
indicating the number of atoms in each type of constraint
type. The constraint matrix now accounts for the pairwise
distance, bond angle, and dihedral angle constraints by in-
cluding their second-order derivatives with respect to the
Cartesian coordinates by including their contributions to
the Lagrange multipliers. After solving for the Lagrange
multipliers, update the coordinates using the adjusted coor-
dinate set equation like before. It is also possible to try to
optimize the coordinates via other optimization algorithms
like ADAM or SGD.

In this section, we discuss the methods needed to under-
stand how constraints can be represented, and define a
novel diffusion process which projects the dynamics onto
the submanifold defined by arbitrary sets of geometric con-
straints.

3.2. Shake Algorithm

The SHAKE algorithm takes as input a set of coordinates
x of a molecular system and a set of constraints o. At each
time step the coordinates are updated according to the equa-
tions of motion (EOM) at hand (without constraint terms)
and subsequently are corrected. In general, the EOM will
lead to dynamics that do not satisfy the constraints, and
thus this correction is mandatory.

Assuming masses of all the particles and delta time are unit
we have the following equation for updating z; iteratively
until the constraints are satisfied.

R A NP VA v € (5)
b

where x§”> is the updated coordinate after n iterations of

satisfying constraints at each time step, z; is the initial co-
ordinates at each time step, and )\l()"_l) is the lagrange mul-
tiplier for each constraint o,. The equation to solve at each
iteration of each time step is

SoATPALTY = oalal"Y) (6)
B
with
A((Xnﬁ*l) = Vaa(xgnfl))VUMxi). (7

The matrix Ag};l) is a symmetric matrix that describes
how changes in particle positions affect both potential en-
ergy and constraint violations. The elements of the matrix
are given by:
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where N, is the number of constraints. The matrix Agbﬁ_l)

is used to solve for the Lagrange multipliers )\gl) , which
are then used to adjust particle positions.

3.3. Constraint-Induced Diffusion Process

Suppose we want to incorporate a constraint, such as a dis-
tance constraint between two atoms. Let’s denote this con-
straint by f(z) = 0 for simplicity. We can modify the
diffusion process to satisfy this constraint by projecting the
noise term onto the nullspace of the gradient of the con-
straint function, analagous to the A matrix in SHAKE. This
gives us:

dz = V2D(I — Vf(z)(Vf(z))T)dB — DV log p;(x)dt

where D is the diffusion constant, B is a standard Brow-
nian motion, and V logp;(x) is the gradient of the log-
probability density, which is equivalent to the negative of
the potential energy function of the system. Here, [ is the
identity matrix, and V f(z)(V f(z))? is the outer product
of the gradient of the constraint function, which represents
the direction in which the constraint is changing. This pro-
jection ensures that the noise term does not push the system
out of the constraint-satisfying space.

The covariance matrix of the perturbed Gaussian distri-
bution of the denoising process can be understood for-
mally using the Schur complement method, available in
the Appendix. The key takeaway is the relation between
constraints and correlations via projecting out the con-
straints in the Covariance matrix of a Multivariate Gaus-
sian. This modified covariance matrix then defines the per-
turbed Gaussian distribution from which we can sample at
each time step of the diffusion process.

4. Disjoint Solution Space as Discrete
Structures

4.1. Formalizing Disjoint regions
Definition 1: Discrete Approximation

Let M be a solution set in R™ defined by a single set of con-
straints. A discrete approximation of M, denoted as M, is
a finite subset of M that satisfies the following conditions:

82

k — a T4k
Z )\(n_l)el]k Bes + Z )\ 1)%]1@1 v (4)
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ijkl

Covering Condition: For every point p € M, there exists
apoint p’ € M’ such that the Euclidean distance between p
and p’ is less than or equal to a resolution parameter € > 0.
Mathematically, Vp € M,3p' € M’ : |p — p'| <e.

Connectivity Condition: Any two points a, b € M’ can be
connected by a sequence of points in M’, with each pair of
consecutive points being at most distance e apart. Formally,
Ya,b € M’',3p1,pa,...,px € M’ such that p; = a, pr, =
b, and |p; — piy1| <efori=1,2,...,k — 1.

The discrete approximation M’ is a discretized version of
M that forms one or more finite connected components,
each representing a distinct solution to the given set of con-
straints up to the resolution e.

Definition 2: Topological Disconnected Regions

Given a topological space X and a subset M’ of X, we
say that two subsets M and M of M’ are topologically
disconnected if there exists no continuous path in M’ from
a point in M to a point in M.

The term “continuous path” refers to a sequence of points
in M’, denoted by pi1,ps,...,ps, such that p; belongs
to M/, py belongs to M/, and |p; — piy1| < e fori =
1,2,...,k—1.

In the context of a single set of constraints that may lead to
multiple solutions, the discrete approximation M’ will con-
sist of multiple connected components, each corresponding
to a distinct solution. Each component satisfies the cover-
ing condition and the connectivity condition within itself,
but there is no requirement for a continuous path between
different components. Therefore, each of these compo-
nents can be considered a topologically disconnected re-
gion.

4.2. Chirality and Disjoint Regions

Alanine can exist in two chiral forms or “enantiomers”,
commonly referred to as D-alanine and L-alanine. These
forms are mirror images of each other. Even though they
share the same set of constraints (same atoms, same bonds,
same bond angles), these molecules are not the same due to
their different spatial arrangements. The D-alanine and L-
alanine molecules represent two different solutions to the
same set of constraints, and we can consider them as two
distinct “topologically disconnected regions” in the solu-
tion space.

The two regions are disconnected because there’s no way to
“morph” a D-alanine molecule into an L-alanine molecule
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Figure 1: Molecules generated with 6 atom cyclic constraints between 1.3-1.5 Angstroms each with bounds of .1 Angstrom.
Atom types are generated as well, so we can not arbitrarily encode constraints between specific types of atoms in our current
implementation, but this will be possible in further developments.

by a continuous deformation (i.e., without breaking and re-
forming bonds). In the solution space, this implies that
there’s no path from a point in the D-alanine region to a
point in the L-alanine region without crossing the bound-
ary between the regions. Thus we say they are topologi-
cally distinct and thus form separate regions in the solution
space.

In general, adding of new constraints, varying existing con-
straints, and considering a single set of constraints that has
multiple distinct solutions can lead to topologically discon-
nected regions in the solution space. These disjoint regions
are combinatoric and require new tools to be studied accu-
rately.

5. Experiments

We illustrate our proposed method on a simple example
by generating molecules with cyclic constraints in Figure
1. The cyclic constraints impose specific geometric rela-
tionships among atoms in a molecule, such as the bond
distances, bond angles, and torsional angles, which are es-
sential for maintaining the chemical stability and physical
plausibility of the generated molecules.

6. Discussion

Our method serves as a tool for incorporating complex con-
straints in denoising diffusion processes, specifically when
dealing with multi-constraint specifications with discrete
solution spaces. Its iterative nature allows it to address
nonlinear constraint problems and extends the power of
denoising diffusion probabilistic models to work with con-
straints. There are various reasons our framework may help
in modelling unknown discrete structures defined by con-
straint manifolds.

Sampling distinct solutions: When dealing with a set of
constraints that has multiple distinct solutions, the discrete
approximation M’ provides a way to sample from these so-
lutions. Each connected component in M’ represents a dis-
tinct solution, and by sampling points within each compo-
nent, we can obtain different feasible solutions to the given
constraints. This is particularly valuable when exploring a
problem space with diverse possible outcomes.

Discretization for efficiency: In many scenarios, working
with continuous solution spaces can be computationally ex-
pensive or impractical. Discretizing the solution space us-
ing a finite set M’ allows for more efficient computations.
Sampling from the discrete approximation simplifies the
problem by reducing it to a finite and manageable set of
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points. This simplification can lead to faster computations
and easier analysis of the solutions.

Identifying disconnected regions: The concept of topo-
logically disconnected regions in M’ helps identify distinct
subsets of solutions that cannot be connected by continu-
ous paths. By sampling from these disconnected regions
separately, we can obtain solutions that are fundamentally
different from each other. This is valuable when searching
for diverse or non-redundant solutions.
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7. Appendix A: Constraint Induced Diffusion
as Correlations

Consider, for instance, a scenario involving pairwise dis-
tance constraints between a set of variables denoted as d =
d;;, where d;; signifies the distance separating variables ¢
and j. These constraints can be mathematically expressed
through the set of functions C;;(€) = ||€; — €j|| — dij =
0, which is applicable to all corresponding variable pairs
(i,j) € d, influencing the samples drawn from a Multi-
variate Normal distribution.

The introduction of these geometric constraints essentially
interrelates variables that were initially independent in the
Gaussian distribution. In order to comprehend the implica-
tions of these constraints, the covariance matrix ¥’ of the
perturbed distribution p’(€’) is worth examining:

%' = By [€(€)7] ~ Eon [€ Eeop[€]”. )

Here, the expectations are calculated over the perturbed
distribution. The covariance matrix ' elucidates the cor-
relations among variables that emerge as a result of the ge-
ometric constraints.

Importantly, these correlations, which are encoded within
the covariance matrix of a multivariate Gaussian distribu-
tion, represent the constraints in the distribution. This pro-
vides a way to naturally incorporate constraint-based infor-
mation into the model.

8. Appendix B: Generalized Schur
Complement for Multiple Constraints

To obtain a generalized approach of Schur Complement for
multiple distance constraints, let’s consider a set of M pair-
wise constraints between atoms. We can express each con-
straint as a function of the positions of the corresponding
atoms:

Fon(xi,%5) = ||x; — x5 —d?j =0, m=12,...,M,
(10)

where d;; is the distance constraint between atoms 7 and j.

To incorporate all the constraints, we can form the com-
bined gradient and Hessian matrices by stacking the corre-
sponding matrices for each constraint:
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VE= [V ViV an

ng = {szl v2f2 VQfM} . (12)

To project the Gaussian distribution with the original co-
variance matrix 3 onto the space of distance constraints,
we can use the following generalized Schur complement:

¥ =3 - IVAHT(VAHEVHT) TIVAER. (13)

While the Schur complement method can be implemented
iteratively for non-linear systems, it is computationally in-
tensive due to the inversion of the Hessian matrix. How-
ever, it serves as an excellent theoretical tool, providing a
precise representation of how constraints can be formally
incorporated into the diffusion process. On the other hand,
the Schur complement method provides a direct way to
project the covariance matrix of the atomic positions onto
the space that satisfies the distance constraints. It essen-
tially modifies the covariance matrix in a way that embeds
the constraints, without needing to adjust the atomic posi-
tions. This approach formally modifies the probability dis-
tribution of interest, and may be more useful for theoretic
insight.

9. Appendix C: Nonholonomic Constraints

We are more interested in nonholonomic constraints where
each constraint has possibly a lower and upper bound.
As we mentioned earlier, by adding a slack variable one
can translate the nonholonomic constraints to holonomic
ones. To formalize this, one sees that a constraint having a
lower and upper bound will either be completely satisfied
or fail to satisfy a single boundary. Thus, we only have to
consider at most one holonomic constraint at each call to
S H AK E meaning each constraint with a lower and upper
bound may be replaced by a lower, upper, or no bound for
each call.

To calculate the slack variable y from o, =
|} — 2} — dj whichis < or > 0, one has

), if
), if

v= {max(O,dék — |2t - xﬂ

J

(14)

max(0, ||zt — xéH —d¥
I

IV A

where dy, is the lower or upper bound in case of nonholo-
nomic constriants and the defined constraint value for holo-
nomic constraints.

In the generative process, we define the initial values of d
such that the constraints have little effects. The constraints
are then linearly interpolated throughout the ODE until the
predetermined boundary values of d;;, are reached.

10. Appendix D: Incorporation of Logical
Operators in Geometric Constraints

The application of logical operators such as’AND’, "OR’
and 'NOT’ within geometric constraints enables a more
flexible and representative modeling of physical and chem-
ical systems. Real-world scenarios frequently require the
satisfaction of multiple constraints following complex log-
ical rules. Below, we detail the basic implementation of
’OR’ and *NOT’ logical operators within the geometric
constraints of our diffusion process while noting that the
>AND’ operator is the basis of the formalism:

10.0.1. ’OR’ LogGIc

The "OR’ condition necessitates that at least one of two (or
more) constraints be met. Let’s denote two constraint func-
tions as f1(x) and fo(x). The ’OR’ logic can be integrated
by constructing a composite constraint function that is sat-
isfied when any of its constituent constraints is met. We
can express this as:

g(x) = min(f1(z), f2(x)) (15)

In this case, if either f1(z) = 0 or fa(x) = 0 (or both),
g(x) = 0, thereby meeting the ’OR’ condition. Alterna-
tively, we can employ a product of the constraints:

9(x) = f1(z) - fo(z) (16)

If either f1(x) = 0 or f2(x) = 0 (or both), g(z) = 0, again
adhering to the ’OR’ logic. This method requires that both
f1(z) and fo(x) are always non-negative.

10.0.2. ’NOT’ LoaGIC

The "NOT” operator in the context of geometric constraints
could be defined using the following equations. Let’s say
we have a constraint f(x) = 0. We want to define a NOT
operator for this constraint. We can then define "NOT f(x)”
as regions where f(x) does not equal zero, which can be
represented with two inequality constraints which can be
combined via the ’OR’ operator to designate the "'NOT’ op-
erator.

We denote € as a small positive number, then "NOT f(x)”
can be represented as:

g1(z) = f(x)+e<0 a7

g2(x) = f(x) —e >0 (18)

In the equations above, we have defined two regions (when
f(z) is smaller than —e and larger than €) where "NOT
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Algorithm 1 Pseudo-Code for Training

t ~U(0,T), e~ N(0,I)

Subtract center of gravity from e: é = [¢(z), 0] — [z, 0]
Compute z; = ayfz, h] + o4é

Update z; — x + €5, where €5 = shake(z;) — @
Compute €/, = shake(p(2;) + 2¢) — 2

Minimize L. = |es — €.|3

f(x)” is true, thus defining a NOT operator for our con-
straints. Note that these regions depend on the choice of
€.

11. Appendix E: Training and Sampling
Algorithms

11.1. Training Process

During training, in Algorithm 1, we first sample a time
step ¢ and noise vector e from uniform and Gaussian dis-
tributions respectively. Then subtract the center of gravity
from the noise vector to ensure that it lies on a zero center
of gravity subspace. Then compute the latent variable z;
by scaling and adding the input coordinates [x, h] with the
noise vector. Finally, minimize the difference between the
estimated noise vector and output of the neural network to
optimize EDM. For each molecule between 5 and 15 con-
straints are sampled from z for each batch element. The
constraints are uniformly sampled from the pairs, triples,
and quadruplets of the atom set of each molecule. This
adds an extra layer of complexity due to the constraint dis-
tribution which we need to sample from the true data dis-
tribution.

During the training phase, constraints are sampled from
the dataset. This approach encourages the model to learn
the distribution of constraints inherent in the training data,
which reduces the Kullback-Leibler (KL) divergence be-
tween the data distribution and the model distribution.
Consequently, the KL divergence during training is always
minimized, promoting the model to generate molecules that
closely resemble those in the training set.

For the practical implementation of this training procedure,
we began with a pre-trained model provided by Welling et
al.Our methodology then fine-tuned this pre-existing model
using our constraint projection method. Due to time con-
siderations and simplicity, our training and experiments fo-
cused on molecules consisting of 21 atoms.

11.2. Generative Process

In this generative process, we first sample a latent variable
zr from a Gaussian distribution. Then iterate backwards
through time and sample noise vectors € at each step. Sub-

tract the center of gravity from the noise vector to ensure
that it lies on a zero center of gravity subspace. Then com-
pute the latent variable z, by scaling and adding the input
coordinates with the noise vector and previous latent vari-
able. Finally, sample the input coordinates [z, h] from a
conditional distribution given the initial latent variable z.
The shake algorithm enforces the constraints, as in training,
at each sampling step during generation.

Although constraints can guide generation towards more
physically plausible structures, there can be potential insta-
bility in the generation process. This instability may orig-
inate from discrepancies between constraints used during
training and those applied during generation. It underlines
the need for further work to establish robust training pro-
cedures that align more closely with the generation con-
straints. Especially, with application focused studies like
generating peptides or ligands with specific interaction pro-
files.



