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ABSTRACT

Humans understand a set of canonical geometric transformations (such as transla-
tion, rotation and scaling) that support generalization by being untethered to any
specific object. We explored inductive biases that allowed artificial neural net-
works to learn these transformations in pixel space in a way that could generalize
out-of-distribution (OOD). Unsurprisingly, we found that convolution and high
training diversity were important contributing factors to OOD generalization of
translation to untrained shapes, sizes, time-points and locations, however these
weren’t sufficient for rotation and scaling. To remedy this we show that two more
principle components are needed 1) iterative training where outputs are fed back as
inputs 2) applying convolutions after conversion to log-polar space. We propose
POLARAE, an autoencoder operating in log-polar space which exploits all the
four components and outperforms standard convolutional autoencoders and varia-
tional autoencoders trained iteratively with high diversity wrt OOD generalization
of rotation and scaling transformations.

1 INTRODUCTION

Humans have a unique ability to generalize beyond the scope of prior experience (Chollet, 2019}
Lake et al.,|2017; |[Marcus, [2001), while artificial agents struggle to apply knowledge to distributions
outside the convex hull of their training data (Santoro et al., 2018]; [Lake & Baronil |2018)). One way
humans seem to achieve such generalization is by learning a set of primitive abstract structures, like
the 1D ordinal scale (Summerfield et al., [2020) and grid-like representations (Hafting et al., [2005)).
These structures can also be thought of as symmetry functions: transformations that are in some way
invariant to the specific value of their arguments. As a concrete example, we can imagine moving
any object around in space, regardless of its shape, color or size. A fundamental question is how can
such symmetry functions be learned?

We hypothesize that during development, humans learn a set of canonical transformations - e.g. the
translation, rotation and change in size of objects - that are grounded in the sensorimotor system
(Barsalou, |2008)), and learned as a consequence of predicting the sensory results of primitive actions
(Battaglia et al., 2013). The abilities to translate, rotate or scale arbitrary objects then become our
first abstract affordances (Gibson, [2014). Indeed, infants that spend more time playing with blocks
are better at abstract mental rotation tasks (Schwarzer et al ., [2013).

Our aim is to model part of this process by presenting artificial neural networks (LeCun et al.||{1995))
with 2-dimensional shapes, and training them to predict the effect of translation, rotation or scaling
of that shape in pixel space. This is analogous to predicting tactile or visual signals resulting from
a simple movement or saccade (Rao & Ballard, [1999; |Wolpert et al., [1995). We do not explicitly
model motor actions, but rather transform the image offline, and feed the result back to the model.
We then test the extent to which such predictions generalize OOD along dimensions such as shape,
size, location and time. Evidence of OOD generalization would suggest that the network has learned
a symmetry function.

We assume that, in order to learn symmetry functions, we must introduce principled inductive bi-
ases. The first is convolution. Second, to constrain the network to learn a primitive function that
can apply to any shape, we assume it requires exposure to a sufficiently diverse set of examples. We
therefore operationalize and vary ’diversity’ as the number of distinct shapes present in the training
set. As the translational invariance built into convolution is well aligned with the task of translation
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unsurprisingly, a fully convolutional autoencoder with high training set diversity acheives near per-
fect OOD generalization for translation to unseen shapes in larger grids and new locations (Figure
[I). However the two components weren’t sufficient for OOD generalization of rotation (Figure [2))
and scaling. To remedy this we introduce two more principle components. First is the effect of
’iteration’ during training (output fed back as input iteratively), based on the idea that sequential
applications of the same transformation should maintain the identity of an object (i.e. object per-
manence (Piaget, 2006))). Secondly, motivated by the strong OOD generalization of translation as
depicted in Figure |1} and the fact that translation in log-polar space is equivalent to rotation and
scaling in cartesian space (Figure 1 of (Esteves et al.l 2017} [Tootell et al., |[1982)), we hypothesize
that performing convolutions in log polar space would help in the OOD generalization of rotation
and scaling.
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Figure 1: Translation OOD (larger, hollow, shapes with 50 vertices on a 256x256 grid (trained on
64x64 grid). Ground truth (GT) and autoencoder (AE) predictions displayed.

(a) Size (Larger Grid) (b) Location
Figure 2: Comparison of OOD rotation between AE trained with high diversity and GT across
multiple times.

We summarize the following contributions:

* We build a flexible data generator that can produce and transform a large variety of simple
but structured images - irregular polygons with variable size, location, and complexity.

* We show that iteration has the ability to conserve the shape far past the time horizon seen
during training and is necessary for better OOD generalization of rotation and scaling trans-
formations along with convolution and high diversity.

* We find an interesting tradeoff between diversity and iteration where each could partially
make up for less of the other to produce better OOD generalization capabilities.

* We novelly propose POLARAE, a fully convolutional autoencoder build using concepts
from polar transformer networks (Esteves et al., |2017) which exploits all the four compo-
nents demonstrating better OOD generalization performance than a standard autoencoder
and a variational autoencoder in cartesian space.

2 RELATED WORK

2.1 PSYCHOLOGY

Humans can perform mental transformations OOD (i.e. on unseen shapes). For example, humans
can mentally translate or rotate shapes at a steady rate (Shepard & Metzler, |1971)) or scale abstract
distances (Trope & Liberman, 2010). There are also known mechanisms that might make these
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transformations general. For example, there is a known impact of diversity on the generalization
of properties in psychology, namely, the diversity effect (Osherson et al., |1990). Iteration is also a
plausible mechanism in humans - psychological data for mental rotation suggest that we transform
objects iteratively, since larger angles of rotation elicit longer reaction times (Shepard & Metzler,
1971). There is also evidence that discrete temporal context updating by recurrent thalamocortical
loops serves predictive learning in the brain (O’Reilly et al., 2014). Basically, iterated operations
achieve generality since they are time-invariant. Finally, humans have built-in architectural trans-
forms, such as the transformation of retinal images into a log-polar coordinate system (Maiello et al.,
2020).

2.2 MACHINE LEARNING

There have been several works that demonstrate that high diversity is necessary for OOD general-
ization. Xu et al.|(2020) provided theoretical guarantees that ReLU MLP networks extrapolate well
with linear functions and sufficient diversity in their training set . Sufficient diversity of input is
also required for systematic generalization of neural network based reinforcement learning agents
(Hill et al.}2019). [Madan et al.|(2021) showed that data diversity improves OOD category-viewpoint
classification but didn’t focus on the generative aspect of it using CNNs. There have also been works
collecting large scale controlled synthetic datasets (Borji et al., 2016; |Gross et al., 2010; |Q1u et al.}
2017) to facilitate learning invariance to different types of transformations in deep neural networks.
Following a similar motivation, we want CNNs to be able to learn such transformations and to be
able to generate them on OOD examples. The idea of iterative training has also been explored in this
domain. Using an iterative training technique similar to ours generative adversarial networks learned
3D rotations (but not scaling) (Galama & Mensink} |2019). However there were limited assessment
of how different amounts of iteration during training impacted extrapolation in time. Generally,
predicting past the number of iterations seen during training has required building in a conservation
law of some sort (Cranmer et al., [2020; |Greydanus et al., [2019). [Kumar et al.| (2020) showed that
gradual self training at each iteration helps in domain adaptation. In a different context, |Kuchaiev
& Ginsburg| (2017) proposed iterative output re-feeding to train deep autoencoders for improved
collaborative filtering. Recently, the idea that iteration can achieve OOD generalization has been put
forth in the context of problem solving (Schwarzschild et al., [2021)). Kim et al.| (2020) explored the
effectiveness of log-polar space in achieving rotation invariance but was limited to classification and
didn’t study other types of transformations like scaling.

3 METHOD

3.1 DATA GENERATOR

All training stimuli were shapes contained within a 64x64 pixel grid space. We constructed irregular
N-sided polygonal shapes by first sampling N angular distances between 0 and 27, and then sam-
pling a radial distance from a centroid ( Zcenter»> Ycenter) at €ach of these angles uniformly between
0 and a scale parameter r. This produced a set of vertices; pixels within the convexity of the vertices
were set to 1, and pixels outside were set to 0. There was also the option to produce "hollow’ shapes
such that an interior cut-out of the shape was set to 0, in order to produce a test-set of shapes with
different distribution from the training set. This data generator was therefore capable of producing
a combinatorically large set of possible shapes. Our procedure for shape generation is most simi-
lar to Attneave forms (Attneave & Arnoult, [1956) and also bears relation to the method of Fourier
descriptors (Zhang & Lu, |2005)), but was selected due to its computational speed and interpretable
manipulations of shape parameters. Each shape was used as the input to a neural network, and was
transformed in one of the following ways to generate the target for training: for translation, shift 2
pixels to the right; for rotation, rotate 2—”5 radians clockwise; for scaling, increase radial length of the
vertices by 0.1 (Figure [3). These transformations were hard-coded but meant to represent a set of
innate primitive actions.

3.2 MODEL ARCHITECTURE

We first describe the three baseline models followed by the proposed model:
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Figure 3: Transformations of shapes produced from the data generator.

The first model was a fully convolutional autoencoder. The encoder consisted of 3 convolutional
layers, the first with 16 3x3 kernels, (stride=2, padding=1), the second with 32 3x3 kernels (stride=2,
padding=1), and the last with 64 7x7 kernels (stride=1). The decoder had 3 layers (padding=1,
output padding=1) that inverted these operations with transposed convolution layers that were mirror
images of the encoder layers. This produced an output with the same dimensions as the input image.
All layers were followed by rectified linear (ReLU) activations. Being fully convolutional, it could
accept any input grid size. All weights were initialized using Xavier uniform initialization. We use
AE to denote this model.

The second model was a fully convolutional variational autoencoder (Kingma & Welling| [2013).
The encoder and decoder architectures were similar to AE. We use VAE to denote this model.

The third model was a 8-VAE (Higgins et al.| 2016). We used 5 = 4 since that learnt a good
disentangled representation of the data generative factors in the original work.

/ Polar "= .
Transform P = ( Inverse
B Transform

Figure 4: POLARAE architecture: The input image is passed through a polar transform module
which consists of polar origin predictor followed by conversion to log-polar space. The obtained
polar representation is passed through a fully convolutional autoencoder and finally the output is
passed through an inverse transform module to convert the image back to cartesian coordinate space.

The proposed model was a combination of polar transformer networks and the fully convolutional
autoencoder described above. More specifically, given an input image the polar origin predictor
computed a single channel feature map using a fully convolutional network and the centroid of the
heatmap was used as the polar origin. The polar transformer module converted the image to log
polar coordinates using the predicted polar origin. The transformed image was then fed to AE.
Since the rotation of the input image resulted in vertical shift in log polar space wrapping at the
boundary, we used wrap around padding on the vertical dimension and zero padding in the horizontal
dimension before applying convolutions for the first two layers of the encoder. An inverse polar
transformer module was used to convert the output of the AE from log polar space to the original
image space. The inverse polar transformer module used the sample points of the original input
image used to compute the log-polar transform and mean approximation since a single point in the
original image contributed to multiple points in the log-polar space to convert the image back to
cartesian coordinates. Since this is effectively an autoencoder operating in the log-polar space we
use POLARAE to denote this model. Figure ] shows the architecture.

3.3 TRAINING AND TESTING

All networks were trained by providing randomly generated shapes with N € [20,21], and back-
propagating the mean squared error (MSE) loss between the output and the appropriately trans-
formed target shapes. Weight updates were performed with the ADAM optimizer, using a learning
rate of 2.5e-4, weight decay of le-5, and batch size (B.S) of 32. Networks were all trained for
Nsteps=100000. We trained separate networks for translation, rotation, and scaling, but the training
procedure and the variation in diversity and iteration as described next was common to all networks.
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For rotation, inputs were centered filled shapes with r € [10,10], Zcenter = 32, Yeenter = 32, and
targets were input shapes rotated clockwise by g—g radians, where k is the numbers of iterations. Note
k = 50 would amount to full rotation and we evaluate our networks till that. These set of networks
were tested for OOD generalization to hollow shapes and larger shapes in larger grids. The set of
networks which were tested for OOD generalization of rotation to new locations were trained on
filled shapes in the upper left region with r € [5, 7], Zcenter, Ycenter € [14,18] . Finally the set of
networks which were tested on larger shapes on the same grid size were trained on centered filled
shapes with r € [5,7]. For scaling, inputs were centered filled shapes with € [5, 7], and targets
were input shapes with the radial distance of the vertices increased by 0.1%k. These set of networks
were tested for OOD generalization to hollow shapes and larger shapes in larger grids. To test OOD
generalization at new locations, networks were trained with € [5, 7], Zcenter, Ycenter € [22,26].
To generate the targets for this case the radial distances were increased by 0.08k.

To vary diversity (D), we trained a separate set of networks for each of 100, 1000, 10000 and
inf items in the training set (¢n f involved randomly generating new images on the fly every step,
to approximate an infinite diversity of shapes). To vary iteration, we introduced a training variant
(Algorithm|[T]in Appendix) that treated the network as an iterated function, based on the principle that
f(ner1) = f(f(ny)), where f is a rotation or a scaling function approximated by model M, and n;
is a shape after ¢ transformations. For each input, the final output was generated by k applications
of M (Line #5-7 in Algorithm [I). The final output was compared with the target image (initial
image transformed k& times, for example, ’;—’5’ clockwise rotations). The loss and the gradients were
calculated on the final output and then used to perform a single weight update (Line #8-10). For each
training step, the integer k£ was sampled uniformly between 1 and I; (Line #3). To assess the effect
of varying the amount of iteration we trained seperate set of models with I; = 1,2, 9. These values
were mainly chosen to study the effect of no iteration (I; = 1), just one step of iterative training
(I} = 2) and sufficient number of steps (I; = 9) which is still quite less than the number of iterations
used during testing as mentioned later. While this procedure resembles recurrent neural networks
like the LSTM (Hochreiter & Schmidhuber, [1997), it differs in that it accepts only a single input
(whereas recurrent networks usually accept sequences) and it only propagates the output, rather
than a hidden network state, so it is memory-less.

At test time, the networks were presented with new images which it hadn’t seen before, and then
repeatedly applied (outputs passed back as inputs) to assess the correspondence between each suc-
cessive transformation and the correct shape at that time point. We used the intersection over union
(IOU) metric to assess test performance at time = 1 and time = 50 (temporal extrapolation since it re-
flects transformations far past the horizon used during training) . We used a selection of test datasets
to assess OOD generalization along different dimensions. For the dimension of Shape, we tested
on shapes that had a hollow center since training shapes were all filled. For Location, we tested in
the lower right region with Z.cnter, Ycenter € [46,50] for rotation and Tcenter, Yeenter € [38,42] for
scaling transformation. For Size (Larger grid), we doubled the grid-size from 64x64 to 128x128 and
doubled the radius of the shapes so they were much larger than shapes used for training. For Size
(Same grid), the radius of the shapes were increased from [5,7] to 10 on 64x64 grid. Each test data
set contained 500 shapes.

4 RESULTS

We provide mean IOU scores along with standard deviation across five runs for each instance.

4.1 ROTATION

To demonstrate the effect of iteration we first focused on only extrapolation in time; since networks
were trained on a small number (1-9) of iterations, repeatedly transforming stimuli much longer than
that at test time (up to 50 times) would reflect extrapolation. As well, due to the combinatorial size
of the shape space, .1D. generalization rather than memorization was still necessary to succeed at
this task. As seen from Figure the AE trained with (D = inf, I, = 9) was able to conserve
the shape even till ¢ = 50 and also achieved highest IOU (Figure [5(b)). This indicates that iteration
tightens the error tolerance of each network output to achieve greater stability in time. There is also
an interesting tradeoff between diversity and iteration shown in Figure [5(b)] apparently for ¢ = 50.
For lower diversity and higher iteration (D = 100, I; = 9), the mean IOU score is very similar
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(slightly better) to the case with higher diversity, lower iteration (D = inf, I; = 1). These iterative
networks were also more stable in time than networks trained to rotate large angles in a single pass
(Figure [6), so iterative networks rotate at smaller increments while maintaining greater accuracy
over time. However even with high diversity and iteration (D = inf, I; = 9), AE failed to rotate
larger shapes in larger grids (Figure[7(a)) or at new locations (Figure[7(b)), suggesting that only the
three components aren’t sufficient.
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Figure 5: Effect of diversity,iteration on IID rotation quality for AE.
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Figure 6: Comparison of iteratively trained rotation networks (/;= 7, 8, 9) with networks that were
trained to rotate a specified angular distance in a single forward pass. For example, if the network
I; = 9 experienced between 1 and 9 iterative passes during training, then the comparison network
was trained to rotate an object by 9 minimal rotations (9MR or IT ¢ radians) in a single pass. For
higher values of iterations/MR, the iteratively trained networks have improved performance over
time, as indicated by MSE, despite rotating shapes using many more steps.
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Figure 7: Comparison of OOD rotation quality between ground truth (GT), AE across time.

From Table[I| we can see that POLARAE achieves about 28% and 44% improvement in mean IOU
score for OOD generalization to larger shapes in larger grid and location respectively compared to
the second best performing model VAE. Figure 8(a)] [8(b)| demostrates that POLARAE can rotate
larger shapes in larger grids and new locations respectively, whereas VAE distorts the shapes, or
cannot detect it and is not able to rotate in time.
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Figure 8: Comparison of OOD rotation quality between ground truth (GT), VAE, POLARAE across
multiple times.

Figure 9] shows the effect of diversity and iteration for POLARAE at OOD generalization to larger
shapes in larger grids and unseen locations (9(b)). As indicated by the colour gradient for the
case of t = 50, best performance was obtained by maximizing both diversity and iteration during
training, and as pointed out earlier lesser diversity can be compensated by using higher iteration.

For OOD generalization to hollow shapes and larger shapes in the same grid there were no major
qualitative differences in the rotation over time (Figure[T7)in Appendix).
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Figure 9: Effect of diversity vs iteration for POLARAE on OOD rotation
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Figure 10: Comparison of OOD rotation quality between AE, POLARAE across time.

We also experimented with two more 2D datasets, MNIST (LeCun et al.}[1998)) and Shape Structure
(Carlier et all, 2016). For MNIST we trained the networks iteratively to rotate digits 0-5 on a 64x64
grid and tested on digits 6-9 on a larger 128x128 grid. As we can see from Figure[I0(a)) POLARAE
was able to succesfully rotate novel shapes presented in a larger grid with time whereas AE failed.
For the Shape Structure dataset we just evaluated the performance of the networks on novel shapes

with time. (Figure[T0(D)).
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Table 1: IOU scores of trained models tested OOD for rotation at time-points 1 and 50.

Model Shape Size (Same grid)  Size (Larger grid) Location
t=1 t=50 t=1 t=50 t=1 t=50 t=1 t =50
AE 0.86i0'07 0.5710.04 0.89i0.03 0.62i0'06 0.68i0'07 0.35i0.07 0.28i0'08 0.0oi0.00

VAE 0_72:|:O‘00 0.38i0‘01 0_76:i:0.00 0_36:i:0.03 071:‘:0.00 0.38i0'01 0.0I:I:O‘OO O.OOiO‘OO
B—VAE 0.59+£0.00 () 24%0.04 () g5+0.01 () g+0.02 () g9g=+0.01 () 3+0.01 (3 )g+0.02 () )()&0-00
POLARAE | 0.76%0-010.61+093 .88+0-00 0,66+%%5 0.77+%0 .66+ 0.63+01 0.44+005

4.2 SCALING

For scaling transformation too, the best performing AE at ¢ = 50 was trained with (D = inf, I; =
9), and the diversity-iteration followed a similar pattern as in Fig. [5(b)l However even with high
diversity and iteration, AE failed to scale larger shapes in larger grids (Figure[I3(a)]in Appendix) or
at new locations (Figure[I3(b)|in Appendix).
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Figure 11: Comparison of OOD scaling quality between ground truth (GT), VAE, AE, POLARAE
across multiple times.

From Table [2] we can see that POLARAE achieves 27% and 29% improvement in mean IOU score
for OOD generalization to larger shapes in larger grid and location respectively compared to the
second best performing model VAE. Figure demostrates that POLARAE can scale
larger shapes in larger grids and new locations respectively, whereas VAE distorts the shapes without
actually scaling it with time. POLARAE can also scale unseen MNIST digits presented on a larger
grid in time unlike AE (Figure [T1(c)).

Figure [T4]in Appendix shows the trade-off between diversity and iteration of POLARAE. As indi-
cated by the colour gradient for the case of ¢ = 50, best performance here too was obtained for high
diveristy( D = inf) and high iteration( I; = 9). Here too for lower diversity and higher iteration
(D = 1000, I; = 9), the mean IOU score is very similar to the case with higher diversity, lower
iteration (D = inf, I = 1).

Table 2: 10U scores of trained models tested OOD for scaling at time-points 1 and 50.

Model Shape Size (Same grid)  Size (Larger grid) Location
t=1 t=50 t=1 t=50 t=1 t=50 t=1 t =50
AE 0.87i0'01 0.4410401 0.94i0.01 0'75i0.00 0.97i0.01 0.42i0.01 0’79i0.05 0.23i0.03

VAE 0.67%0:000,22+0-02 0 85+0-00 0 410-08 . 910-00 (.49%0.02 () 63+0.01 () 8+0.03
ﬁ—VAE 0.55%0.01 (9 17%0.04 () 70%0.01 () g=+0.06 () 5§5+0.06 () 5+0.03 () 3()*0.05 () )9+0.01
POLARAE | 0.81%0:000.460-00 .89+0-00 0 71%0.01 0 95+0-00 0 76+0.01 ¢,82+0.01 ¢,57+0.03

4.3 EXTENSION TO 3D SHAPES

We extended the models to perform 3D object rotation from voxel occupancy grids. We used Mod-
elNet40 (Wu et al., [2015), where objects were rotated around z direction. We iteratively trained to
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Figure 12: Comparison of OOD rotation quality of 3D shapes across time.

rotate 30 object categories on 30x30x30 voxel grids and tested on the heldout 10 categories presented
in larger 50x50x50 grids. We used techniques from [Esteves et al.| (2017) to extend POLARAE to
3D, predicting an axis and using it as origin to compute cylindrical coordinates (channel-wise polar
transformation). For all channels, the origin was the same and each channel was a 2D slice of the 3D
voxel grid. Similarly the inverse transform module was extended to 3D to convert the output back
to voxel grid. For AE we used a fully 3D convolutional autoencoder. As we can see from Figure
[T2] POLARAE is able to rotate unseen 3D objects with time barring minor distortions whereas AE
completely distorts it and is unable to rotate.

5 DISCUSSION & FUTURE DIRECTIONS

We tested the ability of standard autoencoders, variational autoencoders in cartesian space and au-
toencoders in log-polar space to extrapolate learned transformations in pixel space. Unsurprisingly,
convolution and high diversity were sufficient for OOD generalization of translation. However, those
weren’t sufficient for OOD generalization of rotation and scaling. Iterative training helped preserve
the shape far past the time-horizon seen during training, but was still not sufficient to rotate larger
shapes in larger grids or at new locations with time.

Performing standard convolutions in log-polar space combined with high diversity and high num-
ber of iterations during training resulted in stable transformations for larger shapes in larger grids
and new locations far past the time horizon seen during training. Here, we propose that conserva-
tion of shape emerges from the symmetry implied by training the networks as iterated functions;

as Noether’s theorem states, for any symmetric action, there is a corresponding conservation law
(Noether, [1971).

We also found an interesting interaction between diversity and iteration, where each could partially
make up for less of the other to produce OOD generalization capacities. Based on all these results,
we suggest that humans may use these strategies synergistically during development in order to learn
canonical transformations. Intuitively, a child may optimally learn to predict the sensory effects of
these transformations by both transforming many different objects as well as repeatedly transforming
the same object. In this way, they are able to abstract canonical transformations away from individual
object instances, while maintaining a sense of object permanence.

Finally, it appeared that transforming inputs into an appropriate coordinate space using POLARAE
significantly improved OOD generalization to rotation, scaling. We believe that the polar coordinate
space was better able to leverage the inductive bias of translational convolution. We hope that
these mechanisms inspired from humans can be incorporated into future neural network models to
improve generalization to downstream tasks like classification, localization.
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Figure 13: Comparison of OOD scaling quality between ground truth (GT), AE across time.
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Figure 14: Effect of diversity vs iteration for POLARAE on OOD scaling
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Figure 15: Effect of diversity vs iteration for POLARAE on OOD scaling
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Figure 16: Effect of diversity vs iteration for POLARAE on OOD rotation
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Figure 17: Comparison of OOD rotation on hollow shapes.
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Figure 18: Comparison of OOD scaling on hollow shapes.

Algorithm 1: Iterative training with D = in f

1 Initialize: Model M with parameter 6;
2 for step s=1 to Nsteps do
k < random integer drawn uniformly from [1, I,];
input, target < data_generator(r, Teenters Yeenters N, k, BS);
for iteration iter=1 to k do
output < M (input)
L input < output

B N ]

loss < MSELoss(output,target);
9 loss.backward();
10 Update parameter 6 ;
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Figure 19: Top: Mean squared error (MSE) on LLD. test set at each time step for 9 trained rotation
networks. The label ‘It. = N’ indicates that during training, the number of iterations of the newtork
on a given batch was sampled uniformly between 1 and N. Bottom: the same plot blown up to
visualize the first 6 time-steps. Of note, networks trained with higher iterations actually have a
worse MSE at the first time step, but achieve a much better MSE in the long run. Confidence
intervals represent standard error between 3 identically trained networks.
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