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ABSTRACT

Most self-supervised learning (SSL) methods rely on domain-specific pretext tasks
and data augmentations to learn high-quality representations from unlabeled data.
Development of those pretext tasks and data augmentations requires expert domain
knowledge. In addition, it is not clear why solving certain pretext tasks leads to
useful representations. Those two reasons hinder wider application of SSL to dif-
ferent domains. To overcome such limitations, we propose adversarial perturbation
based latent reconstruction (APLR) for domain-agnostic self-supervised learning.
In APLR, a neural network is trained to generate adversarial noise to perturb the
unlabeled training sample so that domain-specific augmentations are not required.
The pretext task in APLR is to reconstruct the latent representation of a clean
sample from a perturbed sample. We show that representation learning via latent
reconstruction is closely related to multi-dimensional Hirschfeld-Gebelein-Rényi
(HGR) maximal correlation and has theoretical guarantees on the linear probe
error. To demonstrate the effectiveness of APLR, the proposed method is applied
to various domains such as tabular data, images, and audios. Empirical results
indicate that APLR not only outperforms existing domain-agnostic SSL methods,
but also closes the performance gap to domain-specific SSL methods. In many
cases, APLR also outperforms training the full network in a supervised manner.

1 INTRODUCTION

Unsupervised deep learning has been highly successful in discovering useful representations in
natural language processing (NLP) (Devlin et al., 2019; Brown et al., 2020) and computer vision
(Chen et al., 2020; He et al., 2020). These methods define pretext tasks on unlabeled data so that
unsupervised representation learning can be done in a self-supervised manner without explicit human
annotations. The success of self-supervised learning (SSL) depends on domain-specific pretext tasks,
as well as domain-specific data augmentations. However, the development of semantic-preserving
data augmentations requires expert domain knowledge, and such knowledge may not be readily
available for certain data types such as tabular data (Ucar et al., 2021). Furthermore, the theoretical
understanding of why certain pretext tasks lead to useful representations remains fairly elusive Tian
et al. (2021). Those two reasons hinder wider applications of SSL beyond the fields of NLP and
computer vision.

Self-supervised algorithms benefit from inductive biases from domain-specific designs but they do
not generalize across different domains. For example, masked language models like BERT (Devlin
et al., 2019) are not directly applicable to untokenized data. Although contrastive learning does not
require tokenized data, its success in computer vision cannot be easily leveraged in other domains
due to its sensitivity to image-specific data augmentations (Chen et al., 2020). Furthermore, in
contrastive learning, the quality of representations degrades significantly without those hand-crafted
data augmentations (Grill et al., 2020). Inspired by denoising auto-encoding (Vincent et al., 2008;
2010; Pathak et al., 2016), perturbation of natural samples with Gaussian, Bernoulli, and mixup noises
(Verma et al., 2021; Yoon et al., 2020) has been utilized as domain-agnostic data augmentations
applicable for self-supervised representation learning of images, graphs, and tabular data. However,
random noises may not be as effective since uniformly perturbing uninformative features may not lead
to the intended goal of augmentations. Specifically, convex combinations in mixup noises (Zhang
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et al., 2018; Yun et al., 2019) could generate out-of-distribution samples because there is no guarantee
that the input data space is convex (Ucar et al., 2021). In this article, we use generative adversarial
perturbation as a semantic-preserving data augmentation method (Baluja & Fischer, 2018; Poursaeed
et al., 2018; Naseer et al., 2019; Nakkal & Salzmann, 2021) applicable to different domains of data.
Adversarial perturbation is constrained by the ¢, norm distance to the natural sample so that it is
semantic-preserving and does not change the label (Goodfellow et al., 2015; Madry et al., 2018).

With semantic-preserving perturbation, the pretext tasks in domain-agnostic SSL could be reconstruc-
tion of clean samples (Yoon et al., 2020) or instance discrimination of perturbed samples (Verma
et al., 2021). Nevertheless, reconstruction of clean samples in the input space is computationally
expensive because the input data dimension is high. Therefore, we present adversarial perturbation
based latent reconstruction (APLR), a simple and intuitive domain-agnostic self-supervised pretext
task derived from linear generative models, to learn representations from unlabeled data in a domain-
agnostic manner. Contrary to the pretext task of instance discrimination, our method does not require
comparison to a large number of negative samples to achieve good performance. The proposed APLR
not only achieves strong empirical performance on SSL in various domains, but also has theoretical
guarantees on the linear probe error on downstream tasks.

The contributions of this article are summarized below:

* We present adversarial perturbation based latent reconstruction for domain-agnostic self-
supervised learning.

* The proposed APLR achieves strong linear probe performance on various data types without
using domain-specific data augmentations.

* We provide theoretical guarantees on the linear probe error on downstream tasks.

2 BACKGROUND

Learning representations from two views of an input, x! and x2, is appealing if the learned
representations do not contain the noises in different views. This assumption can be explicitly
encoded into the following generative model (Bach & Jordan, 2005) with one shared latent variable

p(z) = N (0,1)
p(x' |z) =N (¢ 2,5 (1
p(x* | z) = N (n'2,5?),

where the model parameters 1), 17, ¥! and ¥2 can be learned by maximum likelihood estimation.
Reconstruction of input data via maximum likelihood estimation is computationally expensive when
the dimension of the input data is high. Instead, the probabilistic generative model can be reinterpreted
as latent reconstruction, which has the benefit of direct representation learning while retaining the
properties of generative modeling.

To convert generative modelling into latent reconstruction, two assumptions need to be met. First,
the assumption in generative modeling is that both datasets have similar low-rank approximations.
In latent reconstruction, this can be achieved by correlating the pair of latent embeddings tx' and
nx2. Secondly, it is assumed in generative modelling that the latent variables follow an isotropic
Gaussian distribution p(z) = N (0, I). In latent reconstruction, the covariance matrix of the latent
variables is diagonal, meaning that there is no covariance between different dimensions of the latent
variable. This orthogonality constraint is equivalent to the assumption of isotropic Gaussian prior
and avoids the trivial solution. As a result, by correlating the latent embeddings vx' and 1x? and
enforcing a diagonal covariance matrix, the properties of generative modelling can be retained in
latent reconstruction.

The key principle behind latent reconstruction is that the latent representation of x'! is a good predictor
for that of x2. Given two datasets X' and X2 of N observations, the projection directions are found
by maximizing the regularized correlation between the latent scores of x! and x>
Cov(X1ap;, X2%n;)?
e ov(X'1p;, X?n;) 7 @
Yo /v + (1 — ) Var(X1ep;)y/y + (1 — ) Var(X2n;)
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where 1p; and 7); are the ¢-th directions of the projection matrices and 0 < v < 1 is a regularization
coefficient (Rosipal & Kriamer, 2005; Hardoon et al., 2004). When v = 0, it is unregularized
canonical correlation analysis (CCA) (Hotelling, 1936). When v = 1, it corresponds to partial
least squares (PLS) (Wold, 1975; Wold et al., 1984). Solving the optimization problem in Eq.
equation 2 requires singular value decomposition or non-linear iterative methods (NIPLAS algorithm)
to make projection directions orthogonal to each other. The computation costs of both methods are
prohibitively expensive when the data dimension is high or the number of samples is large. Therefore,
it is more desirable to alternatively update v» and 7) in an iterative manner (Breiman & Friedman,
1985).

3 ADVERSARIAL PERTURBATION BASED LATENT RECONSTRUCTION

3.1 LATENT RECONSTRUCTION

Let x! be a perturbed sample with a certain type of noise, which is adversarial noise in our case.
Our pretext task in SSL is to reconstruct the latent representation of the clean sample x? from the
perturbed sample x'. We use deep neural networks %(-) and 7(-) to project x* and x? into latent
spaces, respectively. The reconstruction in the latent space can be achieved by maximizing the inner
product between 1 (x') and 7 (x?), when 1 (x') and 7 (x?) have zero mean and unit variance.
Based on discussions in Section 2, latent reconstruction must be done with orthogonality constraints
to avoid the trivial solution, in which (-) and 7(-) projects all input data into a constant vector.
Latent reconstruction with orthogonality constraints is equivalent to finding the multi-dimensional
Hirschfeld-Gebelein-Rényi (HGR) maximal correlation (Renyi, 1959; Makur et al., 2015) between
two random views. It is defined as follows

plx'ix?) 2 sup Elv () 702, 3
Bp(e) ) TJ=E a0 ()]

v ) =E[n(x)] =0

where zero mean constraints can be easily satisfied using a batch normalization layer (Ioffe & Szegedy,
2015) and the constraints on identity covariance matrices can be achieved by forcing the off-diagonal
elements to be zero. In practice, the constrained optimization problem in Eq. equation 3 is solved by
minimizing the following loss

L= B[00 () + ] (I ) )T~ 1+ ()0 () - 1)
“
where ~y is a Lagrange multiplier, || - || » denotes the Frobenius norm, and B is a mini-batch.

3.2 ADVERSARIAL PERTURBATION

Adversarial perturbation creates input samples that are almost indistinguishable from natural data
but causes the deep learning models to make wrong predictions (Szegedy et al., 2014). We use
a generative model to generate adversarial perturbation because it is capable of creating diverse
adversarial perturbations very quickly (Baluja & Fischer, 2018; Poursaeed et al., 2018; Naseer et al.,
2019; Li et al., 2020).

A generator G is trained to produce an unbounded adversarial G(x?) = §. The perturbation is then
clipped to be within an € bound of x* under the £, norm. Let x! = x? + § be the perturbed view of
the clean sample x2. The vast majority of adversarial perturbation methods rely on the classification
boundary of the attacked neural network (¢(-) and 7)(+)) to train the generator via maximizing a
cross-entropy loss. However, it is not possible to obtain the generative adversarial perturbation via
maximizing a cross-entropy loss in our case because no label is available. In addition, existing
generative adversarial perturbation methods explicitly relying on the classification boundary of the
attacked model tend to over-fit to the training data (Nakkal & Salzmann, 2021). Instead of using a
cross-entropy loss, we train G(-) by maximizing the ¢ distance between 1)(x!) and n(x?)

ACadv - E (XQ) - ’(/}(Xl)H27 (5)

E
x2eB

where t(+) and 7)(+) are frozen.



Under review as a conference paper at ICLR 2023

3.3 ADVERSARIAL TRAINING

Our model is trained in an adversarial manner. Given a mini-batch of data, we train G(-) by
maximizing L,q, while freezing () and 7(-). Then we update the parameters in (-) and n(-)
alternatively by minimizing £y r while freezing G(-). This process is illustrated in Fig. 1 and
Algorithm 1.

Generator G Encoder 1 L
M o x! <
T %I%I%.—'Iﬂ %%%%% ’ ‘Cadv

T Momentum 4\ Update ¢ r
Updaten | = LR

I
I
9
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Figure 1: Illustrative diagram for adversarial perturbation based latent reconstruction. The adversarial
generator network takes a clean sample as input and outputs ¢, an adversarial perturbation of the same
shape. We constrain the perturbation by its £, norm and control its strength with the perturbation
budget e. This constrained perturbation allows perturbed samples to appear unchanged to a human
evaluator, making the perturbations semantic-preserving.

Algorithm 1 Adversarial perturbation based latent reconstruction

Natural sample x, encoders ¢ (-) and 7(-), noise generator G(-), perturbation budget ¢, latent
reconstruction loss £1,r, adversarial loss L4+
for sampled minibatch do
Train G(-) (freeze ¢ (-) and 7(+))
Generate an unbounded adversarial perturbation 6 = G(x) > ¢ has the same shape as x
Clip adversarial perturbation § = ed/|d],
Obtain the perturbed sample x' = x + & and the clean sample x> = x
Obtain latent representations 1 (x!) and n(x?)
Compute L4, and update G(-) using SGD
Train ¢ (-) and 7)(-) (freeze G(-))
Generate an unbounded adversarial perturbation 6 = G(x) > ¢ has the same shape as x
Clip adversarial perturbation § = €d/|d],
Obtain the perturbed sample x* = x + § and the clean sample x? = x
Obtain latent representations 1 (x!) and n(x?)
Compute L1r and update t(-) using SGD
Update 7(-) using the exponentially moving average of parameters in t(+)
end for

4 THEORETICAL ANALYSIS

Let x be a data sample without perturbation and y(x) be its downstream task label. The quality
of the representation ¢(x) is evaluated by the linear probe error, which is the linear classification
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error of predicting y(x) from z using a linear model parameterized by B € R**". Let fg(x) =
arg max;c(,) (1(x) ' B); be the prediction of the linear model. The linear probe error on v (x) is
defined as

Brre =g, g Oe) 7 I el ©

where P(x) is the data distribution.

We have to make two assumptions to bound the linear probe error on the learned representations.
First, we assume that some universal minimizer of Eq. equation 3 can be realized by ¢ (-) and 7(-).
When the nonlinear mapping to find multi-dimensional HGR maximal correlation is realizable by
neural networks, we can analyze the quality of the learned representations using the properties in
estimating the HGR maximal correlation.

Assumption 4.1 (Realizability). Let H be a hypothesis class containing functions 1 : X* — R* and
n: X% = R*. We assume that at least one of the global minima of L (1), 1) belongs to H.

In addition, it is also reasonable to assume that an optimal classifier f*(-) can predict the label
of x almost deterministically under semantic-preserving perturbation. The assumption about the
classification error of f*(-) provides a baseline to quantify the linear probe error because part of the
error is from approximating f*(-) using a linear model.

Assumption 4.2 (a-bounded Error of the Optimal Classifier). Let x be a data sample without
perturbation and y(x) be its downstream task label. § is semantic-preserving perturbation. Then, we
assume that there is a classifier f* such that Pr(f*(x) # y(x)) < aand Pr(f*(x+9) # y(x)) <
o

Given assumptions 4.1 and 4.2, we provide the following main theorem on the generalization
bound when learning a linear classifier with finite labeled samples on the representations learned by
maximizing the HGR maximal correlation.

Theorem 4.3. Let v*,n* € H be a minimizer of L(1,n). The linear classification parameter B
is estimated with ns i.i.d. random samples {(x;,y;)};2,. With probability at least 1 — ¢ over the
randomness of data, we have

~ « k
xwl?}(x)[y(x) # fp(x)] <0 (W + \/l) ; )

where N1 is the k + 1-th Hirschfeld-Gebelein-Rényi maximal correlation between X' and X2

We hide universal constant factors and logarithmic factors of & in O(+). The first term on the right hand
side of Theorem 4.3 guarantees the existence of a linear classifier that achieves a small downstream
classification error. It indicates whether the downstream label is linearly separable by the learned
representation, thus measuring the expressivity of the learned representation. The second term on
the right hand side reveals the sample complexity of learning B from finite labeled samples in the
downstream task. It measures the data-efficiency of learning the downstream task using the learned
representation. The proof is presented in the Appendix.

5 EXPERIMENTS

We demonstrate the effectiveness of the proposed method by application on three different data
domains: tabular data, images, and audios. Additionally, we include ablation studies and sensitivity
analysis in Appendix C. For all datasets, we follow the widely used linear evaluation protocol in
self-supervised learning as a proxy to examine the quality of the learned representations (He et al.,
2020; Chen & He, 2021). After the feature extractor is pretrained with unlabeled training data, we
discard the projection-head, and learn a linear classifier on top of the frozen backbone network using
the labeled training data.

For tabular and audio experiments, we search the perturbation budget hyperparameter e from the set
{0.05,0.1,0.15}. For image experiments, we fix e to 0.05 for a direct comparison with Viewmaker
networks (Tamkin et al., 2021). We find that constraining the perturbations to an /; norm distance
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achieves the best results. For all experiments, we train the feature extractor and the adversarial
generator in an alternating fashion. The feature extractor ¢(-) is trained with the SGD optimizer with
momentum of 0.9 and weight decay of Se-4. The learning rate is 0.03 without decay. The momentum
coefficient in exponential moving average is set to 0.99 when updating 7(-). The generator is trained
with the Adam optimizer with an initial learning rate of 1e-3 and its architecture is described in the
Appendix. Both the feature extractor and the generator are trained for 200 epochs with a batch size of
256. After self-supervised training on unlabeled data, a linear classifier is trained using SGD with a
batch size of 256 and no weight decay for 200 epochs. The learning rate starts at 30.0 and is decayed
to 0 after 200 epochs with a cosine schedule.

5.1 TABULAR DATA

For tabular data, we follow existing works (Yoon et al., 2020; Verma et al., 2021) and use MNIST and
Fashion-MNIST as proxy datasets by flattening the images into 1-dimensional vectors. In addition,
we use two real tabular datasets from the UCI repository to evaluate the proposed method (Dua &
Graff, 2017).

MNIST/Fashion-MNIST are two image datasets of handwritten digits and Zalando’s article images,
respectively (LeCun et al., 2010; Xiao et al., 2017). The images of size 28 x 28 are flattened into
vectors with 784 features. Both datasets have 10 classes, and contain 60,000 training examples and
10,000 test examples.

Gas Concentrations is a dataset containing chemical sensor measurements of 128 features when
exposed to 6 different gases (Vergara et al., 2012; Rodriguez-Lujan et al., 2014). The classification
task is to identify the target gas. We perform a 80/20 train/test split to obtain 11,128 training examples
and 2,782 test examples.

Gesture Phase is a dataset containing 32 features extracted from videos of people in 5 different
gestures (Wagner et al., 2014; Dua & Graff, 2017). We perform a 80/20 train/test split to obtain 7,898
training examples and 1,975 test examples.

For all tabular data experiments, we adopt a 10-layer MLP with residual connections Gorishniy et al.
(2021) as the feature extractor. The generator is adapted from Nakkal & Salzmann (2021) by replacing
convolutional layers with linear layers. The linear evaluation results on test datasets are reported in
Table 1. APLR outperforms VIME-Self (Yoon et al., 2020), which corrupts tabular data and uses
mask vector estimation and feature vector estimation as pretext tasks, on three out of four datasets. It
aligns with the empirical observations that reconstruction of high-dimensional data in the input space
is not necessary for learning high-quality representations. APLR outperforms the domain-agnostic
benchmark DACL (Verma et al., 2021), which uses mixup noise, on all four datasets. Mixup noise
is less effective than adversarial noise because mixup noise perturbs informative and uninformative
dimensions in the input space uniformly. Furthermore, convex combinations in the input space via
mixup may result in augmented views off the data manifold. Interestingly, our proposed APLR also
outperforms training the full architecture in a supervised manner on the two real tabular datasets, Gas
and Gesture.

Table 1: Linear evaluation accuracy on tabular data
MNIST  Fashion-MNIST  Gas  Gesture

Tabular-specific

VIME-Self' (Yoon et al., 2020)  96.62 87.26 93.17 38.99
Domain-agnostic

DACL (Verma et al., 2021) 94.70 79.78 95.39 38.56
Ours 97.11 87.12 97.98 4297
Fully supervised training 98.67 90.00 9491 42.32

'For experiments with VIME-Self, we align the experimental setup with APLR to use the same backbone
architecture and perform pretraining on the entire training set.
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5.2 IMAGE DATA

We use four benchmark image datasets to evaluate the effectiveness of the proposed method, including
CIFAR-10/100 (Krizhevsky, 2009), STL-10 (Coates et al., 2011) and Tiny-ImageNet (Le & Yang,
2015). The details of the datasets are described in the Appendix.

ResNet18 (He et al., 2016) is adopted as the backbone network in the feature extractor. We adopt the
generator in Nakkal & Salzmann (2021) for image data. We present the results for self-supervised
representation learning on image data in Table 2. It is observed that APLR outperforms DACL (Verma
etal., 2021) by a large margin, indicating that adversarial noise is a more effective semantic-preserving
perturbation than mix-up noise in DACL. Interpolation of input samples via mix-up could lead to
out-of-distribution training samples because the input data space may not be convex. Our method
also achieves better performance than Viewmaker (Tamkin et al., 2021), which is a domain-agnostic
self-supervised learning method by discriminating adversarially perturbed data. The adversarial noise
in APLR is more robust because the training process of adversarial noise in APLR does not rely on
the classification boundary between augmented samples (Nakkal & Salzmann, 2021). Furthermore,
we also compare APLR against methods that use image augmentations (e.g. cropping, rotation,
horizontal flipping), such as SimCLR (Chen et al., 2020). It is found in previous studies (Grill et al.,
2020; Chen et al., 2020) that random crop is a crucial data augmentation towards learning high-quality
representations for image data. However, it is impossible to create cropped views of images using
adversarial perturbation because the adversarial noise is additive to the natural sample. Given the
importance of random crop and the inability to create cropped views with adversarial perturbations,
achieving comparable accuracies between APLR and SimCLR indicates that adversarial noise is a
highly effective data augmentation method.

Table 2: Linear evaluation accuracy on image data
CIFAR-10 CIFAR-100 STL-10  Tiny-ImageNet

Image-specific

SimCLR (Chen et al., 2020) 86.47 54.86 85.49 43.27
Domain-agnostic

DACL (Verma et al., 2021)? 60.49 35.28 57.34 22.69
Viewmaker (Tamkin et al., 2021) 84.51 52.28 82.73 40.51
Ours 85.92 55.83 86.21 4293

5.3 AuDIO DATA

We use three benchmark audio datasets to evaluate APLR and describe the dataset details below.

ESC-10/50 are two environmental sound classification datasets containing 5-seconds of environmental
recordings (Piczak, 2015). ESC-10 and ESC-50 have 10 and 50 classes, and contain 400 and 2000
examples, respectively. We use the original fold settings from the authors (Piczak, 2015), and follow
the experimental setup in Al-Tahan & Mohsenzadeh (2021) to use the first fold for testing and the
rest for training.

LibriSpeech-100 is a corpus of read English speech (Panayotov et al., 2015). We use speaker
identification as the downstream classification task. We follow the experimental setup from Tamkin
et al. (2021) to pretrain with the LibriSpeech-100 hour corpus which contains 28,539 examples, and
perform linear evaluation on the LibriSpeech development set which contains 2,703 examples.

For audio experiments, we use 1-D ResNet18 (He et al., 2016) as the feature extractor and adopt the
generator in Nakkal & Salzmann (2021) with one input channel. The time-frequency representation
is a 2D log mel spectrogram, normalized to zero mean and variance. We report the results on audio
data benchmarks in Table 3, and visualize examples from LibriSpeech-100 in the Appendix. APLR
performs significantly better than CLAR (Al-Tahan & Mohsenzadeh, 2021), which experimented
extensively with combinations of audio-specific augmentations and uses fade in/out and time masking
as their best-performing audio augmentations. Compared to image augmentations, the data augmen-

2DACL reports better results using larger backbones and more training epochs. We just report the reproduced
results under our experiment settings.
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tations for audio data are relatively underexplored. Our results demonstrate the advantage of learning
audio augmentations over manually designed augmentations. Our proposed method also outperforms
both domain-agnostic methods, DACL and Viewmaker. DACL performs close to APLR on the simple
yet small ESC-10 and ESC-50 datasets. However, it is unable to learn effective representations
on the larger and significantly more complex LibriSpeech-100 dataset. Even though both APLR
and Viewmaker use adversarial noise, APLR outperforms Viewmaker by a large margin across all
benchmark datasets. This indicates the effectiveness of learning augmentations by maximizing the
discrepancy between latent representations.

In Table 3, we also report results on training the full architecture in a supervised manner. We find that
linear classifiers trained on top of the representations learned by APLR outperforms the supervised
model on ESC-10, and closes the gap to ESC-50 compared to other benchmarks, demonstrating the
ability for APLR to learn useful latent representations. Current state-of-the-art supervised approaches
report high accuracies (over 94%) on the ESC-50 dataset (Gong et al., 2021; Kumar & Ithapu, 2020).
However, these methods perform pretraining using large datasets such as AudioSet and ImageNet,
and use multiple audio-specific data augmentations. With the supervised training experiments, we
do not perform pretraining with large datasets, and we use time masking and frequency masking
as augmentations. Our goal is to simply compare APLR against training the same architecture in a
supervised manner.

Table 3: Linear evaluation accuracy on audio data
ESC-10 ESC-50 LibriSpeech-100

Audio-specific

CLAR (Al-Tahan & Mohsenzadeh, 2021) 68.70 40.40 62.14
Domain-agnostic

DACL (Verma et al., 2021) 71.75 48.50 37.30
Viewmaker (Tamkin et al., 2021) 70.00 35.75 88.30
Ours 81.25 57.75 96.29
Fully supervised training 76.25 59.14 N/A?

6 RELATED METHODS

Unsupervised representation learning can be categorized into two classes based on the type of the
pretext task: generative or discriminative. Generative approaches learn to generate or reconstruct unla-
beled data in the input space (Higgins et al., 2017; Donahue et al., 2017; Donahue & Simonyan, 2019).
Reconstructing the masked portion of data is highly successful in discovering useful representations
in natural language processing (Mikolov et al., 2013; Brown et al., 2020; Devlin et al., 2019). Before
the success of masked language models, variants of denoising or masked autoencoders are developed
for computer vision tasks (Vincent et al., 2008; 2010; Pathak et al., 2016) but the performance is
worse than discriminative SSL methods. It was not until recently that masked image models are
revived in unsupervised visual representation learning by discretizing image patches via tokenizers
(Bao et al., 2022; Zhou et al., 2022). MAE (He et al., 2022) further simplifies masked image models
by directly inpainting masked images without tokenizers or image-specific augmentations. Although
masking is a simple data augmentation that can be flexibly applied to different domains of data,
computationally expensive generation or reconstruction in the input space may not be necessary
for representation learning. Our method is derived from a generative model and shares the idea of
reconstructing the corrupted samples in masked autoencoding. Instead of reconstructing discrete
tokens or raw inputs, our method reconstructs the continuous latent representation, which is related
to discriminative SSL methods using data augmentations.

Augmentation-based discriminative SSL methods learn representation by comparing (including but
not limited to contrastive learning) augmented views of unlabeled data in the latent space. This line of
work involves a contrastive framework with variants of InfoNCE loss (Gutmann & Hyvérinen, 2010;

3Following the experimental setup in Tamkin et al. (2021), the training set in LibriSpeech has 251 classes
and the testing set has 40 classes. Since we train the fully supervised model in an end-to-end manner without a
linear evaluation phase, we cannot report a result for LibriSpeech-100.
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Oord et al., 2018) to pull together representations of augmented views of the same training sample
(positive sample) and disperse representations of augmented views from different training samples
(negative samples) (Wu et al., 2018; Hénaff et al., 2020; Wang & Isola, 2020). Typically, contrastive
learning methods require a large size of negative samples to learn high-quality representations from
unlabeled data (Chen et al., 2020; He et al., 2020). Meanwhile, non-contrastive methods train
neural networks to match the representations of augmented positive pairs without comparison to
negative samples or cluster centers. However, non-contrastive methods suffer from trivial solutions
where the model maps all inputs to the same constant vector, known as a collapsed representation.
Various methods have been proposed to avoid a collapsed representation on an ad hoc basis, such as
asymmetric network architecture (Grill et al., 2020), stop gradient (Chen & He, 2021), and feature
decorrelation (Ermolov et al., 2021; Zbontar et al., 2021; Hua et al., 2021). Interestingly, our method
also includes a feature decorrelation constraint, which is adapted from a generative model. Recently,
adversarial perturbations are combined with image augmentations to create more challenging positive
and negative samples in self-supervised learning (Ho & Nvasconcelos, 2020; Yang et al., 2022).
APLR does not require domain-specific augmentations and can be applied to different domains of
data.

Learning augmentations has been investigated in supervised learning to obtain data-dependent
augmentation policies for better generalization (Cubuk et al., 2019; Hataya et al., 2020). In parallel,
adversarial perturbation can be treated as a special form of learnable augmentations to enhance
the robustness of models with adversarial training (Goodfellow et al., 2015; Madry et al., 2018).
The domain-agnostic augmentations in our method are closely related to generative adversarial
perturbation, where data augmentations are obtained through a forward pass of learnable generative
models (Li et al., 2020; Baluja & Fischer, 2018; Poursaeed et al., 2018; Naseer et al., 2019). The
vast majority of adversarial perturbation methods rely on the classification boundary of the attacked
neural network to train the generator via maximizing a cross-entropy loss. Those ideas have been
extended to SSL to get adversarial perturbation by maximizing the InfoNCE loss in SimCLR (Kim
et al., 2020; Tamkin et al., 2021). However, existing generative adversarial perturbation methods
rely explicitly on the classification boundary or the instance discrimination boundary of the attacked
model and tend to make them over-fit to the source data (Nakkal & Salzmann, 2021). Instead of
maximizing a cross-entropy loss, we maximize the {5 distance between mid-level feature maps to
obtain generative adversarial perturbations.

Theoretical understanding of SSL has been studied under the assumption that augmented views of
the same raw sample are somewhat conditionally independent given the label or a hidden variable
(Arora et al., 2019; Tosh et al., 2021a;b; Lee et al., 2021). However, those assumptions do not hold
in practice because augmented views of a natural sample are usually highly correlated. Augmented
views are unlikely to be independent given the hidden label. Recent studies in contrastive learning
provide theoretical guarantees of the learned representation without the assumption of conditional
independence (HaoChen et al., 2021; Wang et al., 2022). In parallel, Tian et al. (2021) investigates
the training dynamics of non-contrastive SSL methods to show how feature collapse is avoided but
lacks guarantees for solving downstream tasks. Note that our proposed method does not involve an
explicit comparison between positive and negative samples. Our theoretical analysis relies on the
divergence transition matrix without the assumption of conditional independence.

7 CONCLUSIONS

In this article, we introduce APLR, a domain-agnostic SSL method by reconstruction of adversarial
perturbed samples in the latent space. The adversarial perturbation is created by a generative network,
which is trained concurrently with the feature encoder in an adversarial manner. Our empirical results
show that the proposed method is better than the existing domain-agnostic SSL methods and achieves
comparable performance with SOTA domain-specific SSL methods. In many cases, APLR also
outperforms training the same architecture in a fully supervised manner, demonstrating its strong
ability to learn useful latent representations. In addition, the proposed latent reconstruction is linked
to Hirschfeld-Gebelein-Rényi maximal correlation and thus has theoretical guarantees of downstream
classification tasks. We believe that the proposed method can be applied to applications beyond
classification, such as reinforcement learning.



Under review as a conference paper at ICLR 2023

REFERENCES

Haider Al-Tahan and Yalda Mohsenzadeh. Clar: contrastive learning of auditory representations. In
International Conference on Artificial Intelligence and Statistics, pp. 2530-2538. PMLR, 2021.

Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saunshi.
A theoretical analysis of contrastive unsupervised representation learning. In Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pp. 5628-5637. PMLR,
2019.

Francis R Bach and Michael I Jordan. A probabilistic interpretation of canonical correlation analysis.
Technical Report, Department of Statistics, University of California, 2005.

Shumeet Baluja and Ian Fischer. Learning to attack: Adversarial transformation networks. In
Thirty-second aaai conference on artificial intelligence, 2018.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEit: BERT pre-training of image transformers.
In International Conference on Learning Representations, 2022.

Leo Breiman and Jerome H Friedman. Estimating optimal transformations for multiple regression
and correlation. Journal of the American statistical Association, 80(391):580-598, 1985.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for

contrastive learning of visual representations. In International conference on machine learning, pp.
1597-1607. PMLR, 2020.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.

Adam Coates, Andrew Ng, and Honglak Lee. An Analysis of Single Layer Networks in Unsupervised
Feature Learning. In AISTATS, 2011.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 113-123, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pp. 4171-4186. Association for Computational Linguistics, 2019.

Jeff Donahue and Karen Simonyan. Large scale adversarial representation learning. Advances in
Neural Information Processing Systems, 32, 2019.

Jeff Donahue, Philipp Kridhenbiihl, and Trevor Darrell. Adversarial feature learning. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings, 2017.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for self-
supervised representation learning. In International Conference on Machine Learning, pp. 3015—
3024. PMLR, 2021.

Yuan Gong, Yu-An Chung, and James Glass. AST: Audio Spectrogram Transformer. In Proc.
Interspeech 2021, pp. 571-575, 2021. doi: 10.21437/Interspeech.2021-698.

10


http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Under review as a conference paper at ICLR 2023

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learn-
ing models for tabular data. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34,
pp- 18932-18943. Curran Associates, Inc., 2021. URL https://proceedings.neurips.
cc/paper/2021/file/9d86d83£925f2149e9%9edb0ac3b49229c—-Paper.pdf.

William H Greene. Econometric analysis. Prentice Hall, 2003.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. In Proceedings
of the 33nd International Conference on Neural Information Processing Systems, 2020.

Michael Gutmann and Aapo Hyvirinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 297-304, 2010.

Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-supervised
deep learning with spectral contrastive loss. Advances in Neural Information Processing Systems,
34, 2021.

David R Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canonical correlation analysis: An
overview with application to learning methods. Neural computation, 16(12):2639-2664, 2004.

Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki Nakayama. Faster autoaugment:
Learning augmentation strategies using backpropagation. In European Conference on Computer
Vision, pp. 1-16. Springer, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp- 770-778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729-9738, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dolldr, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022.

Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, SM Eslami, and
Aaron van den Oord. Data-efficient image recognition with contrastive predictive coding. In
International Conference on Machine Learning, pp. 4182-4192. PMLR, 2020.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. ICLR, 2(5):6, 2017.

Chih-Hui Ho and Nuno Nvasconcelos. Contrastive learning with adversarial examples. Advances in
Neural Information Processing Systems, 33:17081-17093, 2020.

H Hotelling. Relations between two sets of variates. Biometrika, 1936.

Tianyu Hua, Wenxiao Wang, Zihui Xue, Sucheng Ren, Yue Wang, and Hang Zhao. On feature decor-
relation in self-supervised learning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 9598-9608, 2021.

Shao-Lun Huang and Xiangxiang Xu. On the sample complexity of hgr maximal correlation functions
for large datasets. IEEE Transactions on Information Theory, 67(3):1951-1980, 2020.

11


https://proceedings.neurips.cc/paper/2021/file/9d86d83f925f2149e9edb0ac3b49229c-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/9d86d83f925f2149e9edb0ac3b49229c-Paper.pdf

Under review as a conference paper at ICLR 2023

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448—456.
PMLR, 2015.

Minseon Kim, Jihoon Tack, and Sung Ju Hwang. Adversarial self-supervised contrastive learning.
Advances in Neural Information Processing Systems, 33:2983-2994, 2020.

A Krizhevsky. Learning Multiple Layers of Features from Tiny Images. PhD thesis, University of
Toronto, 2009.

Anurag Kumar and Vamsi Krishna Ithapu. A sequential self teaching approach for improving
generalization in sound event recognition. In Proceedings of the 37th International Conference on
Machine Learning, ICML’20. JMLR.org, 2020.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. 2015.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Jason D Lee, Qi Lei, Nikunj Saunshi, and Jiacheng Zhuo. Predicting what you already know helps:
Provable self-supervised learning. Advances in Neural Information Processing Systems, 34, 2021.

Yingwei Li, Song Bai, Cihang Xie, Zhenyu Liao, Xiaohui Shen, and Alan L. Yuille. Regional
homogeneity: Towards learning transferable universal adversarial perturbations against defenses.
In Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part XI, volume 12356, pp. 795-813. Springer, 2020.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018.

Anuran Makur, Fabidn Kozynski, Shao-Lun Huang, and Lizhong Zheng. An efficient algorithm
for information decomposition and extraction. In 2015 53rd Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pp. 972-979. IEEE, 2015.

Tomads Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. In Yoshua Bengio and Yann LeCun (eds.), /st International Conference on
Learning Representations, ICLR 2013, 2013.

Krishna Kanth Nakkal and Mathieu Salzmann. Learning transferable adversarial perturbations.
Advances in Neural Information Processing Systems, 34, 2021.

Muhammad Muzammal Naseer, Salman H Khan, Muhammad Haris Khan, Fahad Shahbaz Khan,
and Fatih Porikli. Cross-domain transferability of adversarial perturbations. Advances in Neural
Information Processing Systems, 32, 2019.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
based on public domain audio books. In Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on, pp. 5206-5210. IEEE, 2015.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2536-2544, 2016.

Karol J. Piczak. ESC: Dataset for Environmental Sound Classification. In Proceedings of the 23rd
Annual ACM Conference on Multimedia, pp. 1015-1018. ACM Press, 2015. ISBN 978-1-4503-
3459-4. doi: 10.1145/2733373.2806390. URL http://dl.acm.org/citation.cfm?
doid=2733373.2806390.

12


http://dl.acm.org/citation.cfm?doid=2733373.2806390
http://dl.acm.org/citation.cfm?doid=2733373.2806390

Under review as a conference paper at ICLR 2023

Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge Belongie. Generative adversarial perturba-
tions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
4422-4431, 2018.

A. Renyi. On measures of dependence. Acta Mathematica Academiae Scientiarum Hungarica, 10:
441-451, 1959.

Irene Rodriguez-Lujan, Jordi Fonollosa, Alexander Vergara, Margie Homer, and Ramon Huerta.
On the calibration of sensor arrays for pattern recognition using the minimal number of experi-
ments. Chemometrics and Intelligent Laboratory Systems, 130:123—-134, 2014. ISSN 0169-7439.
doi: https://doi.org/10.1016/j.chemolab.2013.10.012. URL https://www.sciencedirect.
com/science/article/pii/S0169743913001937.

Roman Rosipal and Nicole Krimer. Overview and recent advances in partial least squares. In
International Statistical and Optimization Perspectives Workshop" Subspace, Latent Structure and
Feature Selection”, pp. 34-51. Springer, 2005.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings, 2014.

Alex Tamkin, Mike Wu, and Noah Goodman. Viewmaker networks: Learning views for unsupervised
representation learning. In International Conference on Learning Representations, 2021.

Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning dynamics
without contrastive pairs. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pp. 10268—10278. PMLR, 2021.

Christopher Tosh, Akshay Krishnamurthy, and Daniel Hsu. Contrastive learning, multi-view redun-
dancy, and linear models. In Algorithmic Learning Theory, pp. 1179-1206. PMLR, 2021a.

Christopher Tosh, Akshay Krishnamurthy, and Daniel Hsu. Contrastive estimation reveals topic
posterior information to linear models. Journal of Machine Learning Research, 22(281):1-31,
2021b.

Talip Ucar, Ehsan Hajiramezanali, and Lindsay Edwards. Subtab: Subsetting features of tabular data
for self-supervised representation learning. Advances in Neural Information Processing Systems,
34,2021.

Alexander Vergara, Shankar Vembu, Tuba Ayhan, Margaret A. Ryan, Margie L. Homer, and Ramén
Huerta. Chemical gas sensor drift compensation using classifier ensembles. Sensors and Actuators
B: Chemical, 166-167:320-329, 2012. ISSN 0925-4005. doi: https://doi.org/10.1016/j.snb.
2012.01.074. URL https://www.sciencedirect.com/science/article/pii/
50925400512002018.

Vikas Verma, Thang Luong, Kenji Kawaguchi, Hieu Pham, and Quoc Le. Towards domain-agnostic
contrastive learning. In International Conference on Machine Learning, pp. 10530-10541. PMLR,
2021.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pp. 1096—1103, 2008.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol, and
Léon Bottou. Stacked denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion. Journal of machine learning research, 11(12), 2010.

Priscilla Wagner, Sarajane Peres, Renata Madeo, Clodoaldo Lima, and Fernando Freitas. Gesture
unit segmentation using spatial-temporal information and machine learning. 01 2014.

13


https://www.sciencedirect.com/science/article/pii/S0169743913001937
https://www.sciencedirect.com/science/article/pii/S0169743913001937
https://www.sciencedirect.com/science/article/pii/S0925400512002018
https://www.sciencedirect.com/science/article/pii/S0925400512002018

Under review as a conference paper at ICLR 2023

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning, pp.
9929-9939. PMLR, 2020.

Yifei Wang, Qi Zhang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Chaos is a ladder: A
new theoretical understanding of contrastive learning via augmentation overlap. In International
Conference on Learning Representations, 2022.

Hans S Witsenhausen. On sequences of pairs of dependent random variables. SIAM Journal on
Applied Mathematics, 28(1):100-113, 1975.

Herman Wold. Soft modelling by latent variables: the non-linear iterative partial least squares (nipals)
approach. Journal of Applied Probability, 12(S1):117-142, 1975.

S. Wold, A. Ruhe, H. Wold, and W.J. Dunn, III. The collinearity problem in linear regression. The
partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Comput., 5:735-743,
1984.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3733-3742, 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017.

Kaiwen Yang, Tianyi Zhou, Xinmei Tian, and Dacheng Tao. Identity-disentangled adversarial
augmentation for self-supervised learning. In International Conference on Machine Learning, pp.
25364-25381. PMLR, 2022.

Jinsung Yoon, Yao Zhang, James Jordon, and Mihaela van der Schaar. Vime: Extending the success of
self-and semi-supervised learning to tabular domain. Advances in Neural Information Processing
Systems, 33:11033-11043, 2020.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 6023-6032, 2019.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pp. 12310-12320. PMLR, 2021.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, 2018.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmenta-
tion. CoRR, abs/1708.04896, 2017. URL http://arxiv.org/abs/1708.04896.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. Image
BERT pre-training with online tokenizer. In International Conference on Learning Representations,
2022.

A PROOF OF THE MAIN THEOREM

The HGR maximal correlation can be estimated from divergence transition matrix A € RIX" x| %] s
whose entries are defined by the joint and marginal distributions of x! and x? (Witsenhausen, 1975).
Let P,: and P,> be the marginal distribution and P,1,2 be the joint distribution. P,1(x}) can be
viewed as the probability mass of x being randomly sampled from X'*. Then, each entry of A is
given by

le 2 Xll7 XZ

A = (1 i) - (8)
P (x7)Py2 (xj)
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The solution to Eq. equation 3 is the sum of the top k singular values of A with left singular vectors
Z' ¢ RV*F and right singular vectors Z2 € RV** defined as

(C))

where z! and z? are the i-th row of embedding matrices Z' and Z?, respectively (Huang & Xu, 2020).

This is essentially a rank-k approximation of A via minimizing || A — Z'Z? ' ||%. Note that x* is a
clean sample and z? is the representation of a clean sample. We use clean samples in downstream
tasks. We drop the superscription to avoid cluttered notation.

The first term on the right hand side of the main theorem (theorem 4.3) measures the approximation
error of the optimal classifier f* by a linear classifier parameterized by B. It amounts to the residual
of the least squares problem ||f* — ZB||? in Fig. 2, where the representation matrix Z € RV *%
contains the top-k left singular vectors of A and f* € {0, 1}V is the vector that contains the predicted
labels of all the data by the optimal classifier f*. The approximation error is bounded if £* has limited
projection into the residual subspace that is perpendicular to the column space of the representation.

fr(x)

z'B

Figure 2: Geometric interpretation of least squares. f*(x) : X — {0, 1} is the Bayes optimal
classifier for predicting the label given x with error at most « according to Assumption 4.2. The
green panel is the subspace spanned by the columns of the representation z. B is the parameters of
the linear classification model.

In the first step, we construct a quadratic form of f* to quantify its projection into the residual space
based on singular value decomposition of A. The largest singular value of A is 1, with constant left
and right singular vectors being 1 and 1 (Huang & Xu, 2020). Therefore, it is more convenient to

subtract the top singular mode and introduce A = I — A. A can be factorized as A= Zf\il yiuv,
via singular value decomposition, where ~; is the i-th singular value of A with the left singular vector
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u; and the right singular vector v;. The quadratic form is given as follows

k N
£ TAf = (Z fyiuivzT + Z ’yiuivj> f* (10)
=1 i=k+1
k N
=f' (Z%uiuj + > %uiu;r> £ (11)
=1 i=k+1
N
>l ( Z ’yiul-u;-r) f* (12)
i=k+1
N
> 7 (wkﬂ > wu/ ) £* (13)
i=k+1
= a1 f PE = g £ PTPE = | P2 (14)

where Eq. equation 11 is due to the fact that the left and right singular vectors are the same in the
symmetric matrix A, the inequality in Eq. equation 12 is because of dropping a quadratic term, and
Eq. equation 13 is due to Y41 < Ypyo < ...yn. P £ Zf\ikﬂ w;u; defines a projection matrix
that projects f* into a residual subspace spanned by singular vectors uy41, ..., uy. Eq. equation 14
is obtained because P is an idempotent matrix (P? = P) (Greene, 2003). In addition, (I-P)f*is
in the subspace spanned by singular vectors uy, . . ., Uy, which is the column space of Z. Based on
the geometric interpretation of the least squares problem ||f* — ZB||?, there exists B that such that
(I — P)f* = ZB is the projection of f* onto the column space of Z.

In the second step, we upper bound ;11| Pf*||2. Based on Eq. equation 14, we have 711 [|Pf*[|? <
£+ T Af*. It is more convenient to upper bound f *TAf*

£ TAf = £ TIE — A

N N £ £*
=) L - Py (X, %) (—== =)

ZZ-: ' Z:: CET R P (xi) /P2 ()

| XN N £ £ N
= 7( f;Lf;z -2 Pw1w2(xiax')( = i ) + f;f;)

22 0 e b)) R s Tp ey 2L

N 2 N

1 £* £* £ (15)
= f( P, (Xl) R — -2 lezz(xi,x-)( Li = )

2 Z P, (x:) Z;l TP (%) /P2 (x5)

N £’

+ZPI2(X1') <PZ(X)> )
TR £* fr

_1 legﬂ Xi,Xj T, _ j 27
3 2 2 Pl e = )

where £ = f*(x), Ppi(x;) = 37 Porg2(x,%;) = 1/N and Ppa(x;) = Y07 Poiga(xi, ;) =
1/N. Note that we only sample a pair of samples (x;,x;) where x; is created from semantic-
preserving perturbation of x; to train the model. The probability mass Py1,2(x;,%;) > 0 only if
(x;,x;) are generated from a shared latent variable. Let (x,x ™) be a positive pair to denote a pair of
samples created from semantic-preserving perturbation. We can rewrite equation equation 15 as

<., N
£ TAf* = o oot [(£7 - )7, (16)

where E, .+ [(£5 — £7,) 2] quantifies the probability that the optimal classifier f*(-) predicts different
labels for (x,x*). When £} # f*, . there must be f*(x) # y(x) or f*(x¥) # y(x). With
Assumption 4.2, we have Pr( f*(x) # f*(x7)) = 2a. As such, the quadratic form in Eq. equation 16
can be upper bounded:

£*TAf* < Na. (17)
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With Eq. equation 14 and equation 17, we have

N
I£* — ZB||> = |[PF*|* < —— (18)
YE+1
1 * 2
€ = ZBJ? < a/ye (19)

The k-th singular value of A is Ay = 1 — =, which is also the k-th Hirschfeld-Gebelein-Rényi
maximal correlation by definition. Therefore, we have Pry p(x)[y(x) # fB(x)] < 9] (ﬁ)

The second term on the right hand side of the main theorem is the estimation error that measures
sample complexity of learning B with access to ns i.i.d. training samples in the downstream task. It
can be upper bounded using the Rademacher complexity of linear models. Let H; = {z — z' B :
IBl|F < Cp}. We have the Rademacher complexity of the linear model

Rp,(H1) = CovC: (20)

VALY
where E[||z||?] < C.. By definition of Eq. equation 3, E[||z||?] captures the summation of first k
HGR maximal correlation. E[||z]|?] < k because the HGR maximal correlation less equal than 1.
Therefore, we have

Pr [y(x) # f5(x)] <O <“+ ’“>.

x~ P(x) L= Ak n2

B IMAGE DATASETS

CIFAR-10/100 are two datasets of tiny natural images with a size of 32 x 32 (Krizhevsky, 2009).
CIFAR-10 and CIFAR-100 have 10 and 100 classes, respectively. Both datasets contain 50,000
training images and 10,000 test images.

STL-10 is a 10-class image recognition dataset for unsupervised learning (Coates et al., 2011). Each
class contains 500 labeled training images and 800 test images. In addition, it also contains 100,000
unlabeled training images. Both labeled and unlabeled training images are used for feature extractor
pretraining without using labels. The linear classifier is learned using the labeled training images.

Tiny-ImageNet is a subset of the ILSVRC-2012 classification dataset (Le & Yang, 2015). It consists
of 200 classes, with 500 training images, 50 validation images, and 50 test images in each class. The
size of each image is 64 x 64.

C ADDITIONAL RESULTS

To understand the effectiveness of adversarial perturbations within APLR, we perform several
additional experiments. First, we compare perturbation by adversarial noise against perturbation by
Gaussian noise and random masking. For image datasets, we additionally compare the proposed
adversarial perturbations against common image augmentations used in supervised learning, including
CutMix (Yun et al., 2019), RandAugment (Cubuk et al., 2019), and Random Erasing (Zhong et al.,
2017). Next, we explore the sensitivity of APLR to different perturbation strengths and Lagrange
multipliers. Lastly, we compare our framework against SOTA SSL methods on image data.

C.1 ABLATION STUDY

First, for all datasets, we perform ablations to compare perturbations with adversarial noise against
Gaussian noise and masking. To obtain a sample augmented with Gaussian noise, we use x' =
x2 4+ 6, where § ~ N (07 021). For each dataset, we search the standard deviation ¢ from the
set {1,3,5,10} and report the best linear evaluation accuracy. For experiments with masking, we
randomly mask a proportion of the clean sample x2. We search the proportion of masking from the
set {20%, 40%, 50%, 60%, 70%} and report the best linear evaluation accuracy.

17



Under review as a conference paper at ICLR 2023

Tables 4 - 6 summarize the results. The adversarial noise outperforms the Gaussian noise and random
masking on all datasets, except MNIST. Random noises may not be as effective since uniformly
perturbing uninformative features may not lead to the intended goal of augmentations. That is why
APLR leads to significant improvement over random perturbations on complex data, such as images
and audios.

Table 4: Ablation study on tabular data.
MNIST  Fashion-MNIST  Gas Gesture

Gaussian noise 97.43 85.77 96.25 41.46
Masking 97.58 86.95 95.70 42.30
APLR 97.11 87.12 97.98 42.97

Table 5: Ablation study on image data.
CIFAR-10 CIFAR-100 STL-10 Tiny-ImageNet

Gaussian Noise 53.58 28.43 52.76 12.07
Masking 48.79 27.43 50.39 11.29
APLR 85.92 55.83 86.21 42.93

Table 6: Ablation study on audio data.
ESC-10 ESC-50  LibriSpeech-100

Gaussian noise 75.00 41.75 78.52
Masking 77.50 45.00 76.76
APLR 81.25 57.75 96.29

Additionally, we compare adversarial noise against image augmentations in supervised learning,
namely CutMix (Yun et al., 2019), RandAugment (Cubuk et al., 2019), and Random Erasing (Zhong
etal., 2017). The results are summarized in Table 7. Random Erasing results in the worst performance
among all methods, while CutMix is on par with Mixup in SSL. This is expected because CutMix
performs slightly better or similar to MixUp in supervised learning. RandAugment leads to better
performance than CutMix and MixUp because RandAugment contains a wide range of image
augmentations. However, RandAugment does not outperform SimCLR. The studies in SimCLR
show that careful selection of image augmentations is necessary for good performance in SSL. Some
effective image augmentations in supervised learning do not lead to good performance in SSL.

Table 7: Additional ablation study on image data.
CIFAR-10 CIFAR-100 STL-10 Tiny-ImageNet

SimCLR 86.47 54.86 85.49 43.27
CutMix 61.27 35.14 58.33 22.83
RandAugment 84.34 51.92 84.37 40.68
Random Erasing 56.71 28.89 5591 18.45
Ours 85.92 55.83 86.21 42.93

C.2  SENSITIVITY ANALYSIS
We perform experiments to understand how sensitive APLR is to different strengths of the adversarial
perturbation and Lagrange multiplier.

We experiment with perturbation strengths of € € {0.05,0.1,0.15}, and report the results in Table 8.
The sensitivity analysis indicates that our method is robust to the adversarial perturbation strengths.

For the Lagrange multiplier, we experiment with v € {0.1,0.5,0.1} and report the results in Table 9.
We find that our method is robust to « and achieves strong performance. For APLR, we selected v =
1 as the default value since it performed well consistently.
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Table 8: Sensitivity to adversarial perturbation strengths.
€e=005 e€=01 €=0.15

Tabular Data

MNIST 97.11 96.15 93.73
Fashion-MNIST 87.04 86.40 84.14
Gas 97.50 97.19 97.98
Gesture 42.97 40.90 41.46
Image Data

CIFAR-10 85.92 84.66 85.26
CIFAR-100 55.83 54.37 54.77
STL-10 86.21 85.04 85.64
Tiny-ImageNet 42.93 42.42 41.47
Audio Data

ESC-10 78.75 81.25 77.50
ESC-50 54.25 54.50 57.75

LibriSpeech-100 93.55 96.29 96.29

Table 9: Sensitivity to Lagrange multiplier.
vy=01 =05 ~v=1

Tabular Data

MNIST 96.54 96.93 97.11
Fashion-MNIST 86.83 86.69 87.12
Gas 84.61 97.97 97.98
Gesture 40.35 40.35 42.97
Audio Data

ESC-10 80.00 75.00 81.25
ESC-50 47.75 44.50 57.75

LibriSpeech-100  89.45 87.30 96.29

Our sensitivity analyses indicate that our method is robust to hyperparameters such as ¢ and ~.
The proposed APLR achieves strong performance as long as the hyperparameter values are within
reasonable ranges.

C.3 APLR AGAINST SOTA IMAGE-SPECIFIC SSL METHODS

We perform an analysis to compare the proposed framework against SOTA SSL methods on images,
namely SimCLR (Chen et al., 2020), Barlow Twins (Zbontar et al., 2021), and BYOL (Grill et al.,
2020). For this experiment, we use the image augmentations described in SimCLR (Chen et al., 2020)
for a fair comparison against image-specific SSL methods. We train each model for 200 epochs and
summarize the results in Table 10. Our method achieves comparable performance to BYOL and
Barlow Twins.

Table 10: APLR vs. SOTA SSL methods on image data
CIFAR-10 CIFAR-100 STL-10  Tiny-ImageNet

SimCLR 86.47 54.86 85.49 43.27
Barlow Twins 89.02 62.84 85.43 45.33
BYOL 88.54 61.76 85.59 42.75
Ours 89.63 62.55 86.41 44.76
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D VISUALIZATIONS OF ORIGINAL AND PERTURBED SPECTROGRAMS

In Figure 3, we visualize random spectrograms from LibriSpech-100 and the deltas between the
original and perturbed spectrograms. The perturbations are indistinguishable and thus semantic-

preserving.
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Figure 3: Examples triplets of original spectrograms (left), perturbed spectrograms (middle) and their
differences (right) from LibriSpeech-100. The color scales for original and perturbed spectrograms
are set to the scale of the original spectrogram. The color scale for the differences is set to -2.5 (red)
to + 2.5 (blue), though some values exceed this range. Best viewed when zoomed.
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E ADVERSARIAL GENERATOR ARCHITECTURE

The architecture of the generator is described in Table 11. For experiments on tabular data, we replace
the convolution layers with fully connected layers.

Table 11: Architecture of the adversarial generator.

Layer Number of Filters Kernel Size
Convolution Layer 32 9
Convolution Layer 64 3
Convolution Layer 128 3
Residual Block 128 3
Residual Block 128 3
Residual Block 128 3
Upsampling Convolution Layer 64 3
(Upsample = 2)

Upsampling Convolution Layer 0 3

(Upsample = 2)
Convolution Layer

F VISUALIZATIONS OF TRAINING OBJECTIVES DURING TRAINING

To understand how well the final objective in Equation 4 approximates the HGR correlation, we plot
the two loss terms over training in Figure 4. We find that the orthogonal loss approaches zero during
training.
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Losses During Training
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Figure 4: Losses during training.
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