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Abstract
Enterprise retrieval augmented generation001
(RAG) offers a highly flexible framework for002
combining powerful large language models003
(LLMs) with internal, possibly temporally004
changing, documents. In RAG, documents005
are first chunked. Relevant chunks are then006
retrieved for a specific user query, which are007
passed as context to a synthesizer LLM to gen-008
erate the query response. However, the retrieval009
step can limit performance, as incorrect chunks010
can lead the synthesizer LLM to generate a011
false response. This work proposes a zero-012
shot adaptation of standard dense retrieval steps013
for more accurate chunk recall. Specifically, a014
chunk is first decomposed into atomic state-015
ments. A set of synthetic questions are then016
generated on these atoms (with the chunk as017
the context). Dense retrieval involves finding018
the closest set of synthetic questions, and as-019
sociated chunks, to the user query. It is found020
that retrieval with the atoms leads to higher re-021
call than retrieval with chunks. Further perfor-022
mance gain is observed with retrieval using the023
synthetic questions generated over the atoms.024
Higher recall at the retrieval step enables higher025
performance of the enterprise LLM using the026
RAG pipeline.027

1 Introduction028

Since the recently popularized ChatGPT as the first029

instruction-finetuned large language model (LLM)030

deployed at scale to the lay market, there has been031

a substantial uptake on the interest of businesses032

to incorporate LLMs in their products for a va-033

riety of downstream tasks (Bahrini et al., 2023;034

Castelvecchi, 2023; Badini et al., 2023; Kim and035

Min, 2024). For most companies, they are inter-036

ested in using such models as enterprise LLMs037

where the model can handle queries related to pro-038

prietary on-premise data.039

It has been repeatedly demonstrated that these040

LLMs have general (public) knowledge implic-041

itly embedded in their parametric memory which042

can be extracted upon querying (Yu et al., 2023a). 043

However, the LLMs do not have implicit knowl- 044

edge about a specific enterprise’s textual database 045

in a custom domain and hence are prone to hal- 046

lucinate in such situations (Xu et al., 2024b; Yu 047

et al., 2023b). Additionally, the transformer-based 048

(Vaswani et al., 2017) LLMs typically have a lim- 049

ited context window (due to quadratic order in cost 050

of the attention mechanism), which means informa- 051

tion for a specific company to be queried over can- 052

not be directly fed-in as a prompt to the LLM. Due 053

to limited budget, it is typically not feasible to fine- 054

tune LLMs on a specific enterprise’s data. In par- 055

ticular, with evolving data from ongoing projects, 056

it is challenging to maintain a constantly updated 057

company-specific LLM finetuned on new data with- 058

out catastrophic forgetting on old data (Luo et al., 059

2023). 060

To tackle this issue, and with retrieval augmented 061

generation (RAG) proposed initially by Lewis et al. 062

(2020), RAG-inspired systems have rapidly be- 063

come the de-facto as a zero-shot solution for en- 064

terprise LLMs. At the essence, there are 2 steps: 065

1. retrieval and 2. synthesis. Documents are split 066

into independent chunks, and a retrieval process is 067

applied to identify the relevant chunks to a given 068

query. The retrieved chunks (which should fit into 069

the context window) with the query are passed as 070

the prompt to the synthesizer LLM to get the de- 071

sired response. 072

Currently, the bottleneck for most enterprise 073

LLMs is the retrieval step, where the correct in- 074

formation is not retrieved for the LLM to answer 075

the question (Arora et al., 2023). Hence, this work 076

focuses on building upon zero-shot approaches to 077

improve the retrieval step for RAG. A potential 078

limitation of the RAG set-up is that an embedding 079

model is used to retrieve the relevant chunks effi- 080

ciently when given a query. Each pre-calculated 081

chunk has its corresponding embedding stored in 082

memory, which allows the closes chunks to be re- 083
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trieved by embedding the incoming query into the084

same space. However, there is a mismatch in trying085

to match the space of queries and chunks as each086

chunk can carry a large amount of information.087

Instead, our work looks to represent each chunk088

as a set of atomic pieces of information. Min et al.089

(2023) introduced atomization of text for improv-090

ing the assessment of summary consistency. These091

atoms can be structural (e.g. sentences of a chunk)092

or unstructured where a set of atoms is generated093

for any chunk. By embedding the atoms instead of094

the chunks themselves, the relevant atoms can in-095

stead be identified (that correspond to a specific set096

of chunks) for the posed query in the embedding097

space. The atomic breakdown of the chunk enables098

more accurate retrieval.099

We further identify that even with the atomic100

embedding representations of the chunk, a given101

atom and the query do not necessarily best align for102

retrieval as the former is a statement with a piece of103

information while the latter is a question about104

locating a missing piece of information. Thus,105

we propose generating synthetic atomic questions.106

Each atom has a set of questions generated (with107

the chunk text as contextual information), which108

in turn are embedded. Therefore, the embedded109

incoming query is used to identify the closest set of110

atomic questions which in turn point to the relevant111

set of chunks to be passed to the synthesizer LLM112

in the RAG pipeline.113

As enterprise RAG operates over a closed set of114

documents, the generation of the atoms and corre-115

sponding synthetic questions is a one-off cost. Sim-116

ilarly, the increased set of embeddings to search117

over for the closest matches for the query embed-118

ding is of less concern given the various very ef-119

ficient algorithms for embedding search such as120

FAISS (Douze et al., 2024).121

Current information retrieval approaches in the122

RAG pipeline look at improving the quality of123

dense retrieval through generation augmented re-124

trieval (GAR), where a query is rewritten for high125

recall retrieval. However, we focus our attention126

on representing the chunks more efficiently for re-127

trieval. The contributions are summarized as:128

• An exploration of how the retrieval step in129

the RAG pipeline is improved with structured130

and unstructured atomic representation of a131

document chunk.132

• Demonstrate further improvement in retrieval133

with the generation of atomic questions.134

2 Related Work 135

In recent months, several works have extended 136

RAG in various directions (Zhao et al., 2024). 137

Many approaches finetune the components of the 138

RAG pipeline. For example, Siriwardhana et al. 139

(2023) explore adapting end-to-end RAG systems 140

for open-domain question-answering while Zhang 141

et al. (2024) introduce RAFT for finetuning RAG 142

systems on specific domains by learning to exclude 143

distractor documents. Additionally, Siriwardhana 144

et al. (2021); Lin et al. (2023) jointly train the re- 145

triever and the generator for target domains. How- 146

ever, our work focuses on exploring zero-shot solu- 147

tions as finetuning can be a computationally infea- 148

sible procedure for many enterprises. 149

In terms of zero-shot approaches, there have 150

been several extensions proposed. Gao et al. 151

(2023a) propose hypothetical document embedding 152

(HyDE) where an LLM is used to transform the 153

input query into an answer form (hallucinations are 154

acceptable) for improved dense retrieval over the 155

chunks. Similarly, Wang et al. (2023b) suggest a 156

query expansion approach termed query2doc where 157

an LLM is used to expand the query (Jagerman 158

et al., 2023) with a pseudo-generated document, 159

which they demonstrate to be effective for dense re- 160

trieval. Alternatively, we propose approaches that 161

focus on modifying the knowledge base on which 162

retrieval is performed rather than modifying the 163

user queries as is common in GAR (Shen et al., 164

2023; Feng et al., 2023; Arora et al., 2023). 165

Song et al. (2024) retrieve a superfluous num- 166

ber of chunks during the retrieval step. They then 167

re-rank the retrieved chunks with a re-ranker sys- 168

tem to identify the most relevant set. Similarly, 169

Wang et al. (2023c) propose FILCO to filter out 170

the retrieved documents as an additional step in the 171

RAG pipeline. Sun et al. (2023) explore the zero- 172

shot use of LLMs as alternatives for traditional 173

re-rankers. Arora et al. (2023) additionally incorpo- 174

rate the re-rank steps with GAR in an iterative feed- 175

back loop. Leveraging the comparative abilities of 176

LLMs, Qin et al. (2023) propose using pairwise 177

comparisons for the re-ranking of retrieved docu- 178

ments. Alternatively, Sarthi et al. (2024) propose 179

RAPTOR as an iterative technique to pass a summa- 180

rized context (based on the retrieved documents) to 181

the synthesizer. Iter-RetGen by Shao et al. (2023) 182

follow a similar iterative summarization strategy 183

with LLMs. Finally, ActiveRAG (Xu et al., 2024a) 184

encourages the synthesizer to consider parametric 185
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memory rather than just relying on the set of re-186

trieved documents. Gao et al. (2023b) summarize187

all advanced RAG approaches as additional pre-188

retrieval or post-retrieval steps. Pre-retrieval steps189

include query routing, query re-writing and query190

expansion. Post-retrieval steps include re-ranking191

summarization and fusion. The synthetic question192

retrieval over atomized units from the document set193

is a form of pre-retrieval that operates on the knowl-194

edge store rather than on the user query. Hence,195

our work remains complementary with all forms196

post-retrieval advanced RAG.197

Traditionally, retrieval of relevant documents for198

a given query has been well studied (Hambarde199

and Proenca, 2023) with approaches such as BM25200

(Robertson et al., 2009). In recent years, dense201

retrieval approaches have dominated as efficient202

retrieval processes where queries and documents203

are represented as dense vectors (embeddings) and204

documents are retrieved based on the similarity205

between these vectors. Semantically meaningful206

vectors have been possible with the series of regu-207

larly updated sentence transformers for generating208

general purpose embeddings including Sentence-209

BERT (Reimers and Gurevych, 2019), ConSERT210

(Yan et al., 2021), SimCSE (Gao et al., 2021), Dif-211

fCSE (Chuang et al., 2022), sentence-T5 (Ni et al.,212

2022) and E5 (Wang et al., 2022). More recently,213

there have been a series of more powerful embed-214

ding models that adapt instruction-finetuned lan-215

guage models as embedders (Li et al., 2023; Meng216

et al., 2024; Muennighoff et al., 2024; Wang et al.,217

2023a; BehnamGhader et al., 2024). Therefore,218

this work restricts exploration to dense retrieval.219

3 Retrieval for RAG220

In enterprise RAG systems, the core pipeline can221

be summarized as follows.222

1. Split: Given a textual corpus of documents,223

a set of chunks are generated by splitting all224

text into distinct paragraphs.225

2. Retrieve: For a given user query, the relevant226

set of chunks are retrieved.227

3. Synthesize: The original query and the re-228

trieved chunks are passed to a synthesis model229

to generate a response to the query using the230

provided chunk information as the context.231

Here, the focus is on improving the retrieval step232

of the enterprise RAG pipeline. For the scope of233

the data considered in this work, we assume that 234

the answer to a specific query is present in only 235

one chunk (i.e. there are no unanswerable queries 236

and multiple chunks are not required to deduce the 237

answer to a question). Therefore, the retrieval step 238

task can be defined as follows: 239

240

Task Let R(q; c) ∈ 0, 1 denote an oracle 241

relevancy function that returns 1 if a chunk, c, 242

contains the answer to the user query q and 0 243

otherwise. Given a set of N chunks, {c}1:N , 244

and a user query q, retrieve chunk ck such that 245

R(q; ck) = 1 but
∑

i ̸=k R(q; ci) = 0. 246

247

Next, we describe the various approaches 248

for the retrieval step of enterprise RAG systems. 249

The focus is on zero-shot approaches that can be 250

applied without any training and we assume we 251

have no-cost in accessing the relevancy function. 252

3.1 Standard 253

In the standard retrieval set-up for the RAG 254

pipeline, dense retrieval is used for identifying 255

the most relevant chunk to the user query. Let 256

E (·) denote a sentence embedding model. The 257

embedding model has been trained to produce se- 258

mantically meaningful vector representations of 259

natural language text (see Section 2 for the evolu- 260

tion of sentence transformers). All of the document 261

chunks and the query are embedded into the high- 262

dimensional space such that: 263

ci = E (ci) ,∀i ∈ [1, N ] (1) 264
265

q = E(q) (2) 266

Then the chunk, ck̂, is selected such that ck̂ and 267

q have the shortest cosine distance between all 268

chunk embeddings and the query embedding. The 269

cosine distance between a pair of vectors a and b 270

is defined as cos[a,b] = 1− aTb/|a||b|. 271

[chunk] k̂ = argmin
k

cos[q, ck] (3) 272

One shortcoming of the standard retrieval approach 273

in RAG is that query embeddings are compared 274

against chunk embeddings. However, the seman- 275

tic embedding representation of a query does not 276

necessarily align with the semantic embedding rep- 277

resentation of the chunk that needs to be retrieved. 278

Hence, dense retrieval can lead to the incorrect 279

chunk being retrieved. The following sections de- 280

scribe modifications to the dense retrieval of the 281

chunks to increase the recall rate. 282
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Figure 1: Question-based retrieval using atomic units for enterprise RAG.

3.2 Generation augmented retrieval283

As a baseline, the HyDE approach (Gao et al.,284

2023a) is used as a form of GAR (see Section 2) 1.285

The approach requires the query, q to be re-written286

to q′ where q′ aims to be a complete hypothesized287

answer to the query. For example, What is the cap-288

ital of India? is rewritten to The capital of India289

is London. Note, the answer of the query is not290

important. Instead the form of the answer should291

hopefully match the nature of the real answer e.g.292

London and New Delhi are both places. Now, the293

standard retrieval approach is applied from Equa-294

tion 3 with q′ = E(q′) as the embedding of the295

re-written query.296

[hyde] k̂ = argmin
k

cos[q′, ck] (4)297

The intuition is that by having an answer-like se-298

quence present in the embedded query, there is299

a greater likelihood of matching with the relevant300

chunk. Typically, the re-writing process is achieved301

zero-shot with an instruction finetuned LLM by re-302

lying on its parametric answer (at the rewriting303

stage, hallucinations are not a concern). Hence-304

forth, this approach is referred to as HyDE.305

3.3 Atomic306

A query is typically searching for a specific piece307

of information in a chunk. The embedding repre-308

sentation of the chunk can be viewed as an average309

representation of all the different pieces of informa-310

1There are several GAR approaches. We find the form of
HyDE works best for this dataset from preliminary experi-
ments and hence select it as an appropriate baseline for GAR
in RAG.

tion present in the chunk. Often, the pieces of in- 311

formation in the same chunk can be distinct, which 312

can lead to the query embedding being distant from 313

the target chunk embedding with the answer. 314

Therefore, we propose atomic retrieval. Here, 315

the chunk text is partitioned into a set of atomic 316

statements (referred henceforth as atoms) such that 317

ck → {a(k)1 , . . . a(k)nk
},∀k (5) 318

Then, with a = E(a), the query embedding is com- 319

pared against the atomic embeddings. The closest 320

atomic embedding is used to identify the corre- 321

sponding chunk to be retrieved. The expectation is 322

that individual atomic embeddings are more likely 323

to align with a query’s embedding in the vector 324

space. The atomic retrieval can be summarized as 325

follows. 326

[atom] k̂, ĵ = argmin
k,j

cos[q,a
(k)
j ] (6) 327

For evaluation, k̂ is of interest and ĵ is discarded. 328

In this work two forms of atoms are considered: 329

• Structured: The natural structure of the 330

chunk is used to consider each sentence as 331

a separate atom. 332

• Unstructured: An atom generation system 333

(e.g. instruction-finetuned LLM) is asked to 334

generate atomic statements that best capture 335

all the information in the chunk. See Section 336

4.2 for a description of the specific atom gen- 337

eration system. 338

Despite atomizing a chunk of text, there is risk 339

of the query not necessarily matching the target 340
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atom in the embedding space as the atom contains341

semantic information about the answer while the342

query does not. Therefore, we propose an exten-343

sion called atomic questions. For a given atom,344

a set of synthetic questions are generated that are345

best answered by the atom given the chunk as the346

context information. Hence,347

a
(k)
j → {y(j,k)1 , . . . y(j,k)nj,k

},∀j, k (7)348

349

[question] k̂, ĵ, î = argmin
k,j,i

cos[q,y
(k,j)
i ]

(8)350

As before, only k̂ is of interest for evaluation. Fig-351

ure 1 summarizes the RAG pipeline with question-352

based retrieval using atomic units. Effectively, each353

chunk can be summarized by a set of questions that354

probe different pieces of information.355

4 Experiments356

4.1 Data357

SQuAD BiPaR

# total chunks 2, 067 375
# total queries 10, 570 1, 500
# queries / chunk 5.1±2.3 4.0±0.0

# words / query 10.2±3.6 7.2±2.9

# words / chunk 122.8±54.8 181.1±52.8

# sentences / chunk 6.6±3.1 14.2±5.7

Table 1: Statistics of datasets.

SQuAD (Rajpurkar et al., 2016) is a popular choice358

as an extractive reading comprehension dataset con-359

sisting of triples of contexts, questions and answer360

extracts. The contexts are sourced across a wide361

variety of Wikipedia articles. We re-structure the362

validation split of the SQuAD dataset for the task363

of retrieval in RAG as follows. As all questions are364

answerable (unlike SQuAD 2.0 (Rajpurkar et al.,365

2018)), we assume that the answer to a given ques-366

tion must be present in its corresponding context367

passage. We additionally assume that the answer368

to a specific question is not present in any other369

context. Therefore, we shuffle all the contexts such370

that the task requires retrieval of the appropriate371

context for a given question. Once a particular con-372

text is retrieved, it is the role of the synthesizer in373

the RAG pipeline to generate the required answer.374

Remaining consistent with the terminology of re-375

trieval in RAG, contexts are viewed as chunks and376

the questions are termed queries. The collection377

of chunks are effectively the pre-split texts from a378

knowledge store, which in this case is Wikipedia.379

Table 1 summarizes the statistics of the re- 380

structured SQuAD validation set for assessing the 381

RAG framework. In total there are 2,067 chunks 382

with 10,570 queries, resulting in approximately 5 383

queries per chunk. The number of sentences within 384

each chunk vary with a single standard deviation 385

of 3.1 about 6.6. As mentioned, in Section 3.3, 386

the sentences of a chunk are treated as structured 387

atoms. Overall, the re-structured dataset allows us 388

to explore whether we can improve the retrieval of 389

chunks for queries over a fixed knowledge store. 390

Additionally, we consider BiPaR (Jing et al., 391

2019) for evaluating the RAG framework. BiPaR 392

is a manually annotated dataset of bilingual paral- 393

lel texts in a novel-like style, created to facilitate 394

monolingual, multilingual, and cross-lingual read- 395

ing comprehension tasks. We focus on only the 396

English texts over the test split. In a similar vain 397

to SQuAD, the knowledge store is constructed by 398

shuffling the contexts for all queries. Table 1 sum- 399

marizes the main details. It is particularly useful to 400

consider BiPaR for enterprise RAG as the informa- 401

tion content of the context is based on extracts from 402

novels. As the stories are fictional and not factual, 403

the parametric memory of an LLM cannot expect 404

to know the answers to the queries. Therefore, Bi- 405

PaR mimics the set-up of proprietary knowledge 406

stores for enterprises where retrieval is necessary 407

to identify the relevant information for a query. 408

4.2 Model details 409

Task Prompt

Query re-
writing

Please write a full sentence answer to
the following question. {query}

Unstructured
atom genera-
tion

Please breakdown the following para-
graph into stand-alone atomic facts. Re-
turn each fact on a new line. {chunk}

Question gen-
eration

Generate a single closed-answer ques-
tion using: {chunk} The answer should
be present in: {atom}

Table 2: ChatGPT prompts for zero-shot tasks.

For generating the embedding representations, the 410

embedder E(·) is selected as all-mpnet-base-v2 2 411

from Huggingface. This embedder is a popular 412

choice for enterprise RAG (the default in LlamaIn- 413

dex 3 for open-source LLMs) as it performs well on 414

the MTEB (Muennighoff et al., 2023) leaderboard 415

2https://huggingface.co/sentence-trans
formers/all-mpnet-base-v2

3https://www.llamaindex.ai/
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despite its small size of 110M parameters. We ad-416

ditionally present results using the e5-base-v2 4417

embedder, from the E5 model series (Wang et al.,418

2022), which has topped the MTEB leaderboard419

for models of the base size.420

Instruction finetuned LLMs (Touvron et al.,421

2023; Jiang et al., 2023) have demonstrated im-422

pressive capabilities across a diverse range of tasks423

from zero-shot prompting. Therefore, For HyDE,424

the query re-writing process is achieved with zero-425

shot usage of ChatGPT 3.5 Turbo 5. Similarly,426

ChatGPT is used for generating atomic statements427

from a chunk of text as described in Section 3.3.428

Finally, we make use of the same model to auto-429

matically generate questions on the atoms. Table430

2 summarizes the prompts for each of these tasks431
6. The question generation system is applied for a432

maximum of 15 times on each atom 7 at which the433

performance plateaus (see Section 5).434

4.3 Evaluation435

In works for information retrieval, there are a large436

number of metrics proposed for assessing retrieval437

capabilities (Arora et al., 2016). Here, we focus438

on calculating R@K (recall at K). For retrieval439

for the RAG task, R@K calculates the fraction of440

queries for which the correct chunk is within the441

top K chunks when retrieval is performed. We442

specifically present R@1, R@2 and R@5. Note,443

R@1 checks for the exact match while R@2 and444

R@5 are more lenient. We do not consider other445

retrieval measures that account for the ordering of446

the documents retrieved as in the scope of this work447

there is only 1 relevant chunk for each query.448

In the RAG pipeline, it is often of interest to449

return multiple chunks from the retrieval step and450

leave the job of finding the correct answer amongst451

the retrieved chunks to the synthesizer. The limit452

on this approach is the context window of the syn-453

thesizer. For example the context window for Chat-454

GPT 3.5 is 16K tokens. Therefore, it is useful to455

consider moderately high K for R@K such as K=5.456

4https://huggingface.co/intfloat/e5-b
ase-v2

5https://platform.openai.com/docs/mod
els

6Manual prompt engineering was performed to identify
the appropriate prompts to achieve sensible results.

7The code will be made available if accepted.

5 Results 457

Table 3 presents the recall rates with various zero- 458

shot approaches of the retrieval step using SQuAD 459

and BiPaR with 2 different embedders. 460

Let’s take a look first at the all-mpnet-base-v2 461

embedder for SQuAD. Operating at the chunk 462

scale, where the raw text is embedded for dense re- 463

trieval, the standard RAG achieves a recall of 65.5% 464

with the top 1, which increases to 89.3% when con- 465

sidering the top 5 chunks retrieved. By applying 466

GAR with the HyDE baseline at the chunk scale, 467

we do not observe gains. As discussed in Section 468

3.3, the text chunk contains several semantic pieces 469

of information while the re-written query remains 470

related to a single semantic piece of information. 471

Hence, it is challenging for the HyDE approach to 472

improve recall at the chunk scale. 473

By splitting a chunk into structured atoms (sen- 474

tences), Table 3 further shows the recall by embed- 475

ding the atomic text or the corresponding synthetic 476

questions generated on those atoms (Equations 6 477

and 8 respectively). Additionally, the HyDE ap- 478

proach is applied with the atomic embeddings, us- 479

ing the rewritten query instead of the original from 480

Equation 6. Embedding the atomic text instead of 481

the chunk text observes significant gains, reach- 482

ing 70.2% for R@1 and 90.6% for R@5. As the 483

length of a sentence in a chunk is closer in length 484

to the re-written query, the HyDE approach on the 485

structured atoms further boosts the recall rates. An 486

additional gain is again observed by performing 487

dense retrieval with the set of generated questions, 488

achieving up to 73.8% for R@1. 489

The final rows of Table 3 for SQuAD with all- 490

mpnet-base-v2 further demonstrates the benefits 491

of using unstructured atoms in place of the struc- 492

tured atoms. A sentence from a chunk contains 493

more granular information than the whole chunk 494

but is not necessarily constrained to one piece of 495

atomic information. Therefore, by re-writing the 496

chunk into a series of independent atoms, dense 497

retrieval between the query and the set of atomic 498

embeddings leads to higher recall rates. As with 499

the structured atoms, the HyDE approach leads to 500

further performance gains with the unstructured 501

atoms. Finally, we observe the best performance 502

across all three recall rates by applying dense re- 503

trieval using the generated questions on the atoms. 504

It is clear that higher recall retrieval is possible by 505

matching queries with questions as they can expect 506

to be of the same form rather than attempting to 507

6
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Dataset Item all-mpnet-base-v2 e5-base-v2
R@1 R@2 R@5 R@1 R@2 R@5

SQuAD

Chunk Text 65.5 78.9 89.3 76.2 87.1 94.4
HyDE 65.2 77.9 88.9 66.4 79.9 91.1

Atom-Structured
Text 70.2 81.4 90.6 80.1 89.3 95.1
HyDE 71.5 82.3 91.1 73.7 84.6 93.0
Question 73.8 83.5 91.2 78.1 87.2 93.8

Atom-Unstructured
Text 72.6 83.9 91.9 80.0 88.3 94.6
HyDE 73.1 83.7 91.7 73.9 84.4 92.3
Question 76.3 85.4 92.6 80.2 88.6 94.5

BiPaR

Chunk Text 33.7 43.1 54.7 42.1 52.6 63.7
HyDE 31.2 41.2 51.7 36.6 47.4 58.9

Atom-Structured
Text 42.6 52.3 65.4 47.7 57.8 69.5
HyDE 40.1 50.1 62.1 43.5 52.1 64.9
Question 53.8 63.4 73.3 55.9 64.8 75.3

Atom-Unstructured
Text 43.9 54.3 66.9 49.7 58.1 69.1
HyDE 41.7 52.5 64.6 43.0 51.7 63.7
Question 53.7 61.9 72.9 55.3 64.1 74.5

Table 3: Retrieval performance for enterprise RAG. All recall rates are represented as percentages.

match queries with chunks.508

Considering the higher performing embedder e5-509

base-v2 on SQuAD, the trends are less clear due510

to higher baseline information. We do observe511

that for R@1 that atomic question retrieval with512

unstructured atoms has the best performance, but513

drops to second and third highest for R@2 and514

R@5 respectively.515

Let’s now consider BiPaR from Table 3. Very516

similar trends are observed for both all-mpnet-base-517

v2 and e5-base-v2 embedders on this dataset. It518

is noticeable that HyDE at both the chunk, struc-519

tured atoms and unstructured atoms struggles to520

outperform the equivalent text. This deviation in521

the trend observed in SQuAD is expected as BiPaR522

is based on fictional stories while SQuAD is based523

on factual Wikipedia articles. Hence, the halluci-524

nated answers generated by HyDE are unlikely to525

help with retrieving relevant chunks which do not526

correspond to the re-written query (see Appendix527

Section A for more analysis about HyDE). In con-528

trast, for public factual information (as in SQuAD),529

the hypothesized answer generated by a powerful530

LLM is more likely to be the correct answer than a531

hallucination. In contrast, question-based retrieval532

operating on atoms demonstrates significant per-533

formance gains over the baseline for BiPaR. For534

example, using the e5-base-v2 embedder improves535

R@1 by approximately 14%.536

In general, for the re-formatted SQuAD dataset,537

Table 1 states there are 2,067 unique chunks. There-538

fore, the standard retrieval approach for RAG leads539

to storing 2,067 chunk embeddings. In contrast, the 540

atomic retrieval has substantially larger number of 541

embeddings stored. Using structured atoms, there 542

are 13,630 sentences in total while there are 16,793 543

unstructured atoms across the corpus. By consid- 544

ering the synthetic question generation strategy de- 545

scribed in Section 4.2, question retrieval strategies 546

require 13, 630× 15 and 16, 793× 15 embeddings 547

to be stored in memory for structured atoms and 548

unstructured atoms respectively. A similar increase 549

in the storage of embeddings apply for the BiPaR 550

dataset. Hence, it is of interest to explore how the 551

number of questions required for each atom can be 552

reduced to remove the redundant ones. 553

Figure 2 presents how the performance varies 554

with the number of synthetically generated ques- 555

tions on the unstructured atoms. For each recall rate 556

(R@1, R@2 and R@5), two profiles are indicated: 557

1. a random selection of synthetic questions for 558

the atoms of each chunk; 2. an optimally diverse 559

selection of synthetic questions for the atoms of 560

each chunk. The optimally diverse set of questions 561

is selected as follows. A threshold, τ is selected 562

on the pairwise cosine distance. For the full set 563

of atomic questions generated, the pairwise cosine 564

distances of the question embeddings is calculated 565

for each chunk. If any pairwise cosine distance is 566

below τ , one of the questions is purged. The pro- 567

cess if repeated until all questions in the remaining 568

set have pairwise cosine distances of their embed- 569

dings above τ . By sweeping τ , the total number of 570

synthetic questions across the corpus changes. One 571
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(a) SQuAD: all-mpnet-base-v2 (b) SQuAD: e5-base-v2

(c) BiPaR: all-mpnet-base-v2 (d) BiPaR: e5-base-v2

Figure 2: Efficient unstructured atomic question retrieval.

can hence expect that a chunk with more informa-572

tion will have a more diverse set of questions.573

Figure 2 shows that a significant number of ques-574

tions are redundant across the SQuAD and BiPaR575

chunks. By removing more than half of the ques-576

tions (and hence halving the storage cost), perfor-577

mance can be maintained at the maximal value for578

each of the recall rates. In the extreme setting, with579

only 20% of the questions retained, there is only a580

marginal decrease in recall when using the optimal581

set. Thus, despite a larger storage cost with atomic582

question retrieval compared to standard enterprise583

RAG, the performance boost can be justified with584

an efficient choice of synthetic questions to retain.585

6 Conclusions586

RAG systems are a popular framework for enter-587

prises for automated querying over company doc-588

uments. However, poor recall of relevant chunks589

with dense retrieval causes errors to propagate to590

the synthesizer LLM. Previous works have focused591

on extensions involving generation augmented re- 592

trieval where the query is re-written at inference 593

time to improve recall. Conversely, we explore 594

adaptations to the storage of the chunks. The re- 595

trieval step for RAG can be refined in a zero-shot 596

manner by 1) atomizing the chunks and 2) gen- 597

erating questions on the atoms. Significant im- 598

provements are observed on the BiPaR and SQuAD 599

datasets with this approach as partitioning a chunk 600

into atomic pieces of information allows dense re- 601

trieval with the query to be more effective. More- 602

over, operating in the question space, the query 603

embedding aligns better with the synthetic ques- 604

tions of the target chunk. We further demonstrate 605

that the storage cost of a large number of synthetic 606

question embeddings can be dramatically reduced 607

by only storing a diverse set of questions for each 608

chunk. Question-based retrieval using atomic units 609

will enable the deployment of higher performing 610

enterprise RAG systems without relying on any 611

additional training. 612
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7 Limitations613

In this work, we have made several assumptions614

which do not necessarily hold in real enterprises.615

Our work focuses on only closed queries where616

a single atom contains the answer. It would be617

interesting to extend the approach to handle multi-618

hop situations by generating synthetic questions on619

pairs or collections of atoms. Additionally, we have620

focused the presentation of our results on SQuAD621

and BiPaR. It will be useful to consider additional622

standard information retrieval benchmarks such as623

the BEIR datasets (Thakur et al., 2021).624

8 Ethics statement625

There are no ethical concerns with this work.626
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Model nDCG@1 nDCG@3 nDCG@5 nDCG@10 R@10

BM25 18 30 35 40 67
all-MiniLM-L6-v2 29 43 48 53 79
BGE-base 37 54 59 61 85
E5-base-v2 41 57 61 64 87

E5-base-v2 (ours) 36 51 54 58 82
+ HyDE 42 57 61 63 85

all-mpnet-base-v2 37 51 56 61 87
+ HyDE 39 56 60 63 88

Table 4: Baselines for ClapNQ with HyDE.

A Drawback of HyDE898

In the main paper, we observed that HyDE per-899

forms well for SQuAD but is less impressive for900

BiPaR. This Section aims to revisit how HyDE901

operates to explain the difference. Qualitatively,902

HyDE uses the parametric memory of an LLM to903

re-write the query as a complete sentence that an-904

swers the query. The re-written query is then used905

to retrieve the relevant chunks. The HyDE paper906

emphasizes that it doesn’t matter if the answer is907

hallucinated as the form of the hypothetical answer908

can expect to be aligned with the chunk containing909

the correct answer.910

However, it is clear that HyDE struggles on Bi-911

PaR while working well on SQuAD. We suspect912

the reason for this discrepancy is that SQuAD is913

based on publicly known factual information from914

Wikipedia while BiPaR is based on fictional sto-915

ries. Therefore, when HyDE is applied on SQuAD,916

the hypothesized answer often is simply the cor-917

rect answer itself, leading to an artificial boost in918

the retrieval performance. The correct answer is919

generated typically by the parametric memory of920

a powerful LLM used for the query re-writing. In921

contrast, as the answers to the queries in BiPaR922

are not within the scope of general knowledge, the923

hypothesized answer from HyDE does not help in924

boosting the retrieval performance.925

In order to investigate the dependence of HyDE926

on factual information for improving retrieval per-927

formance, we do additional analysis. We select928

CLAPNQ (Rosenthal et al., 2024) as a recently929

curated RAG dataset where the knowledge store930

is based on publicly available information (like931

SQuAD). Additionally, CLAPNQ has been exclu-932

sively designed for long-form answers. Therefore,933

we expect HyDE to demonstrate significant perfor-934

mance gains on this dataset as the hypothesized 935

answer is likely to be the correct answer with high 936

overlap with the target chunk due to the length of 937

the answer. We show our results as follows in Ta- 938

ble 4. The top 5 rows are quoted directly from 939

Rosenthal et al. (2024). As well as recall, we report 940

nDCG (Järvelin and Kekäläinen, 2002) here as a 941

standard retrieval metric used in Rosenthal et al. 942

(2024) where the order of the retrieved chunks is 943

accounted for in calculating the performance. It is 944

clear for both of our implementations that HyDE 945

demonstrates retrieval performance gains on this 946

challenging RAG dataset. 947

B Licenses 948

SQuAD is shared under the attribution-sharealike 949

4.0 international (CC BY-SA 4.0) license. BiPaR 950

is shared under the attribution-noncommercial 4.0 951

international (CC BY-NC 4.0) license. CLAPNQ 952

is shared under the Apache-2.0 license. 953
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