

000 001 **WorldSense: EVALUATING REAL-WORLD OMNIMODAL** 002 **UNDERSTANDING FOR MULTIMODAL LLMS** 003

004
005 **Anonymous authors**
006 Paper under double-blind review
007
008

009 ABSTRACT 010

011 We introduce **WorldSense**, the *first* benchmark to assess the multi-modal video
012 understanding, that simultaneously encompasses *visual, audio, and text* inputs.
013 In contrast to existing benchmarks, our **WorldSense** has several features: (i) **col-**
014 **laboration of omni-modality**, we design the evaluation tasks to feature a strong
015 coupling of audio and video, requiring models to effectively utilize the synergistic
016 perception of omni-modality; (ii) **diversity of videos and tasks**, **WorldSense**
017 encompasses a diverse collection of 1,662 audio-visual synchronised videos, sys-
018 tematically categorized into 8 primary domains and 67 fine-grained subcategories
019 to cover the broad scenarios, and 3,172 multi-choice QA pairs across 26 distinct
020 tasks to enable the comprehensive evaluation; (iii) **high-quality annotations**, all
021 the QA pairs are manually labeled by 80 expert annotators with multiple rounds
022 of correction to ensure quality. Based on our **WorldSense**, we extensively eval-
023 uate various state-of-the-art models. The experimental results indicate that existing
024 models face significant challenges in understanding real-world scenarios (65.1%
025 best accuracy). By analyzing the limitations of current models, we aim to provide
026 valuable insight to guide development of real-world understanding. We hope our
027 **WorldSense** can provide a platform for evaluating the ability in constructing and
028 understanding coherent contexts from omni-modality.
029
030

031 1 INTRODUCTION 032

033 The ability to comprehend and reason about multimodal inputs—ranging from visual and textual to
034 auditory, tactile, and beyond—is fundamental for both human and artificial agents to navigate and
035 interpret the world. For example, when driving a car, a human driver integrates visual information
036 (*e.g.*, recognizing road signs, traffic lights, and obstacles), auditory cues (*e.g.*, hearing the honking
037 of another car or a siren approaching from behind), and tactile feedback (*e.g.*, the feel of the steering
038 wheel, the vibrations of the road, or the responsiveness of the brakes) to make real-time decisions and
039 ensure safe navigation. This seamless multimodal integration enables intelligent agents to process
040 complex, dynamic environments and respond to subtle cues—an ability that is essential for both
041 human perception and development of embodied agents designed to interact naturally in the world.
042

043 In the recent literature, the development of Multi-modal Large Language Models (MLLMs) (Ope-
044 nAI, 2023; Hurst et al., 2024; OpenAI; Team et al., 2023; 2024b; Zhang et al., 2023; Ma et al.,
045 2024; Fang et al., 2023) have led to remarkable progress on a series of tasks, for example, clas-
046 sification (Liu et al., 2024c), captioning (Alayrac et al., 2022; Dai et al., 2023; Liu et al., 2024b),
047 question-answering (Tang et al., 2024; Panagopoulou et al., 2023; Liu et al., 2024f), OCR (Mathew
048 et al., 2021; Zhang et al., 2024b), segmentation (Lai et al., 2024; Xia et al., 2024; He et al., 2024a),
049 autonomous driving (Nie et al., 2025; Sima et al., 2025; Chen et al., 2024a) and more. However,
050 multi-modal analysis primarily focuses on visual-language information, leaving out crucial modal-
051 ities like audio, which results in an incomplete evaluation of their multimodal capabilities. While
052 some benchmarks have started incorporating both visual and audio modalities, they still exhibit sev-
053 eral limitations. For example, OmniBench (Li et al., 2024d) and AV-Odyssey Bench (Gong et al.,
054 2024) mainly emphasize image evaluation, whereas other benchmarks (Geng et al., 2024; Li et al.,
055 2022; Yang et al., 2022) either restrict to captioning tasks or are limited to simple scenarios, or suffer
056 from low-quality, monotonous questioning patterns.
057

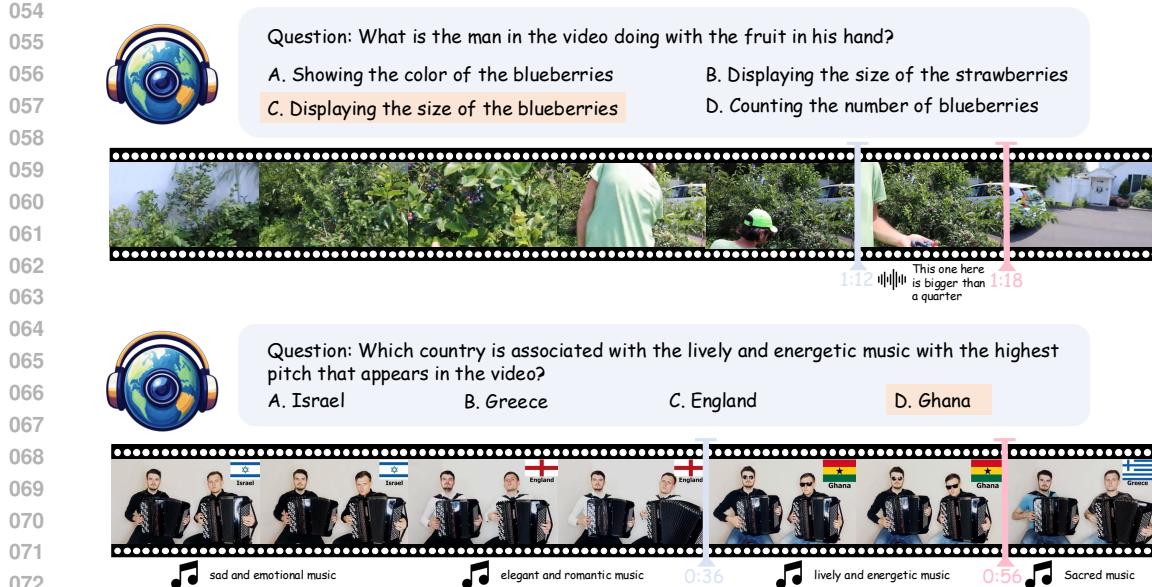


Figure 1: **Examples in *WorldSense*.** *WorldSense* highlights the importance of tightly coupled audio-visual perception for real-world understanding, where neither modality alone provides sufficient context for correct answer. In the **first** example, the video shows a man holding a fruit. However, visual information alone reveals the object, and only audio clarifies the action. In the **second** example, identifying cultural elements and locating the “lively and energetic” music segment requires both visual and auditory cues. *WorldSense* offers a platform to evaluate MLLMs’ real-world perception and omni-modal understanding capabilities.

This paper presents ***WorldSense***, the first comprehensive benchmark designed to evaluate Multi-modal Large Language Models (MLLMs) in perceiving, understanding, and reasoning with omni-modal information in real-world settings. The benchmark is defined by three key features: **(i) Omni-modal integration.** The benchmark emphasizes the joint processing of audio and visual modalities, as illustrated in Figure 1. Each question requires both modalities for accurate response—removing either results in failure—enabling rigorous assessment of a model’s capacity for integrated sensory understanding. **(ii) Diverse videos and task coverage.** The benchmark includes 1,662 synchronized audio-visual videos spanning 8 domains and 67 fine-grained subcategories. It features 3,172 multiple-choice questions across 26 cognitive tasks, ranging from basic perception to high-level reasoning. This diversity supports systematic evaluation of multimodal comprehension across a broad task spectrum. **(iii) High-quality annotations.** All question-answer pairs are curated by 80 expert annotators and undergo multiple validation rounds, including human review and automated MLLM verification. This ensures annotation accuracy and benchmark reliability. Through these methodological advancements, *WorldSense* sets a new standard for evaluating MLLMs in real-world multimodal reasoning, advancing the field toward more human-like understanding.

We conduct extensive evaluations for a broad spectrum of MLLMs, including open-source video models, video-audio models, and proprietary systems. Results reveal significant limitations in current models’ ability to reason over omni-modal inputs in real-world contexts. Specifically, open-source video-audio models, despite processing both modalities, achieve only 25% accuracy—comparable to random guessing. In contrast, proprietary models such as Gemini 2.5 Pro reach up to 65.1% accuracy. However, when restricted to a single modality (audio or video), existing model’s performance drops greatly, highlighting the critical role of integrated modality processing.

We further conduct ablation studies to dissect modality contributions. Visual inputs are essential, while audio—especially raw signals—yields additional gains over text transcriptions, due to preserved paralinguistic cues, *e.g.*, prosody, intonation, acoustic context. These findings affirm the complementary nature of audio-visual information and the necessity of their joint modeling for robust real-world understanding. Failure case analysis reveals persistent limitations in current MLLMs, motivating future directions for improving multimodal reasoning.

To summarize, we have made the following contributions: (i) we present ***WorldSense***, the **first** benchmark tailored for evaluating MLLMs’ ability on omni-modal video understanding, character-

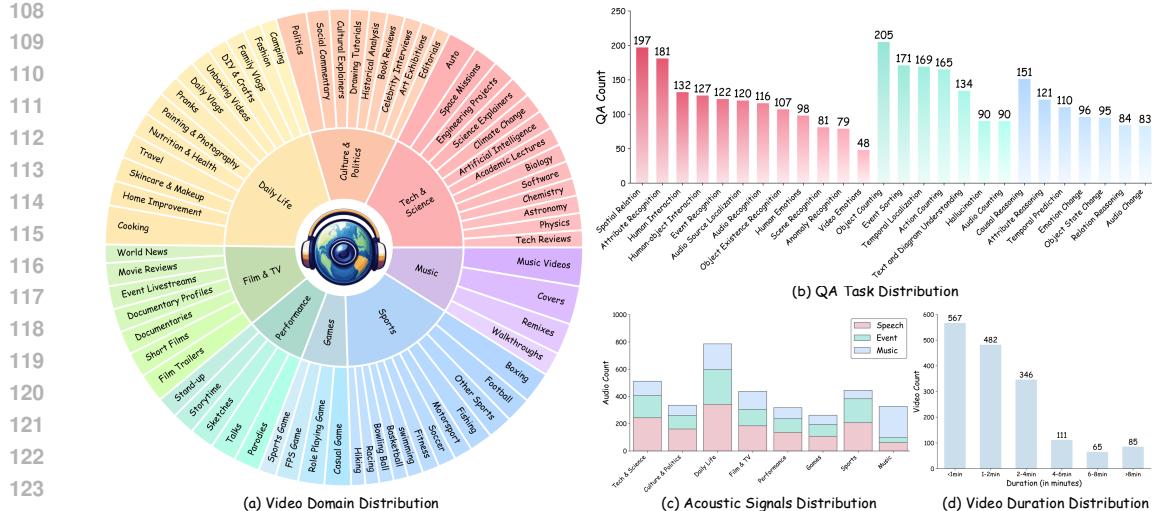


Figure 2: **Distribution of *WorldSense*.** (a) Videos in *WorldSense* spans 8 primary categories with 67 fine-grained subcategories. (b) QA pairs are structured across 26 tasks. (c) Acoustic signals distribution. Individual videos may contain multiple audio categories, leading to overlapping counts in statistical analysis. Consequently, the cumulative sum of audio instances exceeds the total video count. (d) Video duration distribution. The average duration of videos is 141.1 seconds.

ized by integrated audio-visual inputs, diverse content, and high-quality question-answering annotations; (ii) we have conducted extensive evaluation of existing MLLMs, showing that most open-source models perform near chance, and even the best proprietary model achieves only 65% accuracy—exposing a significant gap in real-world omni-modal reasoning; (iii) through ablation and failure analysis, we identify the key factors influencing performance, including raw audio and visual cues, and provide actionable insights to guide future omni-modal understanding design.

2 RELATED WORK

Multimodal Large Language Models. Current Large Language Models (LLMs) are capable of processing multimodal information, including visual, text, and audio. Early works, such as (Zhang et al., 2023; Liu et al., 2024b; Zhu et al., 2023; Driess et al., 2023; Wang et al., 2024d; Pi et al., 2023), successfully combine vision and text modalities. Subsequent research extends to temporal understanding (Wang et al., 2024f; Hurst et al., 2024; Team et al., 2024a; Liu et al., 2024e; Wang et al., 2024b; Li et al., 2024a; Fang et al., 2024b; Xu et al., 2024; Zhang et al., 2024a; Tong et al., 2024; Chen et al., 2024c; Lu et al., 2024a; Liu et al., 2024a), while parallel efforts (Tang et al., 2023; Chu et al., 2023; 2024) focus on audio processing. Recently, researchers shift attention to models (Cheng et al., 2024; Sun et al., 2024; Team et al., 2024a; Lu et al., 2024b; Team et al., 2024b) capable of simultaneously processing text, vision, and audio inputs. Despite the growing interest in the models which can perform the omni-modality understanding, the absence of a comprehensive evaluation benchmark restricts the development. To address this limitation, we introduce our *WorldSense* to evaluate models’ capabilities in perceiving and understanding real world omni-modal scenarios.

Multimodal Benchmarks. The development of MLLMs has been driven by benchmarks, evolving from static image understanding (Zhang et al., 2024c; Liu et al., 2025; Li et al., 2023; 2024b; Fu et al., 2024a; Yue et al., 2024) to temporal comprehension (Li et al., 2024c; Liu et al., 2024d; Song et al., 2024; Zhou et al., 2024; Fang et al., 2024a; Fu et al., 2024b; He et al., 2024b; Wang et al., 2024c; Xu et al., 2017; Yu et al., 2019; Lin et al., 2024; Chandrasegaran et al., 2024). However, these benchmarks largely overlook the crucial role of audio in real-world perception. While several audio-visual benchmarks have been proposed, they face significant limitations. AV-Odyssey Bench (Gong et al., 2024) and OmniBench (Li et al., 2024d) focus on static images, Music-AVQA (Li et al., 2022) and AVQA (Yang et al., 2022) are domain-specific with monotonous questions, and Long-VALE (Geng et al., 2024) limits its assessment to captioning capabilities alone. Given that existing benchmarks fail to provide a comprehensive evaluation of MLLMs’ real-world understanding capabilities, we introduce *WorldSense* to address this critical gap in the field.

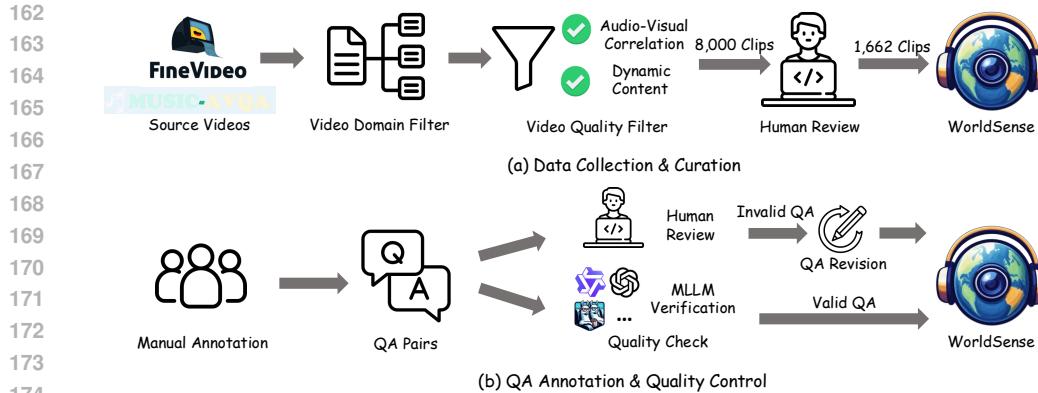


Figure 3: **Data collection and QA annotation pipelines.** (a) Data collection and curation process. (b) QA annotation and quality control pipeline.

3 *WorldSense*

In this section, we first introduce the design principles in Section 3.1, followed by a description of the data collection (Section 3.2) and annotation processes (3.3). We then compare statics of *WorldSense* with previous benchmarks in Section 3.4, and finally present our evaluation methodology 3.5.

3.1 DESIGN PRINCIPLE

As for multi-modal evaluation, we base on the audio-visual synchronized videos, which capture temporal events, motion patterns, and audio-visual correlations. To curate the benchmark, we adhere to the following three principles, to ensure rigorous and comprehensive evaluations for MLLMs.

Comprehensive Domain Coverage. To capture the diversity of real-world scenarios, we construct a hierarchical taxonomy starting from broad human-centric domains, refined into 67 fine-grained subcategories. This structure ensures wide ecological coverage, enabling robust assessment of multi-modal understanding across varied contexts.

Diverse Acoustic Modalities. Real-world audio can be broadly classified into speech, environmental events, and music. The benchmark includes all three types, enabling evaluation across a spectrum of acoustic complexity—from linguistic content to non-verbal and abstract auditory cues.

Multilevel Cognitive Assessment. We design a three-tiered evaluation framework targeting: **recognition** (detection of basic audio-visual elements), **understanding** (comprehension of multimodal relationships), and **reasoning** (high-level inference tasks such as causal inference or abstract thinking). The benchmark includes 26 tasks aligned with these levels, encouraging holistic evaluation of perceptual and cognitive capabilities in multimodal settings.

3.2 DATA COLLECTION & CURATION

We primarily source our video content from FineVideo (Farré et al., 2024), a large-scale dataset comprising high-quality YouTube videos that exhibit strong audio-visual correlations across diverse real-world scenarios. To enrich the benchmark’s coverage of musical content, we supplement it with selected videos from MusicAVQA (Li et al., 2022), ensuring a more balanced representation of auditory modalities.

Our data collection employs a systematic filtering pipeline to ensure high-quality videos with rich visual-audio semantics and temporal dynamics, following three main steps in Figure 3(a): (i) filtering videos according to predefined taxonomic categories delineated in Section 3.1; (ii) selecting clips based on pre-computed audio-visual correlation and dynamic content metrics from about 8,000 initial videos; and (iii) human expert review for video quality and real-world relevance. This rigorous selection and processing results in 1,662 high-quality video segments with strong audio-visual correlations across various real-world scenarios.

216 Table 1: **Statistics.** A, V, I for modality represent audio, video, and image. **Len.** refers to the mean
 217 video duration in seconds. A and M for **Anno.** indicate automatic and manual annotation genera-
 218 tion. **QA Tokens** represents the average token count in QA pairs, while **Sub. Tokens** denotes the
 219 mean number of subtitle tokens. **Multi-task** represents whether the dataset encompasses more than
 220 two question categories. **Open-domain** signifies whether the video content spans diverse domains.
 221 **Sub./Aud.** specifies the availability of audio signals or subtitle transcriptions. **A-V Correlations**
 222 indicates whether answering questions requires integration of omnimodal information.

Benchmarks	Modality	#Videos	Len.(s)	#QA Pairs	Anno.	QA Tokens	Sub. Tokens	Multi task	Open domain	Sub./Aud.	A-V Correlations
MSRVT-QA (Xu et al., 2017)	V	2,990	15.2	72,821	A	8.4	X	X	✓	X	X
ActivityNet-QA (Yu et al., 2019)	V	800	111.4	8,000	M	10.2	X	X	X	X	X
MVBench (Li et al., 2024c)	V	3,641	16.0	4,000	A	27.3	X	✓	✓	X	X
MovieChat (Song et al., 2024)	V	130	500.0	1,950	M	-	X	X	✓	X	X
Video-Bench (Ning et al., 2023)	V	5,917	56.0	17,036	A&M	21.3	X	✓	✓	X	X
EgoSchema (Mangalam et al., 2023)	V	5,063	180.0	5,063	A&M	126.8	X	✓	X	X	X
Video-MME (Fu et al., 2024b)	V	900	1017.9	2,700	M	35.7	3086.5	✓	✓	✓	X
MMBench-Video (Fang et al., 2024a)	V	609	165.4	1,998	M	19.3	X	✓	✓	X	X
AVQA (Yang et al., 2022)	A+V	57,000	10	57,335	M	14.2	X	X	✓	✓	✓
Music-AVQA (Li et al., 2022)	A+V	9,288	60	45,867	M	8.6	X	X	X	✓	✓
OmniBench (Li et al., 2024d)	A+I	X	X	1,142	M	37.8	X	✓	✓	✓	✓
AV-Odyssey (Gong et al., 2024)	A+I	X	X	4,555	M	19.5	X	✓	✓	✓	✓
LongVALE (Geng et al., 2024)	A+V	8,400	235	X	A&M	X	X	X	✓	✓	✓
WorldSense	A+V	1,662	141.1	3,172	M	37.2	986.2	✓	✓	✓	✓

3.3 ANNOTATION PROTOCOL

239 **Question-Answering (QA) Annotation.** A team of 80 professional annotators is engaged in creat-
 240 ing high-quality multiple-choice QA pairs for each video by thoroughly reviewing both visual and
 241 audio content. The questions are designed to require integration of multiple modalities, enabling
 242 effective assessment of MLLMs’ multimodal understanding.

243 **Quality Control.** To ensure QA quality, we implement a rigorous quality control process combin-
 244 ing expert review and automated checks, as illustrated in Figure 3(b). Professional quality control
 245 experts evaluate each QA pair based on three essential criteria: (i) linguistic clarity and coherence,
 246 (ii) multimodal necessity for correct answers, and (iii) appropriate difficulty. Questions that fail to
 247 meet these standards are returned for revision.

248 We also use MLLMs for automated verification. Vision-language models like Qwen2-VL(Wang
 249 et al., 2024b) verify that questions require multiple modalities for correct answers. Furthermore,
 250 multimodal MLLMs capable of processing video, audio, and text, such as Video-LLaMA2(Cheng
 251 et al., 2024) and OneLLM (Han et al., 2024) are used to assess question difficulty, with questions
 252 answered correctly by all models being flagged for manual revision as too simple.

253 This dual-verification system, combining expert review and automated testing, ensures that all ques-
 254 tions in our benchmark are of high-quality and well-formulated, that requires multi-modal compre-
 255 hension, and present significant challenges for the models.

3.4 DATASET STATISTICS

260 As summarized in Table 1, our proposed **WorldSense** benchmark contains 1,662 video clips with
 261 synchronized audio across 8 categories and 67 subcategories, averaging 141.1 seconds in length,
 262 including 3,173 multiple-choice questions on three cognitive levels.

263 **WorldSense** features diverse audio types such as speech, environmental sounds, and music. Un-
 264 like existing benchmarks that use static images (e.g., AV-Odyssey Bench (Gong et al., 2024), Omni-
 265 Bench (Li et al., 2024d)) or feature weak audio-visual correlations (e.g., Video-MME (Fu et al.,
 266 2024b)), **WorldSense** is the first to comprehensively evaluate MLLMs’ real-world multimodal un-
 267 derstanding. It distinguishes itself through: (i) open-domain videos with multi-task evaluation, (ii)
 268 original audio-visual content with complete transcriptions, and (iii) carefully crafted questions re-
 269 quiring true audio-visual integration, establishing a comprehensive benchmark for real-world multi-
 270 modal understanding assessment.

270 Table 2: **Overall performance on *WorldSense*.** We evaluate three types of MLLMs on *WorldSense*,
 271 showing the significant limitations of existing MLLMs on real-world multi-modal understanding.

Methods	LLM Size	Tech & Science	Culture & Politics	Daily Life	Film & TV	Performance	Games	Sports	Music	Avg
<i>Open-Source Video-Audio MLLMs</i>										
Unified-IO-2 L (Lu et al., 2024b)	1B	19.3	22.8	23.1	25.6	25.8	24.1	22.9	25.3	23.3
Unified-IO-2 XL (Lu et al., 2024b)	3B	26.5	24.4	22.5	23.5	24.7	28.0	25.7	24.2	24.7
Unified-IO-2 XXL (Lu et al., 2024b)	7B	27.1	31.7	23.9	23.7	25.5	23.7	25.7	27.3	25.9
OneLLM (Han et al., 2024)	7B	26.7	25.1	19.0	22.7	27.0	23.7	22.4	19.8	22.8
VideoLLaMA2 (Cheng et al., 2024)	7B	29.4	25.4	21.8	24.5	26.2	24.6	25.5	27.1	25.4
VITA-1.5 (Fu et al., 2025)	7B	38.2	35.9	34.3	39.8	41.2	32.6	34.7	39.9	36.9
Qwen2.5-Omni (Xu et al., 2025a)	7B	47.8	49.8	43.6	43.8	48.3	39.1	43.5	47.3	45.4
video-SALMONN 2+ (Tang et al., 2025)	7B	57.1	54.4	48.9	50.9	49.1	51.1	44.9	51.0	50.9
Qwen3-Omni (Xu et al., 2025b)	7B	58.7	60.5	54.5	53.8	55.4	46.8	48.8	52.2	54.0
video-SALMONN 2+ (Tang et al., 2025)	72B	59.0	63.1	54.0	59.9	58.1	54.1	51.9	54.4	56.5
<i>Open-Source Video MLLMs</i>										
Video-LLaVA (Lin et al., 2023)	7B	23.6	20.8	19.1	17.3	23.6	17.2	20.8	20.1	20.3
LLaMA3.2 (Grattafiori et al., 2024)	7B	27.5	25.7	28.9	25.9	27.7	21.1	29.0	26.8	27.1
Qwen2-VL (Wang et al., 2024a)	7B	33.5	29.0	28.4	33.6	30.3	32.3	34.7	38.5	32.4
mPLUG-Owl3 (Ye et al., 2024)	7B	37.5	31.4	31.0	34.1	33.3	33.2	32.1	30.5	32.9
LLaVA-OneVision (Li et al., 2024a)	7B	38.9	38.9	36.3	37.6	37.8	37.9	36.3	39.1	37.7
InternVL2.5 (Chen et al., 2024b)	8B	43.7	40.9	34.6	39.7	37.8	36.2	39.4	41.1	39.1
LLaVA-Video (Zhang et al., 2024d)	7B	41.6	38.6	40.6	42.1	40.4	39.7	37.0	40.9	40.2
<i>Proprietary MLLMs</i>										
Claude 3.5 Sonnet (Anthropic, 2024)	-	43.7	31.7	30.6	36.5	30.7	31.9	36.6	33.9	34.8
GPT 4o (Hurst et al., 2024)	-	48.0	44.0	38.3	43.5	41.9	41.2	42.6	42.7	42.6
Gemini 1.5 Pro (Team et al., 2024a)	-	53.7	47.2	50.3	50.4	52.4	46.8	40.2	42.0	48.0
Gemini 2.5 Flash (Comanici et al., 2025)	-	51.8	50.2	54.1	51.2	59.6	50.6	51.6	51.5	52.3
Gemini 2.5 Pro (Comanici et al., 2025)	-	64.9	66.0	65.8	68.1	69.7	65.7	63.5	61.3	65.1

296 3.5 EVALUATION PARADIGM

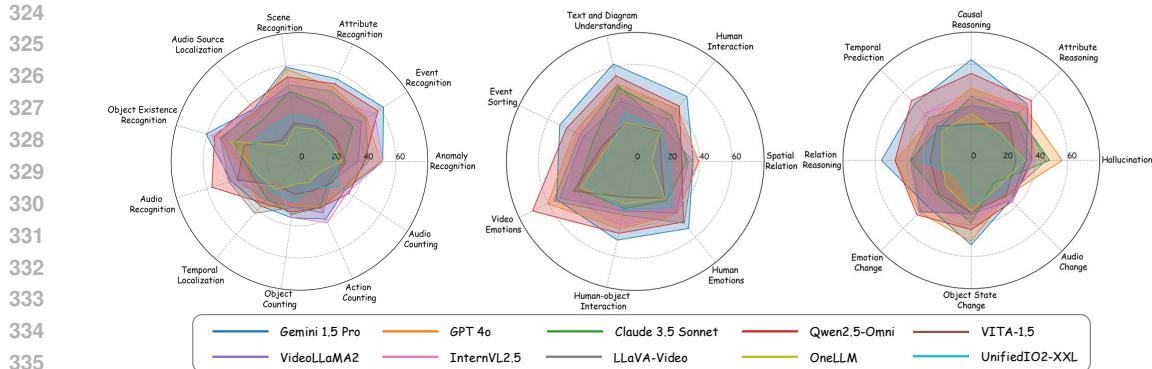
297 In our evaluation framework, each test instance consists of a video clip with synchronized audio and
 298 a multiple-choice question. Models must process these multi-modal inputs and select the correct
 299 answer from several options. Performance is measured by accuracy, comparing the model’s selection
 300 to the ground-truth answers. A model’s success is determined by its ability to accurately align with
 301 the correct answer. We employ a matching-based approach to extract answers.

302 To rigorously assess the necessity of multimodal integration in real-world understanding, we conduct
 303 ablation studies across various modality configurations. This approach not only evaluates overall
 304 model performance but also quantifies the models’ reliance on individual modalities, highlighting
 305 the critical role of multimodal collaboration in real-world comprehension tasks.

310 4 EXPERIMENTS AND FINDINGS

312 4.1 SETTINGS

314 To comprehensively assess the multi-modal understanding ability, we evaluate three types
 315 of MLLMs: (1) open-source audio-visual models, such as Unified-IO-2 (Lu et al., 2024b),
 316 OneLLM (Han et al., 2024), and VideoLLaMA2 (Cheng et al., 2024); (ii) open-source MLLMs,
 317 such as Qwen2-VL (Wang et al., 2024a), LLaVA-OneVision (Li et al., 2024a), InternVL2.5 (Chen
 318 et al., 2024b), LLaVA-Video (Zhang et al., 2024d), and so on; (iii) proprietary MLLMs, such as
 319 Claude 3.5 Sonnet (Anthropic, 2024), GPT 4o (Hurst et al., 2024), Gemini 1.5 Pro (Team et al.,
 320 2024a), and Gemini 2.5 Pro (Comanici et al., 2025). For all evaluations, we strictly adhere to each
 321 model’s official implementation guidelines and the recommended pre-processing procedures. Video
 322 frame extraction follows the official configurations specified by corresponding MLLMs, while pro-
 323 prietary models are evaluated according to their API specifications and recommended input formats.
 Model performance is assessed through direct comparison between model outputs and ground-truth.

Figure 4: **Fine-grained results on task category.** We present performance across all tasks.

4.2 RESULTS ON *WorldSense*

Main Results. We present comprehensive evaluations of *WorldSense* in Table 2. Our analysis reveals several significant insights regarding the capabilities of MLLMs in real-world understanding.

First, current open-source video models are limited in their performance as they process only visual information. This restriction highlights a significant gap in their ability to perform complex, multimodal understanding tasks, as evidenced by their maximum performance score of only 54.0%. The results underscore the inadequacies of relying solely on visual processing, emphasizing the need to integrate audio inputs for a more comprehensive understanding in practical applications.

Second and surprisingly, most of existing open-source audio-visual MLLMs perform even worse, achieving accuracy rates comparable to random guessing and notably below video-only MLLMs. This counter-intuitive finding reveals that despite having access to both modalities, these models struggle with effective audio-visual integration, suggesting that multimodal processing capability alone does not guarantee better performance without sophisticated integration mechanisms.

Third, among proprietary MLLMs, vision-only models GPT-4o and Claude 3.5 Sonnet demonstrate performance comparable to the leading open-source video MLLMs. Gemini 2.5 Pro, capable of processing both audio and visual information, achieves the highest accuracy of 65.1%. However, this performance still falls considerably short of requirements for reliable real-world applications, indicating substantial room for improvement.

These comprehensive results illuminate several critical insights: (i) the fundamental importance of audio-visual collaborative understanding in real-world scenarios; (ii) the current significant gap in models' capabilities for effective multimodal integration, and (iii) the need for more sophisticated approaches to combining and reasoning about multiple modalities. These findings point to crucial directions for future research and development in MLLMs.

Breakdown Results. We conduct a fine-grained analysis of model performance across different audio types and task categories, as shown in Figure 4 and 5, highlighting the limitations of MLLMs.

First, models consistently underperform on audio-related tasks (*e.g.*, audio recognition, audio counting) compared to other task types, demonstrating significant challenges in audio understanding. Second, spatial reasoning and counting tasks present notable difficulties for current models, a pattern consistently observed across multiple benchmarks. Third, emotion-related tasks prove particularly challenging, likely due to their requirement for integrating subtle and complex multimodal cues, including facial expressions, vocal tones, and contextual speech content. This underperformance in emotional understanding suggests a significant gap in current MLLMs' training data and capabilities, highlighting an important area for future development.

Additionally, performance varies across audio types. While Gemini 1.5 Pro performs best overall, it shows notably lower accuracy on event-related questions compared to speech or music tasks, possibly due to the complex nature of environmental sounds. Other models also exhibit inconsistent performance across audio types, underscoring a general limitation for audio understanding.

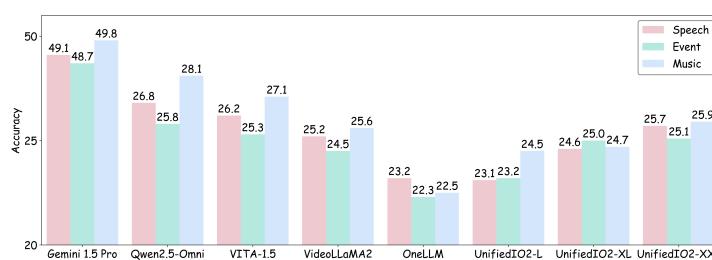


Figure 5: **Fine-grained results on audio signals.** Existing models exhibit inconsistent performance across audio types.

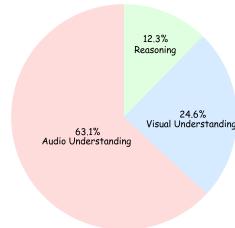


Figure 6: **Error distribution.** Sampled 5 error cases per task.

Table 3: **Impact of vision information.** We evaluate MLLMs’ performance under different input configurations: audio-only input, audio combined with either video captions or video frames.

Methods	Modality	Tech & Science	Culture & Politics	Daily Life	Film & TV	Performance	Games	Sports	Music	Avg
Unified-IO-2 L (Lu et al., 2024b)	Audio	23.0	25.4	24.2	26.7	27.7	23.7	25.0	27.1	25.2
	+ Caption	21.5	21.1	20.7	17.1	19.9	19.0	22.9	23.7	20.9 _{-4.3}
	+ Video	19.3	22.8	23.1	25.6	25.8	24.1	22.9	25.3	23.3 _{-1.9}
Unified-IO-2 XL (Lu et al., 2024b)	Audio	21.7	22.4	22.4	22.1	24.7	25.0	25.9	24.7	23.4
	+ Caption	19.9	19.8	20.8	19.2	20.2	15.9	21.7	25.5	20.7 _{-2.7}
	+ Video	26.5	24.4	22.5	23.5	24.7	28.0	25.7	24.2	24.7 _{+1.3}
Unified-IO-2 XXL (Lu et al., 2024b)	Audio	27.5	28.7	23.9	23.2	25.8	21.1	26.2	30.2	25.9
	+ Caption	24.0	26.7	23.0	18.9	18.7	20.7	25.9	29.4	23.7 _{-2.2}
	+ Video	27.1	31.7	23.9	23.7	25.5	23.7	25.7	27.3	25.9 _{+0.0}
OneLLM (Han et al., 2024)	Audio	25.7	26.1	19.3	21.9	25.8	25.9	21.5	22.4	23.0
	+ Caption	29.6	29.0	25.9	29.1	33.0	26.7	29.2	28.6	28.6 _{+5.6}
	+ Video	26.7	25.1	19.0	22.7	27.0	23.7	22.4	19.8	22.8 _{-0.2}
VideoLLaMA2 (Cheng et al., 2024)	Audio	23.8	23.4	21.3	22.4	24.7	19.8	27.1	27.9	23.8
	+ Caption	30.0	30.0	25.6	29.9	28.5	25.0	29.7	29.9	28.5 _{+4.7}
	+ Video	29.4	25.4	21.8	24.5	26.2	24.6	25.5	27.1	25.4 _{+1.6}
VITA-1.5 (Fu et al., 2025)	Audio	30.2	35.6	36.3	30.9	32.2	32.2	31.4	33.3	32.9
	+ Caption	39.2	39.8	37.2	37.5	37.5	35.2	34.9	38.4	37.5 _{+4.6}
	+ Video	38.2	35.9	34.3	39.8	41.2	32.6	34.7	39.9	36.9 _{+4.0}
Qwen2.5-Omni (Xu et al., 2025a)	Audio	40.0	38.2	36.0	33.5	31.1	30.5	32.3	33.3	34.9
	+ Caption	40.0	37.9	38.9	33.5	36.7	37.8	37.7	38.9	37.9 _{+3.0}
	+ Video	47.8	49.8	43.6	43.8	48.3	39.1	43.5	47.3	45.4 _{+10.5}
Gemini 1.5 Pro (Team et al., 2024a)	Audio	40.2	42.9	35.8	33.3	33.0	31.0	33.3	24.7	34.6
	+ Caption	49.5	52.1	41.8	42.9	46.4	41.8	39.6	36.7	43.6 _{+9.0}
	+ Video	53.7	47.2	50.3	50.4	52.4	46.8	40.2	42.0	48.0 _{+13.4}

4.3 ROADMAP TOWARDS REAL-WORLD UNDERSTANDING

Given the substantial performance gap revealed in above evaluation, we conduct an in-depth investigation into potential approaches to enhance the MLLMs’ performance.

Vision Information. We investigate the impact of visual information through different input configurations: audio-only, audio with video captions, and audio with video frames. As shown in Table 3, visual information generally improves performance, with Gemini 1.5 Pro’s accuracy increasing from 34.6% (audio-only) to 48.0% (+video). However, impact varies across models, with UnifiedIO2 showing inconsistent gains and even degradation with captions.

These findings suggest two important insights: (1) visual information is crucial for enhancing multi-modal understanding when properly integrated, and (2) current models’ ability to effectively utilize visual information remains limited.

Audio Information. We examine the impact of audio information through three configurations: video-only, video with subtitles, and video with original audio.

The results in Table 4 reveal intriguing patterns in how different forms of audio information influence model performance. For Gemini 1.5 Pro, accuracy increases from 34.4% (video-only) to 39.3% with subtitles, and further to 48.0% with original audio. Other models, such as OneLLM and Qwen2.5-Omni, show similar improvements. These results demonstrate that both subtitles and acoustic features (including tone, emotion, and environmental sounds) contribute valuable information, beyond what subtitles alone can capture, emphasizing the importance of complete acoustic cues in omni-modal real-world understanding.

Interestingly, UnifiedIO2 demonstrates performance degradation when integrating either subtitles or audio, with subtitles causing a notable accuracy decline, suggesting difficulties in multimodal

432 **Table 4: Impact of audio information for Video-Audio MLLMs.** We conduct experiments across
 433 three input configurations: video-only, video with subtitles, and video with original audio.

Methods	Speech			Event			Music			Overall		
	Video	+ Subtitle	+ Audio	Video	+ Subtitle	+ Audio	Video	+ Subtitle	+ Audio	Video	+ Subtitle	+ Audio
Unified-IO-2 L (Lu et al., 2024b)	26.8	13.9 \pm 12.9	23.1 \pm 3.1	26.9	13.5 \pm 13.4	23.2 \pm 3.7	26.3	15.0 \pm 11.3	24.5 \pm 1.8	26.6	14.8 \pm 11.8	23.3 \pm 3.3
Unified-IO-2 XL (Lu et al., 2024b)	25.0	13.0 \pm 12.0	24.6 \pm 0.4	24.8	12.3 \pm 12.5	25.0 \pm 0.2	26.7	15.9 \pm 10.8	24.7 \pm 2.0	25.3	14.1 \pm 11.2	24.7 \pm 0.6
Unified-IO-2 XXL (Lu et al., 2024b)	27.0	15.6 \pm 11.4	25.7 \pm 1.3	26.2	14.2 \pm 12.0	25.1 \pm 1.1	28.4	19.1 \pm 9.3	25.9 \pm 2.5	27.2	17.2 \pm 10.0	25.9 \pm 1.3
OneLLM (Han et al., 2024)	12.5	19.6 \pm 7.1	23.2 \pm 10.7	12.4	19.3 \pm 6.9	22.3 \pm 9.9	12.4	19.0 \pm 6.6	22.5 \pm 10.1	12.6	19.6 \pm 7.0	22.8 \pm 10.2
VideoLLaMA2 (Cheng et al., 2024)	17.1	25.5 \pm 8.4	25.2 \pm 8.1	16.1	24.9 \pm 8.8	24.5 \pm 8.4	17.7	27.0 \pm 9.3	25.6 \pm 7.9	17.4	26.1 \pm 8.7	25.4 \pm 8.0
VITA-1.5 (Fu et al., 2025)	37.6	39.1 \pm 1.5	36.2 \pm 1.4	36.4	38.2 \pm 1.8	35.3 \pm 1.1	38.7	40.0 \pm 1.3	37.1 \pm 1.6	37.7	39.3 \pm 1.6	36.5 \pm 1.2
Qwen2.5-Omn (Xu et al., 2025a)	38.7	38.7 \pm 0.0	44.8 \pm 6.1	37.6	37.7 \pm 0.1	43.8 \pm 6.2	40.7	40.3 \pm 0.4	46.1 \pm 5.4	39.2	39.2 \pm 0.0	45.2 \pm 6.0
Gemini 1.5 Pro (Team et al., 2024a)	34.3	39.6 \pm 5.3	49.2 \pm 14.9	33.0	38.9 \pm 5.9	48.7 \pm 15.7	35.4	39.2 \pm 3.8	49.8 \pm 14.4	34.4	39.3 \pm 4.9	48.0 \pm 13.6

440 **Table 5: Impact of audio information for Video MLLMs.** We provide video-only MLLMs with
 441 the subtitles and compare the performance with models with only video input.

Methods	Speech		Event		Music		Overall	
	Video	+ Subtitle	Video	+ Subtitle	Video	+ Subtitle	Video	+ Subtitle
Video-LLaVA (Lin et al., 2023)	20.3	15.4 \pm 4.9	19.8	14.4 \pm 5.4	19.5	16.4 \pm 3.1	20.3	16.0 \pm 4.3
LLaMA3.2 (Grattafiori et al., 2024)	27.1	29.3 \pm 2.2	27.6	29.6 \pm 2.0	25.9	28.1 \pm 2.2	27.1	28.8 \pm 1.7
Qwen2-VL (Wang et al., 2024a)	31.8	41.1 \pm 9.3	30.9	39.4 \pm 8.5	34.2	41.8 \pm 7.6	32.4	41.2 \pm 8.8
mPLUG-Owl3 (Ye et al., 2024)	33.0	39.2 \pm 6.2	32.3	38.3 \pm 6.0	34.6	39.2 \pm 4.6	32.9	38.7 \pm 5.8
LLaVA-OneVision (Li et al., 2024a)	37.7	44.0 \pm 6.3	36.3	42.7 \pm 6.4	39.7	45.7 \pm 6.0	37.7	43.9 \pm 6.2
InternVL2.5 (Chen et al., 2024b)	39.0	48.3 \pm 9.3	38.6	47.9 \pm 9.3	39.2	47.1 \pm 7.9	39.1	47.8 \pm 8.7
LLaVA-Video (Zhang et al., 2024d)	40.5	45.9 \pm 5.4	38.9	44.6 \pm 5.7	42.3	47.7 \pm 5.4	40.2	45.6 \pm 5.4
GPT 4o (Hurst et al., 2024)	42.8	51.1 \pm 8.3	40.9	50.2 \pm 9.3	43.6	49.9 \pm 6.3	42.6	50.1 \pm 7.5

450 processing. Conversely, Video-LLaMA2 improves with both modalities but performs better with
 451 subtitles than original audio, indicating stronger reliance on textual rather than acoustic information.

452 We further evaluate video-only MLLMs by providing transcribed subtitles, as shown in Table 5.
 453 Nearly all models show significant improvements with subtitle integration, reinforcing the
 454 importance of audio information. However, the performance gain is less pronounced in music-related
 455 questions, as subtitles cannot effectively capture inherent acoustic features such as melody, rhythm,
 456 and harmony.

457 These evaluations highlight several critical findings: (i) original audio contains rich information be-
 458 yond what subtitles can capture, particularly for music; (ii) current models show significant limita-
 459 tions in multimodal processing. These insights suggest important directions for improving MLLMs'
 460 ability to integrate acoustic and textual information for comprehensive scene understanding.

461 **Failure Analysis and Future Improvement.** We perform error analysis on 130 samples of Gemini
 462 1.5 Pro (5 random samples per task) through manual review, identifying three main error types: Au-
 463 dio Understanding Errors (misinterpreting audio information), Visual Understanding Errors (missing
 464 visual details), and Reasoning Errors (faulty logical steps). As shown in Figure 6, most errors stem
 465 from audio understanding deficiencies and reasoning failures. The reason for poor accuracy and
 466 limitation of existing models can be summarized as follows: (i) **Inadequate Audio Understanding.**
 467 Existing models fail to understand audio information correctly and show significantly weaker audio
 468 processing than visual understanding. (ii) **Limited Cross-Modal Integration.** Models often pro-
 469 cess modalities independently rather than performing true multimodal integration and suffer from
 470 insufficient omni-modal information integration. (iii) **Insufficient Complex Reasoning Ability.**
 471 Despite correct perception, MLLMs still conduct error reasoning, leading to incorrect conclusions.

472 We also raise several key strategies to enhance models' understanding of omni-modality informa-
 473 tion: (i) **Coupled Multimodal Training Data.** Using naturally coupled, interleaved multimodal
 474 data, for example, audio, visual, language content, would enhance models' capability to leverage
 475 cross-modal dependencies. (ii) **Architectural Improvements.** Enhanced attention mechanisms fa-
 476 cilitating deep multimodal integration could emphasize early fusion between modalities, rather than
 477 processing them as separate streams for late fusion. (iii) **Advanced Modal Alignment Techniques.**
 478 Progressive alignment strategies that gradually enhance the model's ability to align information
 479 across modalities could lead to more effective utilization of multimodal inputs. (iv) **Reasoning
 480 Strengthening.** Incorporating diverse reasoning-focused data can strengthen logical inference capa-
 481 bilities, enabling more coherent and accurate conclusions.

5 CONCLUSION

485 In this paper, we propose **WorldSense**, the *first* benchmark designed to evaluate MLLMs' omni-
 486 modal understanding in real-world scenarios. Distinguished by its emphasis on joint omnimodal

486 comprehension across diverse real-world contexts, **WorldSense** encompasses rich video categories
 487 and carefully curated question-answer pairs that necessitate the integration of visual and acoustic
 488 information. Through extensive experiments, we expose significant limitations in current MLLMs'
 489 ability to process and coherently integrate omnimodal information. Our analysis demonstrates the
 490 importance of omnimodal collaboration in real-world understanding. We hope that **WorldSense** can
 491 serve as a foundational benchmark for advancing human-like omnimodal understanding capabilities.
 492

493 6 REPRODUCIBILITY STATEMENT

495 We have provided detailed descriptions of the evaluated models and prompts used in our work in the
 496 main text and appendix. To further ensure reproducibility, we commit to releasing our datasets and
 497 codebase upon acceptance of the paper, enabling community to fully replicate and extend results.
 498

499 REFERENCES

501 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
 502 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
 503 model for few-shot learning. *Advances in neural information processing systems*, 35:23716–
 504 23736, 2022.

505 Anthropic. Introducing the next generation of Claude. <https://www.anthropic.com/news/clause-3-family>, 2024. Accessed: 2024-10-22.

508 Keshigeyan Chandrasegaran, Agrim Gupta, Lea M Hadzic, Taran Kota, Jimming He, Cristóbal
 509 Eyzaguirre, Zane Durante, Manling Li, Jiajun Wu, and Li Fei-Fei. Hourvideo: 1-hour video-
 510 language understanding. *arXiv preprint arXiv:2411.04998*, 2024.

511 Long Chen, Oleg Sinavski, Jan Hünermann, Alice Karnsund, Andrew James Willmott, Danny Birch,
 512 Daniel Maund, and Jamie Shotton. Driving with llms: Fusing object-level vector modality for
 513 explainable autonomous driving. In *2024 IEEE International Conference on Robotics and Au-
 514 tomation (ICRA)*, pp. 14093–14100. IEEE, 2024a.

515 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
 516 glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
 517 multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*,
 518 2024b.

520 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
 521 Kongzhi Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to com-
 522 mercial multimodal models with open-source suites. *arXiv preprint arXiv:2404.16821*, 2024c.

523 Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
 524 Zhang, Ziyang Luo, Deli Zhao, et al. Videollama 2: Advancing spatial-temporal modeling and
 525 audio understanding in video-llms. *arXiv preprint arXiv:2406.07476*, 2024.

527 Yunfei Chu, Jin Xu, Xiaohuan Zhou, Qian Yang, Shiliang Zhang, Zhijie Yan, Chang Zhou, and
 528 Jingren Zhou. Qwen-audio: Advancing universal audio understanding via unified large-scale
 529 audio-language models. *arXiv preprint arXiv:2311.07919*, 2023.

530 Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv,
 531 Jinzheng He, Junyang Lin, et al. Qwen2-audio technical report. *arXiv preprint arXiv:2407.10759*,
 532 2024.

533 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 534 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 535 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 536 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

538 Wenliang Dai, Junnan Li, D Li, AMH Tiong, J Zhao, W Wang, B Li, P Fung, and S Hoi. Instruct-
 539 blip: Towards general-purpose vision-language models with instruction tuning. arxiv 2023. *arXiv
 preprint arXiv:2305.06500*, 2, 2023.

540 Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
 541 Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
 542 modal language model. *arXiv preprint arXiv:2303.03378*, 2023.

543 Rongyao Fang, Shilin Yan, Zhaoyang Huang, Jingqiu Zhou, Hao Tian, Jifeng Dai, and Hongsheng
 544 Li. Instructseq: Unifying vision tasks with instruction-conditioned multi-modal sequence gener-
 545 ation. *arXiv preprint arXiv:2311.18835*, 2023.

546 Xinyu Fang, Kangrui Mao, Haodong Duan, Xiangyu Zhao, Yining Li, Dahua Lin, and Kai Chen.
 547 Mmbench-video: A long-form multi-shot benchmark for holistic video understanding. *arXiv
 548 preprint arXiv:2406.14515*, 2024a.

549 Yunhao Fang, Ligeng Zhu, Yao Lu, Yan Wang, Pavlo Molchanov, Jan Kautz, Jang Hyun Cho,
 550 Marco Pavone, Song Han, and Hongxu Yin. Vila2: Vila augmented vila. *arXiv preprint
 551 arXiv:2407.17453*, 2024b.

552 Miquel Farré, Andi Marafioti, Lewis Tunstall, Leandro Von Werra, and Thomas Wolf. Finevideo.
 553 <https://huggingface.co/datasets/HuggingFaceFV/finevideo>, 2024.

554 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
 555 Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation
 556 benchmark for multimodal large language models, 2024a. URL <https://arxiv.org/abs/2306.13394>.

557 Chaoyou Fu, Yuhang Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
 558 Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evalua-
 559 tion benchmark of multi-modal llms in video analysis. *arXiv preprint arXiv:2405.21075*, 2024b.

560 Chaoyou Fu, Haojia Lin, Xiong Wang, Yi-Fan Zhang, Yunhang Shen, Xiaoyu Liu, Haoyu Cao,
 561 Zuwei Long, Heting Gao, Ke Li, et al. Vita-1.5: Towards gpt-4o level real-time vision and speech
 562 interaction. *arXiv preprint arXiv:2501.01957*, 2025.

563 Tiantian Geng, Jinrui Zhang, Qingni Wang, Teng Wang, Jinming Duan, and Feng Zheng. Long-
 564 vale: Vision-audio-language-event benchmark towards time-aware omni-modal perception of
 565 long videos. *arXiv preprint arXiv:2411.19772*, 2024.

566 Kaixiong Gong, Kaituo Feng, Bohao Li, Yibing Wang, Mofan Cheng, Shijia Yang, Jiaming Han,
 567 Benyou Wang, Yutong Bai, Zhuoran Yang, et al. Av-odyssey bench: Can your multimodal llms
 568 really understand audio-visual information? *arXiv preprint arXiv:2412.02611*, 2024.

569 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, and et al.
 570 The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

571 Jiaming Han, Kaixiong Gong, Yiyuan Zhang, Jiaqi Wang, Kaipeng Zhang, Dahua Lin, Yu Qiao,
 572 Peng Gao, and Xiangyu Yue. Onellm: One framework to align all modalities with language.
 573 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 574 26584–26595, 2024.

575 Junwen He, Yifan Wang, Lijun Wang, Huchuan Lu, Jun-Yan He, Jin-Peng Lan, Bin Luo, and Xuan-
 576 song Xie. Multi-modal instruction tuned llms with fine-grained visual perception. In *Proceedings
 577 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13980–13990,
 578 2024a.

579 Xuehai He, Weixi Feng, Kaizhi Zheng, Yujie Lu, Wanrong Zhu, Jiachen Li, Yue Fan, Jianfeng Wang,
 580 Linjie Li, Zhengyuan Yang, et al. Mmworld: Towards multi-discipline multi-faceted world model
 581 evaluation in videos. *arXiv preprint arXiv:2406.08407*, 2024b.

582 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 583 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
 584 arXiv:2410.21276*, 2024.

585 Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa: Rea-
 586 soning segmentation via large language model. In *Proceedings of the IEEE/CVF Conference on
 587 Computer Vision and Pattern Recognition*, pp. 9579–9589, 2024.

594 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 595 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint*
 596 *arXiv:2408.03326*, 2024a.

597

598 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
 599 marking multimodal llms with generative comprehension. *arXiv preprint arXiv:2307.16125*,
 600 2023.

601 Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan.
 602 Seed-bench: Benchmarking multimodal large language models. In *Proceedings of the IEEE/CVF*
 603 *Conference on Computer Vision and Pattern Recognition*, pp. 13299–13308, 2024b.

604

605 Guangyao Li, Yake Wei, Yapeng Tian, Chenliang Xu, Ji-Rong Wen, and Di Hu. Learning to answer
 606 questions in dynamic audio-visual scenarios. In *Proceedings of the IEEE/CVF Conference on*
 607 *Computer Vision and Pattern Recognition*, pp. 19108–19118, 2022.

608 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
 609 Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In
 610 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 611 22195–22206, 2024c.

612

613 Yizhi Li, Ge Zhang, Yinghao Ma, Ruibin Yuan, Kang Zhu, Hangyu Guo, Yiming Liang, Jiaheng
 614 Liu, Zekun Wang, Jian Yang, et al. Omnipbench: Towards the future of universal omni-language
 615 models. *arXiv preprint arXiv:2409.15272*, 2024d.

616 Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning
 617 united visual representation by alignment before projection. *arXiv preprint arXiv:2311.10122*,
 618 2023.

619

620 Junming Lin, Zheng Fang, Chi Chen, Zihao Wan, Fuwen Luo, Peng Li, Yang Liu, and Maosong
 621 Sun. Streamingbench: Assessing the gap for mllms to achieve streaming video understanding.
 622 *arXiv preprint arXiv:2411.03628*, 2024.

623

624 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 625 Llava-next: Improved reasoning, ocr, and world knowledge, 2024a.

626

627 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 628 *in neural information processing systems*, 36, 2024b.

629

630 Huan Liu, Lingyu Xiao, Jiangjiang Liu, Xiaofan Li, Ze Feng, Sen Yang, and Jingdong Wang.
 631 Revisiting mllms: An in-depth analysis of image classification abilities. *arXiv preprint*
 632 *arXiv:2412.16418*, 2024c.

633

634 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 635 Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
 636 player? In *European Conference on Computer Vision*, pp. 216–233. Springer, 2025.

637

638 Yuanxin Liu, Shicheng Li, Yi Liu, Yuxiang Wang, Shuhuai Ren, Lei Li, Sishuo Chen, Xu Sun,
 639 and Lu Hou. Tempcompass: Do video llms really understand videos? *arXiv preprint*
 640 *arXiv:2403.00476*, 2024d.

641

642 Zhijian Liu, Ligeng Zhu, Baifeng Shi, Zhuoyang Zhang, Yuming Lou, Shang Yang, Haocheng Xi,
 643 Shiyi Cao, Yuxian Gu, Dacheng Li, et al. Nvila: Efficient frontier visual language models. *arXiv*
 644 *preprint arXiv:2412.04468*, 2024e.

645

646 Ziyu Liu, Tao Chu, Yuhang Zang, Xilin Wei, Xiaoyi Dong, Pan Zhang, Zijian Liang, Yuanjun Xiong,
 647 Yu Qiao, Dahua Lin, et al. Mmdu: A multi-turn multi-image dialog understanding benchmark
 648 and instruction-tuning dataset for lvlms. *arXiv preprint arXiv:2406.11833*, 2024f.

649

650 Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
 651 Zhuoshu Li, Hao Yang, et al. Deepseek-vl: towards real-world vision-language understanding.
 652 *arXiv preprint arXiv:2403.05525*, 2024a.

648 Jiasen Lu, Christopher Clark, Sangho Lee, Zichen Zhang, Savya Khosla, Ryan Marten, Derek
 649 Hoiem, and Aniruddha Kembhavi. Unified-io 2: Scaling autoregressive multimodal models with
 650 vision language audio and action. In *Proceedings of the IEEE/CVF Conference on Computer*
 651 *Vision and Pattern Recognition*, pp. 26439–26455, 2024b.

652 Feipeng Ma, Hongwei Xue, Guangting Wang, Yizhou Zhou, Fengyun Rao, Shilin Yan, Yueyi Zhang,
 653 Siying Wu, Mike Zheng Shou, and Xiaoyan Sun. Visual perception by large language model's
 654 weights. *arXiv preprint arXiv:2405.20339*, 2024.

655 Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic bench-
 656 mark for very long-form video language understanding. *Advances in Neural Information Process-*
 657 *ing Systems*, 36:46212–46244, 2023.

658 Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
 659 images. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*,
 660 pp. 2200–2209, 2021.

661 Ming Nie, Renyuan Peng, Chunwei Wang, Xinyue Cai, Jianhua Han, Hang Xu, and Li Zhang. Rea-
 662 son2drive: Towards interpretable and chain-based reasoning for autonomous driving. In *European*
 663 *Conference on Computer Vision*, pp. 292–308. Springer, 2025.

664 Munan Ning, Bin Zhu, Yujia Xie, Bin Lin, Jiaxi Cui, Lu Yuan, Dongdong Chen, and Li Yuan.
 665 Video-bench: A comprehensive benchmark and toolkit for evaluating video-based large language
 666 models. *arXiv preprint arXiv:2311.16103*, 2023.

667 OpenAI. Gpt-4v(ision) system card, 2023.

668 R OpenAI. Gpt-4 technical report. arxiv 2303.08774. *View in Article*, 2(5), 2023.

669 Artemis Panagopoulou, Le Xue, Ning Yu, Junnan Li, Dongxu Li, Shafiq Joty, Ran Xu, Silvio
 670 Savarese, Caiming Xiong, and Juan Carlos Niebles. X-instructblip: A framework for aligning
 671 x-modal instruction-aware representations to llms and emergent cross-modal reasoning. *arXiv*
 672 *preprint arXiv:2311.18799*, 2023.

673 Renjie Pi, Jiahui Gao, Shizhe Diao, Rui Pan, Hanze Dong, Jipeng Zhang, Lewei Yao, Jianhua Han,
 674 Hang Xu, Lingpeng Kong, et al. Detgpt: Detect what you need via reasoning. *arXiv preprint*
 675 *arXiv:2305.14167*, 2023.

676 Chonghao Sima, Katrin Renz, Kashyap Chitta, Li Chen, Hanxue Zhang, Chengan Xie, Jens
 677 Beßwenger, Ping Luo, Andreas Geiger, and Hongyang Li. Drivelm: Driving with graph vi-
 678 sual question answering. In *European Conference on Computer Vision*, pp. 256–274. Springer,
 679 2025.

680 Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Haozhe
 681 Chi, Xun Guo, Tian Ye, Yanting Zhang, et al. Moviechat: From dense token to sparse memory
 682 for long video understanding. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 683 *and Pattern Recognition*, pp. 18221–18232, 2024.

684 Guangzhi Sun, Wenyi Yu, Changli Tang, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma,
 685 Yuxuan Wang, and Chao Zhang. video-salmonn: Speech-enhanced audio-visual large language
 686 models. *arXiv preprint arXiv:2406.15704*, 2024.

687 Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma,
 688 and Chao Zhang. Salmonn: Towards generic hearing abilities for large language models. *arXiv*
 689 *preprint arXiv:2310.13289*, 2023.

690 Changli Tang, Yixuan Li, Yudong Yang, Jimin Zhuang, Guangzhi Sun, Wei Li, Zejun Ma, and
 691 Chao Zhang. video-salmonn 2: Captioning-enhanced audio-visual large language models. *arXiv*
 692 *preprint arXiv:2506.15220*, 2025.

693 Jingqun Tang, Qi Liu, Yongjie Ye, Jinghui Lu, Shu Wei, Chunhui Lin, Wanqing Li, Mohamad Fitri
 694 Faiz Bin Mahmood, Hao Feng, Zhen Zhao, et al. Mtvqa: Benchmarking multilingual text-centric
 695 visual question answering. *arXiv preprint arXiv:2405.11985*, 2024.

702 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 703 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 704 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

705 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
 706 Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
 707 standing across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024a.

708 Reka Team, Aitor Ormazabal, Che Zheng, Cyprien de Masson d'Autume, Dani Yogatama, Deyu
 709 Fu, Donovan Ong, Eric Chen, Eugenie Lamprecht, Hai Pham, et al. Reka core, flash, and edge:
 710 A series of powerful multimodal language models. *arXiv preprint arXiv:2404.12387*, 2024b.

711 Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha
 712 Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, et al. Cambrian-1: A fully open,
 713 vision-centric exploration of multimodal llms. *arXiv preprint arXiv:2406.16860*, 2024.

714 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 715 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 716 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
 717 perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.

718 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 719 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the
 720 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024b.

721 Weihan Wang, Zehai He, Wenyi Hong, Yean Cheng, Xiaohan Zhang, Ji Qi, Xiaotao Gu, Shiyu
 722 Huang, Bin Xu, Yuxiao Dong, et al. Lvbench: An extreme long video understanding benchmark.
 723 *arXiv preprint arXiv:2406.08035*, 2024c.

724 Wenhui Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu, Gang Zeng, Ping Luo, Tong
 725 Lu, Jie Zhou, Yu Qiao, et al. Visionllm: Large language model is also an open-ended decoder for
 726 vision-centric tasks. *Advances in Neural Information Processing Systems*, 36, 2024d.

727 Xidong Wang, Dingjie Song, Shunian Chen, Chen Zhang, and Benyou Wang. Longllava: Scal-
 728 ing multi-modal llms to 1000 images efficiently via a hybrid architecture. *arXiv preprint*
 729 *arXiv:2409.02889*, 2024e.

730 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 731 Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
 732 *arXiv preprint arXiv:2409.18869*, 2024f.

733 Zhuofan Xia, Dongchen Han, Yizeng Han, Xuran Pan, Shiji Song, and Gao Huang. Gsva: Gen-
 734 eralized segmentation via multimodal large language models. In *Proceedings of the IEEE/CVF*
 735 *Conference on Computer Vision and Pattern Recognition*, pp. 3858–3869, 2024.

736 Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang Zhang, Xiangnan He, and Yueting Zhuang.
 737 Video question answering via gradually refined attention over appearance and motion. In *Pro-
 738 ceedings of the 25th ACM international conference on Multimedia*, pp. 1645–1653, 2017.

739 Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
 740 Fan, Kai Dang, et al. Qwen2. 5-omni technical report. *arXiv preprint arXiv:2503.20215*, 2025a.

741 Jin Xu, Zhifang Guo, Hangrui Hu, Yunfei Chu, Xiong Wang, Jinzheng He, Yuxuan Wang, Xian
 742 Shi, Ting He, Xinfa Zhu, et al. Qwen3-omni technical report. *arXiv preprint arXiv:2509.17765*,
 743 2025b.

744 Mingze Xu, Mingfei Gao, Zhe Gan, Hong-You Chen, Zhengfeng Lai, Haiming Gang, Kai Kang,
 745 and Afshin Dehghan. Slowfast-llava: A strong training-free baseline for video large language
 746 models. *arXiv preprint arXiv:2407.15841*, 2024.

747 Pinci Yang, Xin Wang, Xuguang Duan, Hong Chen, Runze Hou, Cong Jin, and Wenwu Zhu. Avqa:
 748 A dataset for audio-visual question answering on videos. In *Proceedings of the 30th ACM inter-
 749 national conference on multimedia*, pp. 3480–3491, 2022.

756 Jiabo Ye, Haiyang Xu, Haowei Liu, Anwen Hu, Ming Yan, Qi Qian, Ji Zhang, Fei Huang, and
 757 Jingren Zhou. mplug-owl3: Towards long image-sequence understanding in multi-modal large
 758 language models. *arXiv preprint arXiv:2408.04840*, 2024.

760 Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yueling Zhuang, and Dacheng Tao. Activitynet-
 761 qa: A dataset for understanding complex web videos via question answering. In *Proceedings of
 762 the AAAI Conference on Artificial Intelligence*, volume 33, pp. 9127–9134, 2019.

763 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 764 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 765 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF
 766 Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

768 Pan Zhang, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Rui Qian, Lin Chen, Qipeng Guo, Haodong
 769 Duan, Bin Wang, Linke Ouyang, et al. Internlm-xcomposer-2.5: A versatile large vision language
 770 model supporting long-contextual input and output. *arXiv preprint arXiv:2407.03320*, 2024a.

771 Renrui Zhang, Jiaming Han, Chris Liu, Peng Gao, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu,
 772 Hongsheng Li, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-
 773 init attention. *arXiv preprint arXiv:2303.16199*, 2023.

775 Tianyu Zhang, Suyuchen Wang, Lu Li, Ge Zhang, Perouz Taslakian, Sai Rajeswar, Jie Fu, Bang Liu,
 776 and Yoshua Bengio. Vcr: Visual caption restoration. *arXiv preprint arXiv:2406.06462*, 2024b.

778 Yi-Fan Zhang, Huanyu Zhang, Haochen Tian, Chaoyou Fu, Shuangqing Zhang, Junfei Wu, Feng
 779 Li, Kun Wang, Qingsong Wen, Zhang Zhang, et al. Mme-realworld: Could your multimodal
 780 llm challenge high-resolution real-world scenarios that are difficult for humans? *arXiv preprint
 781 arXiv:2408.13257*, 2024c.

782 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
 783 instruction tuning with synthetic data. *arXiv preprint arXiv:2410.02713*, 2024d.

785 Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang,
 786 Tiejun Huang, and Zheng Liu. Mlvu: A comprehensive benchmark for multi-task long video
 787 understanding. *arXiv preprint arXiv:2406.04264*, 2024.

788 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
 789 hancing vision-language understanding with advanced large language models. *arXiv preprint
 790 arXiv:2304.10592*, 2023.

792 A APPENDIX

795 A.1 THE USE OF LARGE LANGUAGE MODELS (LLMs)

796 Authors use large language models (LLMs) solely as a writing assistant for text refinement and
 797 language polishing.

800 A.2 QUALITY CONTROL

801 **Experienced annotators.** Our annotation team consists of 80 professional annotators with extensive
 802 QA annotation experience. These annotators are proficient in English, and have participated in
 803 several QA data annotation projects.

804 **Sufficient annotation training.** We conducted a one-week training program with 200 videos (ex-
 805 cluded from final benchmark) until annotators achieved high proficiency (only 10% requiring mod-
 806 ifications).

808 **Annotation instruction.** Each annotator received a comprehensive instruction with task expla-
 809 nations, question formulation guidelines, QA creation instructions, annotated examples, and cross-
 810 modal inference requirements.

810 Our review process identified and revised similar QA pairs. Through **professional annotators**,
 811 **thorough training, detailed guidelines, and rigorous quality control**, we ensure high-quality an-
 812 notations.

813

814

815 **A.3 IMPLEMENT DETAILS**

816

817 For open-source MLLMs, we strictly follow their official implementations and recommended pre-
 818 processing pipelines to ensure fair comparison. For GPT 4o and Claude 3.5 Sonnet, we sample 16
 819 frames uniformly from each video, while for Gemini 1.5 Pro, we utilize the official API for raw
 820 video file uploads. We conduct all the experiments on a NVIDIA A100 GPU.

821

822

823 **A.4 EVALUATION PROMPT**

824

825 Following previous works (Fu et al., 2024b; Li et al., 2024c), we adopt the format of “whole video
 826 frames + whole subtitles/audios (optional) + question with prompt” as prompt. We show the evalua-
 827 tion prompt across three input configurations: video-only input, video with subtitles, and video with
 828 audio content as following.

829

830

831 **Evaluation Prompt**

832

833 Carefully watch this video and pay attention to every detail.
 Based on your observations, select the best option that accurately
 addresses the question.

834

835 These are the frames of a video. Select the best answer to the
 836 following multiple-choice question based on the video. Respond
 837 with only the letter (A, B, C, or D) of the correct option.

838

Question: {}
 {Option1}
 {Option2}
 {Option3}
 {Option4}

Answer:

839

840

841 **Evaluation Prompt with Subtitles**

842

843 Carefully watch this video and pay attention to every detail.
 Based on your observations, select the best option that accurately
 844 addresses the question.

845

846 These are the frames of a video. This video’s subtitles are listed
 847 below:

848

{subtitles}

849

850 Select the best answer to the following multiple-choice question
 851 based on the video. Respond with only the letter (A, B, C, or D)
 852 of the correct option.

853

Question: {}
 {Option1}
 {Option2}
 {Option3}
 {Option4}

Answer:

854

864
865

Evaluation Prompt with Audios

866
867
868

Carefully watch this video and pay attention to every detail.
Based on your observations, select the best option that accurately addresses the question.

869
870
871
872

These are the frames of a video and the corresponding audio.
Select the best answer to the following multiple-choice question based on the video. Respond with only the letter (A, B, C, or D) of the correct option.

873
874
875
876
877
878

Question: {}

{Option1}
{Option2}
{Option3}
{Option4}

Answer:

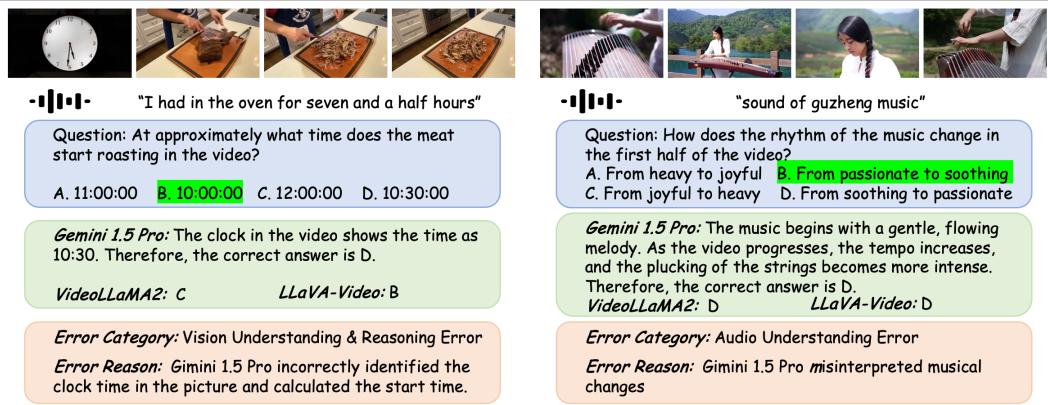
879
880
881882
883
884

Figure 7: **Failure Case.** We present two error examples.

895
896
897

A.5 FAILURE CASE

899
900
901
902
903
904
905
906
907
908

Figure 7 showcases two failure cases of Gemini 1.5 Pro, VideoLLaMA2, and LLaVA-Video. The left case involves a vision understanding and reasoning error, where Gemini 1.5 Pro incorrectly identified the clock time as 10:30 instead of the actual 10:00 displayed, leading to the incorrect answer. This reflects deficiencies in basic visual perception and properly correlating visual information with the question. The right case demonstrates an audio understanding error, where models misjudged the rhythm pattern change in guzheng music, interpreting it as changing from soothing to intense (option D) rather than the correct passionate to soothing (option B). This case indicates that tasks involving interpretation of musical emotion and rhythm patterns remain challenging for existing MLLMs. These cases highlight the current limitations of MLLMs in processing subtle visual details and interpreting subjective audio qualities.

909
910
911

A.6 LIMITATION

912
913
914
915
916
917

While our WorldSense represents a significant advancement in evaluating multimodal understanding capabilities of MLLMs, the multiple-choice format inevitably constrains the assessment of models' generative capabilities. Real-world understanding often requires open-ended responses, explanations, and adaptability beyond selecting from predefined options. Our WorldSense may not adequately evaluate how models perform on tasks requiring nuanced reasoning or creative problem-solving. We will add open-ended questions and expand the evaluation paradigm to better assess real-world multimodal understanding.

918 B BROADER IMPACTS & ETHICS STATEMENT 919

920 Our work on WorldSense has several potential positive impacts on society and AI development,
921 while also presenting certain risks that warrant careful consideration. WorldSense contributes to
922 advancing MLLMs' ability to understand and interact with the real world through multiple modalities.
923 This progress could benefit various applications, including assistive technologies, educational
924 tools, human-AI interaction systems, safety systems, and so on. We also acknowledge potential
925 risks and challenges. The development of more capable AI systems might raise privacy concerns.
926 Advanced multimodal understanding capabilities could potentially be misused for surveillance or
927 monitoring purposes. We believe that open discussion of these impacts is crucial for the responsible
928 development of multi-modal large language models.

929 Our research on WorldSense adheres to strict ethical principles and guidelines. We acknowledge
930 several important ethical considerations: (1) **Data Collection and Privacy.** All video content in
931 WorldSense has been collected from publicly available sources with appropriate licensing agree-
932 ments. We have conducted thorough reviews and implemented comprehensive data processing
933 procedures to ensure privacy protection, including the removal of any personally identifiable infor-
934 mation. (2) **Potential Biases.** While acknowledging that inherent biases may exist in any dataset,
935 we have undertaken systematic efforts to ensure diverse representation across our video content and
936 question-answer pairs, encompassing various domains, cultures, and contexts. Nevertheless, we rec-
937 ognize that completely eliminating bias remains a significant challenge, and users should carefully
938 consider these potential limitations when utilizing our dataset. (3) **Intended Use.** WorldSense is
939 specifically designed to advance research in omnimodal real-world understanding. While we ac-
940 tively encourage the use of this benchmark for academic and research purposes, we strongly caution
941 against any applications that could potentially result in harmful or discriminatory outcomes. Users
942 are expected to adhere to ethical guidelines and responsible practices.

943 B.1 LICENSE

944 The WorldSense dataset is released under the CC BY-NC-SA 4.0 License. Authors bear all respon-
945 sibility in case of violation of rights and confirmation of the data license.

946 B.2 DATASHEETS

947 B.3 MOTIVATION

- 948 • **For what purpose was the dataset created?**

949 To evaluate MLLMs' capabilities in real-world omnimodal understanding.

- 950 • **Who created the dataset (e.g., which team, research group) and on behalf of which**
951 **entity (e.g., company, institution, organization)?**

952 The authors of this paper.

- 953 • **Who funded the creation of the dataset?**

954 Xiaohongshu Inc.

- 955 • **Any other comments?**

956 No

957 B.4 COMPOSITION

- 958 • **What do the instances that comprise the dataset represent (e.g., documents, photos,**
959 **people, countries)?**

960 Videos along with captions and question/answer pairs.

- 961 • **How many instances are there in total (of each type, if appropriate)?**

962 WorldSense contains 3,172 question-answer pairs and contains 1,662 videos in total.

- 963 • **Does the dataset contain all possible instances or is it a sample (not necessarily ran-**
964 **dom) of instances from a larger set?**

965 Videos of WorldSense are sampled from FineVideo and Music AVQA. All QA pairs are
966 re-annotated manually.

972 • **What data does each instance consist of?**
 973 Each instance contains one video with its corresponding audio, a question about the video
 974 content and the corresponding answer, the category of the video, the fine-grained video
 975 understanding capability examined by the question, and the class of audio content. Each
 976 instance also contain the auto-generated subtitles sourced from YouTube.
 977 • **Is there a label or target associated with each instance?**
 978 Yes. We provide the ground-truth answer for each question.
 979 • **Is any information missing from individual instances?**
 980 N/A.
 981 • **Are relationships between individual instances made explicit (e.g., users' movie rat-
 982 ings, social network links)?**
 983 N/A.
 984 • **Are there recommended data splits (e.g., training, development/validation, testing)?**
 985 No, WorldSense is designed for evaluation only.
 986 • **Are there any errors, sources of noise, or redundancies in the dataset?**
 987 No.
 988 • **Is the dataset self-contained, or does it link to or otherwise rely on external resources
 989 (e.g., websites, tweets, other datasets)?**
 990 WorldSense is self-contained.
 991 • **Does the dataset contain data that might be considered confidential (e.g., data that is
 992 protected by legal privilege or by doctor – patient confidentiality, data that includes
 993 the content of individuals' non-public communications)?**
 994 N/A.
 995 • **Does the dataset contain data that, if viewed directly, might be offensive, insulting,
 996 threatening, or might otherwise cause anxiety?**
 997 N/A.
 998
 1000

1001 B.5 COLLECTION PROCESS
 1002

1003 • **How was the data associated with each instance acquired?**
 1004 See main paper for details.
 1005 • **What mechanisms or procedures were used to collect the data (e.g., hardware appa-
 1006 ratuses or sensors, manual human curation, software programs, software APIs)?**
 1007 Humans are required to propose a question and corresponding answer based on the video.
 1008 MLLMs, such as Qwen2-VL, Video-LLaMA2 and OneLLM are utilized to perform quality
 1009 control.
 1010 • **If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
 1011 deterministic, probabilistic with specific sampling probabilities)?**
 1012 Yes, we sample the videos from FineVideo and Music-AVQA. See main paper for details.
 1013 • **Who was involved in the data collection process (e.g., students, crowdworkers, con-
 1014 tractors) and how were they compensated (e.g., how much were crowdworkers paid)?**
 1015 The authors and contractors are involved in the data collection process and are paid a fair
 1016 wage.
 1017 • **Over what timeframe was the data collected?**
 1018 The dataset is collected in 2024.
 1019 • **Were any ethical review processes conducted (e.g., by an institutional review board)?**
 1020 All videos in our benchmark are human-selected based on appropriate value propositions
 1021 and undergo a second manual quality check to ensure there are no ethical violations.
 1022
 1023 • **Did you collect the data from the individuals in question directly, or obtain it via third
 1024 parties or other sources (e.g., websites)?**
 1025 We obtained video data from FineVideo and Music-AVQA.

- **Were the individuals in question notified about the data collection?**
1027
1028 We didn't collect the data from the individuals. The data was collected from public web
1029 sources instead.
1030
- **Did the individuals in question consent to the collection and use of their data?**
1031 N/A.
1032
- **If consent was obtained, were the consenting individuals provided with a mechanism**
1033 **to revoke their consent in the future or for certain uses?**
1034 N/A.
1035
- **Has an analysis of the potential impact of the dataset and its use on data subjects (e.g.,**
1036 **a data protection impact analysis) been conducted?**
1037 N/A.
1038
- **Any other comments?**
1039 No.
1040

1041 B.6 PREPROCESSING/CLEANING/LABELING

- **Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing of missing values)?**
1043
1044 We firstly select videos based on pre-designed categories, and then clip the video based on
1045 visual-audio correlation and dynamic scores.
1046
- **Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support unanticipated future uses)?**
1047 N/A.
1048
- **Is the software that was used to preprocess/clean/label the data available?**
1049 We use the open-source models.
1050
- **Any other comments?**
1051 No.
1052

1053 B.7 USES

- **Has the dataset been used for any tasks already?**
1058 Yes. We have used the dataset to evaluate video question answering in real-world.
1059
- **Is there a repository that links to any or all papers or systems that use the dataset?**
1060 No.
1061
- **What (other) tasks could the dataset be used for?**
1062 It also can be used to evaluate the video understanding capability of VLMs.
1063
- **Is there anything about the composition of the dataset or the way it was collected and**
1064 **preprocessed/cleaned/labeled that might impact future uses?**
1065 No.
1066
- **Are there tasks for which the dataset should not be used?**
1067 N/A.
1068
- **Any other comments?**
1069 No.
1070

1071 B.8 DISTRIBUTION

- **Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on behalf of which the dataset was created?**
1075 Yes, the dataset will be made publicly available.
1076
- **How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?**
1077 We host it on the webpage, GitHub, and Huggingface.
1078

1080 • **When will the dataset be distributed?**
 1081 It's available and open to the public now.
 1082
 1083 • **Will the dataset be distributed under a copyright or other intellectual property (IP)**
 1084 **license, and/or under applicable terms of use (ToU)?**
 1085 We release our benchmark under CC BY-NC 4.0 license.
 1086
 1087 • **Have any third parties imposed IP-based or other restrictions on the data associated**
 1088 **with the instances?**
 1089 No.
 1090
 1091 • **Do any export controls or other regulatory restrictions apply to the dataset or to indi-**
 1092 **vidual instances?**
 1093 No.
 1094
 1095 • **Any other comments?**
 1096 No.

B.9 MAINTENANCE

1097 • **Who will be supporting/hosting/maintaining the dataset?**
 1098 The authors will be supporting/hosting/maintaining the dataset.
 1099
 1100 • **How can the owner/curator/manager of the dataset be contacted (e.g., email address)?**
 1101 No.
 1102
 1103 • **Is there an erratum?**
 1104 Currently, we do not have an erratum. We will update if we find errors.
 1105
 1106 • **Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete**
 1107 **instances)?**
 1108 Yes. We will make announcements on GitHub if there is any update.
 1109
 1110 • **If the dataset relates to people, are there applicable limits on the retention of the data**
 1111 **associated with the instances (e.g., were the individuals in question told that their data**
 1112 **would be retained for a fixed period of time and then deleted)?**
 1113 N/A.
 1114
 1115 • **Will older versions of the dataset continue to be supported/hosted/maintained?**
 1116 Yes.
 1117
 1118 • **If others want to extend/augment/build on/contribute to the dataset, is there a mech-**
 1119 **anism for them to do so?**
 1120 Yes. Contributors can post issues or submit pull requests on GitHub. We will review and
 1121 verify contributions, and update the dataset if the contribution is useful.
 1122
 1123 • **Any other comments?**
 1124 No.

1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133