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Figure 1: Given one reference image and a text prompt, our method generates an image containing
the same object seamlessly immersed with novel concepts described by the text in a single forward
pass, e.g., puffed up fur for angry dog.

ABSTRACT

This paper presents a novel approach for creating customized images of objects
as per user specifications. Unlike previous methods that often involve time-
consuming optimizations, typically following a per-object optimization approach,
our method is built upon a comprehensive framework designed to expedite the
process. Our framework employs an encoder to capture the essential high-level
characteristics of objects, generating an object-specific embedding through a sin-
gle feed-forward pass. This acquired object embedding is subsequently utilized by
a text-to-image synthesis model for image generation. To seamlessly integrate the
object-aware embedding space into a well-established text-to-image model within
the same generation context, we explore various network architectures and train-
ing strategies. Furthermore, we introduce a straightforward yet highly effective
regularized joint training approach that incorporates an object identity preserva-
tion loss. In addition to this, we propose a caption generation scheme that plays a
crucial role in ensuring the faithful representation of object-specific embeddings
throughout the image generation process. This approach enables users to maintain
control over the process and provides them with editing capabilities.

1 INTRODUCTION

Text-to-image synthesis Saharia et al. (2022); Ramesh et al. (2021); Yu et al. (2022); Rombach et al.
(2022); Sauer et al. (2023); Chen et al. (2022a) has gained increasing attention and experienced
rapid development with recent advances of GANs Goodfellow et al. (2020); Karras et al. (2019);
Brock et al. (2018); Karras et al. (2018; 2020; 2021) and diffusion models Ho et al. (2020); Song
et al. (2020). With sophisticated designs and enormous amount of training data Schuhmann et al.
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(2022); Radford et al. (2021), images with unprecedented quality and diversity can be generated
through conditioning on free-form texts provided by users. Apart from generic objects, an intriguing
question would be whether it is possible to synthesize images capturing an object specified by users.
Generating a particular object requires the understanding of its high-level concept, which is intricate,
if not impossible, when the desired object is not contained in the training set. To remedy the domain
gap, existing methods Gal et al. (2022); Ruiz et al. (2023); Brooks et al. (2023); Kumari et al. (2023);
Mokady et al. (2022) generally adopt a fine-tuning paradigm, where a text prompt representing the
object and a pre-trained synthesis model are jointly optimized using multiple images of the object
provided by users. The optimized text prompt is then combined with natural language descriptions
to generate outputs containing the objects with various content and styles.

Training a model for each object is infeasible to scale up for practical uses. In particular, as object-
specific fine-tuning is required, the aforementioned paradigm is unable to produce fast adaptation
to arbitrary objects. The applicability of such methods is further limited by the intractable model
storage cost, which increases with the number of objects considered. Furthermore, these methods
usually require multiple images of the same object, which is not always available in reality.

The main focus of this paper is learning a single general model that is able to compose a new
scene around given objects yet without the need of per-object optimization, using as few as one
image. This is an unexplored direction in spite of its wide applicability. In this work, we introduce
a general framework as the first step towards this goal. Unlike existing works Ruiz et al. (2023);
Kumari et al. (2023); Mokady et al. (2022) that discretely align a target object with a unique prompt
through iterative optimization, we aim to continuously project object embedding and text-to-image
generation embedding into an unified semantic space.

Despite its apparent simplicity, two non-trivial challenges emerge: 1) the adaptation of text-to-image
models to object embeddings, and 2) the development of training data that enhances personalization
while preserving the editing capabilities of pre-trained models.

To address these challenges, we introduce additional attention modules into a text-to-image network
when provided with object embeddings as an extra input. This augmented network undergoes fine-
tuning to incorporate the object embedding as a conditioning factor. However, direct fine-tuning
with the object embedding leads to a decline in editing capabilities. To circumvent this issue, we
propose a novel approach termed the regularized joint training scheme coupled with cross-reference
regularization. This method enables us to maintain editing flexibility while effectively integrating
object-conditioning into the model. Furthermore, we present a method for enhancing the training
dataset by generating captions. This approach enhances data precision, ultimately yielding improve-
ments in output quality, diversity of appearances, and object accuracy.

Given the increasing importance of personalized text-to-image synthesis in content creation, the
need for an efficient algorithm cannot be overstated. In this study, we initiate efforts in this direction,
showcasing a method to streamline the optimization process without compromising performance.
Our resulting model is both straightforward and capable of generating personalized images in a
single feed-forward pass, resulting in reduced computational and storage expenses.

2 RELATED WORK

Text-to-Image Synthesis. Approaches for text-to-image synthesis Saharia et al. (2022); Ramesh
et al. (2021); Yu et al. (2022); Rombach et al. (2022); Sauer et al. (2023); Kawar et al. (2023);
Chang et al. (2023); Ramesh et al. (2021; 2022); Yu et al. (2022); Pan et al. (2023); Sheynin et al.
(2022); Nichol et al. (2022;?); Wu et al. (2022); Liao et al. (2022) can be divided into three main
categories. The vector-quantized approach Yu et al. (2022); Chang et al. (2023); Ding et al. (2022)
first learns a discrete codebook through training an autoencoder. After training, earlier works Yu
et al. (2022); Ding et al. (2022) adopt an autoregressive transformer to predict the tokens sequen-
tially. The predicted tokens are then passed to the decoder to generate the output image. To reduce
computational cost for high-resolution images, bidirectional transformers Chang et al. (2023) are
introduced to predict the tokens all at once and iteratively refine them. In this case, the computa-
tional time is reduced by eliminating the sequential operations. Diffusion models Rombach et al.
(2022); Saharia et al. (2022); Sheynin et al. (2022); Nichol et al. (2022) synthesize images through
iterative denoising. Starting from a standard Gaussian noise, a UNet is usually adopted to denoise
the intermediate outputs, conditioning on the text prompt, to produce a less noisy outputs. The fi-
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nal output is obtained through repeating the denoising process. Recently, StyleGAN-T Sauer et al.
(2023) demonstrates the capability of the GAN framework Tao et al. (2022); Huang et al. (2022);
Liao et al. (2022) in text-to-image synthesis by modifying the StyleGAN Karras et al. (2018; 2020;
2021) architecture, allowing text conditioning. The aforementioned approaches achieve compelling
performance with the presence of large-scale text-image datasets Schuhmann et al. (2022). In this
work, we follow the diffusion model paradigm. In particular, we adopt Imagen Saharia et al. (2022)
as our backbone network.

Personalized Synthesis. Most existing works for personalized synthesis adopt a pre-trained syn-
thesis network and perform test-time training for each object. For instance, MyStyle Nitzan et al.
(2022) adopts a pre-trained StyleGAN for personalized face generation. For each identity, it opti-
mizes the latent code as well as fine-tuning the pre-trained network. Once trained, it can be used
to synthesize images of the target identity. This paradigm is also seen in the task of text-to-image
synthesis Gal et al. (2022); Ruiz et al. (2023); Brooks et al. (2023); Kumari et al. (2023); Mokady
et al. (2022). Given a pre-trained text-to-image synthesis model and multiple images containing
the target object, a text prompt representing the objects are optimized and the network is optionally
fine-tuned to further adapt to the target object. After training, the optimized object text prompt can
be combined with natural language descriptions to generate diverse outputs. With test-time opti-
mization required, the aforementioned approach usually requires minutes to hours for each object.
In addition, the model storage cost increases with the number of objects to be handled. As a result,
their scalability and practicality are essentially limited. In this work, we focus on bypassing the
lengthy optimization, enhancing the efficiency of personalized text-to-image synthesis.

3 APPROACH
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Figure 2: Framework Overview. (Left) Given a reference image, the background is removed, and an
encoder is used extract embedding from the filtered image. The object embedding is then used along with
the text embedding for subsequent generation. (Right) Our triplet preparation scheme. For domain-specific
dataset, which generally does not caption, we apply a captioning model to obtain corresponding caption. Note
that the object embedding is set to a null embedding for general-domain images.

3.1 OVERVIEW

Framework. In Fig. 2, we illustrate our framework’s structure, which comprises two primary
elements. The initial component involves a text-to-image synthesis network, as described in the
works Saharia et al. (2022); Rombach et al. (2022). To facilitate text-driven synthesis, we employ
a pre-trained model. The second component consists of an image encoder, employed to encode di-
verse objects into object embeddings. These embeddings serve as the secondary conditioning factor
for object-specific generation within the synthesis network. To accommodate object embeddings not
inherent in the pre-trained model, we enhance the network by incorporating cross-attention modules.

Specifically, let x be an image containing the object of interest and c be text caption describing a
desired output image. The image object encoder I and text encoder T are used to compute the
object embedding I(x) and text embedding T (c), respectively. The embeddings are then passed to
the augmented text-to-image diffusion model, such as Stable Diffusion Rombach et al. (2022) and
Imagen Saharia et al. (2022), to generate the final output. It’s essential to note that our framework
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maintains a generic nature and isn’t limited to any specific architecture. For this study, we opt to
utilize Imagen Saharia et al. (2022) as the synthesis network.

In contrast to the majority of prior approaches, which involve iterative optimization for each indi-
vidual object, our novel framework achieves image generation for an object with a single forward
pass. This streamlined approach significantly diminishes the computational burden and storage re-
quirements typically associated with per-object optimization.

Encoder. The object encoder, denoted as I, plays a pivotal role in grasping the essence of an ob-
ject within our framework. In principle, one could employ networks of various architectures as
the encoder, but we have observed substantial variations in performance associated with different
network choices. Our working hypothesis is that, in order to capture abstract concepts effectively,
the encoder should undergo training with two key factors: 1) an extensive dataset and 2) an objec-
tive function that links concrete objects with abstract descriptions. Our hypothesis gains empirical
support through our investigations later in Sec. 5.

3.2 PRELIMINARY

Imagen. Conditioned on text embeddings c, Imagen is trained with a denoising objective

Ex,c,ε,t

[
||εθ(xt, t, c)− ε||22

]
, (1)

where xt is a noisy version of the groundtruth image, ε∼N (0, I) denotes standard Gaussian, and t
is the timestep.

Classifier-free guidance Ho & Salimans (2022) is a commonly used technique for improving dif-
fusion model sample quality. It efficiently train one model for both conditional and unconditional
objectives, achieved by randomly dropping the condition c. During sampling, the intermediate pre-
dictions are adjusted based on the conditional and unconditional outputs as:

ε̂θ(xt, c) = wεθ(xt, c) + (1− w)εθ(xt, c∅), (2)

where w is the guidance weight and c∅ is the embedding of an empty text string. Intuitively, the
guidance effect increases with w.

Rather than generating images directly at the final resolution of 1024×1024, Imagen employs
a cascaded approach. Initially, it produces a 64×64 image, followed by the utilization of two
text-conditioning super-resolution models to scale up the image to 256×256 and subsequently to
1024×1024.

3.3 TRIPLET PREPARATION

This section discusses the keys in preparing triplets for our network fine-tuning. Specifically, we
first discuss our caption generation scheme, followed by our object embedding generation.

Captioning with PaLI. One could improve personalization by training with objects of the same cat-
egory. For example, the identity preservation of a dog is improved when datasets containing animals
are included during training. However, such datasets usually contain no text captions, prohibiting
domain-specific fine-tuning.

In this work, we propose to apply a language-image model, PaLI Chen et al. (2022b), on the images
to generate descriptive captions. Let fc be a captioning model, we apply it to the image x to obtain
the coarse caption cc= fc(x).

In addition to the general description provided by PaLI, we further incorporate concrete attributes
(e.g., face attributes) if they are available. Let fa be the attribute classification network, our fine
caption cf = fa(x) is generated by applying fa to the image. The two captions are then concatenated
as the final caption c. Our approach generates captions with both abstract and concrete description,
circumventing the loss of text-conditioning property.

Background-Masked Object Embedding. Intuitively, the object embedding should depend only
on the object, and should be agnostic to the background. Therefore, to better disentangle the object
from the input image, we apply a binary mask to remove the background. Let fm be the mask
generation function, we have o = fo(x ⊗ m), where ⊗ denotes pointwise multiplication, and
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m= fm(x) denotes the binary mask. In such a way, the object embedding depends only on the
object, possessing higher object specificity.

3.4 REGULARIZED JOINT TRAINING

Pretraining a model on just a few images can sometimes cause overfitting and the risk of forgetting
previously acquired skills, as highlighted by He et al. (2019). Nevertheless, our framework ad-
dresses a vast array of objects within similar categories, allowing for joint training with traditional
text-to-image data. Additionally, personalization can be enhanced by simultaneously training on
large-scale text-image datasets and domain-specific datasets. However, blending these two datasets
directly can result in a loss of text-conditioning influence, with the object embedding taking prece-
dence in the generation process. Effectively conditioning the network on the additional object em-
bedding without sacrificing text-to-image synthesis capability remains a formidable challenge. To
tackle this issue, we propose a ”regularized joint training scheme” designed to 1) prevent the object
embedding from dominating and 2) improve the fidelity of object representation.

“A beautiful 
smiling lady”

captioning

Reconstruction loss

Object encoder

Diffusion 
model

Figure 3: Cross-reference regularization. Since object embedding is agnostic to appearances, we use
another image of the same identity to compute object embedding, encouraging disentanglement of identity
information.

Cross-reference regularization. Motivated by the fact that the object embedding is shared across
images of the same object, we propose the cross-reference regularization to encourage disentan-
glement of identity information from the object embedding (Fig. 3). Given an additional image x̄
capturing the same object, we randomly replace the object embedding ō by that computed from x̄:

z =

{
(x, ō, t) if p < ω,

(x,o, t) otherwise,
(3)

where p∼U(0, 1) and ω is a pre-determined threshold. Here z represents the training tripelet. Note
that the regularization is applied only for domain-specific images. Then, the synthesis network
learns to distill object-specific information from the object embedding, essentially removing image-
specific clues. We find that this significantly improve the object fidelity.

Object-Embedding Dropping. In practice, one could apply the object encoder to the images in
the general-domain dataset. However, we observe that the generation process is dominated by the
object embedding. As a result, the trained network generates outputs solely based on the object
embedding, neglecting the text conditions. To avoid this, we impose an implicit regularization to
reduce the reliance on the object embedding, especially for general-domain images. Let z be the
triplet during training, the object embedding is set to a null embedding for general domain images:

z =

{
(x,o, t) if x is domain-specific,
(x,φ, t) otherwise,

(4)

where φ denotes a fixed null embedding. In this case, the network learns to leverage object embed-
ding for domain-specific objects, while keeping the capability of text-conditioning through recon-
structing general-domain images solely with text embedding.

Whole-Network Tuning. In the test-time optimization paradigm, a recent work Kumari et al. (2023)
discovers that fine-tuning only the attention modules lead to a comparable results. However, it is
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observed that training only the extra attention module while fixing the pre-trained backbone results
in inferior performance in our framework. In particular, when training only the attention layer,
the network is inferior in preserving the identity of the object despite being able to synthesizes
corresponding context based on the text captions. Therefore, we unfreeze all the network weights
and train them jointly.

Textual Inversion InstructPix2Pix DreamBooth

A Photo of face in Vangogh Starry 
N

ight Style

Ours

A sketch of face

Reference

A dog on a beach
Tw

o dogs cloning each 
other

A dog in front of Fuji 
M

ountain

Figure 4: Qualitative Comparison. For human face styling, existing works sometimes either strug-
gle to generate styles faithful to the texts or fail to preserve identity. For animals, existing works
often overfit to the input image, generating outputs with limited diversity. Note that for Textual
Inversion and DreamBooth, five images are used as input for human faces and one image is used for
animals.

4 EXPERIMENTS

Settings. We adopt pre-trained Imagen Saharia et al. (2022) as the text-to-image network. The text
embeddings are computed by T5-XXL Raffel et al. (2020). We use CLIP Radford et al. (2021) image
encoder to generate the object embeddings, and insert additional attention modules to Imagen to
accommodate the object embeddings. The entire network except the object encoder is jointly trained
with the same objective as used in training Imagen. We evaluate our method on two categories. For
human faces, we incorporate the CelebA Liu et al. (2015) into our internal large-scale text-image
dataset and train jointly on the combined datasets. For animals, we adopt LSUN-dog Yu et al. (2015)
for fine-tuning. The models are fine-tuned for around two days with 64 TPU-v4 chips. More details
on the architecture and training settings are discussed in the supplementary material. We compare
our performance with three existing state of the arts, namely Textual Inversion Gal et al. (2022),
DreamBooth Ruiz et al. (2023), and InstructPix2Pix Brooks et al. (2023). We use their publicly
released code, for Dreambooth, we use the implementation in diffuser for comparison.
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Comparison. In Fig. 4, we present a comparison between our approach and existing methods.
Initially, we showcase the style-editing capacity of our method using human faces as an example.
In some cases, existing methods encounter challenges in generating styles that faithfully correspond
to the provided texts or in preserving critical identity details. For instance, when given the text ”A
sketch of a face,” all methods except ours struggle to produce a sketch-like image. Notably, Textual
Inversion and DreamBooth require five images as input, whereas our method accomplishes the task
with just one image.

Subsequently, we illustrate our capability to synthesize diverse contexts involving animals. When
given only one image as input, existing methods often exhibit a tendency to overly conform to the
input image in terms of pose and gesture, resulting in limited diversity in their generated outputs.
In contrast, our method robust to the number of input images and is able to generate images with
diverse poses and context. For example, only our method is able to generate two identical dogs with
different poses. Furthermore, although our method is not trained on cat-specific and horse-specific
datasets, it is generalizable to a wider class (i.e., animals), as shown in Fig. 1.

In addition to generalizability and quality, our method possesses greater efficiency. Specifically,
while the training and storage costs of the methods in comparison increases linearly with the num-
ber of objects, our method does not require any per-object training, and hence the costs remain
constant. The aforementioned strengths of our method essentially ease the use of personalized syn-
thesis, unleashing human creativity.

We further compare with baselines using quantitative metrics, including object similarity (OSim.),
caption similarity (TSim.) and Kernel Inception Distance (KID) Bińkowski et al. (2018). Object
similarity measures the distance between input subject and personalized output using the pretrained
CLIP image encoder. Caption similarity measures the distance between personalized output and
the prompt using the pretrained CLIP text encoder. KID is useful in evaluating how close our
personalized output distribution is to the style given by prompts. Table 1 consistently demonstrates
that the proposed approach performs better in preserving object identity and matching user prompts
with a single input.
Table 1: Quantitative comparison. (TI-n: Textual Inversion with n image. DB: DreamBooth.
Pix2Pix: InstructPix2Pix. SD: Stable Diffusion)

Methods TI-1 TI-5 DB-1 DB-5 Pix2Pix Ours(SD) Ours(Imagen)

OSim.↑ 0.23 0.31 0.33 0.34 0.37 0.41 0.46
TSim.↑ 0.18 0.20 0.28 0.31 0.36 0.33 0.35
KID↓ 20.34 17.31 24.57 16.89 15.08 13.57 13.23

5 ABLATION STUDIES

Choice of Encoder. We train a diffusion model on faces with object embedding as the sole condition
to demonstrate the importance of choosing an appropriate encoder. As depicted in Fig. 5, when
using VGG19 Simonyan & Zisserman (2015), which is trained for classification, as the encoder,
the object embedding is unable to capture high-level concept of a face, thus generating random
faces. In contrast, when CLIP is adopted, the network is able to generate faces with the same
identity. Moreover, through relating abstract concept and concrete objects during the training of
CLIP, the object embedding is agnostic to image-specific clues, leading to outputs with variations.
This demonstrates the importance of the encoder. More sophisticated designs of the encoder are left
as our future work.

Cross-reference regularization. Since CLIP is not dedicated for identity preservation, we observe
that directly using CLIP embedding leads to imperfect identity preservation and excessive reten-
tion of image clues. From Fig. 6 we see that without regularization, the synthesized images often
overfit to the fine details (e.g., hair styles) or insufficiently capture the identity. Our proposed reg-
ularization scheme alleviates the issues by swapping the object embeddings from the same object,
enforcing identity disentanglement. As a result, the generated images possess greater diversity while
preserving the identity.

Whole-Network Tuning. For methods involving test-time optimization, it is shown that fine-tuning
only the attention modules leads to improved training efficiency without compromising output qual-
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Reference CLIP VGG

Figure 5: The CLIP image encoder preserves identity while allowing appearance variations. In
contrast, VGG generates random faces.

w
/o loss

Prompt: “A photo of an oil painting face”

w
/ loss

Figure 6: Cross-reference regularization disentangles object concept from image-specific clues,
leading to outputs with better identity preservation and appearance diversity.

ity Kumari et al. (2023). However, we find in our framework that training only the added attention
modules results in inferior performance. Specifically, as shown in Fig. 7, while fine-tuning only
the attention layer retains the text-conditioning capability, identity cannot be preserved. In contrast,
both output quality and identity preservation are improved when all weights are jointly trained. Our
conjecture is that, unlike previous works that are confined to limited objects, our network is trained
to generalized to unseen objects, and whole-network tuning enables more effective exploitation of
the object embedding, improving generalization ability.

Prompt: “A sand sculpture of a face”

Fine-tune 
attention onlyReference

Fine-tune
entire network

Figure 7: Whole-network tuning improves object embedding exploitation.

Reference Class name Generated caption

“A sketch drawing of a dog”

“A photo of a dog on a spacecraft looking outside of the window 
at night”

Figure 8: Natural captions enables the model to produce accurate and faithful results.
Caption Generation. Our caption generation scheme provides diverse captions on domain-specific
datasets for our joint training scheme. When compared to the naı̈ve approach of simply setting
the class name (e.g., dog) as the caption, our autocaptioning scheme leads to significantly better
performance. For example, as shown in Fig. 8, when only trained with class name, while the network
is able to generate the same objects, it is inferior in generating content faithful to the text captions.
This is due to the domain gap between the captions in the general-domain dataset and the domain-
specific dataset. In contrast, our training scheme remedies the domain gap between the two datasets
by synthesizing descriptive captions. As a result, the trained network is able to preserve object
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identity as well as generating contexts according to the given text caption. For example, in the first
example, while the network trained with only class name is unable to generate outputs related to
“spacecraft” and “night”, our method generates faithful results with high fidelity to the text caption.
Distribution Mixing. As discussed in the previous section, it is possible to incorporate domain-
specific datasets into large-scale text-image datasets for improving personalization. As shown in
Fig. 9, on the one hand, when we fine-tune the network on the general-domain dataset only (second
row), the network is able to produce an output conforming to the text (i.e., a cartoon face), but fails
in resembling the identity. On the other hand, when trained only on domain-specific dataset, the
network ignores the texts and produces a natural face that resembles the reference identity. The
gradual transition shows that it is essential to balance the ratio of the two datasets.

Reference
r = 0

(only general) r = 0.3 r = 0.5 r = 0.8
r = 1

(only face)

Prompt: “A cartoon face”

Figure 9: Proper dataset mixing ratio helps identity preservation while alleviating forgetting issues.

6 LIMITATION AND SOCIETAL IMPACT

We observe that the outputs of our method often contain defects when the corresponding details are
not presented in the original image. For example, in Fig. 10, when the right eye of the dog is not
shown in the input image, the network either ignores (output 1) or hallucinates (output 2) the right
eye, and hence incoherence is observed in the outputs. In the future, we will extend the framework
so that multiple images are taken as inputs, improving the robustness. This work can inherit the
bias originated from training data, e.g, CelebA, which brings a consequent bias toward images of
attractive people who are mostly in age range of twenty to forty years old. It may also contain only
few images of certain group of race, which can potentially lead to misleading content creation and
stereotyping propagation. Single image personalization may increase the ability to forge convincing
images of non-public individuals. To prevent this, future efforts should be devoted to both the
generative side (e.g., cleaning training data) and discriminative side (e.g., forgery detection).

Reference Output 1

Prompt: “A photo of a dog in the beach”

Output 2

Figure 10: Limitation. Using only one image, the network could fail in generating the source’s fine
details. For example, the right eye of the dog disappears in output 1 and contains defects in output
2. (Zoom in for best view)

7 CONCLUSION

This paper raises a question of whether the dominant approach of per-object optimization for per-
sonalized image synthesis is essential, and proposes a solution for the question. We introduce a
general framework of using an encoder to capture object concept so that test-time optimization can
be bypassed. We then study the unique challenges in the framework. In particular, we propose a reg-
ularized joint training scheme to preserve object identity without compromising editing capability.
We further propose an autocaptioning scheme to provide diverse text captions for better personal-
ization. Our framework is able to synthesize images of the same object using texts provided by
users using as few as one image in a single feed-forward pass, outperforming existing works in both
quality and efficiency. We believe that the findings and insights in this work would inspire future
works in improving the efficacy and applicability of personalized image synthesis approaches.
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A SUBJECT EMBEDDING LAYER

We follow the model design, training and inference described in Imagen Saharia et al. (2022) unless
specified. One change to the base model architecture is that to incorporate object embeddings, we
add an additional cross-attention layer between the original self-attention layer and text-image cross
attention layer in the transformer block, as shown in Fig. 11.

Self-Attention

Cross-Attention

Cross-AttentionText

Image

Figure 11: Newly added cross-attention layer.

As discussed in Sec 3.1, to encourage model to generalize to object embeddings and maintain the
text-to-image generative prior, we design regularized joint training, including cross-reference regu-
larization, object-embedding dropping and whole network tuning.

B MORE RESULTS

In this section, we demonstrate the capability of our method in manipulating the poses and expres-
sion of human faces. We also show additional customization results.

B.1 POSE MANIPULATION

As shown in Fig. 12, our method is capable of generating images with various poses through speci-
fying the angles.

B.2 ATTRIBUTE MANIPULATION

As shown in Fig. 14 and Fig. 13, our method is also capable of altering the attributes of faces,
including expression and accessories.

B.3 CUSTOMIZATION

As shown in Fig. 15, our method is able to generate images with diverse context without altering the
object identity. In particular, by fixing the text embedding and changing the object embedding, we
are able to generate images with the same scene, with different objects.
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Figure 12: Pose Manipulation. Through specifying the angles in the text, our method is able to
alter the pose of the faces.

An angry face A happy face A sad face A surprising faceReference

Figure 13: Accessory Manipulation. Our method is able to manipulate facial expression while
maintaining identity.
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Figure 14: Expression Manipulation. Our method is able to manipulate accessories while main-
taining identity.
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Figure 15: More customization results on animals. Through combining the object embedding and
the text embedding, our method is able to synthesize images with diverse contexts without altering
the object identity.
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