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ABSTRACT

AI is transforming scientific research by revealing new ways to understand com-
plex physical systems, but its impact remains constrained by the lack of large,
high-quality domain-specific datasets. A rich, largely untapped resource lies in
non-Hermitian quantum physics, where the energy spectra of crystals form intri-
cate geometries on the complex plane—termed as Hamiltonian spectral graphs.
Despite their significance as fingerprints for electronic behavior, their systematic
study has been intractable due to the reliance on manual extraction. To unlock this
potential, we introduce Poly2Graph1: a high-performance, open-source pipeline
that automates the mapping of 1-D crystal Hamiltonians to spectral graphs. Us-
ing this tool, we present HSG-12M2: a dataset containing 11.6 million static
and 5.1 million dynamic Hamiltonian spectral graphs across 1401 characteristic-
polynomial classes, distilled from 177 TB of spectral potential data. Crucially,
HSG-12M is the first large-scale dataset of spatial multigraphs—graphs embed-
ded in a metric space where multiple geometrically distinct trajectories between
two nodes are retained as separate edges. This simultaneously addresses a critical
gap, as existing graph benchmarks overwhelmingly assume simple, non-spatial
edges, discarding vital geometric information. Benchmarks with popular GNNs
expose new challenges in learning spatial multi-edges at scale. Beyond its practi-
cal utility, we show that spectral graphs serve as universal topological fingerprints
of polynomials, vectors, and matrices, forging a new algebra-to-graph link. HSG-
12M lays the groundwork for data-driven scientific discovery in condensed matter
physics, new opportunities in geometry-aware graph learning and beyond.

1 INTRODUCTION

The integration of AI into scientific research is transforming how complex physical systems are
understood (Carleo et al., 2019). However, this transformation is often hindered by a shortage of
high-quality, domain-specific datasets, particularly in physical sciences. Recent breakthroughs in
protein folding (Jumper et al., 2021; Varadi et al., 2024), materials discovery (Merchant et al., 2023;
Li et al., 2025), and many-body physics (Yang et al., 2024; Torlai et al., 2018) underscore how well-
curated scientific datasets can unlock AI’s full potential, enabling discoveries that would otherwise
remain inaccessible.

A rich resource lies in the Hamiltonian spectral graph, a fascinating and diverse object emerging
from recent advances in non-Hermitian physics. Recent advances have shown that the energy spec-
trum of one-dimensional crystals under open boundary conditions3 forms arcs and loops on the
complex energy plane. These spectral loci can be naturally represented as spatial graphs embedded
in the two-dimensional C-plane. Moreover, these spectral graphs (Tai & Lee, 2023; Lin et al., 2023;
Xiong & Hu, 2023; Wang et al., 2024) serve as fingerprints with far more intricate structures than
conventional topological signatures for electronic behavior (e.g., Z/Z2 invariants, Chern number
(Hasan & Kane, 2010)). Figure 2&A4 show examples of these graphs, featuring a kaleidoscope

1https://anonymous.4open.science/r/iclr2026_generator-AE56
2https://anonymous.4open.science/r/iclr2026_dataset-2802
3To be precise, it is 1-D crystal (lattice) Hamiltonian, under open boundary conditions (OBC), in the ther-

modynamic limit (i.e. large-size limit, the length of the lattice → ∞).
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of nontrivial edge geometries and multiplicities that form diverse patterns beyond existing graph
datasets.

Despite their theoretical significance, spectral graph extraction has traditionally relied on manual
plotting and visual inspection—an approach limited to toy examples and small-scale investigations.
In the absence of any automated workflow or large curated dataset, its systematic studies have re-
mained out of reach.
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Figure 1: Number of graphs v.s. number of classes in HSG-12M
compared to other graph-classification datasets. HSG-12M is the
only large-scale multigraph (i.e. unlike simple graph that only al-
lows one edge between any node pair) dataset, with exceptional
class diversity even exceeds all other simple graph datasets. T-
HSG-5M holds temporal spatial multigraphs. Table A4 lists com-
prehensive comparison against 45 other datasets.

To overcome the reliance on
manual inspection, we developed
Poly2Graph: an open-source
pipeline that combines algebraic
geometry, non-Bloch band theory,
and morphological image processing
to fully automate spectral graph
extraction. By delivering unprece-
dented speed and memory efficiency,
Poly2Graph enabled us to in-
troduce HSG-12M (Hamiltonian
Spectral Graphs, 12 Million). This
dataset distills 177 TB of spectral
potential data into 12M spatial
multigraph representations (256
GB), spanning 1401 characteristic
polynomial classes. Each graph
is derived from the energy band
structure of a crystal Hamiltonian,
encoding the complex energy spec-
trum’s full geometry4. In condensed
matter physics, energy band structure
is a fundamental concept, key to
understanding insulators, conductors,
phase transitions, electron dynam-
ics, and system symmetries. We
additionally provide 5.1M temporal
spatial graphs capturing continuous deformations of spectral graphs.

Moreover, the Hamiltonian spectral graph is inherently a spatial multigraph—a type of graph re-
source fundamentally different from existing datasets. Graph representation learning (Hamilton
et al., 2017; Corso et al., 2024) has emerged as a powerful paradigm for modeling structured data,
yet a critical limitation persists: virtually all public benchmarks treat data as simple graphs, allowing
at most one edge between any node pair (Hu et al., 2020b; Ranveer & Hiray, 2015; Freitas et al.,
2021). Even when source data contains multi-edges, these are typically aggregated into a single
attributed edge, discarding crucial spatial information. Due to the absence of such datasets, the
development of methodologies for spatial multigraphs has been severely hindered.

In contrast, many real-world networks are spatial multigraphs, i.e., graphs embedded in a metric
space, where entities may connect through multiple distinct geometrically meaningful paths. Such
spatial graphs or geometric networks (Barthélemy, 2011; Guo et al., 2021) naturally arise in ur-
ban street networks (Kujala et al., 2018; Boeing, 2019), biological neural networks (Weiner et al.,
2010; Di Martino et al., 2014), protein structures (Anand & Huang, 2018; Guo et al., 2020), and
beyond (Bullmore & Sporns, 2009; Caldarelli, 2007). When the properties of interest include both
connectivity topology and connection geometry, collapsing intrinsically distinct multi-edges results
in critical information loss.

HSG-12M addresses this critical gap in graph representation learning, being the first large-scale
database of spatial multi-graphs, grounded in non-Hermitian quantum physics. Furthermore, the
temporal component establishes the first large-scale temporal (dynamic) spatial graph dataset for

4In mathematical terms, the energy spectrum refers to the set of eigenvalues of the Hamiltonian matrix.
Within this work, energy band structure can be considered the same as energy spectrum.
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graph-level tasks. Our benchmark with popular GNNs expose new challenges in learning spatial
multi-edges at scale.

In summary, this work introduces a large-scale spatial multigraph dataset and methodology at the
intersection of non-Hermitian quantum physics and graph representation learning. Our key contri-
butions include:

1. Open-source, High-performance, End-to-End Automated Pipeline. We release Poly2Graph
that can map arbitrary 1D Hamiltonians to spectral graphs, providing the first automated tool to
study spectral graphs with high speed and efficiency. Poly2Graph not only enables us to produce
HSG-12M, but also empowers researchers to generate custom spectral graph datasets, vastly
expanding the possibilities for future study.

2. Large Scale & Exceptional Class Diversity. 11.6 million static and 5.1 million dynamic spatial
multigraphs spanning 1401 classes, distilled from 177 TB of spectral potential data. HSG-12M
is the first large-scale multigraph dataset for graph-level tasks (Figure 1&A6) with class diversity
exceeding all simple graph datasets.

3. Novel Graph Type & New Challenges. Spatial multigraphs simultaneously capture connection
topology with edge multiplicity preserved and geometry of multiedges & nodes in the embedding
space. This first large-scale collection introduces new challenges for developing geometry-aware
graph learning algorithms.

4. New Domain, Physics-grounded, Universal Relevance. Spectral graphs are firmly grounded
in theories of non-Hermitian quantum physics, introducing an abundant database from and for an
entirely new domain. Physically, spectral graph encapsulates information about quantum state
dynamics and topology, Hamiltonian symmetry class, response strength, quantum sensing capa-
bility, and more. Thus our database paves the way for accelerating discovery of exotic phases,
enabling rational design of materials with desired quantum properties.

Additionally, we identify Hamiltonian spectral graph as a new class of topological object de-
serving attention in its own right—in section 5 we show that vectors, matrices, and polynomials,
be they real or complex, admit spectral graphs as their topological fingerprint, bridging graph and
ubiquitous algebra objects.

2 POLY2GRAPH: AUTOMATING SPECTRAL GRAPH EXTRACTION

Poly2Graph is high-performance and the first end-to-end automated pipeline that converts an arbi-
trary one-dimensional crystal Hamiltonian into its spectral graph representation. It operationalizes
the mathematical construction reviewed in appendix B by integrating non-Bloch band theory, alge-
braic geometry, and morphological image processing.

Full algorithmic details are deferred to appendix C. Here we highlight the design choices that make
Poly2Graph 105× faster and more memory-efficient than the best available code (empirical bench-
mark in appendix C.5), thereby enabling the construction of HSG-12M.

From Hamiltonians to Characteristic Polynomials. Poly2Graph initializes with either a Bloch
Hamiltonian matrix H(z) or its characteristic polynomial. For a s-band tight-binding crystal chain,
the Bloch Hamiltonian reads

H(z) =

q∑
j=−p

Tj z
j , z = eik, k ∈ [−π, π), Tj ∈ Cs×s, (1)

Its open-boundary spectrum solely depends on the roots of the Laurent characteristic polynomial:

P (z,E) := det
[
H(z)− E Is

]
=

q∑
n=−p

an(E) zn. (2)

We choose an energy domain Ω ⊂ C in the complex energy plane (the minimal square) that encloses
the entire spectral graph G. By default, Poly2Graph estimates Ω by diagonalising a small real-space
Hamiltonian with L = 40 unit cells, though users may optionally specify a custom domain and
resolution. The resultant domain Ω is discretized into a grid of complex energy values. In HSG-
12M, we used a default resolution of 256 (initial) × 4 (adaptive enhancement) = 1024 points along
each axis.
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Figure 2: Poly2Graph pipeline. (a) Starting from a 1-D crystal Hamiltonian H(z) in momentum space—or,
equivalently, its characteristic polynomial P (z, E) = det[H(z)−EI]. The crystal’s open-boundary spectrum
solely depends on P (z, E). (b) The spectral potential Φ(E) (Ronkin function) is computed from the roots of
P (z, E) = 0, following recent advances in non-Bloch band theory (Tai & Lee, 2023; Xiong & Hu, 2023;
Wang et al., 2024). (c) The density of states ρ(E) is obtained as the Laplacian of Φ(E). (d) The spectral
graph extracted from ρ(E) via a morphological computer-vision pipeline. Varying the coefficients of P (z, E)
produces diverse graph morphologies in the real domain (d1)-(d3) and imaginary domain (di)-(diii).

For each sample energy E ∈ Ω, we solve the roots {zi(E)} of P (z, E) = 0 (treating E as constant)
and then sort them by magnitude |z1(E)| ≤ |z2(E)| ≤ · · · ≤ |zp+q(E)|. This is the computational
bottleneck in naive approaches—solving roots of an enormous batch (by default 10242 ≈ 106) of
polynomials for every grid point is extremely expensive. To tame this bottleneck, we implement a
custom, optimized root-solver based on Frobenius companion matrices and parallel eigen-solvers
with auto-backend detection for optional GPU acceleration, cutting wall-time from hours to milli-
seconds.

Spectral Potential & Density-of-States (as 2D Images). With the roots {zi(E)} computed, we
leverage non-Bloch band theory (Tai & Lee, 2023; Xiong & Hu, 2023; Wang et al., 2024) and
reliably compute the spectral potential5 as:

Φ(E) = − log |aq(E)| −
p+q∑

i=p+1

log
∣∣zi(E)

∣∣ , (3)

5The spectral potential is also known as the Ronkin function, an algebro-geometric property of
P (z, E) (Wang et al., 2024)
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where aq(E) is the leading coefficient of the characteristic polynomial. The Laplacian of this po-
tential yields the Density of States (DOS):

ρ(E) = − 1

2π
∇2Φ(E). (4)

where ∇2 = ∂2
ReE + ∂2

ImE . Physically, ρ(E) quantifies the number of eigenstates per unit area
at energy E in the complex plane. ρ(E) > 0 region traces out spectral graph (Figure 2c).
Geometrically, since DOS is defined as the second derivative (curvature), the spectral graph in other
words corresponds to the “ridges” of the spectral potential landscape (Figure 2b).

In addition, we exploit inherent symmetries in special polynomials. For example, the complex
conjugate root theorem guarantees that if P (z, E) has purely real coefficients, its spectral graph is
symmetric about the real axis; similarly, purely imaginary coefficients produce symmetry about the
imaginary axis. By calculating only the relevant half-plane and mirroring the results, we reduce
computation time by up to 50% for qualifying polynomials.

Image-to-Graph Routine. To extract the spectral graph from the DOS image, we binarize the DOS
and apply skeletonization to obtain a one-pixel-wide graph skeleton.

However, we face a resolution-computation tradeoff: insufficient resolution results in lost topolog-
ical features (small loops, adjacent nodes, etc), while uniform high-resolution calculation across
the entire energy domain Ω is prohibitively expensive, especially since the spectral graph typically
occupies only a small fraction of this area.

We resolve this challenge with a two-stage adaptive resolution approach:

1. Coarse identification: We first compute the DOS on a moderately-resolved grid (256 × 256),
threshold to binarize the image, and perform morphological dilation with a 2× 2 disk. This gen-
erates a conservative binary mask that envelops the spectral graph while excluding approximately
95-99% of non-contributive region.

2. Refined calculation: Within only the masked region, we subdivide each pixel into an m × m
grid (default m = 4), recalculating the spectral potential and DOS at this higher resolution. This
targeted approach achieves an effective resolution of 1024× 1024 while computing just 1-5% of
the grid points.

The high-resolution DOS is then re-binarized and subjected to iterative morphological thinning op-
erations (Lee et al., 1994) until a one-pixel-wide skeleton remains, preserving topological features
ready to be distilled into a graph representation.

For the final graph extraction, we analyze this skeleton to identify three point types: (1) junction
nodes where three or more paths intersect, (2) leaf nodes where paths terminate, and (3) edge points
along continuous segments. The output is an NetworkX MultiGraph object. Crucially, each
edge stores its complete geometric information as an ordered sequence of (Re(E), Im(E)) coordi-
nates, preserving not just connectivity but the exact shape of each spectral curve.

Quality Assurance and Limitations. We validated Poly2Graph on hundreds of characteristic poly-
nomials, by visually checking that the spectral graph from Poly2Graph agrees with the energy spec-
trum from exact diagonalization. In rare complicated cases, numerical instabilities can still arise
close to the junction nodes whose surrounding edges have extremely low DOS (see appendix C.6).
Poly2Graph will attempt to mitigate such cases by merging nearby nodes and contracting edges
shorter than a predefined tolerance.

Open-Source Release and Broader Impact. Poly2Graph1 is released under the MIT licence. See a
tutorial in appendix G. Poly2Graph establishes a turn-key mechanism for translating linear operators
into machine-learning-ready graphs, bridging condensed matter physics and graph representation
learning. The same principle extends to any vector, matrix, and univariate/bivariate polynomial,
opening an new “algebra-as-graph” perspective, broadening the applicability of Poly2Graph to a
wide range of other areas (section 5, appendix F).

3 HSG-12M DATASET DESCRIPTION

The speed and memory efficiency of Poly2Graph make large-scale spatial multigraph research prac-
tical for the first time. Figure 1&A6 illustrate the scale of HSG-12M, showing #graphs vs. #classes

5
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and #graphs vs. total #nodes relative to other graph classification datasets. To our knowledge, HSG-
12M is not only the largest dataset by number of graphs and classes but also the only large-scale
spatial multigraph dataset available.

Moreover, each graph class corresponds a particular Hamiltonian family (hopping pattern). A well-
trained graph neural network could therefore potentially serve as a surrogate model to predict ma-
terial structure from a desired spectral graph, thereby facilitating inverse design of materials with
targeted quantum properties—e.g. design of acoustic metamaterial, electrical circuit, or photonic
crystal with desired spectral response.

In Table A4 we provide a comprehensive comparison with existing graph datasets and benchmarks.
Most prior popular graph-classification datasets are non-spatial, simple graphs. A few are spatial,
e.g., some superpixels and molecular graphs have node coordinates in 2D / 3D, but their edges re-
main an abstract connection defined by adjacency. HSG-12M uniquely provides spatial multigraphs,
where the intricate geometric structure of multi-edges carries essential information that cannot be
simplified without loss. The most relevant resource, OpenStreetMap (Boeing, 2019) is much smaller,
less diverse, and lacks associated ML tasks in comparison.

Furthermore, while temporal graph datasets exist (Huang et al., 2023), they typically focus on
node/edge-level tasks or involve small numbers of graphs and classes. Our T-HSG-5M represents
the first large-scale collection of dynamic graphs for graph-level tasks, capturing the continuous
evolution of spectral graphs over Hamiltonian parameters.

Data Format and Accessibility. To maximize accessibility and flexibility, we release HSG-12M
under a permissive CC BY 4.0 license. The dataset will be made publicly available upon publication.
In companion, we release an auxiliary package HSG-12M2 for effortless data handling, benchmark
reproduction, custom featurization and dataset generation, interactive tutorial, and more.

The dataset comprises 1401 separate Python npz files, each containing graphs from one class with
relevant metadata. Raw files use NetworkX MultiGraph format, preserving full node and edge
geometry— ➊ Node attributes: complex coordinates, spectral potential, and density of states. ➋
Edge attributes: edge length (also serving as weight), coordinate sequences along the edge, average
spectral potential and average DOS over the edge.

We provide this descriptive format because representation learning on spatial multigraphs remains
nascent, with no agreed-upon standard for representing continuous multi-edge geometry. Rather
than imposing a particular featurization, we encourage researchers to explore various approaches,
e.g., treating edge curves as sequences, computing summary features like curvature, or developing
novel and more sophisticated neural network-based representations. Moreover, the attribute-rich
format here aids interpretability and is relevant to researchers interested in the underlying physics
rather than solely ML.

That said, for convenience, we propose our own featurization scheme and include a conversion API
that transforms raw data into PyTorch Geometric (PyG) datasets for graph classification benchmark-
ing. Particularly, to manage the inhomogeneity of edge coordinates and make the spectral graphs
compatible with standard GNN input, our reference conversion uses fixed-sized, direction-ignorant
edge summary features (appendix E.1): length, the straight-line distance between start and end
nodes, middle point coordinates, average spectral potential, and average DOS along the edge.

Dataset Construction. Graphs are grouped by different Hamiltonian families (i.e. characteristic
polynomial classes) as detailed in appendix B. We systematically sample polynomial classes while
respecting mathematical symmetries to avoid spurious abundance. For instance, if a polynomial
exhibits z-reciprocity—i.e. P (z) = zp+qP (1/z)—this reciprocal transformation physically means
flipping the crystal chain from left to right, which leaves the spectrum unchanged and yields the
same spectral graph.

Specifically, we start from a base polynomial with hopping range p+ q and s energy bands:

P̂ (z, E) = −Es + z−p + zq . (5)

We then set the degree of Ek : k ∈ {0, 1, . . . , s − 1} for each zi : i ∈ {−p + 1, . . . , q − 1}.
Subsequently, we assign two free coefficients (a, b) to two chosen monomials zj : j ∈ {−p +
1, . . . ,−1, 1, . . . , q − 1}—excluding z0, since varying the constant term only raise or lower the
entire spectral potential landscape, no effect exerted on the spectral graph.
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Table 1: Key statistics of the HSG dataset variants. #Graphs: number of graphs; #Classes: number of classes;
Ratio: the #Graphs of the largest class / #Graphs of the smallest class; Temporal: whether the graphs are tem-
poral. All other five datasets are derived from HSG-12M; thus all datasets are spatial and irreducibly multi-
graph. HSG-topology contains non-isomorphic graphs in each class and is the only imbalanced dataset;
T-HSG-5M is the temporal spectral graph collection; the rest four teal-colored datasets are balanced, static
datasets.

Name #Graphs #Classes Ratio Temporal
HSG-one-band 198,744 24 1.0 -
HSG-two-band 2,277,275 275 1.0 -
HSG-three-band 9,125,662 1102 1.0 -
HSG-topology 1,812,325 1401 660.2 -
T-HSG-5M 5,099,640 1401 1.0 ✓
HSG-12M 11,601,681 1401 1.0 -

For example, a two-band polynomial with p = 3 and q = 3 may take the form:

P̂ (z, E) = −E2 + z−3 +
(
a z−1 + b E z + E z2

)
+ z3, a, b ∈ C . (6)

Under such a sampling scheme, we iterate over all combinations for one-band to three-band poly-
nomials, with hopping ranges varied from four to six. This range has well covered all realistic 1D
tight-binding crystals (typically p+ q ≤ 4 and less than three bands).

After removing symmetric redundancy, we collect 24 one-band classes, 275 two-band classes, and
1102 three-band classes, amounting to a total of 1401 unique classes.

Finally, we vary the two free coefficients from −10− 5i to 10 + 5i respectively, with 13 real and 7
imaginary values, yielding (13× 7)2 = 8281 samples per class.

Dataset Variants. We provide six datasets tailored to different research needs.

HSG-one-band: Small-to-medium scale, the collection of all one-band polynomials, balanced
subset with 198,744 graphs across 24 classes. These graphs in this subset display simpler patterns
ideal for rapid prototyping and algorithm validation.

HSG-two-band and HSG-three-band: Medium-to-large scale, the collection of all two-band
and three-band polynomials respectively, balanced datasets with increasing complexity, containing
2.3M and 9.1M graphs across 275 and 1,102 classes, respectively.

HSG-12M: The complete dataset spanning all 1,401 classes with balanced sampling, totaling 11.6M
static graphs, designed for large-scale challenge.

HSG-topology: An imbalanced subset preserving only topologically distinct (i.e. non-
isomorphic) graphs within each class. This filtered dataset removes isomorphic duplicates, resulting
in highly skewed class distributions (max class size ratio 660.2), useful for analyzing spectral graph
topology diversity and benchmarking graph algorithms on imbalanced datasets.

T-HSG-5M: Our temporal multigraph collection capturing continuous spectral graph evolution. As
shown in figure 2d, varying either the real or imaginary part of a coefficient in the characteristic
polynomial continuously morphs the geometry of the spectral graph; at certain transition points, one
can observe the graph topology changes discontinuously. For each class, we collect all sequences
of the variation in real (or imaginary) parts of one free coefficient, adding up to 5.1M temporal
graphs across 1401 classes. T-HSG-5M is suitable for evaluating temporal graph-level tasks such
as temporal extrapolation and classification on early sequences. Functionality to select any desired
sequence or subset is provided in the package.

4 BENCHMARKING RESULTS

To assess the capabilities of existing graph learning methods on the new challenges introduced by
our HSG datasets, particularly their spatial nature, edge multiplicities, class imbalance, and scale,
we benchmark popular GNNs and discuss the implications.
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Table 2: Graph-level classification results on the HSG dataset variants. Test metrics shown as mean±std over
three random seeds; best result in Bold.

Model Test Metric one-band two-band three-band topology HSG-12M

GCN[48] Accuracy .711±.010 .478±.012 .337±.014 .397±.009 .365±.021
Macro F1 .704±.009 .465±.015 .323±.013 .392±.011 .349±.022
Top-10 Acc. .999±.000 .931±.005 .816±.011 .825±.006 .841±.015

GAT[83] Accuracy .677±.002 .462±.008 .344±.012 .434±.015 .365±.010
Macro F1 .671±.003 .449±.007 .327±.014 .431±.011 .347±.010
Top-10 Acc. .998±.000 .922±.004 .825±.013 .855±.010 .846±.006

GATv2[6] Accuracy .644±.005 .444±.004 .282±.030 .401±.003 .351±.002
Macro F1 .635±.007 .430±.005 .265±.031 .397±.001 .330±.002
Top-10 Acc. .997±.001 .914±.003 .765±.032 .833±.005 .835±.001

GIN[92] Accuracy .799±.005 .343±.084 .050±.021 .095±.059 .063±.031
Macro F1 .796±.006 .323±.087 .030±.016 .082±.060 .042±.024
Top-10 Acc. 1.000±.000 .868±.060 .295±.089 .390±.148 .339±.135

GINE[38] Accuracy .764±.006 .518±.049 .379±.013 .533±.017 .460±.025
Macro F1 .758±.007 .501±.053 .362±.012 .531±.011 .445±.027
Top-10 Acc. 1.000±.000 .958±.015 .872±.008 .927±.008 .921±.011

MF[22] Accuracy .589±.012 .308±.014 .271±.004 .348±.012 .295±.010
Macro F1 .572±.012 .287±.016 .254±.001 .343±.012 .274±.011
Top-10 Acc. .997±.000 .838±.019 .754±.005 .793±.010 .791±.012

CGCNN[90] Accuracy .796±.008 .585±.029 .478±.011 .566±.016 .531±.004
Macro F1 .792±.010 .572±.029 .464±.015 .563±.018 .518±.003
Top-10 Acc. 1.000±.000 .975±.005 .923±.006 .940±.005 .948±.002

GraphSAGE[31] Accuracy .854±.003 .678±.004 .523±.020 .620±.003 .546±.004
Macro F1 .853±.002 .670±.005 .512±.020 .622±.001 .534±.005
Top-10 Acc. 1.000±.000 .988±.001 .940±.006 .958±.001 .952±.001

Baseline Models. We benchmark eight popular graph neural networks (GNNs)—GCN (Kipf &
Welling, 2017), GAT (Veličković et al., 2018), GATv2 (Brody et al., 2022), GIN (Xu et al., 2019),
GINE (Hu et al., 2019), MF (Duvenaud et al., 2015), CGCNN (Xie & Grossman, 2018), and Graph-
SAGE (Hamilton et al., 2017).

Experimental Setup. Full details supporting reproducibility are provided in appendix E.2—
including data preprocessing and split; model architecture and hyperparameters; optimizer setting
and learning rate schedule; hardware and trainer specifics. In particular, to ensure fair comparison,
for each dataset we tune each model’s convolution hidden dimension to equalize the total number of
learnable parameters, and we cap the training budget by max epochs and max steps.

Evaluation Metrics. Given the high class diversity, we report Top-1 accuracy, Top-10 accuracy (rel-
evant for scenarios where multiple plausible answers are acceptable), and Macro-averaged F1-score
(which weights every class equally and exposes performance on minority classes). Additional eval-
uation including test loss, Top-5 accuracy, peak GPU memory utilization, throughput are reported
in Tables A5-A8.

Results and Analysis. The graph-level classification results are presented in Table 2. Seed vari-
ance is small across variants, indicating stable training. Additional results and analysis are in ap-
pendix E.4. Several observations emerge:

Performance degrades with task difficulty. Test metrics decay monotonically from simpler to harder
dataset, consistent with increasing graph size, richer multi-edge geometry, more complex isomor-
phisms, and growing class diversity. Memory usage likewise grows with complexity (e.g., SAGE
∼0.067→0.511 MB/graph).

Edge attributes matter. Edge-aware GINE consistently outperforms edge-agnostic GIN (e.g., on
HSG-12M, Accuracy 0.460±0.025 vs. 0.063±0.031), reflecting that multi-edge spatial geometry
(length, straight-line distance, midpoint, average potential/DOS) carries irreducible signal.
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Top-k is high—promising signal for inverse design. On the full dataset which covers all realistic
cases, despite moderate Top-1 accuracy, Top-10 accuracy is high (e.g., on HSG-12M: SAGE 95.2%,
CGCNN 94.8%) and near-saturated on easier subsets (99%+ on one-band), enabling retrieval of
a small candidate set of Hamiltonian families for downstream expert screening.

GraphSAGE excels under limited budget and comparable parameter counts. Under matched pa-
rameters (≤4% variance) and fixed budget (max epochs=100, max steps=1000), GraphSAGE
attains the best performance on all subsets, indicating either stronger inductive bias for spatial multi-
graphs or better sample/compute efficiency than more expressive baselines under tight budgets.

Take-away. With our proposed edge summaries, popular GNNs already capture substantial discrim-
ination; nonetheless, the Top-1 vs. Top-10 gap and degradation at high class diversity suggest that
richer edge geometry encoding (e.g., curvature/torsion, higher-order moments, spline/Bezier encod-
ings, or polyline sequences) could potentially improve performance, especially on the more chal-
lenging datasets.

5 DISCUSSION

Benchmarking and algorithmic opportunities. HSG-12M fills four key gaps at once: ➊ it is
the first systematic resource of Hamiltonian spectral graphs, ➋ it is the first large-scale multigraph
dataset, ➌ it is the first spatial multigraph resource, retaining edge multiplicity with rich continuous
geometry, and ➍ it provides both static and dynamic multigraph sequences.

These traits open a suite of tasks that are under-served by current methods: multi-edge featurization,
geometry-aware message passing, spatio-temporal prediction, etc. Beyond supervised learning, the
dataset is sufficiently large and expandable with Poly2Graph to support topology-conditioned gen-
eration and pre-training foundation models for rational inverse-design of materials.

Universal Relevance of Spectral Graphs. While HSG-12M is rooted in non-Hermitian band
theory, its reach extends well beyond condensed-matter physics.

1. Any bivariate Laurent polynomial P (z,E) has a spectral graph.
2. Any univariate polynomial h(z) can be viewed as a one-band Bloch Hamiltonian; and any

vector can be treated as a symmetrised coefficient list of a univariate polynomial.
3. Any matrix can be decomposed into a product of one-band Hamiltonian matrices (Ye & Lim,

2015), and thus in general has a multiset of spectral graphs (detailed in appendix F)

Hence polynomials, vectors, and matrices all admit spectral graphs as their topological fingerprints.
This establishes a universal bridge between algebraic objects and graphs, inviting graph-based meth-
ods to problems in linear algebra.

Since the characteristics of most scientific systems can be expressed as the aforementioned algebraic
objects, our approach offers a novel analytical lens. This opens up new avenues for research across
numerous fields, a direction we are actively exploring and invite the broader community to join.

6 CONCLUSION

We present Poly2Graph, an open-source, high-performance pipeline that automatically extracts
Hamiltonian spectral graphs, and HSG-12M, a large-scale dataset of 11.6M static and 5.1M dy-
namic Hamiltonian spectral graphs. HSG-12M collects physics-grounded data, offering the first
large-scale database for spatial multigraph with irreducible edge multiplicity and spatial geometry.
The construction generalizes to arbitrary polynomials, vectors, and matrices. Out benchmark on
popular GNNs indicate the need for methodological advances. We release Poly2Graph and HSG-
12M under permissive licences and invite the community to build on this resource for new models,
tasks, more comprehensive and carefully designed benchmarks, and insights across machine learn-
ing, condensed-matter physics, and beyond.
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REPRODUCIBILITY STATEMENT

We release Poly2Graph https://anonymous.4open.science/r/iclr2026_
generator-AE56 (section 2, appendix C&G), HSG-12M (section 3, appendix D) and
an auxiliary dataset package2 https://anonymous.4open.science/r/iclr2026_
dataset-2802 under permissive open-source licences to facilitate reproducibility and further
customization. The packages include detailed documentation and tutorials for easy starting, full
reproduction, and extension.
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We used large language models, such as ChatGPT and Gemini, to aid in the writing of this paper. All
generated content has been reviewed and edited by the authors. The authors are solely responsible
for any errors or inaccuracies.
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A RELATED WORK

A.1 GRAPH REPRESENTATION LEARNING, DATASETS, AND BENCHMARKS.

Graph learning has seen a rapid rise in recent years, driven by advances in graph neural networks
(GNNs) (Hamilton, 2020; Bronstein et al., 2021; Ma & Tang, 2021; Wu et al., 2022; Corso et al.,
2024) and proliferation of datasets and benchmarks (Ranveer & Hiray, 2015; Freitas et al., 2021;
Chen & Wang, 2019; Yanardag & Vishwanathan, 2015; Hu et al., 2020b). HSG-12M addresses
critical gaps in existing benchmarks by introducing not only the first large-scale spatial multigraph
dataset6, but also one of the largest known graph machine learning datasets and natural science-based
datasets. This work sets a new standard in terms of scale and class diversity.

A.2 GRAPH LEARNING IN MULTIGRAPHS.

In contrast to simple graphs, multigraphs permit multiple edges between the same pair of nodes.
Apart from a handful of exploration on multigraph learning algorithms (Butler et al., 2023; Egressy
et al., 2024), progress has been hampered by the absence of large-scale data sources.

In many practical settings, multiple edges are typically collapsed into a single edge—often sacri-
ficing valuable information. This simplification may be acceptable when edge-level details can be
represented as aggregated attributes, as is often the case in heterogeneous graphs (Chaari et al.,
2022; Youssef et al., 2023), multi-modular models (Said et al., 2024; Ding et al., 2022), or multiplex
networks (Horvat & Zweig, 2018).

However, in spatial multigraphs (Barthélemy, 2011), where edges carry rich geometric information
such as distances, directions, or physical observable information, such aggregation results in signif-
icant information loss. This critical issue has remained underexplored due to the lack of datasets
where edge aggregation is inherently infeasible. HSG-12M addresses this gap by providing the first
benchmark where capturing both multi-edge relationships and edge geometry is essential.

A.3 GRAPH LEARNING IN SPATIAL GRAPHS.

A spatial (or geometric) graph is a network in which nodes and edges are spatial entities living in a
metric space (Barthélemy, 2011; Iddianozie & McArdle, 2021). Such networks emerge naturally in
domains where spatial embedding is fundamental to structure and function: urban, transportation,
and communication networks are shaped by physical distances and road geometries (Buhl et al.,
2006; Wang et al., 2020); biological systems like neural and vascular networks are constrained by
surrounding tissue geometry (Runions et al., 2005; Bullmore & Sporns, 2009); and river networks
evolve through interactions of gravity and topography (Caldarelli, 2007; Rodriguez-Iturbe & Ri-
naldo, 1997). In all these cases, spatial graph structure encodes essential information that cannot be
inferred from connectivity alone or reconstructed from non-spatial data.

6To our knowledge, this is also the first large-scale multigraph dataset–large-scale conforms to OGB crite-
ria (Hu et al.).
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Despite growing recognition of spatial information in Spatial and Geo AI (Papadimitriou; Gao,
2021), its importance remains underappreciated in graph learning. Currently, no benchmark exists
with sufficiently rich geometric structure to exhibit intricate spatial patterns, let alone one of spatial
multigraphs. As a result, despite many efforts to develop algorithms for spatial graphs (Guo et al.,
2021; Iddianozie & McArdle, 2021; Danel et al., 2019; Ingraham et al., 2019; Yan et al., 2018), the
field has lacked a standardized, large-scale testbed.

B MATHEMATICAL BACKGROUND - Hamiltonian Spectral Graph

B.1 THE HAMILTONIAN AND ENERGY SPECTRUM IN 1D TIGHT-BINDING SYSTEMS

In physical sciences, it is customary to represent and study a system through its Hamiltonian matrix.
The energy spectrum, which refers to the set of eigenvalues of this matrix, reveals the energy band
structure—a central object of study in condensed matter physics. Let us consider a generic 1D
tight-binding Hamiltonian with s internal degrees of freedom (bands or orbitals) per unit cell:

H =
∑
x,j

Tj ĉ
†
xĉx+j (7)

where x and j index unit cells and hopping lengths, respectively; ĉx is the annihilation operator
(vector of length s) for the x-th unit cell. Each term Tj ∈ Cs×s represents the transition amplitude
matrix for a particle hopping from site x+ j to x. The L2 norm of the amplitude corresponds to the
transition probability. These hopping terms can generically be complex.

The matrix representation of this Hamiltonian in real space, Hreal, for which the block at (x, x′) is
(Hreal)x,x′ = Tx′−x, is a block Toeplitz matrix—a matrix in which each descending block diagonal
from left to right is constant:

Hreal =



T0 T1 T2 · · · 0
T−1 T0 T1 T2

T−2 T−1 T0 T1
. . .

...

T−2 T−1 T0
. . .

...
. . . . . . . . . T2

T0 T1

0 · · · T−2 T−1 T0


(8)

If there are L sites in total, Hreal ∈ CLs×Ls. In general, Tj ̸= T †
−j (where T †

−j is the conjugate
transpose of T−j), which breaks the Hermiticity of the Hamiltonian, i.e., H† ̸= H . Consequently,
the eigenvalues can take on complex values. The energy spectrum is obtained by diagonalizing
Hreal.

B.2 HAMILTONIAN SPECTRAL GRAPH: EMERGENT TOPOLOGY IN THE THERMODYNAMIC
LIMIT

For non-Hermitian systems, the energy eigenvalues form intricate patterns in the complex plane.
The spectral graph G emerges from the energy spectra under open boundary conditions (OBC) in
the thermodynamic limit (i.e., as the system size L → ∞). In this limit, the discrete energies
become continuous, and their loci trace out a planar graph on the complex plane (Tai & Lee, 2023;
Xiong & Hu, 2023). Figure A3 illustrates this emergence: the OBC energy spectra for finite system
sizes L = 50 and L = 150 for a non-Hermitian lattice (whose characteristic polynomial, defined
later, is P (z, E) = −z−2−E−z+z4) clearly approach a 3-Cayley tree as L increases. Figure A3c
shows the corresponding density of states (DOS) in the L → ∞ limit.

The spectral graphs of different lattices exhibit a kaleidoscope of geometries, including arcs, loops,
and more exotic shapes resembling stars, kites, braids, and even rockets (Tai & Lee, 2023; Lin
et al., 2023), as showcased in Figure A4. These structures represent an uncharted band topology,
embedding hidden symmetries and graph topological transitions that lie beyond standard homotopy-
based frameworks (Hasan & Kane, 2010). In effect, a new class of topological invariants appears—
those tied to the global geometry of the eigenvalue loci.
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Figure A3: The emergence of spectral graphs. (a)-(b) show the OBC energy spectra with in-
creasing system size L = [50, 150], of the non-Hermitian lattice whose characteristic polynomial is
P (z,E) = −z−2 −E − z+ z4. In the thermodynamic limit (L → ∞), the spectra becomes a band
continuum and the energy loci traces out a planar graph on the complex plain, namely the spectral
graph. For this particular example, it is a 3-Cayley tree. (c) shows the corresponding density of
states when L → ∞.

However, accurately diagonalizing a large non-Hermitian matrix Hreal to obtain the OBC spectrum
is notoriously difficult (Yang et al., 2020), let alone for an infinite-sized matrix (i.e. an operator).
This necessitates a more sophisticated theoretical approach.

B.3 THEORETICAL FRAMEWORK: NON-BLOCH BAND THEORY

The standard approach to analyze such systems, guided by non-Bloch band theory, begins with a
Fourier transformation and the analysis of the resulting characteristic polynomial.

B.3.1 THE BLOCH HAMILTONIAN AND CHARACTERISTIC POLYNOMIAL P (z, E)

Fourier transforming the real-space Hamiltonian (second quantized form equation 7 or its matrix
form equation 8) yields the Bloch Hamiltonian:

H(z) =
∑
j

Tjz
j , z := eik (9)

with Tj ∈ Cs×s. Let the hopping range of H be [−pH , qH ], such that Tj = 0 for j /∈ [−pH , qH ].
H(z) is a matrix-valued Laurent polynomial of the phase factor z = eik, where k is the crystal
momentum.

The energy dispersion relation is found by solving the secular equation. The characteristic poly-
nomial of the Hamiltonian is defined as:

P (z,E) := det
[
H(z)− E I

]
=

qP∑
n=−pP

an(E) z n. (10)

This is a finite Laurent polynomial in z whose coefficients an(E) are themselves scalar polynomials
in E of degree ≤ s. This equation is also known as the energy-momentum dispersion.

It is sometimes convenient to clear the negative powers in equation 10 by defining the ordinary
polynomial in z,

P̃ (z, E) := z pPP (z,E) ∈ C[z,E], (11)
whose degree in z equals dz := pP + qP .

Degree bounds in z. The highest and lowest degree bounds of the associated P (z,E) satisfy:

pP ≤ s× pH , qP ≤ s× qH , (12)

with equality holding generically (i.e., unless the leading/minor determinants vanish because of
special symmetries or parameter fine-tuning). In particular, dz = pP + qP ≤ s(pH + qH).
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Figure A4: A Gallery of Spectral Graphs. The top four rows highlight the intricate structures
characteristic of spectral graphs. The bottom row illustrates the distinct phenomenon we refer to
as component fragmentation (Section 5)—some nodes in theory should be connected, however its
surrounding low density of states limits accurate edge detection, causing certain nodes to be frag-
mented into disjoint nodes, often leading to fragmentation of an otherwise connected component.
The phenomena often occurs for high-band and long-range hopping crystals.
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Roots in z at fixed E. For any fixed E ∈ C, the equation P (z,E) = 0 has exactly dz solutions
{zα(E)}dz

α=1 (equivalently, P̃ (z,E) has dz roots in z). We will order them by modulus,

|z1(E)| ≤ |z2(E)| ≤ · · · ≤ |zdz
(E)|.

Examples.

1. One-band, nearest-neighbor (s = 1, pH = qH = 1). Let

H(z) = t−1z
−1 + t0 + t+1z, P (z, E) = H(z)− E.

Here pP = qP = 1 and dz = 2. The periodic boundary condition (PBC) dispersion is
E(k) = t0 + t+1e

ik + t−1e
−ik.

2. Two-band SSH-type model (s = 2, pH = qH = 1).

H(z) =

(
0 t1 + t2z

t1 + t2z
−1 0

)
, P (z, E) = det[H(z)−EI] = E2−(t1+t2z)(t1+t2z

−1).

Here pP = qP = 1 (so dz = 2), which is strictly smaller than the generic bound s(pH +
qH) = 4.

Interpretation of z exponents. The exponents of z in H(z) have a direct hopping interpretation
(a nonzero Tj encodes j-th neighbor hopping). After taking the determinant to form P (z,E), indi-
vidual z n terms no longer correspond to a single hopping distance; rather, they arise from products
of matrix entries and thus encode composite hopping paths. This explains why the bounds in equa-
tion 12 can be strict: symmetries (e.g., the chiral symmetry in the SSH example above) can cause
cancellations of the leading powers of z in P (z,E).

B.3.2 LIMITATIONS OF STANDARD BLOCH THEORY (PBC)

Under periodic boundary conditions (PBC), Bloch theory applies, utilizing the constraint |z| = 1
(real momentum k). If H(z) is Hermitian on the unit circle, the PBC spectrum consists of real E
values forming continuous bands (the usual Bloch dispersion). For non-Hermitian systems, the PBC
spectrum typically forms loops or closed curves in the complex energy plane.

However, for non-Hermitian systems under OBC, eigenstates often exhibit the non-Hermitian skin
effect (NHSE) (Lin et al., 2023), where a macroscopic number of eigenstates localize at the bound-
aries. Consequently, the PBC and OBC spectra can be qualitatively different. As one evolves the
system from PBC to OBC (e.g., by turning off boundary hoppings), the PBC spectrum (loops) often
collapses inwards to form the skeletal structure of the OBC spectral graph, as depicted in Figure A5.

2 1 0 1 2
Re(E)

2
1

0
1

2
Im

(E
)

OBC Spectrum
PBC Spectrum

1.0 0.8 0.6 0.4
(E)

Figure A5: Spectral Collapse & Spectral Potential. PBC spectrum usually appears as circles and
loops; changing to OBC, the spectrum collapses into a graph skeleton. The spectral graph resides
on the ridges of the potential landscape, Φ(E).
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B.3.3 NON-BLOCH BAND THEORY AND THE GENERALIZED BRILLOUIN ZONE (GBZ)

Since standard Bloch theory is inapplicable under OBC due to the NHSE, non-Bloch band theory
is employed. This theory introduces the concept of the generalized Brillouin zone (GBZ).

Under OBC, z is allowed to leave the unit circle, meaning k can be complex. The imaginary part
of k, κ := Im(k) = − log |z|, is the inverse decay length (or inverse skin depth), quantifying the
localization of skin modes.

Non-Bloch band theory establishes that the OBC spectrum in the thermodynamic limit is determined
by those E ∈ C for which the z roots of P (z, E) = 0 satisfy a specific equal-modulus condition.
Given the characteristic polynomial P (z, E) with degrees pP and qP as defined in equation 10, the
condition for E to be in the OBC spectrum is:

|zpP
(E)| = |zpP+1(E)|. (13)

The corresponding loci of z’s is the generalized Brillouin zone (GBZ). The spectral graph G is
precisely the set of E values that satisfy this condition; equivalently, it is the image of the GBZ
under the map (z 7→ E : P (z, E) = 0).

B.3.4 CHARACTERISTIC POLYNOMIAL CLASS CP
The algebraic structure of P (z,E) plays a crucial role in determining the topology of the spectral
graph. To understand this relationship, we must consider P (z, E) as a bivariate polynomial, ex-
amining the interplay between the powers of z (representing spatial structure) and the powers of E
(representing energy bands). We expand P (z,E) fully as:

P (z,E) =

qP∑
n=−pP

an(E)zn =

qP∑
n=−pP

s∑
m=0

cn,mEmzn. (14)

We define the characteristic polynomial class CP based on the monomial support of P (z,E).
The support identifies which specific monomials Emzn are present in the polynomial structure,
regardless of the exact values of their coefficients cn,m.

Formally, we define the support SP as the set of index pairs (n,m) for which the coefficient cn,m is
structurally non-zero (i.e., it is allowed to vary, rather than being identically zero):

SP = {(n,m) | cn,m ̸≡ 0}. (15)

Crucially, the spectral graph is invariant under parity transformation7, which corresponds to the
transformation z → z−1 in the polynomial. Let P ′(z, E) = P (z−1, E). The support of this parity-
transformed polynomial is:

SP ′ = {(−n,m) | (n,m) ∈ SP }. (16)

The characteristic polynomial class CP is defined as the equivalence class represented by this pair
of supports:

CP = {SP ,SP ′}. (17)

This classification ensures that polynomials related by spatial inversion, which necessarily yield the
same spectral graph, belong to the same class. If the polynomial structure is palindromic in z (i.e.,
SP = SP ′ ), the class is simply identified by the single support set SP .

We find that the characteristic polynomial class CP is a key criterion for classifying spectral graph
topologies and is thus the target for inverse classification tasks. Varying the specific values of the
coefficients cn,m within a fixed class CP may deform the geometry of the spectral graph but typically
preserves its fundamental topology.

Examples:

7I.e., spatial inversion about the origin (x → −x), or flipping the 1D lattice from left to right. In terms of
Hreal, this corresponds to Tj → T−j , which is equivalent to transposing the matrix (Hreal → HT

real). The
transpose does not change the eigenvalues.
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1. Single-band example (s = 1) from Figure A3. P (z,E) = −z−2 − z + z4 − E.
The monomials present are E0z−2, E0z1, E0z4, and E1z0. The support is SP =
{(−2, 0), (1, 0), (4, 0), (0, 1)}. The parity-transformed polynomial is P (z−1, E) = −z2−
z−1 + z−4 − E. The transformed support is SP ′ = {(2, 0), (−1, 0), (−4, 0), (0, 1)}. The
class is CP = {SP ,SP ′}.

2. Two-band example (s = 2). Consider a class defined by the structure (similar to the dataset
construction example): P (z,E) = −E2+z−3+z3+c1z

−1+c2Ez+Ez2. The support is
SP = {(0, 2), (−3, 0), (3, 0), (−1, 0), (1, 1), (2, 1)}. This support explicitly captures the
interplay between hopping range and energy bands, defining the class.

B.3.5 RECAP OF KEY CONCEPTS (HIERARCHY OF ABSTRACTIONS)

Objects and their roles.

• Real-space Hamiltonian Hreal: an infinite banded (block) Toeplitz operator acting on
ℓ2(Z)⊗ Cs, formed from hopping blocks {Tj}.

• Bloch Hamiltonian H(z): the s× s matrix Laurent polynomial in equation 9, the Fourier
transform of Hreal.

• Characteristic polynomial P (z, E): the scalar Laurent polynomial equation 10; a bivari-
ate polynomial in z and E (after clearing denominators in z).

• ChP class CP : an equivalence class of characteristic polynomials defined by fixing the
monomial support in (z,E) and accounting for parity symmetry (see equation 17).

• Spectral graph G: the subset of C traced by eigen-energies E in the thermodynamic limit
under OBC,

G = {E ∈ C : ∀ z ∈ GBZ, P (z, E) = 0}.
A specific Hamiltonian (or specific P ) maps to a specific spectral graph; a ChP class maps
to a family of spectral graphs parameterized by its coefficients.

How the abstractions relate.

Hreal
Fourier−−−−→ H(z)

det[·−EI]−−−−−−−→ P (z, E)
Support & Symmetry−−−−−−−−−−−−→ CP

P (z,E)
solve in z (GBZ)−−−−−−−−−→ G ⊂ C.

Each arrow forgets inessential microscopic details while preserving spectral information relevant at
the next level.

At-a-glance comparison.

Object Symbol Mathematical type Typical size

Real-space Hamiltonian Hreal banded Toeplitz operator L× L (finite) or infinite
Bloch Hamiltonian H(z) s× s Laurent-poly. matrix s (bands/orbitals)
Characteristic polynomial P (z,E) Laurent poly. in z, poly. in E (pP , qP ) in z; degree ≤ s in E
ChP class CP set of P ’s with fixed support-

/symmetry
—

Spectral graph (PBC/OBC) G subset of C (energy plane) —

This hierarchy clarifies terminology used later: algorithms operate on P (z, E) (or its class CP ),
while the physical spectra we visualize or learn are subsets G determined by solving P (z, E) = 0
with the appropriate constraint on z (PBC or GBZ).

B.4 THE SHORTCUT TO SPECTRAL GRAPH VIA ELECTROSTATIC ANALOGY.

B.4.1 DENSITY OF STATES ρ(E) AND THE SPECTRAL POTENTIAL Φ(E)

The density of states (DOS) describes the continuous spectrum. It is defined as the density of
eigenstates on the complex energy plane. An example of DOS is shown in Figure A3c.
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Recent developments in non-Bloch theory map the problem of finding the spectral graph and DOS
to a classic 2D electrostatic problem (Xiong & Hu, 2023; Yang et al., 2022; Wang et al., 2024). If
we treat the eigenvalues ϵn (for a system of size N ) as electric charges of strength 1/N , we can
define the Coulomb potential Φ(E), also called the spectral potential, at a point E /∈ G:

Φ(E) = − lim
N→∞

1

N

∑
ϵn

log |E − ϵn|

= −
∫

ρ(E′) log |E − E′| d2E′ (18)

The DOS is related to the potential by the Poisson equation:

ρ(E) = − 1

2π
∇2Φ(E) (19)

where ∇2 = ∂2
ReE + ∂2

ImE is the Laplacian operator on the complex energy plane. The Laplacian
extracts curvature. Geometrically, this implies that the loci of the spectral graph G, where the DOS
is concentrated, reside on the ridges of the Coulomb potential landscape Φ(E), as suggested in
figure A5 and figure 2.

B.4.2 EFFICIENT CALCULATION OF Φ(E)

Leveraging Szegö’s strong limit theorem, the spectral potential Φ(E) in equation 18 can be reduced
to a computationally efficient form based directly on the characteristic polynomial P (z,E):

Φ(E) = − log |aqP (E)|+
pP+qP∑
i=pP+1

κi(E) (20)

Here, pP and qP are the lowest and highest degrees of z in P (z, E), respectively (see equation 10).
aqP (E) is the coefficient of zqP . κi(E) = − log |zi(E)| are the inverse decay lengths associated
with the qP largest roots of P (z,E) = 0 (these are zpP+1, . . . , zpP+qP in the sorted list).

Although equation 18 is strictly defined for E /∈ G, the expression in equation 20 can be analyti-
cally continued to the entire complex plane (Xiong & Hu, 2023). This allows the construction of the
potential landscape Φ(E) merely by knowing the characteristic polynomial P (z,E), thereby obviat-
ing the need for direct diagonalization of large real-space Hamiltonians and avoiding the numerical
errors associated with such diagonalizations.

C POLY2GRAPH PIPELINE DETAILS

Armed with the above theoretical guidance, we implement the transformations numerically, and
then integrate a few computer vision techniques (Lee et al., 1994; Wang et al., 2018; Nunez-Iglesias
et al., 2018) to construct the spectral graph given its characteristic polynomial (or Bloch Hamil-
tonian). This appendix complements section 2. The core procedure of Poly2Graph algorithm
(“Characteristic Polynomial to Spectral Graph”) is summarized in algorithm 1.

C.1 INITIALIZATION AND INPUT

Poly2Graph accepts diverse input formats for the 1-D tight-binding crystal. It can initialize from a
Bloch Hamiltonian H(z) or directly from its characteristic polynomial P (z,E). Supported formats
for P (z, E) include sympy.Matrix (for H(z), H(k)), sympy.Poly, or a raw string expression
of the polynomial. During initialization, Poly2Graph automatically computes a full set of different
representations and properties. See the tutorial section appendix G or visit our repository https:
//anonymous.4open.science/r/iclr2026_generator-AE56.

The energy domain Ω ⊂ C, which must fully contain the spectral graph G, is also required. While
users can specify a custom Ω and its discretization, by default Poly2Graph can automatically esti-
mate a suitable region by diagonalizing a small real-space Hamiltonian (typically L = 40 unit cells)
and applying a small padding.

Sidenotes: notions of “size” appeared so far.
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Algorithm 1: Poly2Graph: Characteristic Polynomial to Spectral Graph
Input: (1) H(z) or P (z, E) := det[H(z)− E I]
# ↑ Hamiltonian or its characteristic polynomial

Input: (2) Energy Domain: Ω ⊂ C such that Ω ⊋ G (spectral graph)
Output: Spectral Graph: G ∈ networkx.MultiGraph

begin
# Build the characteristic polynomial if only H(z) was given

if input H(z) then
P (z,E) = det[H(z)− E I] =

∑q
n=−p an(E) zn

# Stage 1: Coarse computation over initial energy grid Ω
(Parallel) for E ∈ Ω do

# Solve roots
{zi(E)} = Sort[Roots(P (z,E))] s.t. |z1| ≤ · · · ≤ |zp+q|
# Compute spectral potential

Φ(E) = − log |aq(E)| −∑p+q
i=p+1 log

∣∣zi(E)
∣∣

# Compute Density of States (DOS)
ρ(E) = − 1

2π ∇2Φ(E)

# Identify regions of interest
coarse mask = dilate(binarize({ρ(E)}E∈Ω))
# Define refined energy grid
Ω′ = get masked subgrid(coarse mask)

# Stage 2: Refined computation within masked regions Ω′

(Parallel) for E ∈ Ω′ do
# Re-solve roots at higher resolution
{zi(E)} = Sort[Roots(P (z,E))]
# Recompute spectral potential

Φ′(E) = − log |aq(E)| −∑p+q
i=p+1 log

∣∣zi(E)
∣∣

# Recompute DOS
ρ′(E) = − 1

2π ∇2Φ′(E)

# Combine coarse and refined DOS for full high-resolution
image

ρfinal(E) = combine({ρ(E)}E∈Ω\Ω′ , {ρ′(E)}E∈Ω′)
# Binarize high-resolution DOS

final binarized image = binarize({ρfinal(E)}E∈Ω)
# Extract one-pixel-wide skeleton

graph skeleton = skeletonize(final binarized image)
# Convert skeleton to graph object
G = skeleton2graph(graph skeleton)
# Post-processing
G = merge nearby nodes(G, tolerance)
G = remove isolated nodes(G)

1. System size L (real space): number of unit cells. The operator Hreal is L × L for finite L
and becomes an infinite operator in the thermodynamic limit L → ∞.

2. Internal size s (band/orbital count): the matrix dimension of H(z). This equals the maxi-
mal degree in E of P (z, E).

3. Laurent degree in z of P : the pair (pP , qP ) (or total dz = pP + qP ) governing the number
of z roots at fixed E. It is controlled by the degree range of H via equation 12.

4. Numerical sampling resolution (e.g. N ×N grid in the complex-E plane): a discretization
choice for plotting or learning tasks; it is not a property of the crystal.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

C.2 ACCELERATED ROOT FINDING

As detailed in section 2, solving for the roots {zi(E)} of P (z, E) = 0 for each energy E in the
discretized domain Ω is the primary computational bottleneck. To achieve the reported performance
gains (five orders of magnitude speedup and higher memory efficiency over previous methods (Tai
& Lee, 2023) on default settings), we employ a specialized root-finding strategy.

For a characteristic polynomial P (z,E) =
∑q

j=−p aj(E)zj , its roots are equivalent to the eigenval-
ues of its Frobenius companion matrix F(E). For a polynomial of degree d = p+ q, the companion
matrix is a d× d matrix constructed from the coefficients:

F(E) =


0 0 · · · 0 −a−p(E)/aq(E)
1 0 · · · 0 −a−p+1(E)/aq(E)
0 1 · · · 0 −a−p+2(E)/aq(E)
...

...
. . .

...
...

0 0 · · · 1 −aq−1(E)/aq(E)

 . (21)

This formulation holds for complex coefficients aj(E) ∈ C.

Poly2Graph constructs a batch of these companion matrices for each E ∈ Ω, where Ω is the dis-
cretized grid of energy values. This batch is then processed by a parallelized eigensolver. The
implementation automatically detects the availability of TensorFlow or PyTorch backends,
leveraging them for hardware acceleration, including optional GPU support via CUDA. To opti-
mize memory and computation, calculations are performed using single precision (float32), which
has been found sufficient for high-fidelity spectral graph extraction.

C.3 ADAPTIVE RESOLUTION AND IMAGE PROCESSING

The adaptive resolution strategy, outlined in section 2, is crucial for computational tractability.

1. Coarse Identification: The spectral potential Φ(E) (equation 3) and DOS ρ(E) (equation 4) are
computed on an initial, moderately resolved grid (e.g., 256× 256). The DOS image is binarized
and morphologically dilated to create a conservative mask Ω′ covering potential graph regions.

2. Refined Calculation: Within this mask Ω′, each pixel is subdivided (e.g., into a 4× 4 subgrid),
and Φ(E) and ρ(E) are recomputed at this higher resolution.

This two-stage process achieves high effective resolution (e.g., 1024 × 1024) while minimizing
redundant calculations in empty regions of the complex energy plane.

The resulting high-resolution DOS image is again binarized. We currently employ a global mean
threshold (ρ(E) > ⟨ρ(E′)⟩E′∈Ω) for binarization, as it has empirically outperformed a pool of other
common global and adaptive thresholding heuristics, including Otsu, Li, Yen, Triangle, Isodata,
local adaptive, and hysteresis variants for our datasets. Subsequently, iterative morphological thin-
ning operations (Lee et al., 1994) are applied to reduce the binarized features to a one-pixel-wide
skeleton, revealing the graph topology.

C.4 GRAPH EXTRACTION AND POST-PROCESSING

The skeleton2graph submodule converts the binary skeleton into a graph representation. It
identifies pixels as junction nodes (three or more neighbors), leaf nodes (one neighbor), or edge
points (two neighbors). The output is a NetworkX MultiGraph object, where each edge in
particular stores its geometric path as an ordered sequence of (Re(E), Im(E)) coordinates.

To handle numerical artifacts, two post-processing steps are implemented as shown in algorithm 1:

1. merge nearby nodes: Nodes within a predefined Euclidean distance tolerance are merged.
This helps consolidate fragmented junctions.

2. remove isolated nodes: Nodes with no connecting edges after the merging step are re-
moved.
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C.5 BENCHMARK POLY2GRAPH SPEED-UP

The primary innovation is the end-to-end automation of the spectral graph extraction process, which
was previously reliant on manual inspection. This automation makes systematic research on spectral
graphs feasible.

The speed and memory efficiency are secondary, but critical, feature that make large-scale research
on spectral graphs feasible for the first time.

Since Poly2Graph is the first tool of its kind that fully automates the entire pipeline, a true pre-
decessor for an end-to-end comparison does not exist. Here, in table A3, we only benchmark the
computation bottleneck (spectral potential calculation) against the best available code from Ref.
(Tai & Lee, 2023), which does not automate the graph extraction.

Table A3: Speed comparison between Poly2Graph and the best available code from Ref. (Tai & Lee,
2023). The time used per sample (i.e. for an input H(z)/P (z, E)) for each method, and the speed-up that
the Poly2Graph obtained are reported. The comparison is conducted on the computation bottleneck (spectral
potential calculation), as Ref. (Tai & Lee, 2023) does not automate the graph extraction. Poly2Graph’s time
complexity is polynomial in degree range (dz = p+ q).

degree range Poly2Graph Ref. (Tai & Lee, 2023) Speed-up
p+q=2 13.1 ± 0.3 ms 3025 s 2.3e5 ×
p+q=3 20.8 ± 0.1 ms 3423 s 1.6e5 ×
p+q=4 28.6 ± 0.3 ms 3921 s 1.4e5 ×
p+q=5 38.8 ± 0.2 ms 5177 s 1.3e5 ×
p+q=6 50.8 ± 0.3 ms 6199 s 1.2e5 ×

C.6 CAVEATS: COMPONENT FRAGMENTATION

A notable challenge, particularly for systems with large degree ranges or many bands, is a phe-
nomenon we termed component fragmentation. As illustrated in the bottom row of figure A4, this
refers to the spurious disconnection of spectral branches that should ideally form a single connected
component. Fragmentation typically arises at junction nodes where the surrounding DOS is ex-
ceptionally low. In such cases, the spectral potential landscape (Φ(E)) around these junctions is
virtually flat, making the corresponding ridges (which correspond to edges) fall below the detection
threshold of the binarization and thinning processes, due to finite floating-point precision.

While the current global mean thresholding for binarization is a robust general choice, it may strug-
gle with complicated spectra. Ultra-low-DOS edges can be missed, leading to missing pixels in the
skeleton and thus fragmentation. While more sophisticated ridge-following or adaptive local thresh-
olding algorithms might offer improvements, they often come at a significant cost to Poly2Graph’s
speed and memory efficiency. Addressing this intrinsic limitation robustly remains an area for future
development.

D DATASET DETAILS

D.1 COMPARISON WITH 45 OTHER DATASETS

We present a comprehensive comparison of our dataset in terms of both structural properties and
statistical metrics. Table A4 compiles all prominent graph datasets to the best of our knowledge.
Each column is described in the caption. As illustrated, while some spatial graph datasets do ex-
ist, they generally lack rich connection geometry (RCG. Nontrivial edge patterns beyond a simple
straight-line link) or support for multiple parallel edges between nodes. The dataset most similar to
HSG-12M in these respects is OpenStreetMap; however, it is not designed with any ML downstream
tasks, contains far fewer graphs, and is medium-scale judged by OGB criteria [37]. Moreover, al-
though it supports non-linear edge shapes—streets connecting a pair of destinations are usually not
straight-lines—the complexity of its connectivity is limited. In contrast, the edge geometries in our
setting exhibit much richer geometric variation. Consequently, prior to this work, the absence of a
large-scale multigraph learning challenge remain unaddressed.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Table A4: Overview of graph-level benchmark datasets. Each row corresponds to one dataset: #Graphs gives
the total number of graphs; #Classes is the number of target labels; #Nodes and #Edges report the average
number of nodes and edges per graph; Scale column follows the OGB Large-Scale Challenge definitions [37]:
Small (S) datasets fall below the large-scale thresholds; Medium (M) datasets contain > 1 million nodes or >
10 million edges; Large (L) datasets exceed 100 million nodes or 1 billion edges.; Attributed indicates whether
both node and edge features are present; Spatial denotes whether the graphs carry geometric or coordinate in-
formation (e.g. 2D, 3D, geographic coordinate system-GCS); Temporal flags static (S) or time-series graph
data (T); Multi marks support for multiple edges between node pairs; and RCG (Rich Connection Geometry)
indicates datasets whose edge geometry exhibits nontrivial patterns that go beyond simple straight-line connec-
tions. ”?” entries indicate information not stated in the original paper. In addition to values extracted from the
literature, some benchmark statistics were sourced from Refs. [37; 97; 21; 66].

Dataset #Graphs #Classes #Nodes #Edges Scale Attributed Spatial Temporal Multi RCG

Biology
ENZYMES [5; 63] 600 6 32.6 62.1 S – – S – –
PROTEINS [5; 63] 1.1K 2 39.1 72.8 S ✓ – S – –
D&D [63; 20] 1.2K 2 284.3 715.7 S – – S – –
ProFold [30] 76K – 8.0 ? S ✓ 3D T – –
NeuroGraph [74] 23K 7 359.6 11K M – – S – –
Skeleton (NTU-RGB+D) [76] 56K 60 25.0 24 M – 3D T – –
ppa [102; 36] 158K 37 243.4 266.1 M ✓ – S – –
Skeleton (Kinetics) [47] 260K 400 18.0 17 M – 2D T – –

Chemistry
MUTAG [50; 63] 188 2 17.9 19.8 S ✓ – S – –
SIDER [89; 1] 1.4K 2 33.6 35.4 S ✓ – S – –
BACE [89; 77] 1.5K 2 34.1 36.9 S ✓ – S – –
ClinTox [89; 28] 1.5K 2 26.2 27.9 S ✓ – S – –
BBBP [89; 60] 2.0K 2 24.1 25.9 S ✓ – S – –
Tox21 [89; 81] 7.8K 2 18.6 19.3 M ✓ – S – –
ToxCast [89; 70] 8.6K 2 18.8 19.3 M ✓ – S – –
Peptides-func [24] 15.5 K – 150.9 307.3 M ✓ 3D S – –
Peptides-struct [24] 15.5 K – 150.9 307.3 M ✓ 3D S – –
MolHIV [89; 36] 41.1K 2 25.5 27.5 M ✓ – S – –
MUV [89; 72] 93.1K 2 24.2 26.3 M ✓ – S – –
QM9 [68] 129K 12 18.0 18.6 M ✓ 3D S – –
MOSES [67] 194K – 22 47 M ✓ 3D S – –
MolOpt [45] 229K – 24 53 M ✓ 3D S – –
ZINC250K [43] 250K – 23 50 M ✓ 3D S – –
MolPCBA [89; 36] 437.9K 2 26.0 28.1 M ✓ – S – –
PCQM-Contact [24] 529.4K – 30.1 61.1 M ✓ 3D S – –
ChEMBL [61] 1.8M – 27.0 58 M ✓ 3D S – –
PCQM4Mv2 [37] 3.7 M – 14.1 14.6 L ✓ 3D S – –

Social Networks
IMDB-BINARY [63; 94] 1 K 2 19.8 96.5 S – – S – –
IMDB-MULTI [63; 94] 1.5 K 3 13.0 65.9 S – – S – –
REDDIT-BINARY [63; 94] 2 K 2 429.6 497.8 S – – S – –
REDDIT-MULTI-5K [63; 94] 5.0 K 5 508.5 594.9 M – – S – –
REDDIT-MULTI-12K [63; 94] 11.9 K 11 11.0 391.4 M – – S – –
CollabNet [79] 2.3K – 303K 207.6K L – GCS T - -

Computer Science
CIFAR10 [23; 51] 60 K 10 117.6 941.1 M ✓ 2D S – –
MNIST [23; 53] 70 K 10 70.6 564.5 M ✓ 2D S – –
Database [34] 300.0 K – ¡100.0 ? M ? – S – –
MalNet [26] 1.3 M 696 15.4 K 35.2 K L – – S – –
TpuGraphs (Tile) [66] 12.9 M – 40.0 ? L ? – S – –
TpuGraphs (Layout) [66] 31.1 M – 7.7 K ? L ? – S – –
TenSet [101] 51.6 M – 5.0–10.0 ? L ? – S – –

Geography
METR-LA [44] 34K – 327.0 2.4 M ✓ GCS T – –
PeMS-BAY [15] 50K – 207 1.5 M ✓ GCS T – –
OpenStreetMap [4] 110K – 500 1.2K M ✓ GCS S ✓ ✓

Physics
N-body-spring [49] 3.4M – 5.0 10 M ✓ 2D T – –
N-body-charged [49] 3.4M – 25.0 3 M ✓ 2D T – –
T-HSG-5M 5.1M 1401 13.8 28.9 L ✓ C-plane T ✓ ✓
HSG-12M 11.6M 1401 13.8 28.9 L ✓ C-plane S ✓ ✓
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Figure A6: Number of graphs v.s. total number of nodes in HSG-12M compared to other natural science
datasets. HSG-12M stands out with the highest data volume across all natural science datasets, including those
not designed for classification.

Moreover, as shown in the table, our large-scale T-HSG-5M dataset is the only temporal dataset
that includes class labels. This is particularly valuable in our setting, as different classes may exhibit
distinct temporal evolution patterns. We leave the investigation of these dynamics to future research.

D.1.1 COMPARISON WITH OTHER DATASETS IN PHYSICAL SCIENCES

Additionally, as illustrated in figure 1, HSM-12M stands out as the largest classification dataset in
terms of both graph count and class diversity. Although our dataset is designed for classification,
it is still informative to compare it with others based on the total number of graphs and nodes. By
these metrics, certain large-scale computer science datasets—such as TpuGraphs, Tenset, and Mal-
Net—contain larger overall volumes. However, a fairer comparison emerges when we evaluate our
dataset alongside those from the natural sciences, as they are constructed using similar methodolo-
gies.

To facilitate this comparison, we selected the largest datasets from the table and visualized them in
figure A6. The results show that even among natural science datasets not constrained to classification
tasks, ours stands out as not only competitive but also the largest in scale. These findings highlight
the scope and impact of this work.

D.2 CLARIFICATION ON HSG-TOPOLOGY DATASET VARIANT

The HSG-topology variant contains only pairwise non-isomorphic graphs. Within each ChP
class we retain exactly one representative for every unique connectivity pattern—equivalently, one
per isomorphism class that have the same adjacency matrix (i.e., up to a relabeling of nodes)—and
discard the rest isomorphic samples. This construction makes the dataset purely combinatorial.

This filtering induces a pronounced class imbalance: different Hamiltonian families generate
markedly different numbers of distinct topologies (i.e. isomorphisms).

This design is physically motivated: we are interested in how spectral-graph topology varies with
the underlying Hamiltonian parameters.
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E BENCHMARK DETAILS

E.1 DATA PREPROCESSING (INCLUDING SPATIAL MULTIEDGE FEATURIZATION)

Feature type Dim. Components / Description

Node 4
Complex position coordinates (2D)
Spectral potential at the node (1D)
DOS at the node (1D)

Edge
6

(Curved) edge length (1D; also used as the edge weight)
Straight-line distance between endpoints (1D)
Midpoint coordinates (2D)
Average spectral potential along the edge (1D)
Average DOS along the edge (1D)

Graph — None.

E.2 TRAINING CONFIGURATION

Baseline Models.

• Graph Convolutional Network (GCN) (Kipf & Welling, 2017): first-order spectral graph con-
volution that aggregates normalized neighbor features and applies a shared linear transform.

• Graph Attention Network (GAT) (Veličković et al., 2018): masked self-attention over neighbor-
hoods with multi-head weighting to adaptively combine messages.

• Modified Graph Attention Network (GATv2) (Brody et al., 2022): reformulated attention with
dynamic key–query dependence for greater expressiveness and more stable training.

• Graph Isomorphism Network (GIN) (Xu et al., 2019): sum-aggregating message passing with
an MLP update, designed for expressivity comparable to the Weisfeiler–Lehman test.

• Edge-conditioned Graph Isomorphism Network (GINE) (Hu et al., 2019): GIN variant that
injects edge features into the message MLP, improving performance on edge-featured graphs.

• Molecular Fingerprints (MF) (Duvenaud et al., 2015): uses learnable neighborhood transforms
and softmax pooling, yielding a fixed-length real-valued fingerprint aggregated over nodes and
layers.

• Crystal Graph Convolutional Neural Network (CGCNN) (Xie & Grossman, 2018): crystal-
graph convolutions over periodic structures (periodic crystal graph) that aggregate atom–bond
interactions within a distance cutoff for materials prediction.

• GraphSAGE (Hamilton et al., 2017): inductive neighbor-sampling with learnable aggregators
(e.g., mean) enabling generalization to unseen graphs.

All architectures are pooled via global add pooling, followed by a multi-layer perceptron (MLP) to
produce the final class logits.

Global training setup. Data splits, training hyperparameters, optimizer, learning rate scheduler,
hardwares, trainer settings, and common model hyperparameters are:
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Group Hyperparameter Value / Notes
Data Splits ratio Train:Val:Test = 8:1:1

Split strategy Stratified random splits (preserve
class/target proportions across
train/val/test)

Training Batch size 6000
Max epochs 100
Max steps 1000
Seeds {42, 2025, 666}

Model (common) #Conv layers 4
#MLP layers 2
Activation ReLU
Dropout 0.0
#Heads (GAT/GATv2) 1

Optimizer Algorithm AdamW (AMSGrad) [58]
Init LR η0 1× 10−3

Min LR ηmin 1× 10−5

Weight decay 0.0

Scheduler Policy Cosine annealing [57]
Period T0 100

Trainer Devices Two RTX A5000, 24GB each
Strategy Distributed Data Parallel (DDP)

Dataset-specific hyperparameter: hidden dimension of post-convolution MLP. The post-
convolution MLP hidden dimension is tuned to be larger than the number of classes per dataset,
to ensure sufficient capacity for final classification.

dimMLP
h one-band two-band three-band topology HSG-12M

Value 128 256 1500 1500 1500

Model-specific hyperparameters: hidden dimension of graph convolution layers. To ensure fair
comparison, for each dataset, we tune the hidden dimension of graph convolution layers for each
model such that the total number of trainable parameters is within 4% relative difference across all
models.

dimConv
h MF GCN GraphSAGE GAT GIN CGCNN MoNet

HSG-one-band 100 467 330 452 312 202 172
HSG-two-band 200 933 661 933 621 410 342
HSG-three-band 300 1279 963 1279 852 601 516
HSG-topology 300 1279 963 1279 852 601 516
HSG-12M 300 1279 963 1279 852 601 516

E.3 EVALUATION METRICS

We evaluate single-label multiclass prediction over a dataset D = {(Gi, yi)}ni=1 with yi ∈
{1, . . . , C}. Let si,c be the model score (logit or probability) for class c on example i, and
ŷi = argmaxc si,c.

Accuracy (micro-F1). Overall fraction of correct predictions:

Acc =
1

n

n∑
i=1

I{ŷi = yi}. (22)

In single-label multiclass settings, Accuracy equals the micro-averaged F1. It is intuitive and stable
when class frequencies are roughly balanced. The chance baseline is 1/C.
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Macro F1. Compute one-vs-rest counts for each class c:

TPc =
∑
i

I{yi = c, ŷi = c}, FPc =
∑
i

I{yi ̸= c, ŷi = c}, FNc =
∑
i

I{yi = c, ŷi ̸= c}.

(23)
Per-class precision/recall and F1, with 0/0 ≡ 0:

Pc =
TPc

TPc + FPc
, Rc =

TPc

TPc + FNc
, F1c =

2PcRc

Pc +Rc
. (24)

Macro-average across classes:

Macro-F1 =
1

C

C∑
c=1

F1c. (25)

Macro-F1 weights all classes equally and is therefore sensitive to minority-class perfor-
mance—crucial when C is large or labels are imbalanced.

Top-k Accuracy. Let TopK({si,c}Cc=1, k) denote the indices of the k largest scores. The Top-k
metric is

Top-k =
1

n

n∑
i=1

I
{
yi ∈ TopK

(
{si,c}Cc=1, k

) }
. (26)

We report k ∈ {5, 10}. Top-k captures ranking quality and is directly aligned with inverse-design
workflows that accept a shortlist for subsequent physics-based re-ranking. Random-guess base-
lines scale as k/C (e.g., 5/24 ≈ 20.83%, 10/24 ≈ 41.67%; for C = 1401: 5/1401 ≈ 0.357%,
10/1401 ≈ 0.714%).

Reporting and interpretation. All metrics are reported as mean±std averaged over seeds on the
held-out test split. For smaller or moderately balanced label spaces, Accuracy is informative
and easy to compare; for highly imbalanced or very large C, Macro-F1 is emphasized to surface
minority-class recall, while Top-5/10 quantify the usefulness of the model as a candidate-generator
for downstream, physics-constrained refinement.

E.4 ADDITIONAL BENCHMARK RESULTS AND ANALYSIS

Tables A5-A8 reports additional benchmark results including test loss, test top-5, and training statis-
tics, including throughput and device utilization.

Overall accuracy and stability. Across all five static variants, seed variance is consistently small,
indicating stable training.

Edge attributes matter. Methods that explicitly consume edge features (e.g. GINE) are consis-
tently superior to their edge-agnostic counterparts (e.g. GIN). For example on two-band, GINE
(.518±.049) outperforms GIN (.343±.084). On HSG-12M, plain GIN essentially collapses (.063±.031),
while GINE remains competitive (.460±.025). This aligns with the dataset design: multi-edge geom-
etry (length, straight-line distance, midpoint, average spectral potential, average DOS) carries irre-
ducible spatial information; architectures which propagate and transform edge states are expected to
succeed.

Performance degrades with task difficulty. Averaging over models, test metrics degrade from
one-band→two-band→topology→three-band→HSG-12M. This monotonic decay is
expected: higher-band Hamiltonians induce larger graphs with richer multi-edge geometry and more
challenging class diversity (up to 1,401), stressing both representation and optimization. Moreover,
as expected, per-graph memory usage scales with dataset complexity for every model (e.g., SAGE:
0.066 on one-band→ 0.544 on three-band).

Top-k is high—promising for inverse design. Despite moderate Top-1 accuracy on the largest
settings, Top-10 accuracy is very high (e.g., on HSG-12M SAGE 95.2%, CGCNN 94.8%). For
easier subsets, Top-10 essentially saturates (99%+ on one-band for all models). This pattern
implies that models almost always retrieve a small candidate set of plausible Hamiltonian families.
This is encouraging for inverse design workflows (retrieve top-k families, then re-rank/verify
physically in experiments, e.g. design a few meta-matetial candidates and observe if targeted
spectral properties are obtained).
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Attention is not a free lunch here. GAT / GATv2 lag SAGE / CGCNN on all splits, while also
incurring the highest peak GPU memory per graph (e.g., on HSG-12M ∼1.93–2.11 vs SAGE’s
0.51). In spatial multigraphs with high effective degrees (many parallel edges), attention softmaxes
can become dominated by edge multiplicity/noise and impose additional compute/memory over-
head without commensurate accuracy gains under our budgets. In other words, dense multi-edge
neighborhoods amplify attention’s quadratic costs and may dilute useful geometric cues when our
direction-ignorant summary features are the only edge signal.

GraphSAGE excels with limited budget and comparable parameters constraint. GraphSAGE
is consistently the strongest baseline. It attains the best Top-1 accuracy and macro-F1 on every
subset. Under matched trainable parameter constraints (≤4% difference) and a fixed training budget
(max epochs = 100, max steps = 1000), these consistent gains suggest that:

1. Either, other more expressive architectures (e.g., attentive or edge-MLP-based) require larger
training budgets to fully realize their potential;

2. Or, other expressive baselines are more parameter-hungry, and thus under trainable parameter
constraints, they are not as efficient as lightweight baselines for large-scale benchmarks;

3. Or surprisingly, GraphSAGE’s neighborhood aggregation is a better inductive bias for our spatial
multigraphs than attention or vanilla spectral convolutions.

One could explore relaxing the fixed budget and hyperparameter optimization to unlock each archi-
tecture’s full potential. However this is far beyond the computing resources currently available to
us, and we leave this to future work.

Implications for spatial multigraph learning. With our fixed-size, direction-agnostic edge sum-
maries (length, straight-line distance, midpoint, avg. potential/DOS), relatively simple, locality-
biased architectures already capture much of the discriminative signal.

However, the persistent Top-1↔Top-10 gap between edge-aware baselines and their edge-agnostic
counterparts, and difficulty at high class diversity, together indicate that fine-grained geometric
information along multi-edge curves (e.g., curvature, torsion, higher-order moments, spline/Bezier
edge parameterizations, or sequence encodings of the edge polyline) are promising routes to push
performance further, especially on large-scale challenges like three-band and HSG-12M.

Table A5: Additional Graph-level classification results for Test Loss on the HSG dataset variants.
Cells show mean±std over three random seeds; best model per dataset in Bold.

Model one-band two-band three-band topology HSG-12M

GCN .723±.018 1.695±.047 2.522±.063 2.062±.062 2.357±.089
GAT .841±.008 1.776±.034 2.465±.068 1.825±.053 2.330±.047
GATv2 .926±.018 1.853±.018 2.809±.171 1.968±.025 2.401±.011
GIN .494±.017 2.216±.402 4.926±.422 4.179±.612 4.764±.711
GINE .554±.027 1.466±.183 2.298±.091 1.316±.057 1.799±.124
MF 1.056±.019 2.392±.089 2.852±.026 2.222±.051 2.658±.063
CGCNN .474±.010 1.218±.104 1.730±.063 1.191±.065 1.485±.021
GraphSAGE .355±.011 .932±.022 1.561±.073 1.019±.002 1.434±.009
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Table A6: Additional Graph-level classification results for Top-5 Accuracy on the HSG dataset
variants. Cells show mean±std over three random seeds; best model per dataset in Bold.

Model one-band two-band three-band topology HSG-12M

GCN .988±.001 .847±.009 .693±.015 .715±.007 .725±.020
GAT .981±.001 .830±.007 .702±.016 .752±.014 .726±.009
GATv2 .973±.002 .815±.003 .627±.038 .723±.005 .711±.001
GIN .995±.000 .746±.087 .184±.066 .276±.127 .222±.098
GINE .996±.001 .883±.029 .755±.015 .848±.013 .830±.018
MF .974±.001 .703±.026 .616±.006 .673±.011 .655±.015
CGCNN .995±.001 .920±.012 .836±.009 .870±.008 .876±.003
GraphSAGE .998±.000 .953±.002 .863±.012 .898±.002 .882±.002

Table A7: Additional Graph-level classification results for Throughput (graphs sec−1) on the HSG
dataset variants. Cells show mean±std over three random seeds; best model per dataset in Bold.

Model one-band two-band three-band topology HSG-12M

GCN 113580±1840 83975±717 50803±238 44065±53 52945±199
GAT 103757±879 62717±302 31885±25 25862±29 34193±283
GATv2 104282±2065 63092±216 30074±11 23825±15 32051±112
GIN 111905±900 84681±354 61019±469 55879±98 62134±955
GINE 112075±2619 81356±1343 52408±186 45984±81 53332±99
MF 112493±3786 85980±1154 65223±710 61507±232 66829±1729
CGCNN 105543±1818 62122±280 26752±17 20414±19 28671±226
GraphSAGE 113781±1797 85590±637 54473±266 48479±73 56064±533

Table A8: Additional Graph-level classification results for Average Peak GPU Memory (MB/-
graph) on the HSG dataset variants. Cells show mean±std over three random seeds; best model per
dataset in Bold.

Model one-band two-band three-band topology HSG-12M

GCN .0851±.0001 .3308±.0002 .7274±.0014 .8824±.0015 .6713±.0017
GAT .2418±.0001 1.0276±.0003 2.3011±.0021 2.8788±.0040 2.1065±.0056
GATv2 .2100±.0002 .8809±.0002 2.1102±.0014 2.6580±.0036 1.9301±.0056
GIN .0882±.0002 .2954±.0002 .6375±.0014 .7535±.0014 .5918±.0009
GINE .1209±.0001 .4816±.0001 1.0676±.0016 1.3142±.0022 .9812±.0026
MF .0494±.0002 .1746±.0001 .4054±.0006 .4701±.0006 .3772±.0011
CGCNN .1876±.0000 .7981±.0004 1.9284±.0016 2.4368±.0041 1.7636±.0050
GraphSAGE .0669±.0002 .2407±.0001 .5512±.0012 .6542±.0011 .5108±.0008
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E.5 PHYSICAL MOTIVATION OF THE BENCHMARK TASK

In crystalline, mesoscopic solids and meta-materials, observable spectral signatures—band disper-
sions, density of states ρ(E)—are generated by an underlying Hamiltonian H(z) whose structure is
dictated by crystal geometry, orbital content, and the pattern of allowed hoppings. The forward map

poly2graph : H 7−→ G(H) (27)

from a tight-binding (or effective) Hamiltonian to a spectral graph G is deterministic yet typically
many-to-one: different microscopic parameterizations inside the same Hamiltonian family—more
precisely, the same hopping-pattern can induce very similar spectra.

For materials discovery and interpretation of experiments, one interesting and practically rel-
evant question is the inverse problem of Hamiltonian inference from spectral data:

Given a desired spectral signature (the Hamiltonian spectral graph), what “class”
of Hamiltonians—what material structure/hopping pattern—could realize it?

We cast this inverse-design query as supervised categorical retrieval from spectral graphs to a dis-
crete characteristic polynomial (ChP) class (a “hopping-pattern”). Learning a predictor

fθ : G 7→ CP (28)

coarse-grains the ill-posed inverse map into a small set of plausible Hamiltonian families. High Top-
k accuracy means we can enumerate TopK(fθ(G), k) as a compact candidate list, thus reducing
searching over a huge number of hopping patterns to a manageable shortlist.

This framing is physically meaningful for two reasons. First, the spectral features that guide human
intuition (e.g. gaps and gap sizes) are controlled primarily by lattice symmetries and connectivity
rather than precise parameter values; predicting the family is therefore the right first step. Second, our
spatial multigraph featurization of spectra (node- and edge-level geometric and spectral statistics) is
engineered to expose invariants that tie back to local real-space structure, allowing GNNs to learn
robust surrogates of poly2graph−1.

Beyond enabling inverse design, the HSG provides a large-scale resource to study how Hamiltonian
parameters control spectral-graph morphology and to pre-train scientific foundation models on phys-
ically grounded graph signals. In short, the mapping Spectral Graph→ChP Class directly
operationalizes a task that materials physicists and chemists already perform by hand, but at scale
and with principled uncertainty via Top-k retrieval.

F UNIVERSALITY OF SPECTRAL GRAPHS THROUGH TOEPLITZ
DECOMPOSITION

At the heart of our framework is the ‘Poly2Graph‘ algorithm, a function that establishes a direct
mapping from the algebraic domain of polynomials and matrices to the structural domain of spectral
graphs. This connection is most naturally illustrated with Toeplitz matrices. As demonstrated in
appendix B, a generic Toeplitz matrix can be interpreted as a single-band tight-binding Hamiltonian
(Eq.8), which corresponds to a unique signature spectral graph.

The significance of this specific result is vastly amplified by a foundational theorem in linear algebra:

Any matrix can be expressed as a product of Toeplitz matrices (Ye & Lim, 2016).

Specifically, for any matrix M ∈ Cn×n, a decomposition into a product of r Toeplitz matrices exists,
where ⌊n/2⌋+1 ≤ r ≤ 2n+5. While this decomposition is not unique without further constraints,
its existence is guaranteed.

Consequently, by associating a spectral graph with each Toeplitz component, we can represent any
arbitrary matrix as a multiset of these graphs. This provides a universal procedure for translating
complex matrices into a graph-based representation:

1. Start with a generic matrix M ∈ Cn×n.
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2. Decompose M into a product of r Toeplitz matrices, M = T1T2 · · ·Tr.

3. Apply the ‘Poly2Graph‘ algorithm to each Toeplitz factor Ti to extract its corresponding
spectral graph Gi. The resulting multiset {G1, . . . , Gr} is the spectral graph representation
of M .

This procedure highlights the remarkable generality of our framework. Since the characteristics
of most scientific systems can be expressed as a matrix, polynomial, or even a vector (which can
be standardized and treated as polynomial coefficients), our approach offers a novel analytical lens.
This opens up new avenues for research across numerous fields, a direction we are actively exploring
and invite the broader community to join.

G TUTORIAL OF POLY2GRAPH PACKAGE

poly2graph is a Python package for automatic Hamiltonian spectral graph construction. It takes
in a characteristic polynomial or a Bloch Hamiltonian and returns the spectral graph.

G.1 FEATURES

• High-performance

– Fast construction of spectral graph from any one-dimensional models
– Adaptive resolution to reduce floating operation cost and memory usage
– Automatic backend for computation bottleneck. If tensorflow / torch is avail-

able, any device (e.g. /GPU:0, /TPU:0, cuda:0, etc.) that they support can be
used for acceleration.

• Cover generic topological lattices

– Support generic one-band and multi-band models
– Flexible multiple input choices, be they characteristic polynomials or Bloch Hamilto-

nians; formats include strings, sympy.Poly, and sympy.Matrix

• Automatic and Robust

– By default, no hyper-parameters are needed. Just input the characteristic of your
model and poly2graph handles the rest

– Automatic spectral boundary inference
– Relatively robust on multiband models that are prone to ”component fragmentation”

• Helper functionalities generally useful

– skeleton2graph module: Convert a skeleton image to its graph representation
– hamiltonian module: Conversion among different Hamiltonian representations

and efficient computation of a range of properties

G.2 INSTALLATION

Download the package from https://anonymous.4open.science/r/iclr2026_
generator-AE56 and unzip it.

Move into the unzipped folder iclr2026 dataset-2802/ and install the package locally via
pip:

1 $ cd iclr2026_generator-AE56
2 $ pip install -e .

Optionally, if TensorFlow or PyTorch is available, poly2graph will make use of them automati-
cally to accelerate the computation bottleneck. Priority: tensorflow ¿ torch ¿ numpy.

This module is tested on Python >= 3.11. Check the installation:
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1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

1 import poly2graph as p2g
2 print(p2g.__version__)

G.3 USAGE

See the Poly2Graph Tutorial JupyterNotebook for a quick interactive start.

p2g.SpectralGraph and p2g.CharPolyClass are the two main classes in the package.

p2g.SpectralGraph investigates the spectral graph topology of a specific given characteristic
polynomial or Bloch Hamiltonian. p2g.CharPolyClass investigates a class of parametrized
characteristic polynomials or Bloch Hamiltonians, and is optimized for generating spectral proper-
ties in parallel.

1 import numpy as np
2 import networkx as nx
3 import sympy as sp
4 import matplotlib.pyplot as plt
5 from matplotlib import colors
6 # always start by initializing the symbols for k, z, and E
7 k = sp.symbols('k', real=True)
8 z, E = sp.symbols('z E', complex=True)

G.3.1 A GENERIC ONE-BAND EXAMPLE (P2G.SPECTRALGRAPH):

Characteristic polynomial:

P (E, z) := h(z)− E = z4 − z − z−2 − E

Its Bloch Hamiltonian (Fourier transformed Hamiltonian in momentum space) is a scalar function:

h(z) = z4 − z − z−2

where the phase factor is defined as z := eik.

Expressed in terms of crystal momentum k:

h(k) = e4ik − eik − e−2ik

The valid input formats to initialize a p2g.SpectralGraph object are:

1. Characteristic polynomial in terms of z and E:
• as a string of the Poly in terms of z and E
• as a sympy.Poly with {z, 1/z, E} as generators

2. Bloch Hamiltonian in terms of k or z
• as a sympy.Matrix in terms of k
• as a sympy.Matrix in terms of z

All the following characteristics are valid and will initialize to the same characteristic poly-
nomial and therefore produce the same spectral graph:

1 char_poly_str = '-z**-2 - E - z + z**4'
2

3 char_poly_Poly = sp.Poly(
4 -z**-2 - E - z + z**4,
5 z, 1/z, E # generators are z, 1/z, E
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1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

6 )
7

8 phase_k = sp.exp(sp.I*k)
9 char_hamil_k = sp.Matrix([-phase_k**2 - phase_k + phase_k**4])

10

11 char_hamil_z = sp.Matrix([-z**-2 - E - z + z**4])

Let us just use the string to initialize and see a set of properties that are computed automatically:

1 sg = p2g.SpectralGraph(char_poly_str, k=k, z=z, E=E)

Characteristic polynomial:

1 sg.ChP

>>> Poly
(
z4 − z − 1

z2 − E, z, 1
z , E, domain = Z

)
Bloch Hamiltonian:

• For one-band model, it is a unique, rank-0 matrix (scalar)

1 sg.h_k

>>> [
e4ik − eik − e−2ik

]
1 sg.h_z

>>> [
−−z6+z3+1

z2

]

The Frobenius companion matrix of P(E)(z):

• treating E as parameter and z as variable
• Its eigenvalues are the roots of the characteristic polynomial at a fixed complex energy E.

Thus it is useful to calculate the GBZ (generalized Brillouin zone), the spectral potential
(Ronkin function), etc.

1 sg.companion_E

>>> 
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 E
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0


Number of bands & hopping range:
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1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

1 print('Number of bands:', sg.num_bands)
2 print('Max hopping length to the right:', sg.poly_p)
3 print('Max hopping length to the left:', sg.poly_q)

>>>

1 Number of bands: 1
2 Max hopping length to the right: 2
3 Max hopping length to the left: 4

A real-space Hamiltonian of a finite chain and its energy spectrum:

1 H = sg.real_space_H(
2 N=40, # number of unit cells
3 pbc=False, # open boundary conditions
4 max_dim=500 # maximum dimension of the Hamiltonian matrix (for

numerical accuracy)↪→
5 )
6

7 energy = np.linalg.eigvals(H)
8

9 fig, ax = plt.subplots(figsize=(3, 3))
10 ax.plot(energy.real, energy.imag, 'k.', markersize=5)
11 ax.set(xlabel='Re(E)', ylabel='Im(E)', \
12 xlim=sg.spectral_square[:2], ylim=sg.spectral_square[2:])
13 plt.tight_layout(); plt.show()

THE SET OF SPECTRAL FUNCTIONS

1 phi, dos, binaried_dos = sg.spectral_images()
2

3 fig, axes = plt.subplots(1, 3, figsize=(8, 3), sharex=True,
sharey=True)↪→

4 axes[0].imshow(phi, extent=sg.spectral_square, cmap='terrain')
5 axes[0].set(xlabel='Re(E)', ylabel='Im(E)', title='Spectral Potential')
6 p2, p98 = np.percentile(dos, (2, 98))
7 # ˆ Clip extreme DOS to increase visibility.
8 norm = colors.Normalize(vmin=p2, vmax=p98)
9 axes[1].imshow(dos, extent=sg.spectral_square, cmap='viridis',

norm=norm)↪→
10 axes[1].set(xlabel='Re(E)', title='Density of States')
11
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2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

12 axes[2].imshow(binaried_dos, extent=sg.spectral_square, cmap='gray')
13 axes[2].set(xlabel='Re(E)', title='Graph Skeleton')
14 plt.tight_layout()
15 plt.show()

THE SPECTRAL GRAPH G

1 graph = sg.spectral_graph()
2

3 fig, ax = plt.subplots(figsize=(3, 3))
4 pos = nx.get_node_attributes(graph, 'pos')
5 nx.draw_networkx_nodes(graph, pos, alpha=0.8, ax=ax,
6 node_size=50, node_color='#A60628')
7 nx.draw_networkx_edges(graph, pos, alpha=0.8, ax=ax,
8 width=5, edge_color='#348ABD')
9 plt.tight_layout(); plt.show()

Tip

If tensorflow or torch is available, poly2graph will automatically use them and run
on CPU by default. If other device, e.g. GPU / TPU is available, one can pass device =
{device string} to the method spectral images and spectral graph:

1 SpectralGraph.spectral_images(device='/cpu:0')
2 SpectralGraph.spectral_graph(device='/gpu:1')
3 SpectralGraph.spectral_images(device='cpu')
4 SpectralGraph.spectral_graph(device='cuda:0')
5 ...

However, some functions may not have gpu kernel in tf/torch, in which case the computation
will fallback to CPU.
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2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

G.3.2 A GENERIC MULTI-BAND EXAMPLE (P2G.SPECTRALGRAPH):

Characteristic polynomial (four bands):

P (E, z) := det(h(z)− E I) = z2 + 1/z2 + Ez − E4

One of its possible Bloch Hamiltonians in terms of z:

h(z) =

0 0 0 z2 + 1/z2

1 0 0 z
0 1 0 0
0 0 1 0



1 sg_multi = p2g.SpectralGraph("z**2 + 1/z**2 + E*z - E**4", k, z, E)

Characteristic polynomial:

1 sg_multi.ChP

>>> Poly
(
z2 + zE + 1

z2 − E4, z, 1
z , E, domain = Z

)
Bloch Hamiltonian:

• For multi-band model, if the p2g.SpectralGraph is not initialized with a sympy
Matrix, then poly2graph will use the companion matrix of the characteristic polyno-
mial P(z)(E) (treating z as parameter and E as variable) as the Bloch Hamiltonian – this
is one of the set of possible band Hamiltonians that possesses the same energy spectrum
and thus the same spectral graph.

1 sg_multi.h_k

>>> 0 0 0 2 cos (2k)
1 0 0 eik

0 1 0 0
0 0 1 0


1 sg_multi.h_z

>>> 0 0 0 z2 + 1
z2

1 0 0 z
0 1 0 0
0 0 1 0



The Frobenius companion matrix of P(E)(z):

1 sg_multi.companion_E
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2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

>>> 0 0 0 −1
1 0 0 0
0 1 0 E4

0 0 1 −E


Number of bands & hopping range:

1 print('Number of bands:', sg_multi.num_bands)
2 print('Max hopping length to the right:', sg_multi.poly_p)
3 print('Max hopping length to the left:', sg_multi.poly_q)

>>>

1 Number of bands: 4
2 Max hopping length to the right: 2
3 Max hopping length to the left: 2

A real-space Hamiltonian of a finite chain and its energy spectrum:

1 H_multi = sg_multi.real_space_H(
2 N=40, # number of unit cells
3 pbc=False, # open boundary conditions
4 max_dim=500 # maximum dimension of the Hamiltonian matrix (for

numerical accuracy)↪→
5 )
6

7 energy_multi = np.linalg.eigvals(H_multi)
8

9 fig, ax = plt.subplots(figsize=(3, 3))
10 ax.plot(energy_multi.real, energy_multi.imag, 'k.', markersize=5)
11 ax.set(xlabel='Re(E)', ylabel='Im(E)', \
12 xlim=sg_multi.spectral_square[:2], ylim=sg_multi.spectral_square[2:])
13 plt.tight_layout(); plt.show()

THE SET OF SPECTRAL FUNCTIONS

1 phi_multi, dos_multi, binaried_dos_multi =
sg_multi.spectral_images(device='/cpu:0')↪→

2

3 fig, axes = plt.subplots(1, 3, figsize=(8, 3), sharex=True,
sharey=True)↪→
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2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

4 axes[0].imshow(phi_multi, extent=sg_multi.spectral_square,
cmap='terrain')↪→

5 axes[0].set(xlabel='Re(E)', ylabel='Im(E)', title='Spectral Potential')
6 axes[1].imshow(dos_multi, extent=sg_multi.spectral_square,

cmap='viridis', norm=norm)↪→
7 axes[1].set(xlabel='Re(E)', title='Density of States')
8 axes[2].imshow(binaried_dos_multi, extent=sg_multi.spectral_square,

cmap='gray')↪→
9 axes[2].set(xlabel='Re(E)', title='Graph Skeleton')

10 plt.tight_layout(); plt.show()

THE SPECTRAL GRAPH G

1 graph_multi = sg_multi.spectral_graph(
2 short_edge_threshold=20,
3 # ˆ node pairs or edges with distance < threshold pixels are merged
4 )
5

6 fig, ax = plt.subplots(figsize=(3, 3))
7 pos_multi = nx.get_node_attributes(graph_multi, 'pos')
8 nx.draw(graph_multi, pos_multi, ax=ax,
9 node_size=10, node_color='#A60628',

10 edge_color='#348ABD', width=2, alpha=0.8)
11 plt.tight_layout(); plt.show()

G.3.3 NODE AND EDGE ATTRIBUTES OF THE SPECTRAL GRAPH OBJECT

The spectral graph is a networkx.MultiGraph object.

• Node Attributes

1. pos : (2,)-numpy array
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2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

– the position of the node (Re(E), Im(E))

2. dos : float
– the density of states at the node

3. potential : float
– the spectral potential at the node

• Edge Attributes

1. weight : float
– the weight of the edge, which is the length of the edge in the complex energy

plane
2. pts : (w, 2)-numpy array

– the positions of the points constituting the edge, where w is the number of points
along the edge, i.e., the length of the edge, equals weight

3. avg dos : float
– the average density of states along the edge

4. avg potential : float
– the average spectral potential along the edge

1 node_attr = dict(graph.nodes(data=True))
2 edge_attr = list(graph.edges(data=True))
3 print('The attributes of the first node\n', node_attr[0], '\n')
4 print('The attributes of the first edge\n', edge_attr[0][-1], '\n')

>>>

1 The attributes of the first node
2 {'pos': array([-0.20403848, -2.11668106]),
3 'dos': 0.0011466597206890583,
4 'potential': -0.655870258808136}
5

6 The attributes of the first edge
7 {'weight': 1.4176547247784077,
8 'pts': array([[-2.04038482e-01, -2.11668106e+00],
9 [-1.99792382e-01, -2.11243496e+00],

10 ...
11 [ 5.94228396e-01, -1.02967935e+00]]),
12 'avg_dos': 0.10761458,
13 'avg_potential': -0.5068641}

G.3.4 A GENERIC MULTI-BAND CLASS (P2G.CHARPOLYCLASS):

Let us add two parameters {a,b} to the aforementioned multi-band example and construct a
p2g.CharPolyClass object:

1 a, b = sp.symbols('a b', real=True)
2

3 cp = p2g.CharPolyClass(
4 "z**2 + a/z**2 + b*E*z - E**4",
5 k=k, z=z, E=E,
6 params={a, b}, # pass parameters as a set
7 )

>>>
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2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

1 Derived Bloch Hamiltonian `h_z` with 4 bands.

View a few auto-computed properties

Characteristic polynomial:

1 cp.ChP

>>> Poly
(
z2 + a 1

z2 + bzE − E4, z, 1
z , E, domain = Z [a, b]

)
Bloch Hamiltonian:

1 cp.h_k

>>> 0 0 0 (a+ e4ik)e−2ik

1 0 0 beik

0 1 0 0
0 0 1 0


1 cp.h_z

>>> 0 0 0 a
z2 + z2

1 0 0 bz
0 1 0 0
0 0 1 0


The Frobenius companion matrix of P(E)(z):

1 cp.companion_E

>>> 0 0 0 −a
1 0 0 0
0 1 0 E4

0 0 1 −Eb



AN ARRAY OF SPECTRAL FUNCTIONS

To get an array of spectral images or spectral graphs, we first prepare the values of the parameters
{a,b}

1 a_array = np.linspace(-2, 1, 6)
2 b_array = np.linspace(-1, 1, 6)
3 a_grid, b_grid = np.meshgrid(a_array, b_array)
4 param_dict = {a: a_grid, b: b_grid}
5 print('a_grid shape:', a_grid.shape,
6 '\nb_grid shape:', b_grid.shape)
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2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

>>>

1 a_grid shape: (6, 6)
2 b_grid shape: (6, 6)

Note that the value array of the parameters should have the same shape, which is also the shape
of the output array of spectral images

1 phi_arr, dos_arr, binaried_dos_arr, spectral_square = \
2 cp.spectral_images(param_dict=param_dict)
3 print('phi_arr shape:', phi_arr.shape,
4 '\ndos_arr shape:', dos_arr.shape,
5 '\nbinaried_dos_arr shape:', binaried_dos_arr.shape)

>>>

1 phi_arr shape: (6, 6, 1024, 1024)
2 dos_arr shape: (6, 6, 1024, 1024)
3 binaried_dos_arr shape: (6, 6, 1024, 1024)

1 from mpl˙toolkits.axes˙grid1 import ImageGrid
2

3 fig = plt.figure(figsize=(13, 13))
4 grid = ImageGrid(fig, 111, nrows_ncols=(6, 6), axes_pad=0,
5 label_mode='L', share_all=True)
6

7 for ax, (i, j) in zip(grid, [(i, j) for i in range(6) for j in
range(6)]):↪→

8 ax.imshow(phi_arr[i, j], extent=spectral_square[i, j],
cmap='terrain')↪→

9 ax.set(xlabel='Re(E)', ylabel='Im(E)')
10 ax.text(
11 0.03, 0.97, f'a = {a_array[i]:.2f}, b = {b_array[j]:.2f}',
12 ha='left', va='top', transform=ax.transAxes,
13 fontsize=10, color='tab:red',
14 bbox=dict(alpha=0.8, facecolor='white')
15 )
16

17 plt.tight_layout()
18 plt.savefig('./assets/ChP_spectral_potential_grid.png', dpi=72)
19 plt.show()

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

AN ARRAY OF SPECTRAL GRAPHS

1 graph_flat, param_dict_flat = cp.spectral_graph(param_dict=param_dict)
2 print(graph_flat, '\n')
3 print(param_dict_flat)

1 [<networkx.classes.multigraph.MultiGraph object at 0x000001966DFCD190>,
2 <networkx.classes.multigraph.MultiGraph object at 0x000001966DFCECF0>,
3 ...
4 <networkx.classes.multigraph.MultiGraph object at 0x000001966DFCE750>]
5

6 {a:
7 array([-2. , -1.4, -0.8, -0.2, 0.4, 1. , -2. , -1.4, -0.8, -0.2,

0.4,↪→
8 1. , -2. , -1.4, -0.8, -0.2, 0.4, 1. , -2. , -1.4, -0.8,

-0.2,↪→
9 0.4, 1. , -2. , -1.4, -0.8, -0.2, 0.4, 1. , -2. , -1.4,

-0.8,↪→
10 -0.2, 0.4, 1. ]),
11 b:
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2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

12 array([-1. , -1. , -1. , -1. , -1. , -1. , -0.6, -0.6, -0.6, -0.6,
-0.6,↪→

13 -0.6, -0.2, -0.2, -0.2, -0.2, -0.2, -0.2, 0.2, 0.2, 0.2,
0.2,↪→

14 0.2, 0.2, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 1. , 1. , 1.
,↪→

15 1. , 1. , 1. ])}

Note

The spectral graph is a networkx.MultiGraph object, which cannot be directly returned
as a multi-dimensional numpy array of MultiGraph, except for the case of 1D array. In-
stead, we return a flattened list of networkx.MultiGraph objects, and the accompanying
param dict flat is the dictionary that contains the corresponding flattened parameter val-
ues.

Tip

It’s recommended to pass the values of the parameters as vectors (1D arrays) instead of higher
dimensional ND arrays to avoid the overhead of reshaping the output and the difficulty to
retrieve / postprocess the spectral graphs.

H LIMITATIONS AND FUTURE WORK

Component fragmentation. Our extraction pipeline struggles when the hopping range or band
number becomes large (e.g. for pure theoretical interests that fall outside realistic domain), because
extremely low densities of states make the graph skeleton fragile, occasionally fragmenting a con-
nected component (as shown in the bottom row in figure A4). We term this phenomenon component
fragmentation and note that it is an intrinsic limitation of the spectral graph per se (see appendix C.6).

Better designed, more comprehensive benchmark. Our contribution centers on the dataset and its
generator; the benchmark is a lightweight baseline intended to catalyze follow-up work. We invite
the community to perform comprehensive, large-scale, and carefully designed evaluations.

Representation gap. Our reference PyG conversion uses fixed-size, direction-agnostic edge sum-
maries, which can discard full continuous details of multi-edge geometry. Future encoders could
operate directly on edge coordinate sequences, e.g. explore spline/Bezier bases, curvature/shape
descriptors.

Multi-edge modeling. Vanilla attention and pooling are not tailored for heavy edge multiplicity.
Multi-edge–aware mechanisms—typed/bundled edges, edge-gated updates, sparsified geometric at-
tention, or dual-graph pooling over edges—may better exploit information carried by parallel curves.

Temporal modeling (T-HSG-5M). Our static benchmark does not cover dynamic tasks.
T-HSG-5M enables early-sequence classification, temporal extrapolation, and change-point detec-
tion that leverage continuous geometric evolution along Hamiltonian parameters.

47


	Introduction
	Poly2Graph: Automating Spectral Graph Extraction
	HSG-12M Dataset Description
	Benchmarking Results
	Discussion
	Conclusion
	Related Work
	Graph Representation Learning, Datasets, and Benchmarks.
	Graph Learning in Multigraphs.
	Graph Learning in Spatial Graphs.

	Mathematical Background - Hamiltonian Spectral Graph
	The Hamiltonian and Energy Spectrum in 1D Tight-Binding Systems
	Hamiltonian Spectral Graph: Emergent Topology in the Thermodynamic Limit
	Theoretical Framework: Non-Bloch Band Theory
	The Bloch Hamiltonian and Characteristic Polynomial P(z,E)
	Limitations of Standard Bloch Theory (PBC)
	Non-Bloch Band Theory and the Generalized Brillouin Zone (GBZ)
	Characteristic Polynomial Class CP
	Recap of Key Concepts (Hierarchy of Abstractions)

	The Shortcut to Spectral Graph via Electrostatic Analogy.
	Density of States (E) and the Spectral Potential (E)
	Efficient Calculation of (E)


	Poly2Graph Pipeline Details
	Initialization and Input
	Accelerated Root Finding
	Adaptive Resolution and Image Processing
	Graph Extraction and Post-processing
	Benchmark Poly2Graph Speed-Up
	Caveats: Component Fragmentation

	Dataset Details
	Comparison with 45 Other Datasets
	Comparison with Other Datasets in Physical Sciences

	Clarification on brownHSG-topology Dataset Variant

	Benchmark Details
	Data Preprocessing (including Spatial Multiedge Featurization)
	Training Configuration
	Evaluation Metrics
	Additional Benchmark Results and Analysis
	Physical Motivation of the Benchmark Task

	Universality of Spectral Graphs Through Toeplitz Decomposition
	Tutorial of Poly2Graph Package
	Features
	Installation
	Usage
	A generic one-band example (p2g.SpectralGraph):
	A generic multi-band example (p2g.SpectralGraph):
	Node and Edge Attributes of the Spectral Graph Object
	A generic multi-band class (p2g.CharPolyClass):


	Limitations and Future Work

