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ABSTRACT

Al is transforming scientific research by revealing new ways to understand com-
plex physical systems, but its impact remains constrained by the lack of large,
high-quality domain-specific datasets. A rich, largely untapped resource lies in
non-Hermitian quantum physics, where the energy spectra of crystals form intri-
cate geometries on the complex plane—termed as Hamiltonian spectral graphs.
Despite their significance as fingerprints for electronic behavior, their systematic
study has been intractable due to the reliance on manual extraction. To unlock this
potential, we introduce Poly2Graph': a high-performance, open-source pipeline
that automates the mapping of 1-D crystal Hamiltonians to spectral graphs. Us-
ing this tool, we present HSG-12M”: a dataset containing 11.6 million static
and 5.1 million dynamic Hamiltonian spectral graphs across 1401 characteristic-
polynomial classes, distilled from 177 TB of spectral potential data. Crucially,
HSG-12M is the first large-scale dataset of spatial multigraphs—graphs embed-
ded in a metric space where multiple geometrically distinct trajectories between
two nodes are retained as separate edges. This simultaneously addresses a critical
gap, as existing graph benchmarks overwhelmingly assume simple, non-spatial
edges, discarding vital geometric information. Benchmarks with popular GNNs
expose new challenges in learning spatial multi-edges at scale. Beyond its practi-
cal utility, we show that spectral graphs serve as universal topological fingerprints
of polynomials, vectors, and matrices, forging a new algebra-to-graph link. HSG-
12M lays the groundwork for data-driven scientific discovery in condensed matter
physics, new opportunities in geometry-aware graph learning and beyond.

1 INTRODUCTION

The integration of Al into scientific research is transforming how complex physical systems are
understood (Carleo et al., 2019). However, this transformation is often hindered by a shortage of
high-quality, domain-specific datasets, particularly in physical sciences. Recent breakthroughs in
protein folding (Jumper et al., 2021; Varadi et al., 2024), materials discovery (Merchant et al., 2023;
Liet al., 2025), and many-body physics (Yang et al., 2024; Torlai et al., 2018) underscore how well-
curated scientific datasets can unlock AI’s full potential, enabling discoveries that would otherwise
remain inaccessible.

A rich resource lies in the Hamiltonian spectral graph, a fascinating and diverse object emerging
from recent advances in non-Hermitian physics. Recent advances have shown that the energy spec-
trum of one-dimensional crystals under open boundary conditions® forms arcs and loops on the
complex energy plane. These spectral loci can be naturally represented as spatial graphs embedded
in the two-dimensional C-plane. Moreover, these spectral graphs (Tai & Lee, 2023; Lin et al., 2023;
Xiong & Hu, 2023; Wang et al., 2024) serve as fingerprints with far more intricate structures than
conventional topological signatures for electronic behavior (e.g., Z/Zs invariants, Chern number
(Hasan & Kane, 2010)). Figure 2&A4 show examples of these graphs, featuring a kaleidoscope
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of nontrivial edge geometries and multiplicities that form diverse patterns beyond existing graph
datasets.

Despite their theoretical significance, spectral graph extraction has traditionally relied on manual
plotting and visual inspection—an approach limited to toy examples and small-scale investigations.
In the absence of any automated workflow or large curated dataset, its systematic studies have re-
mained out of reach.
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Moreover, the Hamiltonian spectral graph is inherently a spatial multigraph—a type of graph re-
source fundamentally different from existing datasets. Graph representation learning (Hamilton
et al., 2017; Corso et al., 2024) has emerged as a powerful paradigm for modeling structured data,
yet a critical limitation persists: virtually all public benchmarks treat data as simple graphs, allowing
at most one edge between any node pair (Hu et al., 2020b; Ranveer & Hiray, 2015; Freitas et al.,
2021). Even when source data contains multi-edges, these are typically aggregated into a single
attributed edge, discarding crucial spatial information. Due to the absence of such datasets, the
development of methodologies for spatial multigraphs has been severely hindered.

In contrast, many real-world networks are spatial multigraphs, i.e., graphs embedded in a metric
space, where entities may connect through multiple distinct geometrically meaningful paths. Such
spatial graphs or geometric networks (Barthélemy, 2011; Guo et al., 2021) naturally arise in ur-
ban street networks (Kujala et al., 2018; Boeing, 2019), biological neural networks (Weiner et al.,
2010; Di Martino et al., 2014), protein structures (Anand & Huang, 2018; Guo et al., 2020), and
beyond (Bullmore & Sporns, 2009; Caldarelli, 2007). When the properties of interest include both
connectivity topology and connection geometry, collapsing intrinsically distinct multi-edges results
in critical information loss.

HSG-12M addresses this critical gap in graph representation learning, being the first large-scale
database of spatial multi-graphs, grounded in non-Hermitian quantum physics. Furthermore, the
temporal component establishes the first large-scale temporal (dynamic) spatial graph dataset for

“In mathematical terms, the energy spectrum refers to the set of eigenvalues of the Hamiltonian matrix.
Within this work, energy band structure can be considered the same as energy spectrum.



graph-level tasks. Our benchmark with popular GNNs expose new challenges in learning spatial
multi-edges at scale.

In summary, this work introduces a large-scale spatial multigraph dataset and methodology at the
intersection of non-Hermitian quantum physics and graph representation learning. Our key contri-
butions include:

1. Open-source, High-performance, End-to-End Automated Pipeline. We release Poly2Graph
that can map arbitrary 1D Hamiltonians to spectral graphs, providing the first automated tool to
study spectral graphs with high speed and efficiency. Poly2Graph not only enables us to produce
HSG-12M, but also empowers researchers to generate custom spectral graph datasets, vastly
expanding the possibilities for future study.

2. Large Scale & Exceptional Class Diversity. 11.6 million static and 5.1 million dynamic spatial
multigraphs spanning 1401 classes, distilled from 177 TB of spectral potential data. HSG-12M
is the first large-scale multigraph dataset for graph-level tasks (Figure 1&A6) with class diversity
exceeding all simple graph datasets.

3. Novel Graph Type & New Challenges. Spatial multigraphs simultaneously capture connection
topology with edge multiplicity preserved and geometry of multiedges & nodes in the embedding
space. This first large-scale collection introduces new challenges for developing geometry-aware
graph learning algorithms.

4. New Domain, Physics-grounded, Universal Relevance. Spectral graphs are firmly grounded
in theories of non-Hermitian quantum physics, introducing an abundant database from and for an
entirely new domain. Physically, spectral graph encapsulates information about quantum state
dynamics and topology, Hamiltonian symmetry class, response strength, quantum sensing capa-
bility, and more. Thus our database paves the way for accelerating discovery of exotic phases,
enabling rational design of materials with desired quantum properties.

Additionally, we identify Hamiltonian spectral graph as a new class of topological object de-
serving attention in its own right—in section 5 we show that vectors, matrices, and polynomials,
be they real or complex, admit spectral graphs as their topological fingerprint, bridging graph and
ubiquitous algebra objects.

2 POLY2GRAPH: AUTOMATING SPECTRAL GRAPH EXTRACTION

Poly2Graph is high-performance and the first end-fo-end automated pipeline that converts an arbi-
trary one-dimensional crystal Hamiltonian into its spectral graph representation. It operationalizes
the mathematical construction reviewed in appendix B by integrating non-Bloch band theory, alge-
braic geometry, and morphological image processing.

Full algorithmic details are deferred to appendix C. Here we highlight the design choices that make
Poly2Graph 10°x faster and more memory-efficient than the best available code (empirical bench-
mark in appendix C.5), thereby enabling the construction of HSG-12M.

From Hamiltonians to Characteristic Polynomials. Poly2Graph initializes with either a Bloch
Hamiltonian matrix H (z) or its characteristic polynomial. For a s-band tight-binding crystal chain,
the Bloch Hamiltonian reads

q
H(z) = Z T, 27, z=e* ke [—mm), T; € C°, (1)
Jj=-p
Its open-boundary spectrum solely depends on the roots of the Laurent characteristic polynomial:

P(z,E) :=det [H(z) - EL] = Y a,(E)2". 2)

n=-—p

We choose an energy domain 2 C C in the complex energy plane (the minimal square) that encloses
the entire spectral graph G. By default, Poly2Graph estimates {2 by diagonalising a small real-space
Hamiltonian with L = 40 unit cells, though users may optionally specify a custom domain and
resolution. The resultant domain 2 is discretized into a grid of complex energy values. In HSG-
12M, we used a default resolution of 256 (initial) x 4 (adaptive enhancement) = 1024 points along
each axis.
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Figure 2: Poly2Graph pipeline. (a) Starting from a 1-D crystal Hamiltonian H (z) in momentum space—or,
equivalently, its characteristic polynomial P(z, E) = det[H (z) — EI|]. The crystal’s open-boundary spectrum
solely depends on P(z, E). (b) The spectral potential ®(E) (Ronkin function) is computed from the roots of
P(z,E) = 0, following recent advances in non-Bloch band theory (Tai & Lee, 2023; Xiong & Hu, 2023;
Wang et al., 2024). (c) The density of states p(F) is obtained as the Laplacian of ®(F). (d) The spectral
graph extracted from p(F) via a morphological computer-vision pipeline. Varying the coefficients of P(z, E)
produces diverse graph morphologies in the real domain (d1)-(d3) and imaginary domain (di)-(diii).

For each sample energy E € Q, we solve the roots {z;(E)} of P(z, E) = 0 (treating E as constant)
and then sort them by magnitude |21 (E)| < |z2(E)| < - -+ < |2p4q(E)|. This is the computational
bottleneck in naive approaches—solving roots of an enormous batch (by default 10242 =~ 10°) of
polynomials for every grid point is extremely expensive. To tame this bottleneck, we implement a
custom, optimized root-solver based on Frobenius companion matrices and parallel eigen-solvers
with auto-backend detection for optional GPU acceleration, cutting wall-time from hours to milli-
seconds.

Spectral Potential & Density-of-States (as 2D Images). With the roots {z;(E)} computed, we
leverage non-Bloch band theory (Tai & Lee, 2023; Xiong & Hu, 2023; Wang et al., 2024) and
reliably compute the spectral potential® as:

p+q
O(E) = —loglay(E)| — > log|=(E)|, 3)

i=p+1

5The spectral potential is also known as the Ronkin function, an algebro-geometric property of
P(z, E) (Wang et al., 2024)



where aq(E) is the leading coefficient of the characteristic polynomial. The Laplacian of this po-
tential yields the Density of States (DOS):

1
p(E) = f%V%I)(E). 4)

where V? = 03 , + 07, 5. Physically, p(E) quantifies the number of eigenstates per unit area
at energy E in the complex plane. p(E) > O region traces out spectral graph (Figure 2c).
Geometrically, since DOS is defined as the second derivative (curvature), the spectral graph in other
words corresponds to the “ridges” of the spectral potential landscape (Figure 2b).

In addition, we exploit inherent symmetries in special polynomials. For example, the complex
conjugate root theorem guarantees that if P(z, F) has purely real coefficients, its spectral graph is
symmetric about the real axis; similarly, purely imaginary coefficients produce symmetry about the
imaginary axis. By calculating only the relevant half-plane and mirroring the results, we reduce
computation time by up to 50% for qualifying polynomials.

Image-to-Graph Routine. To extract the spectral graph from the DOS image, we binarize the DOS
and apply skeletonization to obtain a one-pixel-wide graph skeleton.

However, we face a resolution-computation tradeoff: insufficient resolution results in lost topolog-
ical features (small loops, adjacent nodes, etc), while uniform high-resolution calculation across
the entire energy domain §2 is prohibitively expensive, especially since the spectral graph typically
occupies only a small fraction of this area.

We resolve this challenge with a two-stage adaptive resolution approach:

1. Coarse identification: We first compute the DOS on a moderately-resolved grid (256 x 256),
threshold to binarize the image, and perform morphological dilation with a 2 x 2 disk. This gen-
erates a conservative binary mask that envelops the spectral graph while excluding approximately
95-99% of non-contributive region.

2. Refined calculation: Within only the masked region, we subdivide each pixel into an m x m
grid (default m = 4), recalculating the spectral potential and DOS at this higher resolution. This
targeted approach achieves an effective resolution of 1024 x 1024 while computing just 1-5% of
the grid points.

The high-resolution DOS is then re-binarized and subjected to iterative morphological thinning op-
erations (Lee et al., 1994) until a one-pixel-wide skeleton remains, preserving topological features
ready to be distilled into a graph representation.

For the final graph extraction, we analyze this skeleton to identify three point types: (1) junction
nodes where three or more paths intersect, (2) leaf nodes where paths terminate, and (3) edge points
along continuous segments. The output is an NetworkX MultiGraph object. Crucially, each
edge stores its complete geometric information as an ordered sequence of (Re(E), Im(E)) coordi-
nates, preserving not just connectivity but the exact shape of each spectral curve.

Quality Assurance and Limitations. We validated Poly2Graph on hundreds of characteristic poly-
nomials, by visually checking that the spectral graph from Poly2Graph agrees with the energy spec-
trum from exact diagonalization. In rare complicated cases, numerical instabilities can still arise
close to the junction nodes whose surrounding edges have extremely low DOS (see appendix C.6).
Poly2Graph will attempt to mitigate such cases by merging nearby nodes and contracting edges
shorter than a predefined tolerance.

Open-Source Release and Broader Impact. Poly2Graph' is released under the MIT licence. See a
tutorial in appendix G. Poly2Graph establishes a turn-key mechanism for translating linear operators
into machine-learning-ready graphs, bridging condensed matter physics and graph representation
learning. The same principle extends to any vector, matrix, and univariate/bivariate polynomial,
opening an new ‘“algebra-as-graph” perspective, broadening the applicability of Poly2Graph to a
wide range of other areas (section 5, appendix F).

3 HSG-12M DATASET DESCRIPTION

The speed and memory efficiency of Poly2Graph make large-scale spatial multigraph research prac-
tical for the first time. Figure 1&A6 illustrate the scale of HSG-12M, showing #graphs vs. #classes



and #graphs vs. total #nodes relative to other graph classification datasets. To our knowledge, HSG-
12M is not only the largest dataset by number of graphs and classes but also the only large-scale
spatial multigraph dataset available.

Moreover, each graph class corresponds a particular Hamiltonian family (hopping pattern). A well-
trained graph neural network could therefore potentially serve as a surrogate model to predict ma-
terial structure from a desired spectral graph, thereby facilitating inverse design of materials with
targeted quantum properties—e.g. design of acoustic metamaterial, electrical circuit, or photonic
crystal with desired spectral response.

In Table A4 we provide a comprehensive comparison with existing graph datasets and benchmarks.
Most prior popular graph-classification datasets are non-spatial, simple graphs. A few are spatial,
e.g., some superpixels and molecular graphs have node coordinates in 2D / 3D, but their edges re-
main an abstract connection defined by adjacency. HSG-12M uniquely provides spatial multigraphs,
where the intricate geometric structure of multi-edges carries essential information that cannot be
simplified without loss. The most relevant resource, OpenStreetMap (Boeing, 2019) is much smaller,
less diverse, and lacks associated ML tasks in comparison.

Furthermore, while temporal graph datasets exist (Huang et al., 2023), they typically focus on
node/edge-level tasks or involve small numbers of graphs and classes. Our T-HSG-5M represents
the first large-scale collection of dynamic graphs for graph-level tasks, capturing the continuous
evolution of spectral graphs over Hamiltonian parameters.

Data Format and Accessibility. To maximize accessibility and flexibility, we release HSG-12M
under a permissive CC BY 4.0 license. The dataset will be made publicly available upon publication.
In companion, we release an auxiliary package HSG-12M’ for effortless data handling, benchmark
reproduction, custom featurization and dataset generation, interactive tutorial, and more.

The dataset comprises 1401 separate Python npz files, each containing graphs from one class with
relevant metadata. Raw files use NetworkX MultiGraph format, preserving full node and edge
geometry— @ Node attributes: complex coordinates, spectral potential, and density of states. @
Edge attributes: edge length (also serving as weight), coordinate sequences along the edge, average
spectral potential and average DOS over the edge.

We provide this descriptive format because representation learning on spatial multigraphs remains
nascent, with no agreed-upon standard for representing continuous multi-edge geometry. Rather
than imposing a particular featurization, we encourage researchers to explore various approaches,
e.g., treating edge curves as sequences, computing summary features like curvature, or developing
novel and more sophisticated neural network-based representations. Moreover, the attribute-rich
format here aids interpretability and is relevant to researchers interested in the underlying physics
rather than solely ML.

That said, for convenience, we propose our own featurization scheme and include a conversion API
that transforms raw data into PyTorch Geometric (PyG) datasets for graph classification benchmark-
ing. Particularly, to manage the inhomogeneity of edge coordinates and make the spectral graphs
compatible with standard GNN input, our reference conversion uses fixed-sized, direction-ignorant
edge summary features (appendix E.1): length, the straight-line distance between start and end
nodes, middle point coordinates, average spectral potential, and average DOS along the edge.

Dataset Construction. Graphs are grouped by different Hamiltonian families (i.e. characteristic
polynomial classes) as detailed in appendix B. We systematically sample polynomial classes while
respecting mathematical symmetries to avoid spurious abundance. For instance, if a polynomial
exhibits z-reciprocity—i.e. P(z) = 2PT9P(1/z)—this reciprocal transformation physically means
flipping the crystal chain from left to right, which leaves the spectrum unchanged and yields the
same spectral graph.

Specifically, we start from a base polynomial with hopping range p + ¢ and s energy bands:

P(z,E) = —E* 4+ 277 + 29 . (5)

We then set the degree of E* : k € {0,1,...,s — 1} foreach z' : i € {-p+1,...,q — 1}.
Subsequently, we assign two free coefficients (a, b) to two chosen monomials 27 : j € {—p +
1,...,—1,1,...,q — 1}—excluding z°, since varying the constant term only raise or lower the
entire spectral potential landscape, no effect exerted on the spectral graph.



Table 1: Key statistics of the HSG dataset variants. #Graphs: number of graphs; #Classes: number of classes;
Ratio: the #Graphs of the largest class / #Graphs of the smallest class; Temporal: whether the graphs are tem-
poral. All other five datasets are derived from HSG-12M; thus all datasets are spatial and irreducibly multi-
graph. HSG-topology contains non-isomorphic graphs in each class and is the only imbalanced dataset;
T-HSG-5M is the temporal spectral graph collection; the rest four teal-colored datasets are balanced, static
datasets.

Name | #Graphs #Classes Ratio Temporal
HSG-one-band 198,744 24 1.0 -
HSG-two-band 2,277,275 275 1.0 -
HSG-three-band | 9,125,662 1102 1.0 -
HSG-topology 1,812,325 1401 660.2 -
T-HSG-5M 5,099,640 1401 1.0 v
HSG-12M 11,601,681 1401 1.0 -

For example, a two-band polynomial with p = 3 and ¢ = 3 may take the form:

I:’(z,E):—E2+z_3+(az‘1+bEz+Ez2)+z3, a,beC. (6)

Under such a sampling scheme, we iterate over all combinations for one-band to three-band poly-
nomials, with hopping ranges varied from four to six. This range has well covered all realistic 1D
tight-binding crystals (typically p + ¢ < 4 and less than three bands).

After removing symmetric redundancy, we collect 24 one-band classes, 275 two-band classes, and
1102 three-band classes, amounting to a total of 1401 unique classes.

Finally, we vary the two free coefficients from —10 — 57 to 10 + 5¢ respectively, with 13 real and 7
imaginary values, yielding (13 x 7)? = 8281 samples per class.

Dataset Variants. We provide six datasets tailored to different research needs.

HSG-one-band: Small-to-medium scale, the collection of all one-band polynomials, balanced
subset with 198,744 graphs across 24 classes. These graphs in this subset display simpler patterns
ideal for rapid prototyping and algorithm validation.

HSG-two—-band and HSG-three-band: Medium-to-large scale, the collection of all two-band
and three-band polynomials respectively, balanced datasets with increasing complexity, containing
2.3M and 9.1M graphs across 275 and 1,102 classes, respectively.

HSG—-12M: The complete dataset spanning all 1,401 classes with balanced sampling, totaling 11.6M
static graphs, designed for large-scale challenge.

HSG-topology: An imbalanced subset preserving only fopologically distinct (i.e. non-
isomorphic) graphs within each class. This filtered dataset removes isomorphic duplicates, resulting
in highly skewed class distributions (max class size ratio 660.2), useful for analyzing spectral graph
topology diversity and benchmarking graph algorithms on imbalanced datasets.

T—-HSG-5M: Our temporal multigraph collection capturing continuous spectral graph evolution. As
shown in figure 2d, varying either the real or imaginary part of a coefficient in the characteristic
polynomial continuously morphs the geometry of the spectral graph; at certain transition points, one
can observe the graph topology changes discontinuously. For each class, we collect all sequences
of the variation in real (or imaginary) parts of one free coefficient, adding up to 5.1M temporal
graphs across 1401 classes. T-HSG-5M is suitable for evaluating temporal graph-level tasks such
as temporal extrapolation and classification on early sequences. Functionality to select any desired
sequence or subset is provided in the package.

4 BENCHMARKING RESULTS

To assess the capabilities of existing graph learning methods on the new challenges introduced by
our HSG datasets, particularly their spatial nature, edge multiplicities, class imbalance, and scale,
we benchmark popular GNNs and discuss the implications.



Table 2: Graph-level classification results on the HSG dataset variants. Test metrics shown as meantgq over
three random seeds; best result in Bold.

Model Test Metric one-band two-band three-band topology HSG-12M
Ggenl#8l Accuracy 114 010 A8 012 3374 014 397+ 009 .3654+ 21
Macro F, 704 1 009 4654 015 3231 013 3924 011 3494 o2
TOp-lO Acc. -999i.000 -931i.005 .816j:.011 ~825i.006 ~841i.015
GAT[83] Accuracy 677+ 002 4621 008 3444 012 4344 15 3654 010
Macro Fy 6714+ 003 4494 007 3274 014 43110 347+ 010
Top—lO Acc. .9981‘000 .9221‘004 .825:&‘013 .855;&(010 .846;&(006
GATv2L0! Accuracy 6444 005 4444 004 2824 030 401+ 003 3514 002
Macro Fy .6354 007 430+ 05 265+ 031 3974 001 330+ 002
TOp-lO Acc. -997i.001 -914i.003 .765i'032 .833i'005 .835i'001
GIN[92] Accuracy ~799:t4005 -343:t4084 ~050i,021 ~095i.059 .063i'031
Macro F, 796+ 006 .3234 og7 0304 016 082+ 060 0424 04
Top—lO Acc. 1,0001.000 .8681‘060 ~295:E4089 .390;&(143 .339;&(135
GINgLS] Accuracy 7644 006 5184 049 3794 013 5334 017 460+ 025
Macro F; 7584 007 5014 053 3621 012 5314011 4454 007
TOp-lO Acc. I.OOOi_OOO .958i_015 -872j:.008 ~927i.008 ~921i.011
MF[22] Accuracy .589i‘012 .308i‘014 ~271i,004 .348i,012 4295i.010
Macro Fl .5721‘012 .2871‘016 .254:&‘001 .343:&‘012 .2741011
Top—lO Acc. .9971‘000 .8381‘019 .754:&‘005 .793;&(010 .791;&(012
cGenntl Accuracy 7964 008 5854 029 AT84 o1 .5664 016 -5314 004
Macro F] -792:i:.010 -572:i:.029 .464i_015 .563i_013 .518:{:_003
TOp-lO Acc. I.OOOi_OOO -975i,005 -923j:.006 ~940i.005 .948i'002
[3 1] Accuracy .854i.003 .678i.004 -523i.02() .620i.003 .546i.004

hSAGE

GraphSAG Macro F 8531 002 4670 005 5124 920 622 901 534 005
TOp-lO Acc. 1'000:t.000 .988i.001 -940j:.006 .958i‘001 -952i.001

Baseline Models. We benchmark eight popular graph neural networks (GNNs)—GCN (Kipf &
Welling, 2017), GAT (Velickovic et al., 2018), GATv2 (Brody et al., 2022), GIN (Xu et al., 2019),
GINE (Hu et al., 2019), MF (Duvenaud et al., 2015), CGCNN (Xie & Grossman, 2018), and Graph-
SAGE (Hamilton et al., 2017).

Experimental Setup. Full details supporting reproducibility are provided in appendix E.2—
including data preprocessing and split; model architecture and hyperparameters; optimizer setting
and learning rate schedule; hardware and trainer specifics. In particular, to ensure fair comparison,
for each dataset we tune each model’s convolution hidden dimension to equalize the total number of
learnable parameters, and we cap the training budget by max epochs and max steps.

Evaluation Metrics. Given the high class diversity, we report Top-1 accuracy, Top-10 accuracy (rel-
evant for scenarios where multiple plausible answers are acceptable), and Macro-averaged F;-score
(which weights every class equally and exposes performance on minority classes). Additional eval-
uation including test loss, Top-5 accuracy, peak GPU memory utilization, throughput are reported
in Tables A5-AS.

Results and Analysis. The graph-level classification results are presented in Table 2. Seed vari-
ance is small across variants, indicating stable training. Additional results and analysis are in ap-
pendix E.4. Several observations emerge:

Performance degrades with task difficulty. Test metrics decay monotonically from simpler to harder
dataset, consistent with increasing graph size, richer multi-edge geometry, more complex isomor-
phisms, and growing class diversity. Memory usage likewise grows with complexity (e.g., SAGE
~0.067—0.511 MB/graph).

Edge attributes matter. Edge-aware GINE consistently outperforms edge-agnostic GIN (e.g., on
HSG-12M, Accuracy 0.460.0025 vs. 0.06310031), reflecting that multi-edge spatial geometry
(length, straight-line distance, midpoint, average potential/DOS) carries irreducible signal.




Top-k is high—promising signal for inverse design. On the full dataset which covers all realistic
cases, despite moderate Top-1 accuracy, Top-10 accuracy is high (e.g., on HSG-12M: SAGE 95.2%,
CGCNN 94.8%) and near-saturated on easier subsets (99%+ on one-band), enabling retrieval of
a small candidate set of Hamiltonian families for downstream expert screening.

GraphSAGE excels under limited budget and comparable parameter counts. Under matched pa-
rameters (<4% variance) and fixed budget (max_epochs=100, max_steps=1000), GraphSAGE
attains the best performance on all subsets, indicating either stronger inductive bias for spatial multi-
graphs or better sample/compute efficiency than more expressive baselines under tight budgets.

Take-away. With our proposed edge summaries, popular GNNs already capture substantial discrim-
ination; nonetheless, the Top-1 vs. Top-10 gap and degradation at high class diversity suggest that
richer edge geometry encoding (e.g., curvature/torsion, higher-order moments, spline/Bezier encod-
ings, or polyline sequences) could potentially improve performance, especially on the more chal-
lenging datasets.

5 DISCUSSION

Benchmarking and algorithmic opportunities. HSG-12M fills four key gaps at once: @ it is
the first systematic resource of Hamiltonian spectral graphs, @ it is the first large-scale multigraph
dataset, @ it is the first spatial multigraph resource, retaining edge multiplicity with rich continuous
geometry, and @ it provides both static and dynamic multigraph sequences.

These traits open a suite of tasks that are under-served by current methods: multi-edge featurization,
geometry-aware message passing, spatio-temporal prediction, etc. Beyond supervised learning, the
dataset is sufficiently large and expandable with Poly2Graph to support topology-conditioned gen-
eration and pre-training foundation models for rational inverse-design of materials.

Universal Relevance of Spectral Graphs. While HSG-12M is rooted in non-Hermitian band
theory, its reach extends well beyond condensed-matter physics.

1. Any bivariate Laurent polynomial P(z, F) has a spectral graph.

2. Any univariate polynomial /(z) can be viewed as a one-band Bloch Hamiltonian; and any
vector can be treated as a symmetrised coefficient list of a univariate polynomial.

3. Any matrix can be decomposed into a product of one-band Hamiltonian matrices (Ye & Lim,
2015), and thus in general has a multiset of spectral graphs (detailed in appendix F)

Hence polynomials, vectors, and matrices all admit spectral graphs as their topological fingerprints.
This establishes a universal bridge between algebraic objects and graphs, inviting graph-based meth-
ods to problems in linear algebra.

Since the characteristics of most scientific systems can be expressed as the aforementioned algebraic
objects, our approach offers a novel analytical lens. This opens up new avenues for research across
numerous fields, a direction we are actively exploring and invite the broader community to join.

6 CONCLUSION

We present Poly2Graph, an open-source, high-performance pipeline that automatically extracts
Hamiltonian spectral graphs, and HSG-12M, a large-scale dataset of 11.6M static and 5.1M dy-
namic Hamiltonian spectral graphs. HSG-12M collects physics-grounded data, offering the first
large-scale database for spatial multigraph with irreducible edge multiplicity and spatial geometry.
The construction generalizes to arbitrary polynomials, vectors, and matrices. Out benchmark on
popular GNNs indicate the need for methodological advances. We release Poly2Graph and HSG-
12M under permissive licences and invite the community to build on this resource for new models,
tasks, more comprehensive and carefully designed benchmarks, and insights across machine learn-
ing, condensed-matter physics, and beyond.
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We release Poly2Graph https://anonymous.4open.science/r/iclr2026_
generator-AE56 (section 2, appendix C&G), HSG-12M (section 3, appendix D) and
an auxiliary dataset package’ https://anonymous.4open.science/r/iclr2026_
dataset—-2802 under permissive open-source licences to facilitate reproducibility and further
customization. The packages include detailed documentation and tutorials for easy starting, full
reproduction, and extension.
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A  RELATED WORK

A.1 GRAPH REPRESENTATION LEARNING, DATASETS, AND BENCHMARKS.

Graph learning has seen a rapid rise in recent years, driven by advances in graph neural networks
(GNNs) (Hamilton, 2020; Bronstein et al., 2021; Ma & Tang, 2021; Wu et al., 2022; Corso et al.,
2024) and proliferation of datasets and benchmarks (Ranveer & Hiray, 2015; Freitas et al., 2021;
Chen & Wang, 2019; Yanardag & Vishwanathan, 2015; Hu et al., 2020b). HSG-12M addresses
critical gaps in existing benchmarks by introducing not only the first large-scale spatial multigraph
dataset®, but also one of the largest known graph machine learning datasets and natural science-based
datasets. This work sets a new standard in terms of scale and class diversity.

A.2 GRAPH LEARNING IN MULTIGRAPHS.

In contrast to simple graphs, multigraphs permit multiple edges between the same pair of nodes.
Apart from a handful of exploration on multigraph learning algorithms (Butler et al., 2023; Egressy
et al., 2024), progress has been hampered by the absence of large-scale data sources.

In many practical settings, multiple edges are typically collapsed into a single edge—often sacri-
ficing valuable information. This simplification may be acceptable when edge-level details can be
represented as aggregated attributes, as is often the case in heterogeneous graphs (Chaari et al.,
2022; Youssef et al., 2023), multi-modular models (Said et al., 2024; Ding et al., 2022), or multiplex
networks (Horvat & Zweig, 2018).

However, in spatial multigraphs (Barthélemy, 2011), where edges carry rich geometric information
such as distances, directions, or physical observable information, such aggregation results in signif-
icant information loss. This critical issue has remained underexplored due to the lack of datasets
where edge aggregation is inherently infeasible. HSG-12M addresses this gap by providing the first
benchmark where capturing both multi-edge relationships and edge geometry is essential.

A.3 GRAPH LEARNING IN SPATIAL GRAPHS.

A spatial (or geometric) graph is a network in which nodes and edges are spatial entities living in a
metric space (Barthélemy, 2011; Iddianozie & McArdle, 2021). Such networks emerge naturally in
domains where spatial embedding is fundamental to structure and function: urban, transportation,
and communication networks are shaped by physical distances and road geometries (Buhl et al.,
2006; Wang et al., 2020); biological systems like neural and vascular networks are constrained by
surrounding tissue geometry (Runions et al., 2005; Bullmore & Sporns, 2009); and river networks
evolve through interactions of gravity and topography (Caldarelli, 2007; Rodriguez-Iturbe & Ri-
naldo, 1997). In all these cases, spatial graph structure encodes essential information that cannot be
inferred from connectivity alone or reconstructed from non-spatial data.

5To our knowledge, this is also the first large-scale multigraph dataset—large-scale conforms to OGB crite-
ria (Hu et al.).
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Despite growing recognition of spatial information in Spatial and Geo Al (Papadimitriou; Gao,
2021), its importance remains underappreciated in graph learning. Currently, no benchmark exists
with sufficiently rich geometric structure to exhibit intricate spatial patterns, let alone one of spatial
multigraphs. As a result, despite many efforts to develop algorithms for spatial graphs (Guo et al.,
2021; Iddianozie & McArdle, 2021; Danel et al., 2019; Ingraham et al., 2019; Yan et al., 2018), the
field has lacked a standardized, large-scale testbed.

B MATHEMATICAL BACKGROUND - Hamiltonian Spectral Graph

B.1 THE HAMILTONIAN AND ENERGY SPECTRUM IN 1D TIGHT-BINDING SYSTEMS

In physical sciences, it is customary to represent and study a system through its Hamiltonian matrix.
The energy spectrum, which refers to the set of eigenvalues of this matrix, reveals the energy band
structure—a central object of study in condensed matter physics. Let us consider a generic 1D
tight-binding Hamiltonian with s internal degrees of freedom (bands or orbitals) per unit cell:

H =) Tjélér; (7
z,j
where = and j index unit cells and hopping lengths, respectively; ¢, is the annihilation operator
(vector of length s) for the z-th unit cell. Each term T}; € C*** represents the transition amplitude
matrix for a particle hopping from site z + j to . The L? norm of the amplitude corresponds to the
transition probability. These hopping terms can generically be complex.

The matrix representation of this Hamiltonian in real space, H..,), for which the block at (x, ') is
(Hyeal)z,n0 = Tw—g, is a block Toeplitz matrix—a matrix in which each descending block diagonal
from left to right is constant:

T T T e 0
T, Ty Tv Ty

Ty T-w To T

H... = T, T 1 Ty )]
. . . . T
To Th
0 T, T, T

If there are L sites in total, Hyea € CL*L5. In general, T; # Tt ; (where Tt ; 1s the conjugate

transpose of T"_;), which breaks the Hermiticity of the Hamiltonian, i.e., H t - H. Consequently,
the eigenvalues can take on complex values. The energy spectrum is obtained by diagonalizing
Hreal-

B.2 HAMILTONIAN SPECTRAL GRAPH: EMERGENT TOPOLOGY IN THE THERMODYNAMIC
LiMIT

For non-Hermitian systems, the energy eigenvalues form intricate patterns in the complex plane.
The spectral graph G emerges from the energy spectra under open boundary conditions (OBC) in
the thermodynamic limit (i.e., as the system size L — o0). In this limit, the discrete energies
become continuous, and their loci trace out a planar graph on the complex plane (Tai & Lee, 2023;
Xiong & Hu, 2023). Figure A3 illustrates this emergence: the OBC energy spectra for finite system
sizes L = 50 and L = 150 for a non-Hermitian lattice (whose characteristic polynomial, defined
later, is P(z, E) = —2~2 — E— z+ 2*) clearly approach a 3-Cayley tree as L increases. Figure A3c
shows the corresponding density of states (DOS) in the . — oo limit.

The spectral graphs of different lattices exhibit a kaleidoscope of geometries, including arcs, loops,
and more exotic shapes resembling stars, kites, braids, and even rockets (Tai & Lee, 2023; Lin
et al., 2023), as showcased in Figure A4. These structures represent an uncharted band topology,
embedding hidden symmetries and graph topological transitions that lie beyond standard homotopy-
based frameworks (Hasan & Kane, 2010). In effect, a new class of topological invariants appears—
those tied to the global geometry of the eigenvalue loci.
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Figure A3: The emergence of spectral graphs. (a)-(b) show the OBC energy spectra with in-
creasing system size L = [50, 150], of the non-Hermitian lattice whose characteristic polynomial is
P(2,E) = —272 — E — z + 2*. In the thermodynamic limit (L — oc), the spectra becomes a band
continuum and the energy loci traces out a planar graph on the complex plain, namely the spectral
graph. For this particular example, it is a 3-Cayley tree. (c¢) shows the corresponding density of
states when L — oo.

However, accurately diagonalizing a large non-Hermitian matrix H,., to obtain the OBC spectrum
is notoriously difficult (Yang et al., 2020), let alone for an infinite-sized matrix (i.e. an operator).
This necessitates a more sophisticated theoretical approach.

B.3 THEORETICAL FRAMEWORK: NON-BLOCH BAND THEORY

The standard approach to analyze such systems, guided by non-Bloch band theory, begins with a
Fourier transformation and the analysis of the resulting characteristic polynomial.

B.3.1 THE BLOCH HAMILTONIAN AND CHARACTERISTIC POLYNOMIAL P(z, E)

Fourier transforming the real-space Hamiltonian (second quantized form equation 7 or its matrix
form equation 8) yields the Bloch Hamiltonian:

H(z) = Zsz’j, 2= ek 9)
J

with T; € C**%. Let the hopping range of H be [—pgr, grr), such that T; = 0 for j ¢ [—pa, qu].
H (z) is a matrix-valued Laurent polynomial of the phase factor z = e, where k is the crystal
momentum.
The energy dispersion relation is found by solving the secular equation. The characteristic poly-
nomial of the Hamiltonian is defined as:
qp
P(z,E) :=det[H(z) - EI| = Y an(E)z" (10)
n=—pp

This is a finite Laurent polynomial in z whose coefficients a,,(E) are themselves scalar polynomials
in E of degree < s. This equation is also known as the energy-momentum dispersion.

It is sometimes convenient to clear the negative powers in equation 10 by defining the ordinary
polynomial in z,

P(z,E) :=2P?P(z,E) € C[z, EJ, (11)
whose degree in z equals d, := pp + qp.
Degree bounds in z. The highest and lowest degree bounds of the associated P(z, F) satisfy:

pp < s X pH, qp < 5 X qH, (12)

with equality holding generically (i.e., unless the leading/minor determinants vanish because of
special symmetries or parameter fine-tuning). In particular, d, = pp + qp < s(pg + qm)-
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Figure A4: A Gallery of Spectral Graphs. The top four rows highlight the intricate structures
characteristic of spectral graphs. The bottom row illustrates the distinct phenomenon we refer to
as component fragmentation (Section 5)—some nodes in theory should be connected, however its
surrounding low density of states limits accurate edge detection, causing certain nodes to be frag-
mented into disjoint nodes, often leading to fragmentation of an otherwise connected component.
The phenomena often occurs for high-band and long-range hopping crystals.
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Roots in z at fixed E. For any fixed £ € C, the equation P(z, E) = 0 has exactly d, solutions
{za(E)}%_, (equivalently, P(z, F) has d. roots in z). We will order them by modulus,

|21(E)| < [z(B)] < --- < |24 (E)|.

Examples.

1. One-band, nearest-neighbor (s = 1, pgg = qg = 1). Let
H(z) =tz ' +tg+tyz, P(z,E)=H(z) - E.

Here pp = qp = 1 and d, = 2. The periodic boundary condition (PBC) dispersion is
E(k‘) =ty + t+1€1k + tfle_lk.

2. Two-band SSH-type model (s = 2, pgr = qur = 1).

0 t1+t
H(z) = L VTR O P(s, B) = det[H (2)—EI) = B2 (t1+t92) (1 +227 ).
tl —|—t22’ 0

Here pp = gp = 1 (so d, = 2), which is strictly smaller than the generic bound s(pgr +
qH) = 4.

Interpretation of > exponents. The exponents of z in H (z) have a direct hopping interpretation
(a nonzero T encodes j-th neighbor hopping). After taking the determinant to form P(z, E), indi-
vidual z"™ terms no longer correspond to a single hopping distance; rather, they arise from products
of matrix entries and thus encode composite hopping paths. This explains why the bounds in equa-
tion 12 can be strict: symmetries (e.g., the chiral symmetry in the SSH example above) can cause
cancellations of the leading powers of z in P(z, E).

B.3.2 LIMITATIONS OF STANDARD BLOCH THEORY (PBC)

Under periodic boundary conditions (PBC), Bloch theory applies, utilizing the constraint |z| = 1
(real momentum k). If H(z) is Hermitian on the unit circle, the PBC spectrum consists of real E
values forming continuous bands (the usual Bloch dispersion). For non-Hermitian systems, the PBC
spectrum typically forms loops or closed curves in the complex energy plane.

However, for non-Hermitian systems under OBC, eigenstates often exhibit the non-Hermitian skin
effect (NHSE) (Lin et al., 2023), where a macroscopic number of eigenstates localize at the bound-
aries. Consequently, the PBC and OBC spectra can be qualitatively different. As one evolves the
system from PBC to OBC (e.g., by turning off boundary hoppings), the PBC spectrum (loops) often
collapses inwards to form the skeletal structure of the OBC spectral graph, as depicted in Figure AS5.

O(E)
-1.0 -0.8 -0.6 -0.4

« OBC Spectrum
° « PBC Spectrum
s,

-1 0 1 2

Re(E)

Figure A5: Spectral Collapse & Spectral Potential. PBC spectrum usually appears as circles and
loops; changing to OBC, the spectrum collapses into a graph skeleton. The spectral graph resides

on the ridges of the potential landscape, ®(E).
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B.3.3 NON-BLOCH BAND THEORY AND THE GENERALIZED BRILLOUIN ZONE (GBZ)

Since standard Bloch theory is inapplicable under OBC due to the NHSE, non-Bloch band theory
is employed. This theory introduces the concept of the generalized Brillouin zone (GBZ).

Under OBC, z is allowed to leave the unit circle, meaning k£ can be complex. The imaginary part
of k, k := Im(k) = —log|z|, is the inverse decay length (or inverse skin depth), quantifying the
localization of skin modes.

Non-Bloch band theory establishes that the OBC spectrum in the thermodynamic limit is determined
by those E € C for which the z roots of P(z, F') = 0 satisfy a specific equal-modulus condition.
Given the characteristic polynomial P(z, E') with degrees pp and ¢p as defined in equation 10, the
condition for E to be in the OBC spectrum is:

[2pp (E)| = [2pp+1(E)]. (13)

The corresponding loci of z’s is the generalized Brillouin zone (GBZ). The spectral graph G is
precisely the set of E values that satisfy this condition; equivalently, it is the image of the GBZ
under the map (z — E : P(z,FE) =0).

B.3.4 CHARACTERISTIC POLYNOMIAL CLASS Cp

The algebraic structure of P(z, E') plays a crucial role in determining the topology of the spectral
graph. To understand this relationship, we must consider P(z, F') as a bivariate polynomial, ex-
amining the interplay between the powers of z (representing spatial structure) and the powers of
(representing energy bands). We expand P(z, E) fully as:

qpr s

P(z,E)= Y an(E):" = i > enmE™" (14)

n=—pp n=—pp m=0

We define the characteristic polynomial class Cp based on the monomial support of P(z, F).
The support identifies which specific monomials E™2™ are present in the polynomial structure,
regardless of the exact values of their coefficients c,, ,,.

Formally, we define the support Sp as the set of index pairs (n, m) for which the coefficient ¢, ,,, is
structurally non-zero (i.e., it is allowed to vary, rather than being identically zero):

Sp ={(n,m) | cnm # 0}. (15)

Crucially, the spectral graph is invariant under parity transformation’, which corresponds to the
transformation z — 2z~ ! in the polynomial. Let P'(z, E) = P(z~!, E). The support of this parity-
transformed polynomial is:

Spr ={(-n,m) | (n,m) € Sp}. (16)

The characteristic polynomial class Cp is defined as the equivalence class represented by this pair
of supports:

Cp={Sp,Sp}. (17

This classification ensures that polynomials related by spatial inversion, which necessarily yield the
same spectral graph, belong to the same class. If the polynomial structure is palindromic in z (i.e.,
Sp = Sp/), the class is simply identified by the single support set Sp.

We find that the characteristic polynomial class Cp is a key criterion for classifying spectral graph
topologies and is thus the target for inverse classification tasks. Varying the specific values of the
coefficients ¢y, ,,, within a fixed class Cp may deform the geometry of the spectral graph but typically
preserves its fundamental topology.

Examples:

"Le., spatial inversion about the origin (xz — —=x), or flipping the 1D lattice from left to right. In terms of
H.,..,, this corresponds to T; — T, which is equivalent to transposing the matrix (Hyoa1 — HL,). The
transpose does not change the eigenvalues.
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1. Single-band example (s = 1) from Figure A3. P(z,E) = —27%2 — z + 2* — E.
The monomials present are E02~2, E02', E02% and E'2°. The support is Sp =
{(-2,0),(1,0),(4,0), (0,1)}. The parity-transformed polynomial is P(z 1, E) = —22 —
271 4+ 274 — E. The transformed support is Sp: = {(2,0), (—1,0), (—4,0), (0,1)}. The
classisCp = {Sp, Sp'}.

2. Two-band example (s = 2). Consider a class defined by the structure (similar to the dataset
construction example): P(z, F) = —E? 4273423+ ¢127 1 +coE2 + Ez2. The support is
Sp = {(0,2),(-3,0),(3,0),(-1,0),(1,1),(2,1)}. This support explicitly captures the
interplay between hopping range and energy bands, defining the class.

B.3.5 RECAP OF KEY CONCEPTS (HIERARCHY OF ABSTRACTIONS)

Objects and their roles.

* Real-space Hamiltonian H,.,;: an infinite banded (block) Toeplitz operator acting on
(%(Z) ® C*, formed from hopping blocks {7} }.

* Bloch Hamiltonian H (z): the s X s matrix Laurent polynomial in equation 9, the Fourier
transform of H ...

* Characteristic polynomial P(z, E): the scalar Laurent polynomial equation 10; a bivari-
ate polynomial in z and E (after clearing denominators in 2).

* ChP class Cp: an equivalence class of characteristic polynomials defined by fixing the
monomial support in (z, E') and accounting for parity symmetry (see equation 17).

* Spectral graph G: the subset of C traced by eigen-energies F in the thermodynamic limit
under OBC,
G={FeC:VzeGBZ, P(z2,E)=0}.

A specific Hamiltonian (or specific P) maps to a specific spectral graph; a ChP class maps
to a family of spectral graphs parameterized by its coefficients.

How the abstractions relate.

i det[-—ET S &S
Hyo 250 p(z) 2B p( ) Stpon&Smmety, o)
solve in z (GBZ
P(z, E) ez @D o o

Each arrow forgets inessential microscopic details while preserving spectral information relevant at
the next level.

At-a-glance comparison.

Object Symbol  Mathematical type Typical size
Real-space Hamiltonian H, . banded Toeplitz operator L x L (finite) or infinite
Bloch Hamiltonian H(z) s x s Laurent-poly. matrix s (bands/orbitals)
Characteristic polynomial ~ P(z, E) Laurent poly. in z, poly. in £ (pp,qp) in z; degree < s in E
ChP class Cp set of P’s with fixed support- —

/symmetry

Spectral graph (PBC/OBC) g subset of C (energy plane) —

This hierarchy clarifies terminology used later: algorithms operate on P(z, E) (or its class Cp),
while the physical spectra we visualize or learn are subsets G determined by solving P(z, E) = 0
with the appropriate constraint on z (PBC or GBZ).

B.4 THE SHORTCUT TO SPECTRAL GRAPH VIA ELECTROSTATIC ANALOGY.

B.4.1 DENSITY OF STATES p(E) AND THE SPECTRAL POTENTIAL ®(FE)

The density of states (DOS) describes the continuous spectrum. It is defined as the density of
eigenstates on the complex energy plane. An example of DOS is shown in Figure A3c.
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Recent developments in non-Bloch theory map the problem of finding the spectral graph and DOS
to a classic 2D electrostatic problem (Xiong & Hu, 2023; Yang et al., 2022; Wang et al., 2024). If
we treat the eigenvalues ¢, (for a system of size N) as electric charges of strength 1/N, we can
define the Coulomb potential ®(F), also called the spectral potential, at a point £ ¢ G:

1
O(E) =— lim — > log|E — e

N—oo N .
=— /p(E')log |E — E'| d*E’ (18)
The DOS is related to the potential by the Poisson equation:
1
E)=-—V?®(E 1
pE) = — - V20 (E) (19)

where V2 = 93 . + 07 1 is the Laplacian operator on the complex energy plane. The Laplacian
extracts curvature. Geometrically, this implies that the loci of the spectral graph G, where the DOS
is concentrated, reside on the ridges of the Coulomb potential landscape ®(F), as suggested in
figure AS and figure 2.

B.4.2 EFFICIENT CALCULATION OF ®(F)

Leveraging Szegd’s strong limit theorem, the spectral potential ®(F) in equation 18 can be reduced
to a computationally efficient form based directly on the characteristic polynomial P(z, E):

pp+qp
O(E) = —loglag, (B)| + Y ri(E) (20)
i=pp+1

Here, pp and ¢p are the lowest and highest degrees of z in P(z, E), respectively (see equation 10).
aqp (E) is the coefficient of 277. k;(E) = —log|z;(E)| are the inverse decay lengths associated
with the gp largest roots of P(z, E') = 0 (these are 2,41, - - -, Zpp+qp in the sorted list).

Although equation 18 is strictly defined for E ¢ G, the expression in equation 20 can be analyti-
cally continued to the entire complex plane (Xiong & Hu, 2023). This allows the construction of the
potential landscape ®(F) merely by knowing the characteristic polynomial P(z, E), thereby obviat-
ing the need for direct diagonalization of large real-space Hamiltonians and avoiding the numerical
errors associated with such diagonalizations.

C POLY2GRAPH PIPELINE DETAILS

Armed with the above theoretical guidance, we implement the transformations numerically, and
then integrate a few computer vision techniques (Lee et al., 1994; Wang et al., 2018; Nunez-Iglesias
et al., 2018) to construct the spectral graph given its characteristic polynomial (or Bloch Hamil-
tonian). This appendix complements section 2. The core procedure of Poly2Graph algorithm
(“Characteristic Polynomial to Spectral Graph”) is summarized in algorithm 1.

C.1 INITIALIZATION AND INPUT

Poly2Graph accepts diverse input formats for the 1-D tight-binding crystal. It can initialize from a
Bloch Hamiltonian H (z) or directly from its characteristic polynomial P(z, E'). Supported formats
for P(z, F) include sympy . Matrix (for H(z), H(k)), sympy .Poly, or araw string expression
of the polynomial. During initialization, Poly2Graph automatically computes a full set of different
representations and properties. See the tutorial section appendix G or visit our repository https:
//anonymous.4open.science/r/iclr2026_generator-AE56.

The energy domain 2 C C, which must fully contain the spectral graph G, is also required. While
users can specify a custom 2 and its discretization, by default Poly2Graph can automatically esti-
mate a suitable region by diagonalizing a small real-space Hamiltonian (typically L = 40 unit cells)
and applying a small padding.

Sidenotes: notions of ‘“‘size” appeared so far.
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Algorithm 1: Poly2Graph: Characteristic Polynomial to Spectral Graph
Input: (1) H(z) or P(z,E) := det[H(z) — E I

# 17 Hamiltonian or its characteristic polynomial
Input: (2) Energy Domain: Q) C C such that Q) 2 G (spectral graph)
Output: Spectral Graph: G € networkx.MultiGraph

begin

# Build the characteristic polynomial if only H(z) was given
if input H(z) then

| P(z,E) =det[H(z) - EI] =} __ an(E) 2"

# Stage 1: Coarse computation over initial energy grid ()
(Parallel) for £ € ) do

# Solve roots

{#z:(E)} = Sort[Roots(P(z, E))] s.t. |z1] < -+ < |2p4q]

# Compute spectral potential

®(E) = —log |aq(E)| - Efiﬁﬂ IOg‘Zi(E)’

# Compute Density of States (DOS)
| p(B) = —5; V2O(E)
# Identify regions of interest
coarse_mask = dilate(binarize({p(E)}recq))
# Define refined energy grid
() = get masked_subgrid(coarse_mask)

# Stage 2: Refined computation within masked regions
(Parallel) for £ € Q' do
# Re—-solve roots at higher resolution
{#z(E)} = Sort[Roots(P(z, E))]
# Recompute spectral potential
¥'(E) = —loglag(E)| = X212 log|zi(E))|
# Recompute DOS
p/(E) = —3= V20/(E)
# Combine coarse and refined DOS for full high-resolution
image
pina(E) = combine({p(E)} penas {0/ (E)} pesr)
# Binarize high-resolution DOS
final_binarized_image = binarize({pa(E)} req)
# Extract one-pixel-wide skeleton
graph_skeleton = skeletonize(final_binarized_image)
# Convert skeleton to graph object
G = skeleton2graph(graph_skeleton)
# Post-processing
G = merge_nearby_nodes(G, tolerance)
G = remove_isolated._nodes(G)

1. System size L (real space): number of unit cells. The operator H..,) is L x L for finite L
and becomes an infinite operator in the thermodynamic limit L — oo.

2. Internal size s (band/orbital count): the matrix dimension of H (z). This equals the maxi-
mal degree in E of P(z, E).

3. Laurent degree in z of P: the pair (pp, ¢p) (or total d, = pp + gp) governing the number
of z roots at fixed E. It is controlled by the degree range of H via equation 12.

4. Numerical sampling resolution (e.g. N x N grid in the complex-E plane): a discretization
choice for plotting or learning tasks; it is not a property of the crystal.
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C.2 ACCELERATED ROOT FINDING

As detailed in section 2, solving for the roots {z;(E)} of P(z, E) = 0 for each energy F in the
discretized domain {2 is the primary computational bottleneck. To achieve the reported performance
gains (five orders of magnitude speedup and higher memory efficiency over previous methods (Tai
& Lee, 2023) on default settings), we employ a specialized root-finding strategy.

For a characteristic polynomial P(z, E) = ;1.: _,a;(E )27, its roots are equivalent to the eigenval-

ues of its Frobenius companion matrix F'(F). For a polynomial of degree d = p + ¢, the companion
matrix is a d X d matrix constructed from the coefficients:

0 0 -+ 0 —ap(E)/ay(E)
1 0 -+ 0 —a_py1(E)/aq(E)
F(E) = 0 1 -+ 0 —a—py2(E)/aq(E) | (21)

—a4-1(B)/a,(E)

This formulation holds for complex coefficients a,(E) € C.

—_ ..

0 0

Poly2Graph constructs a batch of these companion matrices for each £ € Q, where (2 is the dis-
cretized grid of energy values. This batch is then processed by a parallelized eigensolver. The
implementation automatically detects the availability of TensorFlow or PyTorch backends,
leveraging them for hardware acceleration, including optional GPU support via CUDA. To opti-
mize memory and computation, calculations are performed using single precision (float32), which
has been found sufficient for high-fidelity spectral graph extraction.

C.3 ADAPTIVE RESOLUTION AND IMAGE PROCESSING
The adaptive resolution strategy, outlined in section 2, is crucial for computational tractability.

1. Coarse Identification: The spectral potential ®(E) (equation 3) and DOS p(E) (equation 4) are
computed on an initial, moderately resolved grid (e.g., 256 x 256). The DOS image is binarized
and morphologically dilated to create a conservative mask £’ covering potential graph regions.

2. Refined Calculation: Within this mask ', each pixel is subdivided (e.g., into a 4 x 4 subgrid),
and ®(F) and p(F) are recomputed at this higher resolution.

This two-stage process achieves high effective resolution (e.g., 1024 x 1024) while minimizing
redundant calculations in empty regions of the complex energy plane.

The resulting high-resolution DOS image is again binarized. We currently employ a global mean
threshold (p(E) > (p(E")) greq) for binarization, as it has empirically outperformed a pool of other
common global and adaptive thresholding heuristics, including Otsu, Li, Yen, Triangle, Isodata,
local adaptive, and hysteresis variants for our datasets. Subsequently, iterative morphological thin-
ning operations (Lee et al., 1994) are applied to reduce the binarized features to a one-pixel-wide
skeleton, revealing the graph topology.

C.4 GRAPH EXTRACTION AND POST-PROCESSING

The skeleton2graph submodule converts the binary skeleton into a graph representation. It
identifies pixels as junction nodes (three or more neighbors), leaf nodes (one neighbor), or edge
points (two neighbors). The output is a NetworkX MultiGraph object, where each edge in
particular stores its geometric path as an ordered sequence of (Re(E), Im(E)) coordinates.

To handle numerical artifacts, two post-processing steps are implemented as shown in algorithm 1:

1. merge_nearby_nodes: Nodes within a predefined Euclidean distance tolerance are merged.
This helps consolidate fragmented junctions.

2. remove_isolated.nodes: Nodes with no connecting edges after the merging step are re-
moved.
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C.5 BENCHMARK POLY2GRAPH SPEED-UP

The primary innovation is the end-to-end automation of the spectral graph extraction process, which
was previously reliant on manual inspection. This automation makes systematic research on spectral
graphs feasible.

The speed and memory efficiency are secondary, but critical, feature that make large-scale research
on spectral graphs feasible for the first time.

Since Poly2Graph is the first tool of its kind that fully automates the entire pipeline, a true pre-
decessor for an end-to-end comparison does not exist. Here, in table A3, we only benchmark the
computation bottleneck (spectral potential calculation) against the best available code from Ref.
(Tai & Lee, 2023), which does not automate the graph extraction.

Table A3: Speed comparison between Poly2Graph and the best available code from Ref. (Tai & Lee,
2023). The time used per sample (i.e. for an input H(z)/P(z, E)) for each method, and the speed-up that
the Poly2Graph obtained are reported. The comparison is conducted on the computation bottleneck (spectral
potential calculation), as Ref. (Tai & Lee, 2023) does not automate the graph extraction. Poly2Graph’s time
complexity is polynomial in degree range (d. = p + q).

degree range | Poly2Graph Ref. (Tai & Lee, 2023)  Speed-up

p+q=2 13.1 0.3 ms 3025 s 2.3e5 x
p+q=3 20.8 £ 0.1 ms 3423 s 1.6e5 x
p+q=4 28.6 £ 0.3 ms 3921 s 1.4e5 x
p+q=5 38.8+0.2 ms 5177 s 1.3e5 x
p+q=6 50.8 £ 0.3 ms 6199 s 1.2e5 x

C.6 CAVEATS: COMPONENT FRAGMENTATION

A notable challenge, particularly for systems with large degree ranges or many bands, is a phe-
nomenon we termed component fragmentation. As illustrated in the bottom row of figure A4, this
refers to the spurious disconnection of spectral branches that should ideally form a single connected
component. Fragmentation typically arises at junction nodes where the surrounding DOS is ex-
ceptionally low. In such cases, the spectral potential landscape (®(F)) around these junctions is
virtually flat, making the corresponding ridges (which correspond to edges) fall below the detection
threshold of the binarization and thinning processes, due to finite floating-point precision.

While the current global mean thresholding for binarization is a robust general choice, it may strug-
gle with complicated spectra. Ultra-low-DOS edges can be missed, leading to missing pixels in the
skeleton and thus fragmentation. While more sophisticated ridge-following or adaptive local thresh-
olding algorithms might offer improvements, they often come at a significant cost to Poly2Graph’s
speed and memory efficiency. Addressing this intrinsic limitation robustly remains an area for future
development.

D DATASET DETAILS

D.1 COMPARISON WITH 45 OTHER DATASETS

We present a comprehensive comparison of our dataset in terms of both structural properties and
statistical metrics. Table A4 compiles all prominent graph datasets to the best of our knowledge.
Each column is described in the caption. As illustrated, while some spatial graph datasets do ex-
ist, they generally lack rich connection geometry (RCG. Nontrivial edge patterns beyond a simple
straight-line link) or support for multiple parallel edges between nodes. The dataset most similar to
HSG-12M in these respects is OpenStreetMap; however, it is not designed with any ML downstream
tasks, contains far fewer graphs, and is medium-scale judged by OGB criteria [37]. Moreover, al-
though it supports non-linear edge shapes—streets connecting a pair of destinations are usually not
straight-lines—the complexity of its connectivity is limited. In contrast, the edge geometries in our
setting exhibit much richer geometric variation. Consequently, prior to this work, the absence of a
large-scale multigraph learning challenge remain unaddressed.
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Table A4: Overview of graph-level benchmark datasets. Each row corresponds to one dataset: #Graphs gives
the total number of graphs; #Classes is the number of target labels; #Nodes and #Edges report the average
number of nodes and edges per graph; Scale column follows the OGB Large-Scale Challenge definitions [37]:
Small (S) datasets fall below the large-scale thresholds; Medium (M) datasets contain > 1 million nodes or >
10 million edges; Large (L) datasets exceed 100 million nodes or 1 billion edges.; Attributed indicates whether
both node and edge features are present; Spatial denotes whether the graphs carry geometric or coordinate in-
formation (e.g. 2D, 3D, geographic coordinate system-GCS); Temporal flags static (S) or time-series graph
data (T); Multi marks support for multiple edges between node pairs; and RCG (Rich Connection Geometry)
indicates datasets whose edge geometry exhibits nontrivial patterns that go beyond simple straight-line connec-
tions. ”?” entries indicate information not stated in the original paper. In addition to values extracted from the
literature, some benchmark statistics were sourced from Refs. [37; 97; 21; 66].

\ Dataset [ #Graphs #Classes #Nodes #Edges Scale | Attributed Spatial Temporal Multi RCG |
Biology
ENZYMES [5; 63] 600 6 32.6 62.1 S - - N - -
PROTEINS [5; 63] 1.1IK 2 39.1 72.8 S v - S - -
D&D [63; 20] 1.2K 2 284.3 715.7 S - - S - -
ProFold [30] 76K - 8.0 ? S v 3D T - -
NeuroGraph [74] 23K 7 359.6 11K M - - S - -
Skeleton (NTU-RGB+D) [76] 56K 60 25.0 24 M - 3D T . -
ppa [102; 36] 158K 37 2434 266.1 M v - S - -
Skeleton (Kinetics) [47] 260K 400 18.0 17 M - 2D T - -
Chemistry
MUTAG [50; 63] 188 2 17.9 19.8 S v - S - -
SIDER [89; 1] 1.4K 2 33.6 354 S v - S - -
BACE [89; 77] 1.5K 2 34.1 36.9 S v - S - -
ClinTox [89; 28] 1.5K 2 26.2 279 S v - S - -
BBBP [89; 60] 2.0K 2 24.1 25.9 S v - S - -
Tox21 [89; 81] 7.8K 2 18.6 19.3 M v - S - -
ToxCast [89; 70] 8.6K 2 18.8 19.3 M v - N - -
Peptides-func [24] 155K - 150.9 307.3 M v 3D S - -
Peptides-struct [24] 155K - 150.9 307.3 M v 3D S - -
MolHIV [89; 36] 41.1K 2 25.5 27.5 M v - S - -
MUV [89; 72] 93.1K 2 24.2 26.3 M v - S - -
QM9 [68] 129K 12 18.0 18.6 M v 3D S - -
MOSES [67] 194K - 22 47 M v 3D S - -
MolOpt [45] 229K - 24 53 M v 3D S - -
ZINC250K [43] 250K - 23 50 M v 3D S - -
MolPCBA [89; 36] 437.9K 2 26.0 28.1 M v - S - -
PCQM-Contact [24] 529.4K - 30.1 61.1 M v 3D S - -
ChEMBL [61] 1.8M - 27.0 58 M v 3D S - -
PCQM4Mv2 [37] 3.7M - 14.1 14.6 L v 3D S - -
Social Networks
IMDB-BINARY [63; 94] 1K 2 19.8 96.5 S - - S - -
IMDB-MULTI [63; 94] 1.5K 3 13.0 65.9 S - - S - -
REDDIT-BINARY [63; 94] 2K 2 429.6 497.8 S - - S - -
REDDIT-MULTI-5K [63; 94] 5.0K 5 508.5 594.9 M - - S - -
REDDIT-MULTI-12K [63;94] | 119K 11 11.0 391.4 M - - S - -
CollabNet [79] 23K - 303K 207.6K L - GCS T - -
Computer Science
CIFARI1O0 [23; 51] 60K 10 117.6 941.1 M v 2D S - -
MNIST [23; 53] 70K 10 70.6 564.5 M v 2D S - -
Database [34] 300.0K - 1100.0 ? M ? - S - -
MalNet [26] 1.3M 696 154K 352K L - - S - -
TpuGraphs (Tile) [66] 129M - 40.0 ? L ? - S - -
TpuGraphs (Layout) [66] 31.1M - 77K ? L ? - S - -
TenSet [101] 51.6M - 5.0-10.0 ? L ? - S - -
Geography
METR-LA [44] 34K - 327.0 2.4 M v GCS T - -
PeMS-BAY [15] 50K - 207 1.5 M v GCS T - -
OpenStreetMap [4] 110K - 500 1.2K M v GCS S v v
Physics
N-body-spring [49] 3.4M - 5.0 10 M v 2D T - -
N-body-charged [49] 3.4M - 25.0 3 M v 2D T - -
T-HSG-5M 5.1M 1401 13.8 28.9 L v C-plane T v v
HSG-12M 11.6M 1401 13.8 28.9 L v C-plane S v v
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Figure A6: Number of graphs v.s. total number of nodes in HSG-12M compared to other natural science
datasets. HSG-12M stands out with the highest data volume across all natural science datasets, including those
not designed for classification.

Moreover, as shown in the table, our large-scale T-HSG-5M dataset is the only temporal dataset
that includes class labels. This is particularly valuable in our setting, as different classes may exhibit
distinct temporal evolution patterns. We leave the investigation of these dynamics to future research.

D.1.1 COMPARISON WITH OTHER DATASETS IN PHYSICAL SCIENCES

Additionally, as illustrated in figure 1, HSM-12M stands out as the largest classification dataset in
terms of both graph count and class diversity. Although our dataset is designed for classification,
it is still informative to compare it with others based on the total number of graphs and nodes. By
these metrics, certain large-scale computer science datasets—such as TpuGraphs, Tenset, and Mal-
Net—contain larger overall volumes. However, a fairer comparison emerges when we evaluate our
dataset alongside those from the natural sciences, as they are constructed using similar methodolo-
gies.

To facilitate this comparison, we selected the largest datasets from the table and visualized them in
figure A6. The results show that even among natural science datasets not constrained to classification
tasks, ours stands out as not only competitive but also the largest in scale. These findings highlight
the scope and impact of this work.

D.2 CLARIFICATION ON HSG-T0P0L0GY DATASET VARIANT

The HSG-topology variant contains only pairwise non-isomorphic graphs. Within each ChP
class we retain exactly one representative for every unique connectivity pattern—equivalently, one
per isomorphism class that have the same adjacency matrix (i.e., up to a relabeling of nodes)—and
discard the rest isomorphic samples. This construction makes the dataset purely combinatorial.

This filtering induces a pronounced class imbalance: different Hamiltonian families generate
markedly different numbers of distinct topologies (i.e. isomorphisms).

This design is physically motivated: we are interested in how spectral-graph fopology varies with
the underlying Hamiltonian parameters.

28



E BENCHMARK DETAILS

E.1 DATA PREPROCESSING (INCLUDING SPATIAL MULTIEDGE FEATURIZATION)

Feature type Dim. Components/ Description
Node Complex position coordinates (2D)
4 Spectral potential at the node (1D)
DOS at the node (1D)
(Curved) edge length (1D; also used as the edge weight)
Edge Straight-line distance between endpoints (1D)
6 Midpoint coordinates (2D)
Average spectral potential along the edge (1D)
Average DOS along the edge (1D)
Graph —  None.

E.2 TRAINING CONFIGURATION

Baseline Models.

* Graph Convolutional Network (GCN) (Kipf & Welling, 2017): first-order spectral graph con-
volution that aggregates normalized neighbor features and applies a shared linear transform.

* Graph Attention Network (GAT) (Velickovic et al., 2018): masked self-attention over neighbor-
hoods with multi-head weighting to adaptively combine messages.

* Modified Graph Attention Network (GATv2) (Brody et al., 2022): reformulated attention with
dynamic key—query dependence for greater expressiveness and more stable training.

* Graph Isomorphism Network (GIN) (Xu et al., 2019): sum-aggregating message passing with
an MLP update, designed for expressivity comparable to the Weisfeiler—Lehman test.

* Edge-conditioned Graph Isomorphism Network (GINE) (Hu et al., 2019): GIN variant that
injects edge features into the message MLP, improving performance on edge-featured graphs.

* Molecular Fingerprints (MF) (Duvenaud et al., 2015): uses learnable neighborhood transforms
and softmax pooling, yielding a fixed-length real-valued fingerprint aggregated over nodes and
layers.

* Crystal Graph Convolutional Neural Network (CGCNN) (Xie & Grossman, 2018): crystal-
graph convolutions over periodic structures (periodic crystal graph) that aggregate atom—bond
interactions within a distance cutoff for materials prediction.

* GraphSAGE (Hamilton et al., 2017): inductive neighbor-sampling with learnable aggregators
(e.g., mean) enabling generalization to unseen graphs.

All architectures are pooled via global add pooling, followed by a multi-layer perceptron (MLP) to
produce the final class logits.

Global training setup. Data splits, training hyperparameters, optimizer, learning rate scheduler,
hardwares, trainer settings, and common model hyperparameters are:
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Group Hyperparameter Value / Notes
Data Splits ratio Train:Val:Test = 8:1:1
Split strategy Stratified random splits (preserve
class/target  proportions  across
train/val/test)
Training Batch size 6000
Max epochs 100
Max steps 1000
Seeds {42, 2025, 666}
Model (common) #Conv layers 4
#MLP layers 2
Activation ReLU
Dropout 0.0

#Heads (GAT/GATv2) 1

Optimizer Algorithm AdamW (AMSGrad) [58]
Init LR g 1x1073
Min LR 7min 1x10°°
Weight decay 0.0
Scheduler Policy Cosine annealing [57]
Period T} 100
Trainer Devices Two RTX A5000, 24GB each
Strategy Distributed Data Parallel (DDP)

Dataset-specific hyperparameter: hidden dimension of post-convolution MLP. The post-
convolution MLP hidden dimension is tuned to be larger than the number of classes per dataset,
to ensure sufficient capacity for final classification.

dimp™" HSG-12M

1500

two-band three-band
256 1500

one-band
128

topology

1500

Value

Model-specific hyperparameters: hidden dimension of graph convolution layers. To ensure fair
comparison, for each dataset, we tune the hidden dimension of graph convolution layers for each
model such that the total number of trainable parameters is within 4% relative difference across all
models.

dimgOnv MF GCN GraphSAGE GAT GIN CGCNN MoNet
HSG-one-band 100 467 330 452 312 202 172
HSG-two-band 200 933 661 933 621 410 342
HSG-three-band 300 1279 963 1279 852 601 516
HSG-topology 300 1279 963 1279 852 601 516
HSG-12M 300 1279 963 1279 852 601 516
E.3 EVALUATION METRICS
We evaluate single-label multiclass prediction over a dataset D = {(G;,y;)}7, with y; €
{1,...,C}. Let s;. be the model score (logit or probability) for class ¢ on example ¢, and
Yi = argmaxe S; c.
Accuracy (micro-Fp). Overall fraction of correct predictions:
1 n
Acc=— Ky =y} 22
ce =~ Iii=ui} (22)

i=1
In single-label multiclass settings, Accuracy equals the micro-averaged F;. It is intuitive and stable
when class frequencies are roughly balanced. The chance baseline is 1/C.
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Macro F;. Compute one-vs-rest counts for each class c:

TPCZZH{yl =, :’JZ :C}7 FPC:ZH{yl %07 gz :C}, FNC:ZH{yl:Ca yl #C}

7 K2 K2

(23)

Per-class precision/recall and Fy, with 0/0 = 0:

TP, TP, 2P.R,
P=—— = Fl,= ——. 24
TP, + FP,. R TP. + FN, P.+ R, 24
Macro-average across classes:
c
1

Macro-Fy = - ; F1.. (25)

Macro-F; weights all classes equally and is therefore sensitive to minority-class perfor-
mance—crucial when C'is large or labels are imbalanced.

Top-k Accuracy. Let TopK({s;.}< ;, k) denote the indices of the k largest scores. The Top-k
metric is

1 n
Top-k = - Z;]I{ y; € TopK({s; .}y, k) }. (26)
We report k € {5,10}. Top-k captures ranking quality and is directly aligned with inverse-design
workflows that accept a shortlist for subsequent physics-based re-ranking. Random-guess base-
lines scale as k/C (e.g., 5/24 ~ 20.83%, 10/24 =~ 41.67%; for C = 1401: 5/1401 ~ 0.357%,
10/1401 ~ 0.714%).

Reporting and interpretation. All metrics are reported as mean. g averaged over seeds on the
held-out test split. For smaller or moderately balanced label spaces, Accuracy is informative
and easy to compare; for highly imbalanced or very large C, Macro-F; is emphasized to surface
minority-class recall, while Top-5/10 quantify the usefulness of the model as a candidate-generator
for downstream, physics-constrained refinement.

E.4 ADDITIONAL BENCHMARK RESULTS AND ANALYSIS

Tables A5-AS8 reports additional benchmark results including test loss, test top-5, and training statis-
tics, including throughput and device utilization.

Overall accuracy and stability. Across all five static variants, seed variance is consistently small,
indicating stable training.

Edge attributes matter. Methods that explicitly consume edge features (e.g. GINE) are consis-
tently superior to their edge-agnostic counterparts (e.g. GIN). For example on two—-band, GINE
(.5184 049) outperforms GIN (.343 4 pg4). On HSG-12M, plain GIN essentially collapses (.063 1 31),
while GINE remains competitive (.460. o»s). This aligns with the dataset design: multi-edge geom-
etry (Iength, straight-line distance, midpoint, average spectral potential, average DOS) carries irre-
ducible spatial information; architectures which propagate and transform edge states are expected to
succeed.

Performance degrades with task difficulty. Averaging over models, test metrics degrade from
one-band—two-band—topology—three-band—HSG-12M. This monotonic decay is
expected: higher-band Hamiltonians induce larger graphs with richer multi-edge geometry and more
challenging class diversity (up to 1,401), stressing both representation and optimization. Moreover,
as expected, per-graph memory usage scales with dataset complexity for every model (e.g., SAGE:
0.066 on one—-band — 0.544 on three-band).

Top-k is high—promising for inverse design. Despite moderate Top-1 accuracy on the largest
settings, Top-10 accuracy is very high (e.g., on HSG-12M SAGE 95.2%, CGCNN 94.8%). For
easier subsets, Top-10 essentially saturates (99%-+ on one-band for all models). This pattern
implies that models almost always retrieve a small candidate set of plausible Hamiltonian families.
This is encouraging for inverse design workflows (retrieve top-k families, then re-rank/verify
physically in experiments, e.g. design a few meta-matetial candidates and observe if targeted
spectral properties are obtained).
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Attention is not a free lunch here. GAT / GATv2 lag SAGE / CGCNN on all splits, while also
incurring the highest peak GPU memory per graph (e.g., on HSG-12M ~1.93-2.11 vs SAGE’s
0.51). In spatial multigraphs with high effective degrees (many parallel edges), attention softmaxes
can become dominated by edge multiplicity/noise and impose additional compute/memory over-
head without commensurate accuracy gains under our budgets. In other words, dense multi-edge
neighborhoods amplify attention’s quadratic costs and may dilute useful geometric cues when our
direction-ignorant summary features are the only edge signal.

GraphSAGE excels with limited budget and comparable parameters constraint. GraphSAGE
is consistently the strongest baseline. It attains the best Top-1 accuracy and macro-F; on every
subset. Under matched trainable parameter constraints (<4% difference) and a fixed training budget
(max_epochs =100, max_steps = 1000), these consistent gains suggest that:

1. Either, other more expressive architectures (e.g., attentive or edge-MLP-based) require larger
training budgets to fully realize their potential;

2. Or, other expressive baselines are more parameter-hungry, and thus under trainable parameter
constraints, they are not as efficient as lightweight baselines for large-scale benchmarks;

3. Or surprisingly, GraphSAGE’s neighborhood aggregation is a better inductive bias for our spatial
multigraphs than attention or vanilla spectral convolutions.

One could explore relaxing the fixed budget and hyperparameter optimization to unlock each archi-
tecture’s full potential. However this is far beyond the computing resources currently available to
us, and we leave this to future work.

Implications for spatial multigraph learning. With our fixed-size, direction-agnostic edge sum-
maries (length, straight-line distance, midpoint, avg. potential/DOS), relatively simple, locality-
biased architectures already capture much of the discriminative signal.

However, the persistent Top-1<>Top-10 gap between edge-aware baselines and their edge-agnostic
counterparts, and difficulty at high class diversity, together indicate that fine-grained geometric
information along multi-edge curves (e.g., curvature, torsion, higher-order moments, spline/Bezier
edge parameterizations, or sequence encodings of the edge polyline) are promising routes to push
performance further, especially on large-scale challenges like three-band and HSG-12M.

Table AS: Additional Graph-level classification results for Test Loss on the HSG dataset variants.
Cells show mean g4 over three random seeds; best model per dataset in Bold.

Model \ one-band two-band three-band topology HSG-12M
GCN T34 018 1.6954 047 2.522. 063 20624 060 2.357+ 089
GAT 8414 gog 1.776 4+ 034 2.465 1 068 1.8251 053  2.3304+ 047
GATV2 9264015 1.8531 015 2.809, 17, 1.9684 005 2.4014 o1y
GIN 4944 017 22164 400 49264 42 41794 612 47644 71
GINE 5544 07 1.4664 133 2.298+ 091 1.3164 057  1.7994 104
MF 1.0564 019 2.3924 089 2.8521 06 2.2224 051 2.6584+ 063
CGCNN 4741010 1.2184 100 1.7304 063 11915065 1.4854 001
GraphSAGE -355i.011 -932i.022 1.5611‘073 1-019j:.002 1'434i.009
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Table A6: Additional Graph-level classification results for Top-5 Accuracy on the HSG dataset
variants. Cells show mean_yq4 over three random seeds; best model per dataset in Bold.

Model \ one-band two-band three-band topology HSG-12M
GAT 9814+ 001 .830+ 007 7024 016 1524 014 7264 009
GIN 29951 000 7464 037 1844 66 2764 127 2224 0o
GINE 9964 001 8831 029 1554015 8484 013 83040138
MF 9744 001 703+ 026 6164 006 6731 011 655+ 015
CGCNN 2995 o1 920, 012 836+ 009 870+ 08 8764 003
GraphSAGE .998:&.000 .953:‘:.002 .863:‘:.012 .898:|:.002 .882:|:'002

Table A7: Additional Graph-level classification results for Throughput (graphs sec ') on the HSG
dataset variants. Cells show mean g over three random seeds; best model per dataset in Bold.

Model | one-band two-band three-band topology HSG-12M
GCN 113580:|:1840 83975i717 50803i23g 44065153 52945:|:199
GAT 103757 1879 62717 1302 31885175 25862199 34193 1783
GATv2 10428212065 630921216 30074414 23825415 320514112
GIN 111905:|:900 84681i354 61019:&469 55879:&:98 62134:|:955
GINE 11207512610 8135641343 524084 136 45984 1.5 53332199

MF 1 12493:|:3786 85980:|:1154 65223:t710 61507;&32 66829:|:1729
CGCNN 10554311515 621221250 26752417 204145119 28671122
GraphSAGE 113781:|:1797 85590:&637 54473:&266 48479:&:73 56064:|:533

Table A8: Additional Graph-level classification results for Average Peak GPU Memory (MB/-
graph) on the HSG dataset variants. Cells show mean. g4 over three random seeds; best model per
dataset in Bold.

Model ‘ one-band two-band three-band topology HSG-12M
GAT 24184 0001 1027640005 2301110001 2.87881 0000  2.10654 006
GATV2 21004 0002 .88094 0002 2.11024 0014 2.6580+ 0036 1.9301 os6
GIN 08821 0002 2954+ 0002 6375+ 0014 535410014 59184 0009
GINE 12094 001 48164 0001 1.06764+ 0016 1.3142 £ 002 98124 9026
MF 0494 o002 17464 gom 40541 006 47014 0006 -3772+ 0011
CGCNN 1876+ 0000 L1981 4 0004 1.9284 1 o016 2.4368 L go41  1.7636 050
GraphSAGE .O669i.0002 .24071,0001 551 2i.0012 .6542i_001 1 S1 OSj:v()()QS
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E.5 PHYSICAL MOTIVATION OF THE BENCHMARK TASK

In crystalline, mesoscopic solids and meta-materials, observable spectral signatures—band disper-
sions, density of states p( E')—are generated by an underlying Hamiltonian H (z) whose structure is
dictated by crystal geometry, orbital content, and the pattern of allowed hoppings. The forward map

poly2graph : H — G(H) 27)

from a tight-binding (or effective) Hamiltonian to a spectral graph G is deterministic yet typically
many-to-one: different microscopic parameterizations inside the same Hamiltonian family—more
precisely, the same hopping-pattern can induce very similar spectra.

For materials discovery and interpretation of experiments, one interesting and practically rel-
evant question is the inverse problem of Hamiltonian inference from spectral data:

Given a desired spectral signature (the Hamiltonian spectral graph), what “class”
of Hamiltonians—what material structure/hopping pattern—could realize it?

We cast this inverse-design query as supervised categorical retrieval from spectral graphs to a dis-
crete characteristic polynomial (ChP) class (a “hopping-pattern”). Learning a predictor

fo: G Cp (28)

coarse-grains the ill-posed inverse map into a small set of plausible Hamiltonian families. High Top-
k accuracy means we can enumerate TopK(fy(G), k) as a compact candidate list, thus reducing
searching over a huge number of hopping patterns to a manageable shortlist.

This framing is physically meaningful for two reasons. First, the spectral features that guide human
intuition (e.g. gaps and gap sizes) are controlled primarily by lattice symmetries and connectivity
rather than precise parameter values; predicting the family is therefore the right first step. Second, our
spatial multigraph featurization of spectra (node- and edge-level geometric and spectral statistics) is
engineered to expose invariants that tie back to local real-space structure, allowing GNNs to learn
robust surrogates of poly2graph ™.

Beyond enabling inverse design, the HSG provides a large-scale resource to study how Hamiltonian
parameters control spectral-graph morphology and to pre-train scientific foundation models on phys-
ically grounded graph signals. In short, the mapping Spectral Graph— ChP Class directly
operationalizes a task that materials physicists and chemists already perform by hand, but at scale
and with principled uncertainty via Top-k retrieval.

F UNIVERSALITY OF SPECTRAL GRAPHS THROUGH TOEPLITZ
DECOMPOSITION

At the heart of our framework is the ‘Poly2Graph¢ algorithm, a function that establishes a direct
mapping from the algebraic domain of polynomials and matrices to the structural domain of spectral
graphs. This connection is most naturally illustrated with Toeplitz matrices. As demonstrated in
appendix B, a generic Toeplitz matrix can be interpreted as a single-band tight-binding Hamiltonian
(Eq.8), which corresponds to a unique signature spectral graph.

The significance of this specific result is vastly amplified by a foundational theorem in linear algebra:

Any matrix can be expressed as a product of Toeplitz matrices (Ye & Lim, 2016).

Specifically, for any matrix M € C"™*™, a decomposition into a product of  Toeplitz matrices exists,
where [n/2] +1 < r < 2n+5. While this decomposition is not unique without further constraints,
its existence is guaranteed.

Consequently, by associating a spectral graph with each Toeplitz component, we can represent any
arbitrary matrix as a multiset of these graphs. This provides a universal procedure for translating
complex matrices into a graph-based representation:

1. Start with a generic matrix M € C"*™,
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2. Decompose M into a product of r Toeplitz matrices, M = T17T5 - - - T,,.

3. Apply the ‘Poly2Graph‘ algorithm to each Toeplitz factor T; to extract its corresponding
spectral graph G;. The resulting multiset {G1, . .., G..} is the spectral graph representation
of M.

This procedure highlights the remarkable generality of our framework. Since the characteristics
of most scientific systems can be expressed as a matrix, polynomial, or even a vector (which can
be standardized and treated as polynomial coefficients), our approach offers a novel analytical lens.
This opens up new avenues for research across numerous fields, a direction we are actively exploring
and invite the broader community to join.

G TUTORIAL OF PoLY2GRrRAPH PACKAGE

poly2graph is a Python package for automatic Hamiltonian spectral graph construction. It takes
in a characteristic polynomial or a Bloch Hamiltonian and returns the spectral graph.

G.1 FEATURES
* High-performance

— Fast construction of spectral graph from any one-dimensional models
— Adaptive resolution to reduce floating operation cost and memory usage

— Automatic backend for computation bottleneck. If tensorflow / torch is avail-
able, any device (e.g. /GPU:0, /TPU:0, cuda:0, etc.) that they support can be
used for acceleration.

» Cover generic topological lattices

— Support generic one-band and multi-band models

— Flexible multiple input choices, be they characteristic polynomials or Bloch Hamilto-
nians; formats include strings, sympy .Poly, and sympy .Matrix

* Automatic and Robust

— By default, no hyper-parameters are needed. Just input the characteristic of your
model and poly2graph handles the rest

— Automatic spectral boundary inference

— Relatively robust on multiband models that are prone to “component fragmentation”

 Helper functionalities generally useful

— skeleton2graph module: Convert a skeleton image to its graph representation

— hamiltonian module: Conversion among different Hamiltonian representations
and efficient computation of a range of properties

G.2 INSTALLATION

Download the package from https://anonymous.4open.science/r/iclr2026_
generator—-AES56 and unzip it.

Move into the unzipped folder ic1r2026_dataset-2802/ and install the package locally via
pip:

$ cd iclr2026_generator-AE56
$ pip install -e

Optionally, if TensorFlow or PyTorch is available, poly2graph will make use of them automati-
cally to accelerate the computation bottleneck. Priority: tensorflow ; torch ; numpy.

This module is tested on Python >= 3.11. Check the installation:
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import poly2graph as p2g
print (p2g.__version_ )

G.3 USAGE

See the Poly2Graph Tutorial JupyterNotebook for a quick interactive start.
p2g.SpectralGraph and p2g.CharPolyClass are the two main classes in the package.

p2g.SpectralGraph investigates the spectral graph topology of a specific given characteristic
polynomial or Bloch Hamiltonian. p2g.CharPolyClass investigates a class of parametrized
characteristic polynomials or Bloch Hamiltonians, and is optimized for generating spectral proper-
ties in parallel.

import numpy as np

import networkx as nx

import sympy as sp

import matplotlib.pyplot as plt
from matplotlib import colors

k = sp.symbols('k', real=True)
z, E = sp.symbols('z E', complex=True)

G.3.1 A GENERIC ONE-BAND EXAMPLE (P2G.SPECTRALGRAPH):

Characteristic polynomial:

PE,z2):=h(z)—E=2"-2-2"2-F

Its Bloch Hamiltonian (Fourier transformed Hamiltonian in momentum space) is a scalar function:
h(z) =2 —2—272

where the phase factor is defined as z := e'¥.

Expressed in terms of crystal momentum k:

h(k) _ €4ik o eik _ e—2i/€

The valid input formats to initialize a p2g . SpectralGraph object are:

1. Characteristic polynomial in terms of z and E:

* as a string of the Poly in terms of z and E

* asasympy.Poly with {z, 1/z, E} as generators
2. Bloch Hamiltonian in terms of k or z

e asa sympy.Matrix interms of k
* asa sympy.Matrix in terms of z

All the following characteristics are valid and will initialize to the same characteristic poly-
nomial and therefore produce the same spectral graph:

char_poly_str = '—-zxx-2 — E — z + z*xx%x4'
char_poly_Poly = sp.Poly(

—z*xx—2 — E — z + zxx4,
z, 1/z, E
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)

phase_k = sp.exp(sp.Ixk)
char_hamil_k = sp.Matrix([-phase_kx**2 - phase_k + phase_kxx4])

1| char_hamil_z = sp.Matrix([-z*x*x-2 — E - z + zxx4])

Let us just use the string to initialize and see a set of properties that are computed automatically:

sg = p2g.SpectralGraph (char_poly_str, k=k, z=z, E=E)

Characteristic polynomial:

sg.ChP

>>> Poly(z4 —z— Z% —FE, z, %,E, domain = Z)

Bloch Hamiltonian:

* For one-band model, it is a unique, rank-0 matrix (scalar)

sg.h_k

>>>
[e4ik _eik _ 67211@}

1| sg.h_z

>>>

The Frobenius companion matrix of P (E) (z):

* treating E as parameter and z as variable

* Its eigenvalues are the roots of the characteristic polynomial at a fixed complex energy E.
Thus it is useful to calculate the GBZ (generalized Brillouin zone), the spectral potential
(Ronkin function), etc.

1| sg.companion_E

>>>

cCoocOoO RO
oo, OO
co~RooO
oo OoOO
—oo0oo0ooo
cormor

Number of bands & hopping range:
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print ('Number of bands:', sg.num_bands)
print ('Max hopping length to the right:', sg.poly_p)
print ('Max hopping length to the left:', sg.poly_q)

W N

>>>

Number of bands: 1
Max hopping length to the right: 2
Max hopping length to the left: 4

W =

A real-space Hamiltonian of a finite chain and its energy spectrum:

1| H = sg.real_space_H(
2 N=40,
3 pbc=False,
4 max_dim=500
—

5
6
7l energy = np.linalg.eigvals (H)
8
9

fig, ax = plt.subplots (figsize=(3, 3))

10] ax.plot (energy.real, energy.imag, 'k.', markersize=5)

11| ax.set (xlabel="Re(E)', ylabel="Im(E)"', \

12| xlim=sg.spectral_square[:2], ylim=sg.spectral_square[2:])
13| plt.tight_layout (); plt.show()

14 ° ® e eene

% 0o ee e
£ . .
.
14 . ® e e see
- .. .
.
.
o
—2 4 &
-2 -1 0 1 2
Re(E)

THE SET OF SPECTRAL FUNCTIONS

1| phi, dos, binaried_dos = sg.spectral_images ()

w

fig, axes = plt.subplots(l, 3, figsize=(8, 3), sharex=True,

— sharey=True)

axes[0].imshow (phi, extent=sg.spectral_square, cmap='terrain')

axes|[0] .set (xlabel="Re(E) "', ylabel="Im(E)', title='Spectral Potential')
p2, P98 = np.percentile(dos, (2, 98))

norm = colors.Normalize (vmin=p2, vmax=p98)

axes|[1l].imshow (dos, extent=sg.spectral_square, cmap='viridis',
< norm=norm)

10] axes[1l].set (xlabel='Re (E)', title='Density of States')

11

O N N L A
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axes[2] .imshow (binaried_dos, extent=sg.spectral_square, cmap='gray')
axes[2] .set (xlabel="'Re(E) "', title='Graph Skeleton')
plt.tight_layout ()

plt.show ()

Spectral Potential

2 ‘

Density of States Graph Skeleton

Re(E) Re(E)

THE SPECTRAL GRAPH G

graph = sg.spectral_graph ()

fig, ax = plt.subplots(figsize=(3, 3))

pos = nx.get_node_attributes (graph, 'pos')

nx.draw_networkx_nodes (graph, pos, alpha=0.8, ax=ax,
node_size=50, node_color="#A60628")

nx.draw_networkx_edges (graph, pos, alpha=0.8, ax=ax,
width=5, edge_color="#348ABD"'")

plt.tight_layout (); plt.show()

y

.h.

7\

\_.
/

.’.

AN

If tensorflow or torch is available, poly2graph will automatically use them and run
on CPU by default. If other device, e.g. GPU / TPU is available, one can pass device

{device string} to the method spectral_images and spectral_graph:

SpectralGraph.spectral_images (device='/cpu:0")
SpectralGraph.spectral_graph (device="'/gpu:1")
SpectralGraph.spectral_images (device='cpu')

SpectralGraph.spectral_graph (device='cuda:0")

DB L N —

will fallback to CPU.

However, some functions may not have gpu kernel in t £/t orch, in which case the computation
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G.3.2 A GENERIC MULTI-BAND EXAMPLE (P2G.SPECTRALGRAPH):

Characteristic polynomial (four bands):

P(E,z):=det(h(z) — EI) = 2> +1/2> + Ez — E*

One of its possible Bloch Hamiltonians in terms of z:

0 0 0 22+41/22
1 0 0 z
01 0 0
0 0 1 0

h(z) =

sg_multi = p2g.SpectralGraph ("z*+x2 + 1/z*xx2 + E*xz — Ex*x4", k, z, E)

Characteristic polynomial:

sg_multi.ChP

>>> Poly(z2 + zE + Z% — E4, 2, %, E, domain = Z)

Bloch Hamiltonian:

e For multi-band model, if the p2g.SpectralGraph is not initialized with a sympy
Matrix, then poly2graph will use the companion matrix of the characteristic polyno-
mial P (z) (E) (treating z as parameter and E as variable) as the Bloch Hamiltonian — this
is one of the set of possible band Hamiltonians that possesses the same energy spectrum
and thus the same spectral graph.

sg_multi.h_k

>>>
0 0 0 2cos(2k)
1 00 etk
01 0 0
0 0 1 0

sg_multi.h_z

>>>
000 22+5%
1 0 0 z
0 1 0 0
0 0 1 0

The Frobenius companion matrix of P (E) (z):

sg_multi.companion_E

40



>>>

00 0 -1
10 0 O

01 0 FE*
001 —-F

Number of bands & hopping range:

print ('Number of bands:', sg_multi.num_bands)
print ('Max hopping length to the right:', sg_multi.poly_p)
print ('Max hopping length to the left:', sg_multi.poly_qg)

w N

>>>

Number of bands: 4
Max hopping length to the right: 2
Max hopping length to the left: 2

W =

A real-space Hamiltonian of a finite chain and its energy spectrum:

H multi = sg_multi.real_space_H/(
N=40,
pbc=False,
max_dim=500

AW D =

—

5] )

6

7| energy_multi = np.linalg.eigvals (H_multi)
8

9

fig, ax = plt.subplots(figsize=(3, 3))

10] ax.plot (energy_multi.real, energy_multi.imag, 'k.', markersize=5)

11| ax.set (xlabel="'Re(E) ', ylabel="Im(E)"', \

12| xlim=sg_multi.spectral_square[:2], ylim=sg _multi.spectral_square[2:])
13| plt.tight_layout (); plt.show()

[\
A t s
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Re(E)

THE SET OF SPECTRAL FUNCTIONS

1| phi_multi, dos_multi, binaried_dos_multi =
< sg_multi.spectral_images (device='/cpu:0")

2

3| fig, axes = plt.subplots(l, 3, figsize=(8, 3), sharex=True,
— sharey=True)
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axes[0].imshow (phi_multi, extent=sg_multi.spectral_square,

— cmap='terrain')

axes[0] .set (xlabel='Re(E) "', ylabel="'Im(E)', title='Spectral Potential')
axes|[1l].imshow(dos_multi, extent=sg_multi.spectral_square,

— cmap='viridis', norm=norm)

axes|[l].set (xlabel="'Re(E)"', title='Density of States')

axes[2] .imshow (binaried_dos_multi, extent=sg_multi.spectral_square,

— cmap='gray')

axes[2] .set (xlabel="Re(E) ', title='Graph Skeleton')

plt.tight_layout (); plt.show()

Spectral Potential Density of States Graph Skeleton
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THE SPECTRAL GRAPH G

graph_multi = sg_multi.spectral_graph (
short_edge_threshold=20,

)

fig, ax = plt.subplots(figsize=(3, 3))
pos_multi = nx.get_node_attributes (graph_multi, 'pos')
nx.draw (graph_multi, pos_multi, ax=ax,
node_size=10, node_color='#A60628",
edge_color="#348ABD', width=2, alpha=0.38)
plt.tight_layout (); plt.show/()
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G.3.3 NODE AND EDGE ATTRIBUTES OF THE SPECTRAL GRAPH OBJECT

The spectral graph is a networkx .MultiGraph object.

¢ Node Attributes
1. pos : (2,)-numpy array
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— the position of the node (Re(E),Im(E))
2. dos : float

— the density of states at the node
3. potential : float

— the spectral potential at the node

» Edge Attributes

1. weight : float
— the weight of the edge, which is the length of the edge in the complex energy
plane
2. pts: (w, 2)-numpy array
— the positions of the points constituting the edge, where w is the number of points
along the edge, i.e., the length of the edge, equals weight
3. avg_dos : float
— the average density of states along the edge
4. avg_potential : float
— the average spectral potential along the edge

node_attr = dict (graph.nodes (data=True))

1

2| edge_attr = list (graph.edges (data=True))

3] print ('The attributes of the first node\n', node_attr[0], '\n')

4] print ('The attributes of the first edge\n', edge_attr[0][-1], '\n'")
>>>

1| The attributes of the first node

2 {'pos': array([-0.20403848, -2.11668106]),

3 'dos': 0.0011466597206890583,

4 'potential': -0.655870258808136}

5

6] The attributes of the first edge

7 {'weight': 1.4176547247784077,

8 'pts': array([[-2.04038482e-01, -2.11668106e+00],

9 [-1.99792382e-01, -2.11243496e+00],

10 Ce

11 [ 5.94228396e-01, -1.02967935e+0011),

12 'avg_dos': 0.10761458,

13 'avg_potential': -0.5068641}

G.3.4 A GENERIC MULTI-BAND CLASS (P2G.CHARPOLYCLASS):

Let us add two parameters {a, b} to the aforementioned multi-band example and construct a
p2g.CharPolyClass object:

1| a, b = sp.symbols('a b', real=True)
2
3] cp = p2g.CharPolyClass (
4 "zxx2 + a/zxx2 + b*xExz — Exx4",
5 k=k, z=z, E=E,
6 params={a, b},
71 )
>>>
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Derived Bloch Hamiltonian “h_z~ with

4 bands.

View a few auto-computed properties

Characteristic polynomial:

cp.ChP

>>> Poly(z2 + az% +b2E — B4, 2, %, E,domain =7 |a, b})

Bloch Hamiltonian:

cp.h_k
>>> ) )
0 0 0 (a+eth)e 2k
1 0 0 betk
0 1 0 0
0 0 1 0
cp.h_z
>>>
00 0 =+ 22
1 0 0 bz
01 0 0
0 0 1 0
The Frobenius companion matrix of P (E) (z):
cp.companion_E
>>>
0 0 0 —a
1 0 0 0
01 0 E*
0 0 1 —Eb

AN ARRAY OF SPECTRAL FUNCTIONS

To get an array of spectral images or spectral graphs, we first prepare the values of the parameters

N AW N —

{a, b}
a_array = np.linspace (-2, 1, 6)
b_array = np.linspace (-1, 1, 6)
a_grid, b_grid = np.meshgrid(a_array, b_array)
param_dict = {a: a_grid, b: b_grid}
print ('a_grid shape:', a_grid.shape,
'\nb_grid shape:', b_grid.shape)
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>>>

a_grid shape: (6, 6)
2| b_grid shape: (6, 6)

Note that the value array of the parameters should have the same shape, which is also the shape
of the output array of spectral images

1| phi_arr, dos_arr, binaried_dos_arr, spectral_square = \
2 cp.spectral_images (param_dict=param_dict)

3| print ('phi_arr shape:', phi_arr.shape,

4 '\ndos_arr shape:', dos_arr.shape,

5 '"\nbinaried_dos_arr shape:', binaried_dos_arr.shape)

>>>

1| phi_arr shape: (6, 6, 1024, 1024)
2| dos_arr shape: (6, 6, 1024, 1024)
3| binaried_dos_arr shape: (6, 6, 1024, 1024)

1] from mpl'toolkits.axes'gridl import ImageGrid
2
3] fig = plt.figure(figsize=(13, 13))
4] grid = ImageGrid(fig, 111, nrows_ncols=(6, 6), axes_pad=0,
5 label_mode='L"', share_all=True)
6
71 for ax, (i, Jj) in zip(grid, [(i, Jj) for i in range(6) for J in
— range(6)]):
8 ax.imshow (phi_arr([i, j], extent=spectral_squareli, 3j],
— cmap='terrain')
9 ax.set (xlabel='Re (E) ', ylabel="Im(E)")
10 ax.text (
11 0.03, 0.97, f'a = {a_array[i]:.2f}, b = {b_array([j]l:.2f}"',
12 ha='left', va='top', transform=ax.transAxes,
13 fontsize=10, color='tab:red',
14 bbox=dict (alpha=0.8, facecolor='white')
15 )
16
17| plt.tight_layout ()
18] plt.savefig('./assets/ChP_spectral_potential_grid.png', dpi=72)
19| plt.show ()
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AN ARRAY OF SPECTRAL GRAPHS

graph_flat, param_dict_flat = cp.spectral_graph (param_dict=param_dict)
print (graph_flat, '\n')
print (param_dict_flat)

[<networkx.classes.multigraph.MultiGraph object at 0x000001966DFCD190>,
<networkx.classes.multigraph.MultiGraph object at 0x000001966DFCECFO0>,
<networkx.classes.multigraph.MultiGraph object at 0x000001966DFCE750>]
{a:
array((-2. , -1.4, -0.8, -0.2, 0.4, 1., -2. , -1.4, -0.8, -0.2,
— 0.4,

i., -2. , -1.4, -0.8, -0.2, 0.4, 1., -2. , -1.4, -0.8,

— =0.2,

0.4, 1., -2. , -1.4, -0.8, -0.2, 0.4, 1., -2. , -1.4,

- -0.8,

-0.2, 0.4, 1. 1),

b:
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~| array([(-1. , -2. , -1. , -1. , -1. , -1. , -0.6, -0.6, -0.6, -0.6,

— -0.6,
13 -0.6, -0.2, -0.2, -0.2, -0.2, -0.2, -0.2, 0.2, 0.2, 0.2,
— 0.2,
14 0.2, 0.2, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 1., 1. , 1.
— ’
15 1., 1., 1. 1)}

The spectral graph is a networkx.MultiGraph object, which cannot be directly returned
as a multi-dimensional numpy array of MultiGraph, except for the case of 1D array. In-
stead, we return a flattened list of networkx.MultiGraph objects, and the accompanying
param dict_flat is the dictionary that contains the corresponding flattened parameter val-

ues.

It’s recommended to pass the values of the parameters as vectors (1D arrays) instead of higher
dimensional ND arrays to avoid the overhead of reshaping the output and the difficulty to
retrieve / postprocess the spectral graphs.

H LIMITATIONS AND FUTURE WORK

Component fragmentation. Our extraction pipeline struggles when the hopping range or band
number becomes large (e.g. for pure theoretical interests that fall outside realistic domain), because
extremely low densities of states make the graph skeleton fragile, occasionally fragmenting a con-
nected component (as shown in the bottom row in figure A4). We term this phenomenon component
[fragmentation and note that it is an intrinsic limitation of the spectral graph per se (see appendix C.6).

Better designed, more comprehensive benchmark. Our contribution centers on the dataset and its
generator; the benchmark is a lightweight baseline intended to catalyze follow-up work. We invite
the community to perform comprehensive, large-scale, and carefully designed evaluations.

Representation gap. Our reference PyG conversion uses fixed-size, direction-agnostic edge sum-
maries, which can discard full continuous details of multi-edge geometry. Future encoders could
operate directly on edge coordinate sequences, e.g. explore spline/Bezier bases, curvature/shape
descriptors.

Multi-edge modeling. Vanilla attention and pooling are not tailored for heavy edge multiplicity.
Multi-edge—aware mechanisms—typed/bundled edges, edge-gated updates, sparsified geometric at-
tention, or dual-graph pooling over edges—may better exploit information carried by parallel curves.

Temporal modeling (T-HSG-5M). Our static benchmark does not cover dynamic tasks.
T-HSG-5M enables early-sequence classification, temporal extrapolation, and change-point detec-
tion that leverage continuous geometric evolution along Hamiltonian parameters.
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