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Abstract

Continuous tracking of eye movement dynamics plays a significant role in devel-
oping a broad spectrum of human-centered applications, such as cognitive skills
modeling, biometric user authentication, and foveated rendering. Recently neuro-
morphic cameras have garnered significant interest in the eye-tracking research
community, owing to their sub-microsecond latency in capturing intensity changes
resulting from eye movements. Nevertheless, the existing approaches for event-
based eye tracking suffer from several limitations: dependence on RGB frames,
label sparsity, and training on datasets collected in controlled lab environments
that do not adequately reflect real-world scenarios. To address these limitations, in
this paper, we propose a dynamic graph-based approach that uses the event stream
for high-fidelity tracking of pupillary movement. We first present EyeGraph, a
large-scale, multi-modal near-eye tracking dataset collected using a wearable event
camera attached to a head-mounted device from 40 participants – the dataset was
curated while mimicking in-the-wild settings, with variations in user movement
and ambient lighting conditions. Subsequently, to address the issue of label spar-
sity, we propose an unsupervised topology-aware spatio-temporal graph clustering
approach as a benchmark. We show that our unsupervised approach achieves per-
formance comparable to more onerous supervised approaches while consistently
outperforming the conventional clustering-based unsupervised approaches.

1 Introduction

Fine-grained, high-frequency eye tracking is increasingly of interest as an enabler of a wide variety
of applications, such as biometric user authentication [30, 40, 57], foveated rendering for augmented
and virtual reality [27, 43], and monitoring of cognitive attention/overload [15]. However, rapid and
intricate eye movements [32] (with pupillary acceleration reaching values as high as 24, 000◦/s2 [1]),
such as fixations (moments when the eyes are stationary and focused on a particular point), saccades
(quick movements of both eyes between fixation points in the same direction), and microsaccades
(small involuntary eye movements within fixation points) are difficult to capture with conventional
RGB cameras [2, 35] due to their poor temporal resolution, susceptibility to motion blur, and
constrained capability to accurately detect and track pupils under low lighting conditions. In this
paper, we explore the possibility of using Neuromorphic event cameras [37, 20] as an alternative
to traditional RGB-based eye tracking. Neuromorphic vision sensors capture changes in the visual
scene asynchronously, only recording data when a significant event occurs, leading to a more efficient,
high-frequency, and finer-grained depiction of eye movement dynamics.

Recent approaches for event-based eye-tracking predominantly adopt a supervised learning approach
that uses either (i) RGB frames to guide pupil localization in event streams [59, 2, 73, 9] or (ii)
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Figure 1: Broad overview of our approach, starting from (A) and follows the proposed steps: (B) in
Section 5, (E) in Section 6 and (G) in Section 6 towards (H) continuous event-based eye tracking.

exclusive event-based pupil segmentation [35, 8]. Our main goal is to accurately and continuously
record eye movements with high temporal resolution by (a) processing a stream of sparse events as
asynchronously and temporally evolving graphs, and (b) adopting unsupervised modularity-aware
graph representation learning to effectively cluster distinct ocular regions as a means for accurate and
continuous pupil tracking. Our core idea is depicted in Figure 1.

In this paper, we specifically tackle four core shortcomings of event-based eye-tracking: (a) lack of
event-based datasets that are representative of real-world scenarios (such as varying illuminance and
user mobility – existing datasets are curated in a controlled lab environment with no head movements),
(b) label sparsity (eye/gaze coordinates are only available on a fixed time interval, typically at coarser
temporal resolution, e.g., EV-Eye [73] provides Points of Gaze at 100Hz), (c) dense 2D framed
representation (events accumulated over a fixed time or event volume) that inadequately captures the
underlying geometric, spatial, and temporal relationships, and (d) RGB-guided gaze inference (RGB
cameras capture frames at fixed intervals, leading to a mismatch with the asynchronous nature of
event-based sensors).

We make the following key contributions to address these limitations:

• To address the challenge (a), we present EyeGraph, a large-scale multi-modal near-eye tracking
monocular dataset collected using a wearable event camera attached to a head-mounted device. It is
important to note that the dataset was collected while mimicking in-the-wild settings, under varying
ambient illuminance, and with individuals exhibiting unrestricted head and body movements.

• To tackle the challenges (b), (c), and (d) we adopt an unsupervised topology-aware graph-based
approach. We propose (i) a novel temporally evolving dynamic graph representation for event-only
eye tracking, and (ii) a novel topologically guided modularity-aware graph clustering approach
that balances spatial proximity and temporal continuity of events. This approach ensures that the
resulting clusters are accurately reflecting the sequential nature of eye movements.

To the best of our knowledge, our proposed benchmark is the first unsupervised event-based eye
tracking in the literature.

2 Related Work

Event-based Supervised Eye/Gaze Tracking: Event cameras [37] mimic the human retina to
record per-pixel changes in light intensity, yielding high O(µs) temporal resolution, low O(mW )
power consumption, and asynchronous and sparse event streams. Recent works on eye/gaze tracking
explore (i) hybrid RGB+Event approaches to pupil detection (with RGB frames) and tracking
(with events) for near-eye gaze estimation [17, 73, 33, 71, 2], and (ii) pure-event approaches that
aggregate events into framed representations for inference by DNN-based pupil segmentation and
tracking [59, 34, 9, 8, 35, 64] and traditional computer vision methods like ellipse fitting for pupil-
related events [35]. Hybrid approaches still rely on RGB frames, present lower perceptual throughput,
and do not leverage the high temporal resolution of event data effectively. On the other hand,
existing event-based processing suffers from challenges such as label sparsity, and inefficient framed
representations.
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Graph-based Object Tracking: Recent works have explored graph-based processing to maintain
the sparse and asynchronous nature of event streams during processing and inference to improve
object tracking fidelity. Early works in this paradigm construct static, compact graphs from event
streams over distinct chunks of time, sacrificing the low-latency nature of event data in favour of
aggregating information from events within each group or time period [5, 44] for more efficient graph
processing. In contrast, recent works explore dynamic graph construction strategies such as (i) sliding
window-based event-by-event graph construction [36], (ii) spatio-temporal graphs constructed from
density-insensitive downsampled key-events [75], and (iii) “evolving" spatio-temporal graphs which
restrict recomputation of network activations only to those nodes which are affected by incoming
events [53]. These approaches reduce processing latency and computational complexity while
maintaining tracking accuracy. However, Mondal et. al. [45] show how unsupervised clustering of
events in graphs can support the detection of distinct moving objects, resulting in superior object
tracking fidelity. To achieve efficient graph clustering, recent works explore strategies such as (i)
unsupervised graph pooling [61, 7, 6, 69], (ii) autoencoders [41, 48, 29], and (iii) learnt patched
representations [63, 72].

Our work cuts across the two fields of work to propose a novel dynamic graph construction mechanism
with unsupervised topological clustering to efficiently isolate and track eye (pupillary) movement.

3 Motivation

3.1 Monocular Eye Tracking

While correlated, pupil trajectory, which is the movement of the pupil within the eye over time, and
gaze direction, which is the direction in which a person looks relative to their environment, represent
different aspects of eye movement. As an example, changes in lighting conditions or cognitive load
can cause fluctuations in pupil movement without necessarily corresponding to changes in gaze
direction, whereas reflexive eye movements, such as saccades or smooth pursuit, can cause rapid
changes in gaze direction while the pupil trajectory remains relatively stable. Since our objective in
this work is to track the reflexive, physiologically-driven spatiotemporal dynamics of the pupil, we
focus on tracking the pupil’s spatial coordinates in monocular fashion, rather than the trajectory of
the gaze direction.

Our approach of tracking a single pupil is based on the assumption that users demonstrate ideal
conjugate eye movements, reflecting synchronized ocular motions consistent with typical oculomotor
function. Further, the broader understanding of saccadic and smooth pursuit eye movements suggests
that both eyes move in a highly coordinated manner due to their control by shared neural circuits. To
this end, many works in ophthalmology research discuss the stability and coordination of saccadic
eye movements and imply that both eyes generally maintain similar velocity profiles, with the role of
dominance not significantly altering this aspect of eye movement [46, 56, 32]. In addition, several
prior works have used monocular eye tracking for: (a) 3D gaze tracking [74, 42], (b) emotion
recognition [70, 67], (c) cognitive modelling [38, 25, 23], (d) virtual and mixed reality [55], and (e)
user authentication [13].

3.2 Dynamic Graph Construction

Contrary to the conventional cameras (where the intensity of light across the visible spectrum incident
on the sensor is captured at discrete points in time), event cameras or Dynamic Vision Sensors (DVS)
only record changes in brightness (events) at each pixel asynchronously and with high temporal
resolution, resulting in sparse data streams that encode motion and brightness changes in real-time.
The event camera outputs a series of events on a per-pixel level – an event ei (i ∈ N) is denoted by
a tuple (xi, yi, pi, ti), where (xi, yi) denotes the corresponding pixel coordinates where the event
is generated, pi represents the change in polarity (positive vs. negative), and ti is the time of the
corresponding event.

Recent works on event processing involve Graph Neural Networks (GNNs) to process events as
“static” spatio-temporal graphs [53, 5, 45, 36, 75]. These graphs are inherently “sparse”, capturing the
essential spatial and temporal relationships with a focus on efficient computation and representation.
Inspired by the Hebbian learning principle, “pixels that fire together wire together”, in this work,
to efficiently process the event stream, we propose a dynamic and temporally evolving spatio-
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temporal graph-based approach with adaptive edge construction. More specifically, the adaptive
edge construction framework focuses on a Gaussian Mixture Model (GMM)-based soft clustering
approach to spatially group distinct macroscopic parts of the human eye. Subsequently, the edges
in the temporal plane are formed by connecting the nodes that are both spatially and temporally
together. Our premise is that by preserving the local and global structure of the eye anatomy and its
movements, the dynamic graphs can accurately represent the movement of various parts of the eye.

3.3 Unsupervised Topological Graph Clustering

Topological graph clustering partitions eye-tracking data into spatially and temporally coherent
clusters, taking into account the modular structure of the underlying graph representation. It identifies
densely connected subgraphs (clusters) that exhibit high within-cluster connectivity and low between-
cluster connectivity. By considering both spatial proximity and temporal adjacency of nodes within
the graph, the nodes within the same cluster are not only close in space but also temporally contiguous,
reflecting the natural progression of gaze behavior over time. Further, we operate under the premise
that each connected subgraph can represent a distinct anatomical or functional region of the eye, such
as the pupil, upper eyelid, or a segment of the eyebrow. To be more specific, different parts of the eye
exhibit (a) unique shapes, and (b) movement profiles. This allows the use of topological clustering on
dynamically evolving graphs to (a) ensure that nodes within clusters are spatially close, reflecting
physical proximity on the eye (i.e., shape of the eye anatomy), and (b) ensure clusters represent
continuous movements by considering temporal order of events (i.e., distinct movement profiles of
each eye region). To have a better visual understanding, in Figure 1(B), we show (i) the cross-section
view on the spatial plane where the GMM-based soft clustering approach helps to identify the volume
of events that are triggered by the movements of iris (i.e., the events forming a circle/oval contour),
and (ii) the 3-dimensional view where we can witness that the temporal trajectory of iris movement is
represented as a connected and directed sub-graph.

4 EyeGraph: A Large-Scale Mobile Event Dataset

4.1 Experimental Setup

(a) (b) (c) (d)

Figure 2: In-the-wild experiments under (a) lab settings; DAVIS346 (b) lab settings; Pupil-Core eye
tracker, (c) varying illuminance, and (d) user mobility and head/body movements.

During the data collection process, the participants wear a custom-built head-mounted device (HMD)
equipped with a DAVIS346 camera [24]. The HMD was secured around the forehead using a Velcro
fastener. The camera is positioned adjacent to the right eye, while the participants are directed to track
the visual stimuli using their left eye. To elicit natural eye movements, the visual stimulus appears at
the top left corner of the screen and then moves continuously in random directions. To guide the gaze
movement of the participants, we displayed the visual stimulus on a 1920× 1080, 23.8-inch monitor.
The distance between the monitor and the participant varied between 45cm and 50cm, resulting in
a field of view between 56◦ × 34◦ and 62◦ × 37◦, except when the participant moves freely. To
collect reference for cross-modal investigations, the participants wear the off-the-shelf Pupil-Core
eye tracker [26] at which their gaze is guided by replaying an identical visual stimulus.

To record eye-tracking data for a wider range of practical and in-the-wild conditions, as illustrated in
Figure 2, we use three experimental setups: (i) conventional lab settings – the participant is seated
in an office environment (default illuminance) while watching the visual stimulus on a screen. The
participants can move their heads without maintaining a fixed/rigid posture, (ii) changing ambient
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illuminance: the experiment is repeated both under regular lighting (348 Lux) and under lower
illuminance (24 Lux), with the corresponding near-eye Lux values being 65 and 8 Lux, respectively,
and (iii) user mobility – the participants are asked to move around freely within the lab while carrying
a laptop (3024× 1964, 14-inch screen) that displays the visual stimuli, resulting in natural head and
body movement.

4.2 Dataset Collection

Our participant pool consists of 40 participants, including 28 males and 12 females, representing
diverse ethnic backgrounds (ages ranging from 21 to 32 years, µ = 26.08 years and σ = 2.99) 1.
Prior to the data collection, the wearable devices were calibrated mechanically to ensure an optimal
capture of each participant’s eye region. The visual stimulus is a solid white circle (diameter 80 pixels)
on a black background. While focusing their gaze on the white circle, each participant predominantly
exhibited smooth pursuit and fixation states when the circle was moving smoothly. Similarly, saccadic
states were triggered by the occasional discontinuous “jump" in the location of the white circle. The
same experiment is repeated with variations in (i) the ambient illuminance from 348 Lux (default) to
24 Lux, and (ii) user movements.

4.3 Dataset Characteristics

To our knowledge, EyeGraph is the only dataset that comprehensively captures eye-tracking data
under naturalistic indoor conditions. In Table 1, we present a comparative summary of EyeGraph
vs. four publicly available event-based eye-tracking datasets, highlighting the distinctive attributes
and advantages of each. Further, a detailed analysis on EyeGraph is presented in supplementary
materials.

Table 1: Comparison of publicly available near-eye event datasets with EyeGraph

Feature EBV-Eye [2] EV-Eye [73] 3ET [9] 3ET+ [64] EyeGraph

Tracking End Goal Gaze Gaze Pupil Pupil Pupil
Representation 2D frame 2D frame 2D frame 2D frame Graph
Learning supervised supervised supervised supervised unsupervised
Has Grayscale/RGB Frame Data? ✓ ✓ ✓
Is data from human participants? ✓ ✓ ✓ ✓
Is Monocular? N/A ✓ ✓
Is Multi-modal? ✓ ✓ ✓
Number of participants 24 48 N/A 13 40
Is head-movement allowed? N/A ✓
Accounts lighting changes? ✓
Accounts participant mobility? N/A ✓

5 Dynamic Graph Construction

Prerequisites A graph (G) is defined as G = (V,E) with vertices V = (v1, ..., vn); |V | = n
and edges E = (e1, ..., em) ⊆ V × V ; |E| = m. We denote the n × n adjacency matrix (without
self-loops) of G by A where Aij = 1 iff {vi, vj} ∈ E given i ̸= j, and Aij = 0 otherwise.
Further, each node is embedded with a d−dimensional feature vector xvi ∈ Rd whereas each edge is
embedded with a scalar feature xei ∈ R. Further, the degree of a node vi is defined as its number
of connections:

∑n
j=1 Aij and a graph is said to be directed iff ∀vi, vj ∈ V ; i, j ∈ {k ∈ N : k ≤

n}; i ̸= j : {vi, vj} ∈ E where {vi, vj} is an ordered pair.

Problem Formulation Considering each event is encoded in a tuple: (xi, yi, ti, pi)∀ i ∈ N, we
represent raw events as a sparse and asynchronous spatio-temporal point cloud (as depicted in
Figure 1) where events are represented as nodes in the graph. Therefore, the position of each node is
denoted as pvi = [λ1ti, λ2xi, λ3yi] ∈ R3 and the corresponding node feature vector is represented
as [λ1ti, λ2xi, λ3yi, pi] ∈ R4 where λ1, λ2 and λ3 are normalization factors. This representation

1Our institution’s IRB approved our data collection
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allows us to effectively capture the temporal resolution of events (as opposed to the other event-based
fixed representations depicted in Figure 1) resulting in efficient processing of the incoming events
through sparse, but complete, graph updates [53]. Inspired by the Hebbian learning principle, “pixels
that fire together wire together”, our goal is to construct event-based dynamic graphs where the edges
are formed to preserve the local and global structure of the eye’s anatomical parts. This facilitates
the tracking of each anatomical part’s movement over time, represented as evolving snapshots in the
temporal domain.

Dynamic Theresholding-based Edge Construction Strategy The existing works for event-based
vision tasks using GNNs [53, 21, 45, 36] mostly overlook the importance of edge construction
mechanism, which is critical for preserving the object structure information [16, 60]. The conven-
tional methods such as fixed-radius or k-nearest neighbours (kNN) are not specifically tailored to
accommodate the unique characteristics of event vision (See Figures 3(a), 3(b), 3(c)). Hence, we
construct edges based on a dynamic threshold-based radius, where the threshold changes based on
the event volume and the movement dynamics.

(a) (b) (c) (d)

Figure 3: An artificially set-threshold in radius graphs results in either (a) more disconnected
components (i.e., global structure loss) or (b) more unintuitive edges (i.e., local structure loss)
especially when the eye movement dynamics rapidly change. (c) kNN graphs are also susceptible to
blur structure information of the events, due to the necessity to create edges up to an artificially-set
threshold. (d) spatio-temporal distance distribution of an event volume.

To better understand the correlation between the events, in Figure 3(d), we depict the distribution
of the Euclidean distances between spatio-temporal points. These distances can be represented as a
mixture of Gaussian distributions, arising from the distinct eye parts and their varying movement
profiles. We thus use Equation 1 for constructing the edges over a fixed event volume.

F (c,P) = f2
k∈N s.t. 1≤k≤c(k, f

1
∀vi,vj∈V [∥pvi − pvj∥]) (1)

where f1(.) is the transformation function to retrieve the upper triangular matrix such that D = [dij]
iff dij = 0∀i ≥ j given dij = ∥pvi − pvj∥ and f2(.) is the Gaussian mixture model (GMM) fitting
function [66]: N (µa, σa) =

∑k
a=1 πaN (x|µa, σa), 1 ≤ k ≤ c; with the objective of Bayesian

information criterion (BIC) approaching minimum: BIC[F (.)] ≤ δ (see supplementary materials
for details). In addition, c is the maximum number of clusters to be considered in GMM fitting
which is heuristically determined as 5 due to the prominent anatomical clusters available in near-eye
tracking: pupil, iris, lower and upper eyelids/lashes, and eyebrows. P denotes the set of node
positions: P = (pv1 , ...,pvn).

After GMM fitting, the dynamic threshold for the accumulated event volume is set by considering the
statistical relevance: ξ1 = λ×min(µi−3σi) where µi and σi are the mean and standard deviation of
each fitted Gaussian distributions where the number of Gaussian distributions lies in [1, c]. Here, λ is
the scaling factor. Subsequently, this dynamic threshold is utilized in constructing radius-graph edges
in the spatial plane: ∃ {vi, vj} ∈ E ∀ti = tj ± δ : ∥pvi − pvj∥ ≤ ξ1 with a node degree condition:∑n

j=1 Aij ≤ N to regularize the graph where N is the allowed maximum degree. However, the
edges in the temporal domain are constructed by following Equation 2 in a directed fashion to reflect
the evolving nature of the graph in time.

∃ {vi, vj} ∈ E ∀ti < tj iffλ1(tj − ti) ≤ ξ2 ∩ (xj , yj) ∈ {(xk, yk)|k ∈ [i− α, i+ α], α ∈ N} (2)

where ξ2 and α are heuristically determined such that the evolving present and past events are well-
connected, both spatially and temporally, in the node neighbourhood during the graph construction.
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Edge Feature Assignment In our approach, edge features are utilized to represent the relative
movement profiles of eye parts. To capture the influence of historical events holistically, we adopt
a Hawkes process-based [22, 31] attribution mechanism. The pseudo-code for the proposed edge
feature assignment is depicted in Figure 4(a).

(a) (b)

Figure 4: PyTorch-style pseudo-codes for (a) Hawkes-based edge feature attribution, (b) RANSAC-
based pupil coordinates estimation.

6 Unsupervised Topological Clustering

Problem Formulation As empirically observed in Figure 1, event-based eye movement data
suggests an underlying anatomical structure of the eye within the spatial plane. Simultaneously, it
maintains the continuous movement dynamics of each component of the eye across the temporal
domain. Consequently, it appears intuitive to use spatio-temporal clustering of the nodes within the
graph representation, with the intent of extracting distinct movement profiles and dynamics for each
anatomical part. To this end, our goal of clustering is to develop a graph partitioning function (without
any label-support, i.e., unsupervised), Υ : V 7→ {1, ..., c} s.t. Vi = {vj : Υ(vj) = i} to split the set
of nodes into c partitions via a graph encoder fθ that maps the graph space (G) and the corresponding
low-dimensional latent vector space: fθ(G) = Z ∈ Rn×dh (where Z = {zi | i ∈ [1, n]} and dh is the
embedding dimension), ensuring the (i) anatomical topology of the eye with the temporal evolution
are well-preserved while (ii) the cluster quality in terms of modularity measure is maximized.

Variational Graph Autoencoder To learn the fθ, we implement a variational graph autoencoder
(VGAE) [29] due to their demonstrated performance in highlighting the topology of the graphs
through edge reconstruction. The encoder of the proposed VGAE is comprised of graph convolutional
network layers [28] to generate node embeddings through the message passing rule: X(l+1) =

η(ÃX(l)W(l)) for l ∈ {0, .., L − 1}. In summary, the encoder can be modelled as q(Z |X,A) =∏n
i=1 N (zi |µi, diag(σ

2
i )) while the decoder is p(A |Z) =

∏n
i=1

∏n
j=1 p(Aij | zi, zj)with p(Aij =

1 | zi, zj) = η(z⊤i zj).

Learning Objectives We propose a joint objective function to guide the model to learn topological
information [29] embedded with the graph which maps to eye anatomy while maximizing the
modularity [4] such that the edges fall within clusters are dense whereas edges between clusters are
sparse. Therefore, we implement the weighted objective function in Equation 3.

L = γ1Eq(Z |X,A)[log p(A |Z)]− γ2
Tr(BXX⊤)

2m
− γ3KL[q(Z |X,A)∥p(Z)] (3)

where KL[q(.)∥p(.)], B and γi;i∈{1,2,3} are the Kullback-Leibler (KL) divergence (between q(.) and
p(.)), modularity matrix and scaling factors respectively. Here, topological guidance and modularity
maximization are achieved through the edge reconstruction loss (i.e., first term) and pairwise cluster
membership loss (i.e., second term) respectively, while KL divergence (i.e., third term) works as a
regularizer.

Pupil Coordinates Estimation Through our empirical evaluations, we observe that the iris and
pupil collectively exhibit a tunnel (i.e., a combination of cylinders and tori)-like movement profile
in the spatio-temporal event cloud and thereby in the constructed graph representation (as depicted
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in Figure 1). Therefore, after assigning the nodes in the graph into mutually-exclusive clusters and
with the premise that the targeted movement profile of iris and pupil are separated into one cluster,
we implement a custom tube-model-based random sample consensus (RANSAC) [18] method to
estimate the center-line movement of the pupil. The pseudo-code of the proposed method is depicted
in Figure 4(b).

7 Experiments and Results

7.1 Baseline Methods

We use the following baseline edge construction mechanisms to evaluate the performance on predict-
ing the pupil coordinates: (i) Fixed-radius graph ( ∃{vi, vj} ∈ E iff ∥pvi − pvj∥d ≤ ξ ), (ii) kNN
graph, (iii) Nearest neighbour graph (NN), (iv) Furthest point sampling graph (FPS) [51], and
(v) Gabriel graph [10].

The following clustering (CL) and supervised (SP) baselines are compared against our proposed
approach for graph clustering-based pupil coordinate estimation (see supplementary materials for
details): (i) Using spatio-temporal P as features for CL: k-means (with local Lloyd algorithm [39]
and k-means++ seeding strategy [3]), Affinity Propagation [19], Meanshift [11], Spectral Cluster-
ing [58, 12], DBSCAN [54]; (ii) Using graph structure for CL: SBM [50]; (iii) using spatio-temporal
P as features and (graph) structure for CL: Vanilla Graph Autoencoder (GAE) [29], GSCEvent-
Mod [45], DMoN [61], DGI [62]; (iv) Non-graph based pupil coordinate estimation methods using
SP techniques: MambaPupil [65], bigBrains [49], FreeEVs [64], GoSparse [64], Efficient [64].

7.2 Other Datasets

In addition to the EyeGraph dataset, we evaluate the performance of dynamic graph construction
and graph clustering techniques on the publicly available EBV-Eye dataset [2]. EBV-Eye does not
contain pupil coordinate labels as the dataset end-goal is gaze tracking. To evaluate the accuracy of
our proposed unsupervised pupil localization, we use 3ET+ dataset [64]. This dataset was recently
used in the AIS 2024 challenge [64] and we use several supervised methods proposed as part of the
challenge to compare the performance of EyeGraph. 3ET+ consists of human-labelled ground-truths
for pupil coordinates at 100Hz.

7.3 Evaluation Metrics

Since our goal is to build modularity and topology-aware clustering capability where each cluster
represents a distinct anatomical region of the eye, we employ the clustering quality as the primary
evaluation target. Therefore, we utilize four distinct metrics for evaluating the cluster quality: (i)
mean Silhouette coefficient (SC) [52], (ii) Davies-Bouldin score (DB) [14], (iii) modularity (Mo) [47],
and (iv) conductance (Cd) [68]. Further, to compare with supervised approaches for pupil coordinate
estimation, we use the p-accuracy [64], mean Euclidean (l2) and Manhattan (l1) distances following
the literature.

7.4 Results

As tabulated in Table 2, our method for dynamic graph construction achieves superior or comparable
performance across all evaluation metrics and various datasets. We observe that our method achieves
higher SC and Mo scores, and lower Cd scores, indicating that dynamic graph construction helps in
accurately representing the event-based eye region data. Similarly, in Table 3, for graph clustering, our
proposed unsupervised topology-guided clustering consistently achieves higher Mo scores, hinting
that the resultant spatio-temporal clusters are well separated. Further, in Table 4, we compare
EyeGraph approach against supervised and standard unsupervised methods in estimating the pupil
coordinates. While EyeGraph’s p10 accuracy is ≈ 8% lower than the best performing supervised
approach proposed in [64], it performs superior among the unsupervised methods. In addition, we
can see that the incorporation of our clustering approach is beneficial even to the DMoN approach, as
it helps achieve 14% improvement in the p10 value. Further, since our dataset is collected using a
mobile setup, accounting varying mobility and ambient lighting conditions, we evaluate the robustness
of the proposed method in compared with the existing supervised methods (in Table 4). We see that,
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even under poor lighting and conditions that include severe motion artifacts, we achieve an accuracy
of 93.67%, indicating its capability to accurately represent and track event-based eye movement data.
In comparison, even though MambaPupil achieves slightly better performance i.e., 2% improvement
in p10 value, it is noteworthy that our approach does not demand any extensive labeling effort to
achieve comparable performance.

Table 2: Performance of dynamic graph construction on EyeGraph and EBV-Eye using CL metrics.
⋆3d spatio-temporal edges; instead of the proposed dual-step edges.

EyeGraph EBV-Eye

Method SC↑ DB↓ Mo↑ Cd↓ SC↑ DB↓ Mo↑ Cd↓

Radius (ξ = 10−4) 0.55 0.99 61.34 14.89 0.47 0.93 63.43 18.05
Radius (ξ = 10−1) 0.53 0.92 62.45 14.90 0.42 0.99 63.85 13.14
Radius⋆ (ξ3d = 10−3) 0.64 0.97 68.80 12.45 0.49 0.90 67.86 10.71
kNN (k = 8) 0.62 0.89 69.30 16.34 0.43 1.02 70.11 6.21
NN 0.61 1.02 68.30 15.74 0.52 0.91 63.26 6.82
FPS [51] 0.52 1.03 60.54 15.49 0.41 1.34 68.45 15.87
Gabriel [10] 0.59 1.01 63.23 12.10 0.52 1.04 72.45 20.69
Ours 0.66 0.91 69.34 11.30 0.54 0.90 75.70 5.07

Table 3: Performance of the proposed graph clustering on EyeGraph and EBV-Eye using CL metrics

EyeGraph EBV-Eye

Method SC↑ DB↓ Mo↑ Cd↓ SC↑ DB↓ Mo↑ Cd↓
kmeans [39, 3] 0.30 0.99 49.45 30.23 0.31 1.56 54.56 20.45
Affinity [19] 0.31 1.20 40.67 32.37 0.29 1.67 50.34 27.88
Meanshift [11] 0.33 1.33 40.50 28.64 0.40 1.34 55.89 19.80
Spectral [58, 12] 0.39 1.44 52.34 27.46 0.36 1.48 42.67 17.88
DBSCAN [54] 0.40 1.18 55.34 20.76 0.41 1.62 60.24 15.78
SBM [50] 0.45 1.20 60.36 17.77 0.56 1.22 62.88 14.90
GAE [29] 0.53 1.03 57.90 18.44 0.51 1.20 65.65 16.68
GSCEventMod [45] 0.51 1.00 62.67 12.07 0.50 1.02 67.88 10.34
DGI [62] 0.67 0.93 67.04 10.55 0.50 1.30 70.34 5.46
DMoN [61] 0.68 0.90 68.80 13.00 0.54 0.82 69.46 9.36
Ours 0.66 0.91 69.34 11.30 0.54 0.90 75.70 5.07

8 Discussion and Conclusion

Limitations While our results show the superior performance of EyeGraph in unsupervised eye-
tracking, we identify the following open areas to be investigated. EyeGraph currently uses wearable-
based near-eye tracking of only one eye, and thus cannot directly take advantage of gaze-related
features such as saccades and fixation. Our benchmark technique assumes that the users typically
tend to exhibit conjugate eye movement, moving both eyes in tandem having similar velocity profiles.
However, it is possible that microscopic distinctions may exist between the pupillary movements of
the right and left eyes, perhaps because of the differences in ocular muscle strength (most people have
one dominant eye). In addition, we recognize the critical importance of binocular eye tracking data to
support physiological conditions/medical diagnostics use cases, such as capturing neurodevelopmental
disorders. Conversely, monocular tracking proves to be sufficiently effective in applications where
depth perception is not a priority, such as user authentication, human-computer interaction, and
emotion recognition. Further, the users are to follow the visual stimuli that randomly move across the
screen in various directions. However, to mimic more in-the-wild settings, the data stimuli should
involve natural cues such as interacting in the physical world, reading articles etc.

Future Works and Applications We are working to augment our dataset, and/or release new
iterations, with more naturalistic, but visual stimuli-driven, in-the-wild studies in both indoor and
outdoor environments so as to capture finer-grained continuous variation in illuminance, and during
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Table 4: Performance of proposed unsupervised pipeline for pupil coordinates estimation across 3ET+
and our dataset with respect to p-score and distance-based evaluation metrics. ⋆ See supplementary
materials for details.

3ET+

Category Method p10↑ p5↑ p1↑ l2 ↓ l1 ↓
MambaPupil [65] 99.42 97.05 33.75 1.67 2.11
FreeEVs [64] 99.26 96.31 23.91 2.03 2.56

Supervised bigBrains [49] 99.00 97.79 45.50 1.44 1.82
GoSparse [64] 99.00 77.20 7.32 3.51 4.63
Efficient [64] 97.95 80.67 7.79 3.51 4.43

kmeans-1⋆ 64.90 54.46 7.05 10.45 12.33
Unsupervised kmeans-2⋆ 81.45 74.56 8.45 6.78 7.98

DMoN [61]⋆ 77.45 75.07 10.20 8.36 9.66
Ours 91.45 89.22 28.34 3.88 4.24

With varying ambient lighting and mobility conditions

EyeGraph ⋆

Supervised MambaPupil [65] 95.88 87.04 40.77 3.11 3.33

kmeans-1⋆ 50.45 43.56 5.89 7.46 14.45
Unsupervised kmeans-2⋆ 86.32 79.44 20.32 4.90 6.46

Ours 93.67 91.78 31.90 3.54 3.98

diverse set of physical activities. In addition, in our future data collection efforts, we plan to include
more natural cue-based stimuli, via real-world interaction scenarios instead of the utilized controlled
visual stimuli. Further, we believe that EyeGraph dataset will also be instrumental in studying fine-
grained pupillary movements for diverse applications such as continuous biometric authentication
and affective-cognitive modelling. In contrast, we hope that our EyeGraph methods will also be
useful in other domains such as automotive vision and robotics.

Conclusion In this paper, we present EyeGraph, a large-scale multi-modal near-eye tracking dataset
collected using a wearable event camera attached to a head-mounted device. We then propose an
unsupervised topology-aware spatio-temporal graph clustering approach as a benchmark. Using
extensive evaluations, we show that our unsupervised approach achieves comparable performance
against the supervised approaches while consistently outperforming the conventional clustering
approaches.
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