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Abstract

Offline reinforcement learning (RL) algorithms have shown promising results in
domains where abundant pre-collected data is available. However, prior methods
focus on solving individual problems from scratch with an offline dataset without
considering how an offline RL agent can acquire multiple skills. We argue that a
natural use case of offline RL is in settings where we can pool large amounts of data
collected in various scenarios for solving different tasks, and utilize all of this data
to learn behaviors for all the tasks more effectively rather than training each one in
isolation. However, sharing data across all tasks in multi-task offline RL performs
surprisingly poorly in practice. Thorough empirical analysis, we find that sharing
data can actually exacerbate the distributional shift between the learned policy and
the dataset, which in turn can lead to divergence of the learned policy and poor
performance. To address this challenge, we develop a simple technique for data-
sharing in multi-task offline RL that routes data based on the improvement over the
task-specific data. We call this approach conservative data sharing (CDS), and it can
be applied with multiple single-task offline RL methods. On a range of challenging
multi-task locomotion, navigation, and vision-based robotic manipulation problems,
CDS achieves the best or comparable performance compared to prior offline multi-
task RL methods and previous data sharing approaches.

1 Introduction

Recent advances in offline reinforcement learning (RL) make it possible to train policies for real-world
scenarios, such as robotics [32, 60, 33] and healthcare [24, 67, 35], entirely from previously collected
data. Many realistic settings where we might want to apply offline RL are inherently multi-task
problems, where we want to solve multiple tasks using all of the data available. For example, if
our goal is to enable robots to acquire a range of different behaviors, it is more practical to collect
a modest amount of data for each desired behavior, resulting in a large but heterogeneous dataset,
rather than requiring a large dataset for every individual skill. Indeed, many existing datasets in
robotics [17, 11, 66] and offline RL [19] include data collected in precisely this way. Unfortunately,
leveraging such heterogeneous datasets leaves us with two unenviable choices. We could train
each task only on data collected for that task, but such small datasets may be inadequate for good
performance. Alternatively, we could combine all of the data together and use data relabeled from
other tasks to improve offline training, but this naïve data sharing approach can actually often degrade
performance over simple single-task training in practice [33]. In this paper, we aim to understand
how data sharing affects RL performance in the offline setting and develop a reliable and effective
method for selectively sharing data across tasks.

A number of prior works have studied multi-task RL in the online setting, confirming that multi-
tasking can often lead to performance that is worse than training tasks individually [56, 62, 90].
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These prior works focus on mitigating optimization challenges that are aggravated by the online data
generation process [64, 89, 88]. As we will find in Section 4, multi-task RL remains a challenging
problem in the offline setting when sharing data across tasks, even when exploration is not an issue.
While prior works have developed heuristic methods for reweighting and relabeling data [3, 16, 44,
33], they do not yet provide a principled explanation for why data sharing can hurt performance in
the offline setting, nor do they provide a robust and general approach for selective data sharing that
alleviates these issues while preserving the efficiency benefits of sharing experience across tasks.

In this paper, we hypothesize that data sharing can be harmful or brittle in the offline setting because
it can exacerbate the distribution shift between the policy represented in the data and the policy
being learned. We analyze the effect of data sharing in the offline multi-task RL setting, and present
evidence to support this hypothesis. Based on this analysis, we then propose an approach for selective
data sharing that aims to minimize distributional shift, by sharing only data that is particularly relevant
to each task. Instantiating a method based on this principle requires some care, since we do not know
a priori which data is most relevant for a given task before we’ve learned a good policy for that task.
To provide a practical instantiation, we propose the conservative data sharing (CDS) algorithm. CDS
reduces distributional shift by sharing data based on a learned conservative estimate of the Q-values
that penalizes Q-values on out-of-distribution actions. Specifically, CDS relabels transitions when
the conservative Q-value of the added transitions exceeds the expected conservative Q-values on the
target task data. We visualize how CDS works in Figure 1.

Figure 1: A visualization of CDS, which routes a transi-
tion to the offline datasetDi for each task i with a weight
based on the estimated improvement over the behavior
policy πβ(a|s, i) of Di after sharing the transition.

The main contributions of this work are an anal-
ysis of data sharing in offline multi-task RL
and a new algorithm, conservative data sharing
(CDS), for multi-task offline RL problems. CDS
relabels a transition into a given task only when
it is expected to improve performance based on
a conservative estimate of the Q-function. After
data sharing, similarly to prior offline RL meth-
ods, CDS applies a standard conservative offline
RL algorithm, such as CQL [39], that learns a
conservative value function or BRAC [82], a
policy-constraint offline RL algorithm. Further,
we theoretically analyze CDS and characterize
scenarios under which it provides safe policy
improvement guarantees. Finally, we conduct
extensive empirical analysis of CDS on multi-task locomotion, multi-task robotic manipulation
with sparse rewards, multi-task navigation, and multi-task imaged-based robotic manipulation. We
compare CDS to vanilla offline multi-task RL without sharing data, to naïvely sharing data for
all tasks, and to existing data relabeling schemes for multi-task RL. CDS is the only method to
attain good performance across all of these benchmarks, often significantly outperforming the best
domain-specific method, improving over the next best method on each domain by 17.5% on average.

2 Related Work

Offline RL. Offline RL [14, 61, 40, 43] has shown promise in domains such as robotic manipula-
tion [32, 52, 60, 70, 33], NLP [29, 30], recommender systems & advertising [72, 22, 7, 78, 79],
and healthcare [67, 80]. The major challenge in offline RL is distribution shift [20, 37, 39],
where the learned policy might generate out-of-distribution actions, resulting in erroneous value
backups. Prior offline RL methods address this issue by regularizing the learned policy to be
“close“ to the behavior policy [20, 50, 29, 82, 93, 37, 68, 57], through variants of importance sam-
pling [59, 74, 49, 75, 54], via uncertainty quantification on Q-values [2, 37, 82, 43], by learning
conservative Q-functions [39, 36], and with model-based training with a penalty on out-of-distribution
states [34, 91, 53, 4, 76, 60, 42, 92]. While current benchmarks in offline RL [19, 25] contain datasets
that involve multi-task structure, existing offline RL methods do not leverage the shared structure of
multiple tasks and instead train each individual task from scratch. In this paper, we exploit the shared
structure in the offline multi-task setting and train a general policy that can acquire multiple skills.

Multi-task RL algorithms. Multi-task RL algorithms [81, 56, 77, 15, 27, 89, 85, 88, 33, 71] focus
on solving multiple tasks jointly in an efficient way. While multi-task RL methods seem to provide a
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promising way to build general-purpose agents [33], prior works have observed major challenges
in multi-task RL, in particular, the optimization challenge [27, 64, 89]. Beyond the optimization
challenge, how to perform effective representation learning via weight sharing is another major
challenge in multi-task RL. Prior works have considered distilling per-task policies into a single
policy that solves all tasks [62, 77, 23, 85], separate shared and task-specific modules with theoretical
guarantees [13], and incorporating additional supervision [71]. Finally, sharing data across tasks
emerges as a challenge in multi-task RL, especially in the off-policy setting, as naïvely sharing data
across all tasks turns out to hurt performance in certain scenarios [33]. Unlike most of these prior
works, we focus on the offline setting where the challenges in data sharing are most relevant. Methods
that study optimization and representation learning issues are complementary and can be readily
combined with our approach.

Data sharing in multi-task RL. Prior works [3, 31, 58, 63, 16, 44, 33, 8] have found it effective
to reuse data across tasks by recomputing the rewards of data collected for one task and using such
relabeled data for other tasks, which effectively augments the amount of data available for learning
each task and boosts performance. These methods perform relabeling either uniformly [33] or based
on metrics such as estimated Q-values [16, 44], domain knowledge [33], the distance to states or
images in goal-conditioned settings [3, 58, 55, 48, 73, 47, 28, 51, 87, 8], and metric learning for
robust inference in the offline meta-RL setting [45]. All of these methods either require online
data collection and do not consider data sharing in a fully offline setting, or only consider offline
goal-conditioned or meta-RL problems [8, 45]. While these prior works empirically find that data
sharing helps, we believe that our analysis in Section 4 provides the first analytical understanding
of why and when data sharing can help in multi-task offline RL and why it hurts in some cases.
Specifically, our analysis reveals the effect of distributional shift introduced during data sharing,
which is not taken into account by these prior works. Our proposed approach, CDS, tackles the
challenge of distributional shift in data sharing by intelligently sharing data across tasks and improves
multi-task performance by effectively trading off between the benefits of data sharing and the harms
of excessive distributional shift.

3 Preliminaries and Problem Statement

Multi-task offline RL. The goal in multi-task RL is to find a policy that maximizes expected return
in a multi-task Markov decision process (MDP), defined asM = (S,A, P, γ, {Ri, i}Ni=1), with state
space S, action space A, dynamics P (s′|s,a), a discount factor γ ∈ [0, 1), and a finite set of task
indices 1, · · · , N with corresponding reward functions R1, · · · , RN . Each task i presents a different
reward function Ri, but we assume that the dynamics P are shared across tasks. While this setting is
not fully general, there are a wide variety of practical problem settings for which only the reward
changes including various goal navigation tasks [19], distinct object manipulation objectives [83], and
different user preferences [10]. In this work, we focus on learning a policy π(a|s, i), which in practice
could be modelled as independent policies {π1(a|s), · · · , πN (a|s)} that do not share any parameters,
or as a single task-conditioned policy, π(a|s, i) with parameter sharing. Our goal in this paper is to an-
alyze and devise methods for data sharing and the choice of parameter sharing is orthogonal, and can
be made independently. We formulate the policy optimization problem as finding a policy that max-
imizes expected return over all the tasks: π∗(a|s, ·) := argmaxπ Ei∼[N ]Eπ(·|·,i)[

∑
t γ

tRi(st,at)].
The Q-function, Qπ(s,a, i), of a policy π(·|·, i) is the long-term discounted reward obtained in task i
by executing action a at state s and following policy π thereafter.

Standard offline RL is concerned with learning policies π(a|s) using only a given static dataset of
transitions D = {(sj ,aj , s′j , rj)}Nj=1, collected by a behavior policy πβ(a|s), without any additional
environment interaction. In the multi-task offline RL setting, the dataset D is partitioned into per-task
subsets, D = ∪Ni=1Di, where Di consists of experience from task i. While algorithms can choose to
train the policy for task i (i.e., π(·|·, i)) only on Di, in this paper, we are interested in data-sharing
schemes that correspond to relabeling data from a different task, j ̸= i with the reward function ri,
and learn π(·|·, i) on the combined data. To be able to do so, we assume access to the functional form
of the reward ri, a common assumption in goal-conditioned RL [3, 16], and which often holds in
robotics applications through the use of learned classifiers [83, 32], and discriminators [18, 9].

We assume that relabeling data Dj from task j to task i generates a dataset Dj→i, which is then
additionally used to train on task i. Thus, the effective dataset for task i after relabeling is given by
Deff

i := Di ∪ (∪j ̸=iDj→i). This notation simply formalizes data sharing and relabeling strategies
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explored in prior work [16, 33]. Our aim in this paper will be to improve on this naïve strategy, which
we will show leads to significantly better results.

Offline RL algorithms. A central challenge in offline RL is distributional shift: differences between
the learned policy and the behavior policy can lead to erroneous target values, where the Q-function
is queried at actions a ∼ π(a|s) that are far from the actions it is trained on, leading to massive
overestimation [43, 37]. A number of offline RL algorithms use some kind of regularization on either
the policy [37, 20, 82, 29, 68, 57] or on the learned Q-function [39, 36] to ensure that the learned
policy does not deviate too far from the behavior policy. For our analysis in this work, we will abstract
these algorithms into a generic constrained policy optimization problem [39]:

π∗(a|s) := argmax
π

JD(π)− αD(π, πβ). (1)

JD(π) denotes the average return of policy π in the empirical MDP induced by the transitions
in the dataset, and D(π, πβ) denotes a divergence measure (e.g., KL-divergence [29, 82], MMD
distance [37] or DCQL [39]) between the learned policy π and the behavior policy πβ . In the multi-
task offline RL setting with data-sharing, the generic optimization problem in Equation 1 for a
task i utilizes the effective dataset Deff

i . In addition, we define πeff
β (a|s, i) as the effective behavior

policy for task i and it is given by: πeff
β (a|s, i) := |Deff

i (s,a)|/|Deff
i (s)|. Hence, the counterpart of

Equation 1 in the multi-task offline RL setting with data sharing is given by:

∀i ∈ [N ], π∗(a|s, i) := argmax
π

JDeff
i
(π)− αD(π, πeff

β ). (2)

We will utilize this generic optimization problem to motivate our method in Section 5.

4 When Does Data Sharing Actually Help in Offline Multi-Task RL?

Our goal is to leverage experience from all tasks to learn a policy for a particular task of interest.
Perhaps the simplest approach to leveraging experience across tasks is to train the task policy on
not just the data coming from that task, but also relabeled data from all other tasks [6]. Is this naïve
data sharing strategy sufficient for learning effective behaviors from multi-task offline data? In this
section, we aim to answer this question via empirical analysis on a relatively simple domain, which
will reveal interesting aspects of data sharing. We first describe the experimental setup and then
discuss the results and possible explanations for the observed behavior. Using insights obtained from
this analysis, we will then derive a simple and effective data sharing strategy in Section 5.

Experimental analysis setup. To assess the efficacy of data sharing, we experimentally analyze
various multi-task RL scenarios created with the walker2d environment in Gym [5]. We construct
different test scenarios on this environment that mimic practical situations, including settings where
different amounts of data of varied quality are available for different tasks [33, 84, 69]. In all
these scenarios, the agent attempts three tasks: run forward, run backward, and jump, which
we visualize in Figure 3. Following the problem statement in Section 3, these tasks share the same
state-action space and transition dynamics, differing only in the reward function that the agent is
trying to optimize. Different scenarios are generated with varying size offline datasets, each collected
with policies that have different degrees of suboptimality. This might include, for each task, a single
policy with mediocre or expert performance, or a mixture of policies given by the initial part of
the replay buffer trained with online SAC [26]. We refer to these three types of offline datasets as
medium, expert and medium-replay, respectively, following Fu et al. [19].

We train a single-task policy πCQL(a|s, i) with CQL [39] as the base offline RL method, along with
two forms of data-sharing, as shown in Table 1: no sharing of data across tasks (No Sharing)) and
complete sharing of data with relabeling across all tasks (Sharing All). In addition, we also measure
the divergence term in Equation 2, D(π(·|·, i), πeff

β (·|·, i)), for π = πCQL(a|s, i), averaged across
tasks by using the Kullback-Liebler divergence. This value quantifies the average divergence between
the single-task optimal policy and the relabeled behavior policy averaged across tasks.

Analysis of results in Table 1. To begin, note that even naïvely sharing data is better than not sharing
any data at all on 5/9 tasks considered (compare the performance across No Sharing and Sharing
All in Table 1). However, a closer look at Table 1 suggests that data-sharing can significantly degrade
performance on certain tasks, especially in scenarios where the amount of data available for the
original task is limited, and where the distribution of this data is narrow. For example, when using
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Dataset types / Tasks Dataset Size
Avg Return DKL(π, πβ)

No Sharing Sharing All No Sharing Sharing All

medium-replay / run forward 109900 998.9 966.2 3.70 10.39
medium-replay / run backward 109980 1298.6 1147.5 4.55 12.70

medium-replay / jump 109511 1603.1 1224.7 3.57 15.89
average task performance N/A 1300.2 1112.8 3.94 12.99

medium / run forward 27646 297.4 848.7 6.53 11.78
medium / run backward 31298 207.5 600.4 4.44 10.13

medium / jump 100000 351.1 776.1 5.57 21.27
average task performance N/A 285.3 747.7 5.51 14.39

medium-replay / run forward 109900 590.1 701.4 1.49 7.76
medium / run backward 31298 614.7 756.7 1.91 12.2

expert / jump 5000 1575.2 885.1 3.12 27.5
average task performance N/A 926.6 781 2.17 15.82

Table 1: We analyze how sharing data across all tasks (Sharing All) compares to No Sharing in the multi-task
walker2d environment with three tasks: run forward, run backward, and jump. We provide three scenarios with
different styles of per-task offline datasets in the leftmost column. The second column shows the number of
transitions in each dataset. We report the per-task average return, the KL divergence between the single-task
optimal policy π and the behavior policy πβ after the data sharing scheme, as well as averages across tasks.
Sharing All generally helps training while increasing the KL divergence. However, on the row highlighted in
yellow, Sharing All yields a particularly large KL divergence between the single-task π and πβ and degrades
the performance, suggesting sharing data for all tasks is brittle.

expert data for jumping in conjunction with more than 25 times as much lower-quality (mediocre
& random) data for running forward and backward, we find that the agent performs poorly on the
jumping task despite access to near-optimal jumping data.

Why does naïve data sharing degrade performance on certain tasks despite near-optimal behavior
for these tasks in the original task dataset? We argue that the primary reason that naïve data sharing
can actually hurt performance in such cases is because it exacerbates the distributional shift issues
that afflict offline RL. Many offline RL methods combat distribution shift by implicitly or explicitly
constraining the learned policy to stay close to the training data. Then, when the training data is
changed by adding relabeled data from another task, the constraint causes the learned policy to
change as well. When the added data is of low quality for that task, it will correspondingly lead to a
lower quality learned policy for that task, unless the constraint is somehow modified. This effect is
evident from the higher divergence values between the learned policy without any data-sharing and
the effective behavior policy for that task after relabeling (e.g., expert+jump) in Table 1. Although
these results are only for CQL, we expect that any offline RL method would, insofar as it combats
distributional shift by staying close to the data, would exhibit a similar problem.

To mathematically quantify the effects of data-sharing in multi-task offline RL, we appeal to
safe policy improvement bounds [41, 39, 92] and discuss cases where data-sharing between tasks
i and j can degrade the amount of worst-case guaranteed improvement over the behavior policy.
Prior work [39] has shown that the generic offline RL algorithm in Equation 1 enjoys the following
guarantees of policy improvement on the actual MDP, beyond the behavior policy:

J(π∗) ≥ J(πβ)−O(1/(1− γ)2)Es,a∼dπ

[√
D(π(·|s), πβ(·|s))

|D(s)|

]
+ α/(1− γ)D(π, πβ). (3)

We will use Equation 3 to understand the scenarios where data sharing can hurt. When data sharing
modifies D = Di to D = Deff

i , which includes Di as a subset, it effectively aims at reducing
the magnitude of the second term (i.e., sampling error) by increasing the denominator. This can
be highly effective if the state distribution of the learned policy π∗ and the dataset D overlap.
However, an increase in the divergence D(π(·|s), πβ(·|s)) as a consequence of relabeling implies a
potential increase in the sampling error, unless the increased value of |Deff(s)| compensates for this.
Additionally, the bound also depends on the quality of the behavior data added after relabeling: if the
resulting behavior policy πeff

β is more suboptimal compared to πβ , i.e., J(πeff
β ) < J(πβ), then the

guaranteed amount of improvement also reduces.

To conclude, our analysis reveals that while data sharing is often helpful in multi-task offline RL, it
can lead to substantially poor performance on certain tasks as a result of exacerbated distributional
shift between the optimal policy and the effective behavior policy induced after sharing data.
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5 CDS: Reducing Distributional Shift in Multi-Task Data Sharing
The analysis in Section 4 shows that naïve data sharing may be highly sub-optimal in some cases, and
although it often does improve over no data sharing at all in practice, it can also lead to exceedingly
poor performance. Can we devise a conservative approach that shares data intelligently to not
exacerbate distributional shift as a result of relabeling?

5.1 A First Attempt at Designing a Data Sharing Strategy

A straightforward data sharing strategy is to utilize a transition for training only if it reduces
the distributional shift. Formally, this means that for a given transition (s,a, rj(s,a), s

′) ∈ Dj

sampled from the dataset Dj , such a scheme would prescribe using it for training task i (i.e.,
(s,a, ri(s,a), s

′) ∈ Deff
i ) only if:

CDS (basic): ∆π(s,a) := D(π(·|·, i), πβ(·|·, i))(s)−D(π(·|·, i), πeff
β (·|·, i))(s) ≥ 0. (4)

The scheme presented in Equation 4 would guarantee that distributional shift (i.e., second term in
Equation 2) is reduced. Moreover, since sharing data can only increase the size of the dataset and not
reduce it, this scheme is guaranteed to not increase the sampling error term in Equation 3. We refer to
this scheme as the basic variant of conservative data sharing (CDS (basic)).

While this scheme can prevent the negative effects of increased distributional shift, this scheme
is quite pessimistic. Even in our experiments, we find that this variant of CDS does not improve
performance by a large margin. Additionally, as observed in Table 1 (medium-medium-medium
data composition) and discussed in Section 4, data sharing can often be useful despite an increased
distributional shift (note the higher values of DKL(π, πβ) in Table 1) likely because it reduces
sampling error and potentially utilizes data of higher quality for training. CDS (basic) described
above does not take into account these factors. Formally, the effect of the first term in Equation 2,
JDeff(π) (the policy return in the empirical MDP generated by the dataset) and a larger increase in
|Deff(s)| at the cost of somewhat increased value of D(π(·|s), πβ(·|s) are not taken into account.
Thus we ask: can we instead design a more complete version of CDS that effectively balances the
tradeoff by incorporating all the discussed factors (distributional shift, sampling error, data quality)?

5.2 The Complete Version of Conservative Data Sharing (CDS)

Figure 2: A schematic comparing CDS and CDS
(basic) data sharing schemes relative to no sharing (left
extreme) and full data sharing (right extreme). While p-
CDS only shares data when distributional shift is strictly
reduced, o-CDS is more optimistic and shares data when
the objective in Equation 2 is larger. Typically, we would
expect that CDS shares more transitions than CDS (ba-
sic).

Next, we present the complete version of our
method. The complete version of CDS, which
we will refer to as CDS, for notational brevity
is derived from the following perspective: we
note that a data sharing scheme can be viewed
as altering the dataset Deff

i , and hence the ef-
fective behavior policy, πeff

β (a|s, i). Thus, we
can directly optimize the objective in Equation 2
with respect to πeff

β , in addition to π, where πeff
β

belongs to the set of all possible effective behav-
ior policies that can be obtained via any form of
data sharing. Note that unlike CDS (basic), this
approach would not rely on only indirectly controlling the objective in Equation 2 by controlling
distributional shift, but would aim to directly optimize the objective in Equation 2. We formalize this
optimization below in Equation 5:

argmax
π

max
πeff
β ∈Πrelabel

[
JDeff

i
(π)− αD(π, πeff

β ; i)
]
, (5)

where Πrelabel denotes the set of all possible behavior policies that can be obtained via relabeling.
The next result characterizes safe policy improvement for Equation 5 and discusses how it leads to
improvement over the behavior policy and also produces an effective practical method.

Proposition 5.1 (Characterizing safe-policy improvement for CDS.). Let π∗(a|s) be the policy
obtained by optimizing Equation 5, and let πβ(a|s) be the behavior policy for Di. Then, w.h.p.
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≥ 1− δ, π∗ is a ζ-safe policy improvement over πβ , i.e., J(π∗) ≥ J(πβ)− ζ, where ζ is given by:

ζ = O
(

1

(1− γ)2

)
Es∼dπ∗

Deff
i

√DCQL(π∗, π∗
β)(s) + 1

|Deff
i (s)|

−
αD(π∗, π∗

β) + J(π∗
β)− J(πβ)︸ ︷︷ ︸

(a)

 ,

where Deff
i ∼ dπ

∗
β (s) and π∗

β(a|s) denotes the policy π ∈ Πrelabel that maximizes Equation 5.

A proof and analysis of this proposition is provided in Appendix B, where we note that the bound
in Proposition 5.1 is stronger than both no data sharing as well as naïve data sharing. We show
in Appendix B that optimizing Equation 5 reduces the numerator DCQL(π

∗, π∗
β) term while also

increasing |Deff
i (s)|, thus reducing the amount of sampling error. In addition, Lemma B.1 shows that

the improvement term (a) is guaranteed to be positive if a large enough α is chosen in Equation 5.
Combining these, we find data sharing using Equation 5 improves over both complete data sharing
(which may increase DCQL(π, πβ)) and no data sharing (which does not increase |Deff

i (s)|). A
schematic comparing the two variants of CDS and naïve and no data sharing schemes is shown in
Figure 2.

Optimizing Equation 5 tractably. The next step is to effectively convert Equation 5 into a simple
condition for data sharing in multi-task offline RL. While directly solving Equation 5 is intractable
in practice, since both the terms depend on πeff

β (a|s) (since the first term JDeff (π) depends on the
empirical MDP induced by the effective behavior policy and the amount of sampling error), we need to
instead solve Equation 5 approximately. Fortunately, we can optimize a lower-bound approximation
to Equation 5 that uses the dataset state distribution for the policy update in Equation 5 similar to
modern actor-critic methods [12, 46, 21, 26, 39] which only introduces an additional D(π, πβ) term
in the objective. This objective is given by: Es∼Deff

i
[Eπ[Q(s,a, i)] − α′D(π(·|s, i), πeff

β (·|s, i))],
which is equal to the expected “conservative Q-value” Q̂π(s,a, i) on dataset states, policy actions and
task i. Optimizing this objective via a co-ordinate descent on π and πeff

β dictates that π be updated
using a standard update of maximizing the conservative Q-function, Q̂π (equal to the difference
of the Q-function and D(π, πeff

β ; i)). Moreover, πeff
β should also be updated towards maximizing

the same expectation, Es,a∼Deff
i
[Q̂π(s,a, i)] := Es,a∼Deff

i
[Q(s,a, i)]− αD(π, πeff

β ; i). This implies
that when updating the behavior policy during relabeling, we should prefer state-action pairs that
maximize the conservative Q-function.

Deriving the data sharing strategy for CDS. Utilizing the insights for optimizing Equation 5
tractably as discussed above, we now present the effective data sharing rule prescribed by CDS. For
any given task i, we want relabeling to incorporate transitions with the highest conservative Q-value
into the resulting dataset Deff

i , as this will directly optimize the tractable lower bound on Equation 5.
While directly optimizing Equation 5 will enjoy benefits of reduced sampling error since JDeff

i
(π)

also depends on sampling error, our tractable lower bound approximation does not enjoy this benefit.
This is because optimizing the lower-bound only increases the frequency of a state in the dataset,
|Deff

i (s)| by atmost 1. To encourage further reduction in sampling error, we modify CDS to instead
share all transitions with a conservative Q-value more than the top kth quantile of the original dataset
Di, where k is a hyperparameter. This provably increases the objective value in Equation 5 still
ensuring that term (a) > 0 in Proposition 5.1, while also reducing |Deff

i (s)| in the denominator. Thus,
for a given transition (s,a, s′) ∈ Dj ,

CDS: (s,a, ri, s
′) ∈ Deff

i if ∆π(s,a) := Q̂π(s,a, i)− Pk%

{
Q̂π(s′,a′, i): s′,a′ ∼ Di

}
≥ 0,

(6)

where Q̂π denotes the learned conservative Q-function estimate. If the condition in Equation 6 holds
for the given (s,a), then the corresponding relabeled transition, (s,a, ri(s,a), s′) is added to Deff

i .

We summarize the pesudocode of CDS in Algorithm 1 in Appendix A and include the practical
implementation details of CDS in Appendix C.
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6 Experimental Evaluation

We conduct experiments to answer six main questions: (1) can CDS prevent performance degradation
when sharing data as observed in Section 4?, (2) how does CDS compare to vanilla multi-task
offline RL methods and prior data sharing methods? (3) can CDS handle sparse reward settings,
where data sharing is particularly important due to scarce supervision signal? (4) can CDS handle
goal-conditioned offline RL settings where the offline dataset is undirected and highly suboptimal?
(5) Can CDS scale to complex visual observations? (6) Can CDS be combined with any offline RL
algorithms? Besides these questions, we visualize CDS weights for better interpretation of the data
sharing scheme learned by CDS in Figure 4 in Appendix D.2.

Figure 3: Environments (from left to right): walker2d run forward,
walker2d run backward, walker2d jump, Meta-World door open/close
and drawer open/close and vision-based pick-place tasks in [33].

Comparisons. To answer these
questions, we consider the fol-
lowing prior methods. On
tasks with low dimensional state
spaces, we compare with the
online multi-task relabeling ap-
proach HIPI [16], which uses in-
verse RL to infer for which tasks
the datapoints are optimal and in
practice routes a transition to task
with the highest Q-value. We
adapt HIPI to the offline setting
by applying its data routing strat-
egy to a conservative offline RL
algorithm. We also compare to
naïvely sharing data across all
tasks (denoted as Sharing All) and vanilla multi-task offline RL method without any data shar-
ing (denoted as No Sharing). On image-based domains, we compare CDS to the data sharing strategy
based on human-defined skills [33] (denoted as Skill), which manually groups tasks into different
skills (e.g. skill “pick” and skill “place”) and only routes an episode to target tasks that belongs to the
same skill. In these domains, we also compare to HIPI, Sharing All and No Sharing. Beyond these
multi-task RL approaches with data sharing, to assess the importance of data sharing in offline RL, we
perform an additional comparison to other alternatives to data sharing in multi-task offline RL settings.
One traditionally considered approach is to use data from other tasks for some form of “pre-training”
before learning to solve the actual task. We instantiate this idea by considering a method from Yang
and Nachum [86] that conducts contrastive representation learning on the multi-task datasets to ex-
tract shared representation between tasks and then runs multi-task RL on the learned representations.
We discuss this comparison in detail in Table 7 in Appendix D.3. To answer question (6), we use
CQL [39] (a Q-function regularization method) and BRAC [82] (a policy-constraint method) as the
base offline RL algorithms for all methods. We discuss evaluations of CDS with CQL in the main
text and include the results of CDS with BRAC in Table 5 in Appendix D.1. For more details on
setup and hyperparameters, see Appendix C.

Multi-task environments. We consider a number of multi-task reinforcement learning problems
on environments visualized in Figure 3. To answer questions (1) and (2), we consider the walker2d
locomotion environment from OpenAI Gym [5] with dense rewards. We use three tasks, run
forward, run backward and jump, as proposed in prior offline RL work [91]. To answer question
(3), we also evaluate on robotic manipulation domains using environments from the Meta-World
benchmark [90]. We consider four tasks: door open, door close, drawer open and drawer
close. Meaningful data sharing requires a consistent state representation across tasks, so we put
both the door and the drawer on the same table, as shown in Figure 3. Each task has a sparse
reward of 1 when the success condition is met and 0 otherwise. To answer question (4), we consider
maze navigation tasks where the temporal “stitching” ability of an offline RL algorithm is crucial
to obtain good performance. We create goal reaching tasks using the ant robot in the medium and
hard mazes from D4RL [19]. The set of goals is a fixed discrete set of size 7 and 3 for large and
medium mazes, respectively. Following Fu et al. [19], a reward of +1 is given and the episode
terminates if the state is within a threshold radius of the goal. Finally, to explore how CDS scales to
image-based manipulation tasks (question (5)), we utilize a simulation environment similar to the
real-world setup presented in [33]. This environment, which was utilized by Kalashnikov et al. [33]
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as a representative and realistic simulation of a real-world robotic manipulation problem, consists of
10 image-based manipulation tasks that involve different combinations of picking specific objects
(banana, bottle, sausage, milk box, food box, can and carrot) and placing them in one of the three
fixtures (bowl, plate and divider plate) (see example task images in Fig. 3). More environment details
are in the appendix. We report the average return for locomotion tasks and success rate for AntMaze
and both manipluation environments, averaged over 6 and 3 random seeds for environments with
low-dimensional inputs and image inputs respectively.

Environment Dataset types / Tasks
DKL(π, πβ)

No Sharing Sharing All CDS (basic) (ours) CDS (ours)

medium-replay / run forward 1.49 7.76 14.31 1.49
walker2d medium / run backward 1.91 12.2 8.26 6.09

expert / jump 3.12 27.5 13.25 2.91

Table 2: Measuring DKL(π, πβ) on the walker2d environment. Sharing All degrades the performance on task
jump with limited expert data as discussed in Table 1. CDS manages to obtain a πβ after data sharing that is
closer to the single-task optimal policy in terms of the KL divergence compared to No Sharing and Sharing All
on task jump (highlighted in yellow). Since CDS also achieves better performance, this analysis suggests that
reducing distribution shift is important for effective offline data sharing.

Multi-task datasets. Following the analysis in Section 4, we intentionally construct datasets with
a variety of heterogeneous behavior policies to test if CDS can provide effective data sharing to
improve performance while avoiding harmful data sharing that exacerbates distributional shift.
For the locomotion domain, we use a large, diverse dataset (medium-replay) for run forward, a
medium-sized dataset for run backward, and an expert dataset with limited data for run jump.
For Meta-World, we consider medium-replay datasets with 152K transitions for task door close
and drawer open and expert datasets with only 2K transitions for task door open and drawer
close. For AntMaze, we modify the D4RL datasets for antmaze-*-play environments to construct
two kinds of multi-task datasets: an “undirected” dataset, where data is equally divided between
different tasks and the rewards are correspondingly relabeled, and a “directed” dataset, where a
trajectory is associated with the goal closest to the final state of the trajectory. This means that the
per-task data in the undirected setting may not be relevant to reaching the goal of interest. Thus,
data-sharing is crucial for good performance: methods that do not effectively perform data sharing
and train on largely task-irrelevant data are expected to perform worse. Finally, for image-based
manipulation tasks, we collect datasets for all the tasks individually by running online RL [32] until
the task reaches medium-level performance (40% for picking tasks and 80% placing tasks). At that
point, we merge the entire replay buffers from different tasks creating a final dataset of 100K RL
episodes with 25 transitions for each episode.

Results on domains with low-dimensional states. We present the results on all non-vision environ-
ments in Table 3. CDS achieves the best average performance across all environments except that on
walker2d, it achieves the second best performance, obtaining slightly worse the other variant CDS
(basic). On the locomotion domain, we observe the most significant improvement on task jump on
all three environments. We interpret this as strength of conservative data sharing, which mitigates the
distribution shift that can be introduced by routing large amount of other task data to the task with
limited data and narrow distribution. We also validate this by measuring the DKL(π, πβ) in Table 2
where πβ is the behavior policy after we perform CDS to share data. As shown in Table 2, CDS
achieves lower KL divergence between the single-task optimal policy and the behavior policy after
data sharing on task jump with limited expert data, whereas Sharing All results in much higher KL
divergence compared to No Sharing as discussed in Section 4 and Table 1. Hence, CDS is able to
mitigate distribution shift when sharing data and result in performance boost.

On the Meta-World tasks, we find that the agent without data sharing completely fails to solve most
of the tasks due to the low quality of the medium replay datasets and the insufficient data for the
expert datasets. Sharing All improves performance since in the sparse reward settings, data sharing
can introduce more supervision signal and help training. CDS further improves over Sharing All,
suggesting that CDS can not only prevent harmful data sharing, but also lead to more effective
multi-task learning compared to Sharing All in scenarios where data sharing is imperative. It’s worth
noting that CDS (basic) performs worse than CDS and Sharing All, indicating that relabeling data
that only mitigates distributional shift is too pessimistic and might not be sufficient to discover the
shared structure across tasks.

In the AntMaze tasks, we observe that CDS performs better than Sharing All and significantly
outperforms HIPI in all four settings. Perhaps surprisingly, No Sharing is a strong baseline, however,
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Environment Tasks / Dataset type CDS (ours) CDS (basic) HIPI [16] Sharing All No Sharing

run forward / medium-replay 1057.9±121.6 968.6±188.6 695.5±61.9 701.4±47.0 590.1±48.6
walker2d run backward / medium 564.8±47.7 594.5±22.7 626.0±48.0 756.7±76.7 614.7±87.3

jump / expert 1418.2±138.4 1501.8±115.1 1603.7±146.8 885.1±152.9 1575.2±70.9
average 1013.6±71.5 1021.6±76.9 975.1±45.1 781.0±100.8 926.6±37.7

door open / expert 58.4%±9.3% 30.1%±16.6% 26.5%±20.5% 34.3%±17.9% 14.5%±12.7
door close / medium-replay 65.3%±27.7% 41.5%±28.2% 1.3%±5.3% 48.3%±27.3% 4.0%±6.1%

Meta-World [90] drawer open / medium-replay 57.9%±16.2% 39.4%±16.9% 41.2%±24.9% 55.1%±9.4% 16.0%±17.5%
drawer close / expert 98.8%±0.7% 86.3%±0.9% 62.2%±33.4% 100.0%±0% 99.0%±0.7%
average 70.1%±8.1% 49.3%±16.0% 32.8%±18.7% 59.4%±5.7% 33.4%±8.3%

large maze (7 tasks) / undirected 22.8% ± 4.5% 10.0% ± 5.9% 1.3% ± 2.3% 16.7% ± 7.0% 13.3% ± 8.6%
AntMaze [19] large maze (7 tasks) / directed 24.6% ± 4.7% 0.0% ± 0.0% 11.8% ± 5.4% 20.6% ± 4.4% 19.2% ± 8.0%

medium maze (3 tasks) / undirected 36.7% ± 6.2% 0.0% ± 0.0% 8.6% ± 3.2% 22.9% ± 3.6% 21.6% ± 7.1%
medium maze (3 tasks) / directed 18.5% ± 6.0% 0.0% ± 0.0% 8.3% ± 9.1% 12.4% ± 5.4% 17.0% ± 3.2%

Table 3: Results for multi-task locomotion (walker2d), robotic manipulation (Meta-World) and navigation
environments (AntMaze) with low-dimensional state inputs. Numbers are averaged across 6 seeds, ± the
95%-confidence interval. We include per-task performance for walker2d and Meta-World domains and the
overall performance averaged across tasks (highlighted in gray) for all three domains. We bold the highest score
across all methods. CDS achieves the best or comparable performance on all of these environments.

Task Name CDS (ours) HIPI [16] Skill [33] Sharing All No Sharing

lift-banana 53.1%±3.2% 48.3%±6.0% 32.1%±9.5% 41.8%±4.2% 20.0%±6.0%
lift-bottle 74.0%±6.3% 64.4%±7.7% 55.9%±9.6% 60.1%±10.2% 49.7%±8.7%
lift-sausage 71.8%±3.9% 71.0%±7.7% 68.8%±9.3% 70.0%±7.0% 60.9%±6.6%
lift-milk 83.4%±5.2% 79.0%±3.9% 68.2%±3.5% 72.5%±5.3% 68.4%±6.1%
lift-food 61.4%±9.5% 62.6%±6.3% 41.5%±12.1% 58.5%±7.0% 39.1%±7.0%
lift-can 65.5%±6.9% 67.8%±6.8% 50.8%±12.5% 57.7%±7.2% 49.1%±9.8%
lift-carrot 83.8%±3.5% 78.8%±6.9% 66.0%±7.0% 75.2%±7.6% 69.4%±7.6%
place-bowl 81.0%±8.1% 77.2%±8.9% 80.8%±6.9% 70.8%±7.8% 80.3%±8.6%
place-plate 85.8%±6.6% 83.6%±7.9% 78.4%±9.6% 78.7%±7.6% 86.1%±7.7%
place-divider-plate 87.8%±7.6% 78.0%±10.5% 80.8%±5.3% 79.2%±6.3% 85.0%±5.9%
average 74.8%±6.4% 71.1%±7.5% 62.3%±8.9% 66.4%±7.2% 60.8%±7.5%

Table 4: Results for multi-task vision-based robotic manipulation domains in [33]. Numbers are averaged
across 3 seeds, ± the 95% confidence interval. We consider 7 tasks denoted as lift-object where the goal of
each task is to lift a different object and 3 tasks denoted as place-fixture that aim to place a lifted object onto
different fixtures. CDS outperforms both a skill-based data sharing strategy [33] (Skill) and other data sharing
methods on the average task success rate (highlighted in gray) and 7 out of 10 per-task success rates.

is outperformed by CDS with the harder undirected data. Moreover, CDS performs on-par or better in
the undirected setting compared to the directed setting, indicating the effectiveness of CDS in routing
data in challenging settings.

Results on image-based robotic manipulation domains. Here, we compare CDS to the hand-
designed Skill sharing strategy, in addition to the other methods. Given that CDS achieves significantly
better performance than CDS (basic) on low-dimensional robotic manipulation tasks in Meta-World,
we only evaluate CDS in the vision-based robotic manipulation domains. Since CDS is applicable
to any offline multi-task RL algorithm, we employ it as a separate data-sharing strategy in [33]
while keeping the model architecture and all the other hyperparameters constant, which allows us to
carefully evaluate the influence of data sharing in isolation. The results are reported in Table 4. CDS
outperforms both Skill and other approaches, indicating that CDS is able to scale to high-dimensional
observation inputs and can effectively remove the need for manual curation of data sharing strategies.

7 Conclusion

In this paper, we study the multi-task offline RL setting, focusing on the problem of sharing offline
data across tasks for better multi-task learning. Through empirical analysis, we identify that naïvely
sharing data across tasks generally helps learning but can significantly hurt performance in scenarios
where excessive distribution shift is introduced. To address this challenge, we present conservative
data sharing (CDS), which relabels data to a task when the conservative Q-value of the given
transition is better than the expected conservative Q-value of the target task. On multitask locomotion,
manipulation, navigation, and vision-based manipulation domains, CDS consistently outperforms or
achieves comparable performance to existing data sharing approaches. While CDS attains superior
results, it is not able to handle data sharing in settings where dynamics vary across tasks and requires
functional forms of rewards. We leave these as future work.
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