
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRANSFORMERS ARE INHERENTLY SUCCINCT

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose succinctness as a measure of the expressive power of a transformer
in describing a concept. To this end, we prove that transformers are highly ex-
pressive in that they can represent formal languages substantially more succinctly
than standard representations of formal languages like finite automata and Linear
Temporal Logic (LTL) formulas. As a by-product of this expressivity, we show
that verifying properties of transformers is provably intractable (i.e. EXPSPACE-
complete).

1 INTRODUCTION

Transformers (Vaswani et al., 2017) are the underlying model behind the recent success of Large
Language Models (LLMs). The past few years saw a large amount of theoretical development
explaining the expressive power of transformers (Strobl et al., 2024; Barceló et al., 2024; Yang et al.,
2024; Hahn, 2020; Pérez et al., 2021; Chiang & Cholak, 2022; Jerad et al., 2025), their trainability
and length generalizability (Zhou et al., 2024; Huang et al., 2025; Chiang & Cholak, 2022), and
the extent to which one can formally verify them (Sälzer et al., 2025). Interestingly, it is known
that transformers with fixed (finite) precision (Yang et al., 2024; Barceló et al., 2024; Jerad et al.,
2025; Li & Cotterell, 2025) recognize a well-known subclass of regular languages called star-free
languages. Fixed-precision transformers are especially pertinent to real-world transformers, which
are implemented on hardware with fixed (finite) precision.

Star-free languages form a rather small subclass of regular languages. More precisely, a star-free
regular expression allows the intersection and complementation operators instead of the Kleene star.
For this reason, the regular language a∗b∗ is star-free because it can be defined as ∅̄.b.a.∅̄. On the
other hand, it is known that regular languages like (aa)∗ are not star-free (cf. see (Straubing, 1994)).
This is in contrast to Recurrent Neural Networks (RNN), which can recognize all regular languages
(Siegelmann & Sontag, 1995; Merrill et al., 2020). Thus, expressivity as language recognizers per
se is perhaps not the most useful criterion for an LLM architecture.

In this paper, we propose succinctness as an alternative angle in understanding the “expressivity” of
transformers. More precisely, the succinctness of a language L with respect to a class C of language
recognizers (e.g. transformers, automata, etc.) measures the smallest (denotational) size of T ∈ C
that recognizes L, i.e., how many symbols are used to describe T . Succinctness has been studied in
logic in computer science (e.g. (Grohe & Schweikardt, 2004; Stockmeyer, 1974)) as an alternative
(and more computational) measure of expressiveness, and has direct consequence in how computa-
tionally difficult it is to analyze a certain expression. For example, Linear Temporal Logic (LTL)
(Pnueli, 1977) is expressively equivalent to star-free regular languages (e.g. see (Libkin, 2004)),
as well as a subclass of deterministic finite automata called counter-free automata (McNaughton &
Papert, 1971). Despite this, it is known that LTL can be exponentially more succinct than finite au-
tomata (Sistla & Clarke, 1985). In other words, certain concepts can be described considerably more
succinctly by LTL formulas as by finite automata. This has various consequences, e.g., analyzing
LTL formulas (e.g. checking whether they describe a trivial concept) is provably computationally
more difficult than analyzing finite automata (Sistla & Clarke, 1985).

Contributions. Our main result can be summarized as follows:

Transformers can describe concepts extremely succinctly.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

More precisely, we show that transformers are exponentially more succinct than LTL and RNN
(so including state-of-the-art State-Space Models (SSMs), e.g., see (Gu & Dao, 2023; Merrill et al.,
2024)), and doubly exponentially more succinct than finite automata. This means that, with the same
descriptional size, transformers can encode complex patterns that require exponentially (resp. dou-
bly exponentially) larger descriptional sizes for LTL and RNN (resp. automata). As a by-product of
this expressivity, one may surmise that analyzing transformers must be computationally challenging.
We show this to be the case. That is, verifying simple properties about transformers (e.g. whether
it recognizes a trivial language) is computationally difficult: EXPSPACE-complete. That is, with
standard complexity-theoretic assumptions, this cannot be done in better than double exponential
time.

In fact, we also show matching upper bound on the succinctness gap for LTL (exponential) and
automata (double exponential). That is, we provide a translation from fixed-precision transformers
to exponential-sized LTL formulas. This significantly improves the previously shown doubly ex-
ponential translation by Yang et al. (2024). As a consequence, for any fixed-precision transformer,
there is an LTL formula (resp. finite automaton) of (doubly) exponential size recognizing the same
language.

In proving our succinctness results, we show how transformers can count from 0 up to 22
n

, i.e., the
so-called “(doubly exponentially) large counters”. This requires a subtle encoding of large coun-
ters using attention. We then prove that the resulting languages using LTL and RNN (resp. finite
automata) require exponentially (resp. doubly exponentially) larger description.

What assumptions do we use in our results? We assume that transformers and RNN are of a fixed
(finite) precision. This assumption is faithful to real-world implementations, which use only fixed-
precision arithmetics. We also use Unique-Hard Attention Transformers (UHAT), which are known
to be expressively the weakest class of transformers (Hao et al., 2022), e.g., their languages are
known to be in a very low complexity class AC0, whereas other classes of transformers (e.g. average-
hard attention or softmax) can recognize languages beyond AC0 (e.g. majority). Additionally,
UHATs have also been used as transformer models in theoretical works of transformers (cf. (Yang
et al., 2024; Jerad et al., 2025; Strobl et al., 2024; Hao et al., 2022; Li & Cotterell, 2025; Hahn, 2020;
Barceló et al., 2024; Bergsträßer et al., 2024)).

Organization. We recall some formal concepts (transformers, automata, and logic) in Section 2.
We show in Section 3 how transformers can encode an exponential tiling problem. We show in
Section 4 how this implies succinctness of UHATs relative to other representations. Applications of
our results for reasoning about transformers are discussed in Section 5. We conclude the paper in
Section 6.

2 PRELIMINARIES

We often denote vectors by boldface letters and for a vector v = (v1, . . . , vd) we write v[i, j] :=
(vi, . . . , vj) for all 1 ≤ i ≤ j ≤ d and if i = j, we simply write v(i). We also write n for a number
n to denote a vector (n, . . . , n) of appropriate dimension.

An alphabet is a finite set Σ of symbols (a.k.a. tokens). We write Σ∗ for the set of all words (a.k.a.
sequences, strings) of the form a1 . . . an, where n ≥ 0 and ai ∈ Σ for all i ∈ [1, n]. A language
is a subset L ⊆ Σ∗. We assume familiarity with basic concepts in formal language theory and
complexity theory (see e.g. (Kozen, 1997; Sipser, 1997)). In particular, we will deal with finite
automata. We will also use the following complexity classes:

P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE.

The complexity classes P and NP correspond to problems solvable in polynomial (resp. nondeter-
minsitic polynomial) time, and are well-known. The complexity classes EXP and NEXP are similar
to P and NP, but we allow the algorithm to use exponential time. The complexity classes PSPACE
and EXPSPACE correspond to problems solvable in polynomial (resp. exponential) space. The
above inclusions are well-known (cf. (Sipser, 1997)).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 LINEAR TEMPORAL LOGIC

A formula in Linear Temporal Logic (LTL) over the finite alphabet Σ has the following syntax:

φ ::= ⊤ | ⊥ | Qa(for all a ∈ Σ) | φ ∧ φ | φ ∨ φ | ¬φ | φ S φ | φ U φ

We define satisfaction of an LTL formula φ on a word w = a1 . . . an ∈ Σ∗ at position i ∈ [1, n],
written w, i |= φ, inductively (omitting ⊤ (true) and ⊥ (false)):

w, i |= Qa iff ai = a (for all a ∈ Σ)
w, i |= φ1 ∧ φ2 iff w, i |= φ1 and w, i |= φ2

w, i |= φ1 ∨ φ2 iff w, i |= φ1 or w, i |= φ2

w, i |= ¬φ1 iff w, i ̸|= φ1

w, i |= φ1 S φ2 iff for some j with 1 ≤ j < i we have w, j |= φ2 and
for all k with j < k < i we have w, k |= φ1

w, i |= φ1 U φ2 iff for some j with i < j ≤ n we have w, j |= φ2 and
for all k with i < k < j we have w, k |= φ1

Moreover, we define the shortcuts

Pφ := ⊤ S φ Fφ := ⊤ U φ Xφ := ⊥ U φ Gφ := φ ∧ ¬F¬φ.
An LTL formula recognizes the language L(φ) of all words w ∈ Σ∗ such that w, k |= φ, where k is
either 1 or |w| depending on whether the first or last position is regarded the output position of φ.
Example 1. The star-free language (ab)∗ can be defined in LTL as

G(Qa → XQb) ∧ G(Qb ∧ X⊤ → XQa).

In words, at any a-position, the next letter is b. At any b-position that has a successor, the next letter
is a.

2.2 MASKED UNIQUE HARD-ATTENTION TRANSFORMERS

Let Σ be a finite alphabet of tokens. A token embedding is a function emb : Σ → Qd for some d > 0.
A token embedding naturally extends to a homomorphism Σ∗ → (Qd)∗, where emb(a1 . . . an) =
emb(a1) . . . emb(an) for a1, . . . , an ∈ Σ.
Remark 2. In the following we define transformers over arbitrary rational numbers since our upper
bounds even hold in this setting. We remark that all of our results also hold for the special case of
fixed-precision real numbers, i.e., with a constant number of bits for a fixed transformer regardless
of the input length. In fact, the lower bounds already hold for integers of fixed precision.

Attention layer. A masked unique hard-attention (UHA) layer of width r > 0 is defined by

• three affine transformations A,B : Qr → Qr and C : Q2r → Qs with rational valued
coefficients,

• a mask predicate M : N× N → {⊤,⊥}, which is defined by M(i, j) := ⊤ (no masking),
M(i, j) := (j < i) (strict future masking), or M(i, j) := (j > i) (strict past masking),
and

• a tie-breaking function τ selecting one element of a finite non-empty subset of N, which is
either defined as min (leftmost tie-breaking) or max (rightmost tie-breaking).

We now show how a UHA layer works on a sequence v1, . . . ,vn ∈ Qr with n ≥ 1. The score
function is defined as S(vi,vj) := ⟨A(vi), B(vj)⟩ for all i, j ∈ [1, n]. For i ∈ [1, n] let Ui := {j ∈
[1, n] | M(i, j)} be the set of unmasked positions and Bi := {j ∈ Ui | ∀j′ ∈ Ui : S(ui,uj) ≥
S(ui,uj′)} be the set of unmasked positions that maximize the score function. We define the
attention vector at position i ∈ [1, n] as ai := τ(Bi) if Ui ̸= ∅ and ai := 0 otherwise. The layer
outputs the sequence C(v1,a1), . . . , C(vn,an).

ReLU layer. A ReLU layer of width r > 0 on input v1, . . . ,vn ∈ Qr applies for some k ∈ [1, r]
the ReLU function to the k-th coordinate of each vi, i.e., it outputs the sequence v′1, . . . ,v

′
n where

v′i := (vi[1, k − 1],max{0,vi(k)},vi[k + 1, n]). [Equivalently, one could instead allow a feed-
forward network at the end of an encoder layer (see (Hao et al., 2022; Barceló et al., 2024)).]

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Transformer. A masked unique hard-attention transformer (UHAT) is a length-preserving func-
tion T : Σ∗ → (Qs)∗ defined by application of a token embedding followed by repeated application
of UHA layers and ReLU layers of matching width.

Languages accepted by UHATs. To view a UHAT T : Σ∗ → (Qs)∗ as a language recognizer,
we assume that T is given together with an acceptance vector t ∈ Qs. The recognized language
L(T) is then the set of words on which T outputs a sequence v1, . . . ,vn ∈ Qs with ⟨t,vk⟩ > 0,
where k ∈ [1, n] is either 1 or n depending on whether the fist or last position is regarded the output
position of T .

2.3 BOOLEAN RASP

As an intermediate step to prove EXPSPACE-hardness for UHATs, we use Boolean RASP
(B-RASP) as introduced by Yang et al. (2024), who showed that B-RASP is expressively equiv-
alent to UHATs. A B-RASP program is defined as follows. Let w = a1 . . . an ∈ Σ∗ with n ≥ 1 be
an input word. For every a ∈ Σ there is an initial Boolean vector Qa ∈ {0, 1}n with Qa(i) = 1 iff
ai = a for all i ∈ [1, n]. We number the initial vectors and call them P1, . . . , P|Σ|. We now describe
how vector Pt+1 can be defined from vectors P1, . . . , Pt for t ≥ |Σ|.

Position-wise operation. The vector Pt+1 can be defined by Pt+1(i) := R(i) for some Boolean
combination R(i) of {P1(i), . . . , Pt(i)}.

Attention operation. The vector Pt+1 can be defined by either of

Pt+1(i) := ◀j [M(i, j), S(i, j)] V (i, j) : D(i)

Pt+1(i) := ▶j [M(i, j), S(i, j)] V (i, j) : D(i)

where

• M(i, j) is a mask predicate as in the definition of a UHAT,
• S(i, j) and V (i, j) are Boolean combinations of {P1(i), . . . , Pt(i)} ∪ {P1(j), . . . , Pt(j)},

called score predicate and value predicate, respectively,
• D(i) is a Boolean combination of {P1(i), . . . , Pt(i)}, called default value predicate.

The semantics of an attention operation is as follows. For every i ∈ [1, n], let

ji :=

{
min{j ∈ [1, n] | M(i, j) and S(i, j) = 1}, for ◀
max{j ∈ [1, n] | M(i, j) and S(i, j) = 1}, for ▶ .

We then define Pt+1(i) := V (i, ji) if ji exists and Pt+1(i) := D(i) otherwise. Observe that ◀
(resp. ▶) corresponds to leftmost (resp. rightmost) tie-breaking in UHATs.

A B-RASP program can be seen as a language recognizer by designating one Boolean vector Y
as the output vector and either the first or last position as the output position. Then an input word
w = a1 . . . an is accepted if and only if Y (k) = 1, where k is the output position, i.e., k = 1 or
k = n.

2.4 RECURRENT NEURAL NETWORKS (RNN)

We use RNN as language acceptors, as in the work of Merrill et al. (2020); Weiss et al. (2024; 2018).
In particular, a Recurrent Neural Network (RNN) M can be viewed as a function g : (Rd×Σ) → Rd.
As in the case of transformers, Σ is also mapped into Rk (for some k) through a token embedding
function emb (e.g. one-hot encoding) and the function g actually has domain Rd × Rk. We have
an input vector x̄0 ∈ Rd and a final function f : Rd → {Acc,Rej}, to decide whether a vector
x̄ ∈ Rd is accepting. The semantics of acceptance is the same as that of automata, i.e., given
w = a1 · · · an ∈ Σ∗, we compute d-vectors x̄1, . . . , x̄n such that g(x̄i, ai+1) = x̄i+1 for each
i = 0, . . . , n− 1. The string w is accepted by M if f(an) = Acc.

As a computational model, it is realistic to assume RNNs with a fixed precision, i.e., computation is
always done over real numbers that can be represented with a constant k number of bits. The details

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

of the actual representation are not important for our analysis. Therefore, the state-space Q of the
above RNN can be mapped to d-vectors over {0, 1}k (instead of R). The following proposition is
now immediate.
Proposition 3. An RNN g : (Rd × Σ) → Rd with fixed precision k can be represented by a finite
automaton with 2kd many states.

2.5 SIZE MEASURES AND SUCCINCTNESS

Let R be a finite representation of a language, i.e., in our case a UHAT, LTL formula, finite au-
tomaton, RNN, or B-RASP program. We define the size of R, denoted by |R|, as the length of
its usual binary encoding. In measuring succinctness of RNN, we put the precision k in unary
also as part of the size measure; since we do not want to compare a transformer that uses a fixed
precision k and allow an RNN that uses a fixed precision 2k. Let C1, C2 be classes of finite rep-
resentations of languages. We say that C1 can be exponentially more succinct than C2 if for every
function f ∈ 2o(n) there is an R1 ∈ C1 such that any R2 ∈ C2 representing the same language
as R1 has size |R2| > f(|R1|). Similarly, we define doubly exponentially more succinct using
functions f ∈ 22

o(n)

instead. Intuitively, this means that any translation from C1 to C2 incurs, in the
worst-case, an (doubly) exponential increase in size.

3 SIZE OF SMALLEST WITNESS VIA NON-EMPTINESS PROBLEM

In this section we consider the problem of checking whether the language recognized by a UHAT or
B-RASP program is non-empty. In particular, the technique is essentially a simulation of a Turing
machine with an 2O(n)-sized tape (for a given n). As we will see later, there are Turing machines
such that the smallest (i.e. shortest) accepted string by the constructed UHAT is of length at least
22

Ω(n)

.
Example 4. To illustrate the idea, we describe a B-RASP program that accepts strings of the form

0000a1#0001a2#0010a3# . . .#1111a24#

where ai ∈ {a, b, c} such that (aj , aj+1) ∈ H for all 1 ≤ j < 24. Here, H :=
{(a, b), (b, c), (b, a), (c, b)} is a set of constraints specifying which symbols can be next to each
other. For simplicity, we concentrate on the two main conditions: (i) checking that the bit counter
is incremented and (ii) checking that the successive symbols are in H . To check (i), we use the
following attention operation:

C+1(i) := ▶j [j < i,Q#(j)]

4∨
k=1

(k−1∧
r=1

¬Cr(i) ∧ Cr(j)
)
∧ Ck(i) ∧ ¬Ck(j) ∧

(4∧
r=k+1

Cr(i) ↔ Cr(j)
)
: 1

Assume i is a #-position. Attention selects the rightmost #-position j left of position i. Let bi1 . . . b
i
4

and bj1 . . . b
j
4 be the bit strings directly left of position i and j, respectively. We assume that we

already defined Ck(i) = bik and Ck(j) = bjk for all k ∈ [1, 4]. Then the above value predicate
checks that the binary number bi1 . . . b

i
4 is the number bj1 . . . b

j
4 incremented by 1. To check (ii), we

can use the attention operation

M←(i) := ▶j [j < i,Qa(j) ∨Qb(j) ∨Qc(j)]
∨

(h,h′)∈H

Qh(j) ∧Qh′(i) : 1.

If i is a position of a symbol ai, attention picks the rightmost position j of a symbol aj to the left of
i and checks with the value predicate that (aj , ai) ∈ H .

This allows us to succinctly recognize a language whose smallest string has length exponential in
the number of bits of the binary counter. By stacking multiple such strings vertically and introducing
vertical constraints in addition to the horizontal constraints H , we can even succinctly recognize
languages whose smallest string has doubly exponential length.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We prove the following precise complexity bounds:
Theorem 5. The non-emptiness problem for UHATs and B-RASP programs is EXPSPACE-
complete.

We start with the lower bound and show it first for B-RASP programs.
Proposition 6. The non-emptiness problem for B-RASP programs is EXPSPACE-hard.

For the proof we use the techniques illustrated in Example 4 and reduce from a so-called tiling
problem. A tile is a quadruple t ∈ N4

0, where we write t = ⟨left(t), up(t), right(t), down(t)⟩. The
2n-tiling problem is defined as follows:

Given: An integer n > 0 in unary, a finite set T of tiles, and a tile tfin ∈ T

Question: Do there exist m > 0 and a function τ : {1, . . . , 2n} × {1, . . . ,m} → T such that
1. τ(2n,m) = tfin ,
2. down(τ(i, 1)) = up(τ(i,m)) = 0 for all 1 ≤ i ≤ 2n,
3. left(τ(1, j)) = right(τ(2n, j)) = 0 for all 1 ≤ j ≤ m,
4. right(τ(i, j)) = left(τ(i+ 1, j)) for all 1 ≤ i < 2n and 1 ≤ j ≤ m, and
5. up(τ(i, j)) = down(τ(i, j + 1)) for all 1 ≤ i ≤ 2n and 1 ≤ j < m?

The following is shown in (Schwarzentruber, 2019):
Proposition 7. The 2n-tiling problem is EXPSPACE-complete.

The reduction to B-RASP uses an encoding of the function τ as a sequence of strings which are of
a similar form as in Example 4, but is substantially more involved. The key observation is that strict
future masking with rightmost tie-breaking enables us to check conditions between successive tiles
(condition 4) but also between the current tile and the tile at the most recent past occurrence of the
same counter value (condition 5). The full proof can be found in Appendix A.

We observe that the B-RASP program constructed in the proof of Proposition 6 can easily be con-
verted to UHAT, which yields the EXPSPACE lower bound also for UHAT.
Proposition 8. The non-emptiness problem for UHAT is EXPSPACE-hard.

Proof sketch. We show that the B-RASP program constructed in the proof of Proposition 6 can be
converted to a UHAT in polynomial time. To this end, note that Boolean operations can easily be
simulated using affine transformations and ReLU. For the attention operations we use an attention
layer. The value predicates V (i, j) can be simulated by copying the required components of the j-th
vector, that was selected by attention, to the i-th vector using the affine transformation whose result
is forwarded and computing the result of the Boolean combination with additional ReLU layers. For
the score predicates S(i, j) we note that they either only depend on j or they check whether some
binary numbers at positions i and j are equal. The former can be simulated using an additional
preliminary layer that already computes the result of S(j) for every position j. For the latter we use
Lemma 9.

The proof of the following Lemma can be found in Appendix A.
Lemma 9. Given a mask predicate M and tie-breaking function τ , there is an attention layer using
M and τ that on every sequence v1, . . . ,vn ∈ {0, 1}2d with vk = (bk,1, 1− bk,1, . . . , bk,d, 1− bk,d)
for all k ∈ [1, n] and for every i ∈ [1, n] picks attention vector ai = vj such that bi,r = bj,r for all
r ∈ [1, d] if such an unmasked position j exists.

We observe that the B-RASP program constructed in the proof of Proposition 6 only uses strict future
masking and rightmost tie-breaking. Thus, the EXPSPACE lower bound already holds for UHATs
that only use strict future masking and rightmost tie-breaking (similar for strict past masking and
leftmost tie-breaking).
Corollary 10. The non-emptiness problem for UHATs, where every layer uses strict future mask-
ing and rightmost tie-breaking (resp. strict past masking and leftmost tie-breaking), is already
EXPSPACE-hard.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We now prove the upper bounds in Theorem 5. To this end, we first note that any B-RASP program
can be converted in exponential time into an LTL formula using the construction from (Yang et al.,
2024). In Proposition 12 we prove that the same is true for UHATs, which improves the doubly
exponential construction in (Yang et al., 2024) that translates UHATs to B-RASP programs first.
This suffices to prove the exponential-space upper bounds in Theorem 5 since non-emptiness of
languages given by LTL formulas can be checked in polynomial space (Sistla & Clarke, 1985).

For the translation from UHAT to LTL, we first have to make the crucial observation that the values
occurring during the computation of a UHAT are not “too large”.

Proposition 11. The values occurring in the computation of a UHAT T can be represented with
only a polynomial number of bits in the size of T . Thus, rational numbers with fixed precision, that
is polynomial in the size of T , are sufficient.

Proof. Clearly, ReLU layers do not increase the amount of bits needed since only the maximum
with 0 is taken. Since our UHAT model is defined over rational numbers, we can represent each
value with a binary number for the numerator and a binary number for the denominator. By taking
the LCM, we can further assume that the denominators of the numbers in emb(Σ) are all equal. Note
that the LCM of linearly many numbers of linear bit size can be represented with polynomially many
bits. Similarly, for each attention layer we can assume that the denominators of all coefficients of the
affine transformation, whose result is forwarded, are equal. This ensure that in the input sequence
and after each layer the values have the same denominator. Next we argue that the numerators
and denominators of all values that occur in the computation can be represented with a polynomial
number of bits. The output of an attention layer is an affine transformation involving two input
vectors. Here, the input values are only multiplied with constants, i.e., the values in the output
only depend linearly on input values. Since the denominators of the values after multiplication
with coefficients are all equal, addition does not incur an increase in bit length of the denominators.
Therefore, a repeated application of linearly many attention layers can only lead to numerators and
denominators whose values are at most exponential in the number of layers, i.e., can be represented
with polynomially many bits. For the score function we observe that the dot product after an affine
transformation only involves two input vectors. Thus, the number of bits needed to represent the
result of the score function is still polynomial. A crucial observation is that the results after applying
the score function are not forwarded to the next layer, which would introduce an exponential increase
in size in the number of layers.

By Proposition 11, we can already compute the results of the affine transformations and score func-
tions during the construction of the LTL formula. This means that the LTL formula only has to
simulate the position-wise behavior of attention layers, i.e., masking and selecting the position of
the attention vector, but not the actual computation of values. The proof of the following proposition
can be found in Appendix A.

Proposition 12. Given a UHAT that recognizes a language L, one can construct in exponential time
an LTL formula recognizing L.

We remark that if we start with a UHAT, where every attention layer uses strict future masking and
leftmost tie-breaking (resp. strict past masking and rightmost tie-breaking), then the LTL formula
constructed in the proof of Proposition 12 only uses the P (resp. F) operator. It was shown in (Sistla
& Clarke, 1985) that the non-emptiness problem for the fragments of LTL that only allow P or F is
NP-complete. Thus, we obtain an improved complexity upper bound for such restricted UHATs.

Corollary 13. The non-emptiness problem for UHATs, where every attention layer uses strict future
masking and leftmost tie-breaking (resp. strict past masking and rightmost tie-breaking), is in NEXP.

Note that it was already shown in (Jerad et al., 2025) that such restricted UHATs are equally expres-
sive as the LTL fragment with only P (resp. F). However, the construction by Jerad et al. (2025)
from UHAT to the LTL fragments incurs a doubly exponential blow-up, as opposed to our singly
exponential translation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4 SUCCINCTNESS AGAINST OTHER REPRESENTATIONS OF LANGUAGES

We now study how succinctly transformers can represent languages compared to standard models
from formal language theory.

We first compare transformers to LTL. One indication that transformers may be more succinct
than LTL comes from Theorem 5, which shows that the non-emptiness problem for UHATs is
EXPSPACE-complete, whereas for LTL the corresponding problem is known to be PSPACE-
complete. The following result shows that this exponential gap also manifests in terms of suc-
cinctness.
Theorem 14. UHATs can be exponentially more succinct than LTL.

Proof. We give a family {Ln}n≥1 of languages such that Ln is recognized by a UHAT of size
polynomial in n but any LTL formula recognizing Ln has size exponential in n. Let Mn be a
(deterministic) Turing machine that implements a binary counter with 2n bits, i.e., when initialized
with 02

n

, it increments the binary number until it has written 12
n

on its tape and accepts. Clearly,
Mn is of size polynomial in n, it uses an exponential number of tape cells in n, and the unique
accepting run has length at least 22

n

. In (van Emde Boas, 1997) a reduction from Turing machines
to tiling problem instances is presented that encodes configurations of Turing machines in its rows
and a correct tiling corresponds to a valid execution of the Turing machine. We observe that the 2n-
tiling problem instance In constructed from Mn has size polynomial in n and it has the property that
the smallest correct tiling has at least 22

n

many rows. In the proof of Proposition 8 we showed that
there is a UHAT Tn of size polynomial in the size of In that recognizes encodings of correct tilings
of In. Thus, Tn is of size polynomial in n and the smallest accepted word has length at least 22

n

.
We let Ln be the language recognized by Tn. Let φn be an LTL formula that recognizes Ln. Since
the smallest accepted word by any LTL formula has length at most exponential in the formula size
(using an exponential conversion from LTL to finite automata similar to (Vardi & Wolper, 1994)), it
follows that the size of φn is at least exponential in n.

Conversely, we can show that there is no language than can be represented by LTL significantly
more succinct than by UHATs. Thus, we may even say that UHATs are exponentially more succinct
than LTL.
Proposition 15. Given an LTL formula φ, one can construct in polynomial time a UHAT that
recognizes the same language as φ.

Proof sketch. From φ we construct a UHAT T that on input w outputs in a dedicated component at
position 1 ≤ i ≤ |w| a 1 if w, i |= φ and a 0 otherwise. Then the claim can be proven by induction.
If φ is an atomic formula or a Boolean combination, we can easily define T . If φ = φ1 S φ2, we
can assume by induction hypothesis that we already computed the truth value of φ1 and φ2 at every
position, which we use to compute the truth value of ¬φ1 ∨ φ2. We then use an attention layer with
strict future masking and rightmost tie-breaking to get for every position i the maximal position
j < i where ¬φ1 ∨φ2 holds and output at position i the truth value of φ2 from position j. The case
where φ = φ1 U φ2 is similar using strict past masking and leftmost tie-breaking.

We show next that compared to finite automata, UHATs can be even doubly exponentially more
succinct. To see this, take the UHAT Tn from the proof of Theorem 14 that is of size polynomial
in n and the smallest accepted word has length at least 22

n

. Since any automaton recognizing a
non-empty language accepts a word of length at most linear in the automaton size, the smallest
automaton that recognizes the same language as Tn has size at least doubly exponential in n.
Theorem 16. UHATs can be doubly exponentially more succinct than finite automata.

Conversely, the best known construction from counter-free automata (that are equally expressive as
LTL) to LTL incurs an exponential blow-up (Maler & Pnueli, 1990). Thus, together with Proposi-
tion 15, we obtain an exponential-time translation from counter-free automata to UHATs. Note that
also the translation in (Yang et al., 2024) from counter-free automata to UHATs increases the size
exponentially, when using the results by Maler & Pnueli (1990).

Finally, we combine Theorem 16 and Proposition 3 to obtain the following succinctness gap between
UHATs and RNNs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Corollary 17. UHATs can be exponentially more succinct than RNNs.

5 APPLICATIONS

As a consequence of our results, we can show that reasoning about languages of UHATs (e.g.
equivalence, emptiness, universality, etc.) is provably intractable. Contrast this to deterministic
finite automata, where all these problems can be done in polynomial time (cf. (Kozen, 1997)). In
the following, we show the precise complexity for the equivalence problem, i.e., the problem of
checking whether two given UHATs recognize the same language. That the universality problem is
EXPSPACE-complete can be proven similarly.

Theorem 18. Equivalence of UHATs is EXPSPACE-complete.

Proof. To prove the lower bound, we reduce from the non-emptiness problem for UHATs, which
by Theorem 5 is EXPSPACE-complete. To this end, let T be a given UHAT and fix a UHAT T0
that recognizes the empty language. Then we have that T and T0 are equivalent if and only if T
recognizes the empty language.

For the upper bound let the UHATs T1 and T2 be given. We apply Proposition 12 to turn T1 and T2
in exponential time into LTL formulas φ1 and φ2, respectively. Now, T1 and T2 are equivalent if and
only if φ1 and φ2 are equivalent. The latter can be decided in polynomial space (Sistla & Clarke,
1985), which results in an exponential-space algorithm in total.

6 CONCLUDING REMARKS

Related work. Our work was inspired by the works of Yang et al. (2024); Barceló et al. (2024);
Jerad et al. (2025); Li & Cotterell (2025), which exhibit a close connection between unique-hard
attention transformers and star-free regular languages. In particular, these works also exploited the
connection to LTL. However, none of these results investigated neither the issue of succinctness nor
computational complexity of verification, which we establish in this paper.

Sälzer et al. (2025) investigated the issue of verifying transformers of various precisions. In particu-
lar, it was shown that transformers of fixed precision are at least NEXP-hard (i.e. hard for the class of
problems solvable by nondeterministic algorithms that run in exponential time). The technique there
implies that transformers are (singly) exponentially more succinct than finite automata. However,
no conclusion can be derived as to their succinctness relative to representations like LTL or RNN.
Our result substantially improve this by showing that transformers are doubly exponentially more
succinct than automata, and exponentially more succinct than LTL and RNN. In addition, our work
assumes a much simpler model in comparison to the results in (Sälzer et al., 2025). In particular, we
use unique-hard attention, whereas in (Sälzer et al., 2025) a combination of softmax and hardmax is
employed. Finally, our results use positional masking (as employed in (Yang et al., 2024; Jerad et al.,
2025; Li & Cotterell, 2025)) — as a simple class of Positional Embeddings (PEs) — in contrast to
(Sälzer et al., 2025), which admits arbitrary PEs of fixed precision.

Succinctness has also been studied in the context of linguistics. For example, according to Zipf’s
law of abbreviation (Zipf, 1935), frequently occuring concepts tend to have a succinct description.
In particular, Hindu-Arabic numeral system — which evolves into our modern numeral system —
allows an exponentially more succinct description than the Roman numeral system. According to
Zipf’s law, the former potentially enables mathematics and computer science as we see today.

Future work. We mention the challenge of developing an automatic tool for analyzing, verifying,
and explaining transformers. More broadly, this is an important problem for explainable AI, as
thoroughly described in the survey (Huang et al., 2020). In particular, lots of practical advances
have been made on verifying feed-forward neural networks (but not transformers) and some practical
tools have been developed in the last decade (see also the results of the most recent annual VNN
competition (Brix et al., 2024)). Despite the rather high complexity (EXPSPACE-complete), we
pose as a challenge to exploit techniques from automated verification (Clarke et al., 2018) (e.g.
symbolic techniques, simulation, etc.) to verify transformers in practice.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Pablo Barceló, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir V. Podolskii. Logical
languages accepted by transformer encoders with hard attention. In The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenRe-
view.net, 2024. URL https://openreview.net/forum?id=gbrHZq07mq.

Pascal Bergsträßer, Chris Köcher, Anthony Widjaja Lin, and Georg Zetzsche. The power
of hard attention transformers on data sequences: A formal language theoretic per-
spective. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ul-
rich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neural In-
formation Processing Systems 38: Annual Conference on Neural Information Process-
ing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/af58a33861ac45472ea1cc5860d2b13e-Paper-Conference.pdf.

Christopher Brix, Stanley Bak, Taylor T. Johnson, and Haoze Wu. The fifth international verification
of neural networks competition (vnn-comp 2024): Summary and results, 2024. URL https:
//arxiv.org/abs/2412.19985.

David Chiang and Peter Cholak. Overcoming a theoretical limitation of self-attention. In Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022,
Dublin, Ireland, May 22-27, 2022, pp. 7654–7664. Association for Computational Linguistics,
2022. doi: 10.18653/V1/2022.ACL-LONG.527. URL https://doi.org/10.18653/v1/
2022.acl-long.527.

E.M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith. Model Checking, second edition.
Cyber Physical Systems Series. MIT Press, 2018. ISBN 9780262038836. URL https://
books.google.de/books?id=ps-MEAAAQBAJ.

Martin Grohe and Nicole Schweikardt. The succinctness of first-order logic on linear orders. In 19th
IEEE Symposium on Logic in Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland,
Proceedings, pp. 438–447. IEEE Computer Society, 2004. doi: 10.1109/LICS.2004.1319638.
URL https://doi.org/10.1109/LICS.2004.1319638.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. CoRR,
abs/2312.00752, 2023. doi: 10.48550/ARXIV.2312.00752. URL https://doi.org/10.
48550/arXiv.2312.00752.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Trans. Assoc.
Comput. Linguistics, 8:156–171, 2020. doi: 10.1162/TACL\ A\ 00306. URL https://doi.
org/10.1162/tacl_a_00306.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention
transformers: Perspectives from circuit complexity. Trans. Assoc. Comput. Linguistics, 10:800–
810, 2022. doi: 10.1162/TACL\ A\ 00490. URL https://doi.org/10.1162/tacl_a_
00490.

Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese Thamo, Min
Wu, and Xinping Yi. A survey of safety and trustworthiness of deep neural networks: Verification,
testing, adversarial attack and defence, and interpretability. Computer Science Review, 37:100270,
2020. ISSN 1574-0137. doi: https://doi.org/10.1016/j.cosrev.2020.100270. URL https://
www.sciencedirect.com/science/article/pii/S1574013719302527.

Xinting Huang, Andy Yang, Satwik Bhattamishra, Yash Raj Sarrof, Andreas Krebs, Hattie Zhou,
Preetum Nakkiran, and Michael Hahn. A formal framework for understanding length gen-
eralization in transformers. In The Thirteenth International Conference on Learning Repre-
sentations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL https:
//openreview.net/forum?id=U49N5V51rU.

10

https://openreview.net/forum?id=gbrHZq07mq
https://proceedings.neurips.cc/paper_files/paper/2024/file/af58a33861ac45472ea1cc5860d2b13e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/af58a33861ac45472ea1cc5860d2b13e-Paper-Conference.pdf
https://arxiv.org/abs/2412.19985
https://arxiv.org/abs/2412.19985
https://doi.org/10.18653/v1/2022.acl-long.527
https://doi.org/10.18653/v1/2022.acl-long.527
https://books.google.de/books?id=ps-MEAAAQBAJ
https://books.google.de/books?id=ps-MEAAAQBAJ
https://doi.org/10.1109/LICS.2004.1319638
https://doi.org/10.48550/arXiv.2312.00752
https://doi.org/10.48550/arXiv.2312.00752
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00490
https://doi.org/10.1162/tacl_a_00490
https://www.sciencedirect.com/science/article/pii/S1574013719302527
https://www.sciencedirect.com/science/article/pii/S1574013719302527
https://openreview.net/forum?id=U49N5V51rU
https://openreview.net/forum?id=U49N5V51rU

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Selim Jerad, Anej Svete, Jiaoda Li, and Ryan Cotterell. Unique hard attention: A tale of two sides.
CoRR, abs/2503.14615, 2025. doi: 10.48550/ARXIV.2503.14615. URL https://doi.org/
10.48550/arXiv.2503.14615.

Dexter Kozen. Automata and computability. Undergraduate texts in computer science. Springer,
1997. ISBN 978-0-387-94907-9. doi: 10.1007/978-1-4612-1844-9.

Jiaoda Li and Ryan Cotterell. Characterizing the expressivity of transformer language models.
CoRR, abs/2505.23623, 2025. doi: 10.48550/ARXIV.2505.23623. URL https://doi.org/
10.48550/arXiv.2505.23623.

Leonid Libkin. Elements of finite model theory, volume 41. Springer, 2004.

Oded Maler and Amir Pnueli. Tight bounds on the complexity of cascaded decomposition of
automata. In 31st Annual Symposium on Foundations of Computer Science, St. Louis, Mis-
souri, USA, October 22-24, 1990, Volume II, pp. 672–682. IEEE Computer Society, 1990. doi:
10.1109/FSCS.1990.89589. URL https://doi.org/10.1109/FSCS.1990.89589.

Robert McNaughton and Seymour Papert. Counter-free Automata. M.I.T. Press, Cambridge, Mass.,
1971. ISBN 0262130769.

William Merrill, Gail Weiss, Yoav Goldberg, Roy Schwartz, Noah A. Smith, and Eran Yahav. A
formal hierarchy of RNN architectures. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R.
Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020, pp. 443–459. Association for Computational
Linguistics, 2020. doi: 10.18653/V1/2020.ACL-MAIN.43. URL https://doi.org/10.
18653/v1/2020.acl-main.43.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space mod-
els. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
QZgo9JZpLq.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing-complete. J. Mach. Learn.
Res., 22:75:1–75:35, 2021. URL https://jmlr.org/papers/v22/20-302.html.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (SFCS 1977), pp. 46–57, 1977. doi: 10.1109/SFCS.1977.32. URL https:
//doi.org/10.1109/SFCS.1977.32.

Marco Sälzer, Eric Alsmann, and Martin Lange. Transformer encoder satisfiability: Complex-
ity and impact on formal reasoning. In The Thirteenth International Conference on Learn-
ing Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL
https://openreview.net/forum?id=VVO3ApdMUE.

François Schwarzentruber. The complexity of tiling problems. CoRR, abs/1907.00102, 2019. URL
http://arxiv.org/abs/1907.00102.

Hava T. Siegelmann and Eduardo D. Sontag. On the computational power of neural nets. J. Comput.
Syst. Sci., 50(1):132–150, 1995. doi: 10.1006/JCSS.1995.1013. URL https://doi.org/
10.1006/jcss.1995.1013.

Michael Sipser. Introduction to the theory of computation. PWS Publishing Company, 1997. ISBN
978-0-534-94728-6.

A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal logics. J.
ACM, 32(3):733–749, 1985. doi: 10.1145/3828.3837. URL https://doi.org/10.1145/
3828.3837.

Larry Joseph Stockmeyer. The complexity of decision problems in automata theory and logic. PhD
thesis, Massachusetts Institute of Technology, 1974.

11

https://doi.org/10.48550/arXiv.2503.14615
https://doi.org/10.48550/arXiv.2503.14615
https://doi.org/10.48550/arXiv.2505.23623
https://doi.org/10.48550/arXiv.2505.23623
https://doi.org/10.1109/FSCS.1990.89589
https://doi.org/10.18653/v1/2020.acl-main.43
https://doi.org/10.18653/v1/2020.acl-main.43
https://openreview.net/forum?id=QZgo9JZpLq
https://openreview.net/forum?id=QZgo9JZpLq
https://jmlr.org/papers/v22/20-302.html
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://openreview.net/forum?id=VVO3ApdMUE
http://arxiv.org/abs/1907.00102
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.1145/3828.3837
https://doi.org/10.1145/3828.3837

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Progress in Theoretical
Computer Science. Birkhäuser Boston, MA, 1 edition, 1994. ISBN 978-0-8176-3719-4. doi: 10.
1007/978-1-4612-0289-9. URL https://doi.org/10.1007/978-1-4612-0289-9.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages
can transformers express? A survey. Trans. Assoc. Comput. Linguistics, 12:543–561, 2024. doi:
10.1162/TACL\ A\ 00663. URL https://doi.org/10.1162/tacl_a_00663.

Peter van Emde Boas. The convenience of tilings. In Complexity, Logic, and Recursion Theory, pp.
331–363. CRC Press, 1997. doi: 10.1201/9780429187490. URL https://doi.org/10.
1201/9780429187490.

Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Inf. Comput., 115(1):
1–37, 1994. doi: 10.1006/INCO.1994.1092. URL https://doi.org/10.1006/inco.
1994.1092.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of finite
precision rnns for language recognition. In Iryna Gurevych and Yusuke Miyao (eds.), Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL
2018, Melbourne, Australia, July 15-20, 2018, Volume 2: Short Papers, pp. 740–745. As-
sociation for Computational Linguistics, 2018. doi: 10.18653/V1/P18-2117. URL https:
//aclanthology.org/P18-2117/.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent neural net-
works using queries and counterexamples (extended version). Mach. Learn., 113(5):2877–
2919, 2024. doi: 10.1007/S10994-022-06163-2. URL https://doi.org/10.1007/
s10994-022-06163-2.

Andy Yang, David Chiang, and Dana Angluin. Masked hard-attention transformers recog-
nize exactly the star-free languages. In Amir Globersons, Lester Mackey, Danielle Bel-
grave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances
in Neural Information Processing Systems 38: Annual Conference on Neural Informa-
tion Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
13d7f172259b11b230cc5da8768abc5f-Abstract-Conference.html.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Joshua M. Susskind, Samy
Bengio, and Preetum Nakkiran. What algorithms can transformers learn? A study in length gener-
alization. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vi-
enna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=AssIuHnmHX.

George Kingsley Zipf. The Psychobiology of Language: An Introduction to Dynamic Philology.
Houghton Mifflin, Boston, MA, 1935.

A PROOFS FROM SECTION 3

A.1 PROOF OF PROPOSITION 6

We reduce the 2n-tiling problem to the non-emptiness problem for B-RASP. To this end, we use the
following encoding of the function τ as a word over the alphabet Σ := T ∪ {0, 1,#}. We define
encτ : {1, . . . , 2n} × {1, . . . ,m} → Σ∗ such that

encτ (i, j) := ⟨i− 1⟩τ(i, j)#

12

https://doi.org/10.1007/978-1-4612-0289-9
https://doi.org/10.1162/tacl_a_00663
https://doi.org/10.1201/9780429187490
https://doi.org/10.1201/9780429187490
https://doi.org/10.1006/inco.1994.1092
https://doi.org/10.1006/inco.1994.1092
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://aclanthology.org/P18-2117/
https://aclanthology.org/P18-2117/
https://doi.org/10.1007/s10994-022-06163-2
https://doi.org/10.1007/s10994-022-06163-2
http://papers.nips.cc/paper_files/paper/2024/hash/13d7f172259b11b230cc5da8768abc5f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/13d7f172259b11b230cc5da8768abc5f-Abstract-Conference.html
https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

for all i ∈ [1, 2n] and j ∈ [1,m], where ⟨i− 1⟩ denotes the binary encoding of i− 1 with n bits and
most significant bit first. Then

enc(τ) := encτ (1, 1) . . . encτ (2
n, 1)encτ (2, 1) . . . encτ (m, 2n).

We construct a B-RASP program that accepts enc(τ) if and only if τ satisfies the conditions above.

Let n > 0, a finite set T of tiles, and tfin ∈ T be given. The B-RASP program first checks whether
the input is a word from ({0, 1}nT#)∗ using the following Boolean vectors:

AT (i) := ▶j [j < i, 1]
∨
t∈T

Qt(j) : 0

AC,1(i) := ▶j [j < i, 1] Q0(j) ∨Q1(j) : 0

AC,k(i) := ▶j [j < i, 1] AC,k−1(j) : 0 for k = 2, . . . , n

A#,1(i) := ▶j [j < i, 1] Q#(j) : 1

A#,k(i) := ▶j [j < i, 1] A#,k−1(j) : 1 for k = 2, . . . , n+ 1

Aenc(i) :=
(
Q#(i) → AT (i)

)
∧
((∨

t∈T
Qt(i)

)
→

(n∧
k=1

AC,k(i)
)
∧A#,n+1(i)

)

We use the vector

A(i) := ▶j [j < i,¬Aenc(j)] 0 : Aenc(i)

to check that Aenc(i) = 1 at every position i, which is the case if and only if A(ℓ) = 1 where ℓ
is the length of the input. Note that we still have to check that the symbol at position ℓ is #. But
before that, we ensure that for every two consecutive binary numbers separated by # the encoded
value increases by 1 or is set to 0 if 2n − 1 is reached.

C1(i) := ▶j [j < i,Q0(j) ∨Q1(j)] Q1(j) : 0

Ck(i) := ▶j [j < i,Q0(j) ∨Q1(j)] Ck−1(j) : 0 for k = 2, . . . , n

C+1(i) := ▶j [j < i,Q#(j)]

n∨
k=1

(k−1∧
r=1

¬Cr(i) ∧ Cr(j)
)
∧ Ck(i) ∧ ¬Ck(j) ∧

(n∧
r=k+1

Cr(i) ↔ Cr(j)
)
: 0

C1→0(i) := ▶j [j < i,Q#(j)]

n∧
k=1

¬Ck(i) ∧ Ck(j) :

n∧
k=1

¬Ck(i)

C(i) := ▶j [j < i,Q#(j) ∧ ¬C1→0(j) ∧ ¬C+1(j)] 0 : C1→0(i) ∧ C+1(i)

Now, C(ℓ) = 1 if and only if the binary numbers are as required.

Next, we check that the input ends with 1ntfin#.

Bt(i) := ▶j [j < i,
∨
t′∈T

Qt′(j)] Qt(j) : 0 for all t ∈ T

F (i) := Q#(i) ∧Btfin (i) ∧
n∧

k=1

Ck(i)

Then F (ℓ) = 1 if and only if the input ends with 1ntfin#.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

We continue by verifying conditions 2 and 3 of τ .

E⊥(i) := ▶j [j < i,Q#(j) ∧
n∧

k=1

Ck(i) ↔ Ck(j)] 1 :
∨

t∈T : down(t)=0

Bt(i)

E⊤(i) := ▶j [j < i,Q#(j) ∧
(
(

∨
t∈T : up(t)̸=0

Bt(j)) ∨
n∧

k=1

¬Ck(j)
)
]
(∨
t∈T : up(t)=0

Bt(j)
)
∧

(∨
t∈T : up(t)=0

Bt(i)
)
: 0

E⊢(i) :=
(n∧
k=1

¬Ck(i)
)
→

(∨
t∈T : left(t)=0

Bt(i)
)

E⊣(i) :=
(n∧
k=1

Ck(i)
)
→

(∨
t∈T : right(t)=0

Bt(i)
)

E(i) := ▶j [j < i,Q#(j) ∧ ¬(E⊥(j) ∧ E⊢(j) ∧ E⊣(j))] 0 : E⊥(i) ∧ E⊤(i) ∧ E⊢(i) ∧ E⊣(i)

Now, conditions 2 and 3 hold if and only if E(ℓ) = 1.

Finally, we ensure that conditions 4 and 5 are satisfied.

M↓(i) := ▶j [j < i,Q#(j) ∧
n∧

k=1

Ck(i) ↔ Ck(j)]
∨

t,t′∈T : down(t)=up(t′)

Bt(i) ∧Bt′(j) : 1

M←(i) := ▶j [j < i,Q#(j)]
(n∨
k=1

Ck(i)
)
→

(∨
t,t′∈T : left(t)=right(t′)

Bt(i) ∧Bt′(j)
)
: 1

M(i) := ▶j [j < i,Q#(j) ∧ ¬(M↓(j) ∧M←(j))] 0 : M↓(i) ∧M←(i)

Then M(ℓ) = 1 if and only if conditions 4 and 5 hold.

Thus, if we define the output vector to be the conjunction

Y (i) := A(i) ∧ C(i) ∧ F (i) ∧ E(i) ∧M(i)

and say that the B-RASP program accepts if and only if Y (ℓ) = 1, then the B-RASP program rec-
ognizes the set of all enc(τ) where τ satisfies the conditions above. Hence, the language recognized
by the B-RASP program is non-empty if and only if the 2n-tiling problem has a solution.

A.2 PROOF OF LEMMA 9

As affine transformations A and B we use the identity, i.e.,

S(vi,vj) := ⟨vi,vj⟩ =
d∑

r=1

(
bi,rbj,r + (1− bi,r)(1− bj,r)

)
which is equal to |{r ∈ [1, d] | bi,r = bj,r}| since

bi,rbj,r + (1− bi,r)(1− bj,r) =

{
1, if bi,r = bj,r
0, otherwise.

Thus, the score is maximized (equal to d) if bi,r = bj,r for all r ∈ [1, d].

A.3 PROOF OF PROPOSITION 12

Let T be a UHAT that recognizes a language L ⊆ Σ∗ and F be a set of binary representations of
rational numbers that may occur during the computation of T from Proposition 11. Our goal is to
define for the ℓ-th layer of T and every vector v ∈ F s, where s is the output dimension of layer ℓ,
an LTL formula φℓ

v such that if T is applied on input w ∈ Σ, then the ℓ-th layer outputs at position

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

i ∈ [1, |w|] the vector v if and only if w, i |= φℓ
v . We define this formula inductively on the layer

number ℓ. Let emb : Σ → (Qd)∗ be the token embedding of T . For all v ∈ F d let

φ0
v :=

{∨
a∈emb−1(v) Qa, if emb−1(v) ̸= ∅

⊥, otherwise.

We now define the formula for layer ℓ+1. In case of a ReLU layer of width r, that applies ReLU to
the k-th coordinate, we can simply define

φℓ+1
v :=

∨
u∈F : max{0,u}=v[k]

φℓ
(v[1,k−1],u,v[k+1,r])

for all v ∈ F r. If layer ℓ + 1 is an attention layer with strict future masking and rightmost tie-
breaking defined by the affine transformation C : Q2r → Qs and score function S : Q2r → Qr, we
let

φℓ+1
v :=

∨
u,a∈F r :
C(u,a)=v

φℓ
u ∧

(
(

∨
b∈F r :

S(u,b)<S(u,a)

φℓ
b) S (φℓ

a ∧ ¬P
∨

b∈F r :
S(u,b)>S(u,a)

φℓ
b)
)

for all v ∈ F s. To account for the special case, where the set of unmasked positions is empty, we
take the disjunction of the previous formula and (¬P⊤)∧

∨
u∈F r : C(u,0)=v φ

ℓ
u. We omit this special

case in the following. If the layer uses leftmost tie-breaking, we adapt the formula as follows:

φℓ+1
v :=

∨
u,a∈F r :
C(u,a)=v

φℓ
u ∧

(
P(φℓ

a ∧ ¬P
∨

b∈F r :
S(u,b)≥S(u,a)

φℓ
b)
)
∧
(
¬P

∨
b∈F r :

S(u,b)>S(u,a)

φℓ
b)
)

The case of strict past masking is similar, where we use U instead of S and F instead of P. If the layer
uses no masking and rightmost tie-breaking, we distinguish three situations: the attention vector is at
the current position, the attention vector is strictly to the left of the current position, or the attention
vector is strictly to the right of the current position. For the situation, where the attention vector is
at the current position, we use∨

u∈F r :
C(u,u)=v

φℓ
u ∧

(
¬P

∨
b∈F r :

S(u,b)>S(u,u)

φℓ
b

)
∧
(
¬F

∨
b∈F r :

S(u,b)≥S(u,u)

φℓ
b

)
(1)

For the situation, where the attention vector is strictly to the left of the current position, we use∨
u,a∈F r :

C(u,a)=v∧S(u,a)>S(u,u)

φℓ
u ∧

(
¬F

∨
b∈F r :

S(u,b)≥S(u,a)

φℓ
b

)
∧
(
(

∨
b∈F r :

S(u,b)<S(u,a)

φℓ
b) S (φℓ

a ∧ ¬P
∨

b∈F r :
S(u,b)>S(u,a)

φℓ
b)
)
.

(2)

Similarly, for the situation, where the attention vector is strictly to the right of the current position,
we use ∨

u,a∈F r :
C(u,a)=v∧S(u,a)≥S(u,u)

φℓ
u ∧

(
¬P

∨
b∈F r :

S(u,b)>S(u,a)

φℓ
b

)
∧
(
F(φℓ

a ∧ ¬F
∨

b∈F r :
S(u,b)≥S(u,a)

φℓ
b)
)
∧
(
¬F

∨
b∈F r :

S(u,b)>S(u,a)

φℓ
b)
)
.

(3)

Thus, in the case of no masking and rightmost tie-breaking, we define φℓ+1
v as the disjunction of

Eqs. (1) to (3). The case where the layer uses no masking and leftmost tie-breaking is analogous.

Finally, if there are m layers, where the last layer outputs vectors of dimension s, and t ∈ Qs is the
acceptance vector of T , we define the formula

φ :=
∨

v∈F s :⟨t,v⟩>0

φm
v .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Then w, k |= φ if and only if w ∈ L, where k is the output position of T .

It remains to argue that φ can be computed in exponential time. By Proposition 11, |F | is exponential
in the size of T and every representation in F is of polynomial size. Moreover, F can be computed
in exponential time. The formulas φℓ+1

v at every layer ℓ + 1 of width r depends on |F |O(r) many
formulas from layer ℓ. Moreover, φℓ+1

v can be computed in time polynomial in |F |r · |T |, since we
only have to compute affine transformations on vectors from F r, where each component is of size
polynomial in |T |. The formulas φm

v at the last layer m depend on |F |O(r′m) many formulas from
layer 0, where r′ is the maximum width of all layers. Thus, φm

v has size exponential in |T | and can
be computed in exponential time. Therefore, also φ can be computed in exponential time.

16

	Introduction
	Preliminaries
	Linear Temporal Logic
	Masked unique hard-attention transformers
	Boolean RASP
	Recurrent Neural Networks (RNN)
	Size measures and succinctness

	Size of smallest witness via non-emptiness problem
	Succinctness against other representations of languages
	Applications
	Concluding remarks
	Proofs from Section 3
	Proof of Proposition 6
	Proof of Lemma 9
	Proof of Proposition 12

