Under review as a conference paper at ICLR 2026

TRANSFORMERS ARE INHERENTLY SUCCINCT

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose succinctness as a measure of the expressive power of a transformer
in describing a concept. To this end, we prove that transformers are highly ex-
pressive in that they can represent formal languages substantially more succinctly
than standard representations of formal languages like finite automata and Linear
Temporal Logic (LTL) formulas. As a by-product of this expressivity, we show
that verifying properties of transformers is provably intractable (i.e. EXPSPACE-
complete).

1 INTRODUCTION

Transformers (Vaswani et al., 2017) are the underlying model behind the recent success of Large
Language Models (LLMs). The past few years saw a large amount of theoretical development
explaining the expressive power of transformers (Strobl et al., 2024; Barcel6 et al., 2024; Yang et al.,
2024; Hahn, 2020; Pérez et al., 2021; Chiang & Cholak, 2022; Jerad et al., 2025), their trainability
and length generalizability (Zhou et al., 2024; Huang et al., 2025; Chiang & Cholak, 2022), and
the extent to which one can formally verify them (Silzer et al., 2025). Interestingly, it is known
that transformers with fixed (finite) precision (Yang et al., 2024; Barcel6 et al., 2024; Jerad et al.,
2025; Li & Cotterell, 2025) recognize a well-known subclass of regular languages called star-free
languages. Fixed-precision transformers are especially pertinent to real-world transformers, which
are implemented on hardware with fixed (finite) precision.

Star-free languages form a rather small subclass of regular languages. More precisely, a star-free
regular expression allows the intersection and complementation operators instead of the Kleene star.

For this reason, the regular language a*b* is star-free because it can be defined as ().b.a.(). On the
other hand, it is known that regular languages like (aa)* are not star-free (cf. see (Straubing, 1994)).
This is in contrast to Recurrent Neural Networks (RNN), which can recognize all regular languages
(Siegelmann & Sontag, 1995; Merrill et al., 2020). Thus, expressivity as language recognizers per
se is perhaps not the most useful criterion for an LLM architecture.

In this paper, we propose succinctness as an alternative angle in understanding the “expressivity” of
transformers. More precisely, the succinctness of a language L with respect to a class C of language
recognizers (e.g. transformers, automata, etc.) measures the smallest (denotational) size of 7" € C
that recognizes L, i.e., how many symbols are used to describe 7. Succinctness has been studied in
logic in computer science (e.g. (Grohe & Schweikardt, 2004; Stockmeyer, 1974)) as an alternative
(and more computational) measure of expressiveness, and has direct consequence in how computa-
tionally difficult it is to analyze a certain expression. For example, Linear Temporal Logic (LTL)
(Pnueli, 1977) is expressively equivalent to star-free regular languages (e.g. see (Libkin, 2004)),
as well as a subclass of deterministic finite automata called counter-free automata (McNaughton &
Papert, 1971). Despite this, it is known that LTL can be exponentially more succinct than finite au-
tomata (Sistla & Clarke, 1985). In other words, certain concepts can be described considerably more
succinctly by LTL formulas as by finite automata. This has various consequences, e.g., analyzing
LTL formulas (e.g. checking whether they describe a trivial concept) is provably computationally
more difficult than analyzing finite automata (Sistla & Clarke, 1985).

Contributions. Our main result can be summarized as follows:

Transformers can describe concepts extremely succinctly.

Under review as a conference paper at ICLR 2026

More precisely, we show that transformers are exponentially more succinct than LTL and RNN
(so including state-of-the-art State-Space Models (SSMs), e.g., see (Gu & Dao, 2023; Merrill et al.,
2024)), and doubly exponentially more succinct than finite automata. This means that, with the same
descriptional size, transformers can encode complex patterns that require exponentially (resp. dou-
bly exponentially) larger descriptional sizes for LTL and RNN (resp. automata). As a by-product of
this expressivity, one may surmise that analyzing transformers must be computationally challenging.
We show this to be the case. That is, verifying simple properties about transformers (e.g. whether
it recognizes a trivial language) is computationally difficult: EXPSPACE-complete. That is, with
standard complexity-theoretic assumptions, this cannot be done in better than double exponential
time.

In fact, we also show matching upper bound on the succinctness gap for LTL (exponential) and
automata (double exponential). That is, we provide a translation from fixed-precision transformers
to exponential-sized LTL formulas. This significantly improves the previously shown doubly ex-
ponential translation by Yang et al. (2024). As a consequence, for any fixed-precision transformer,
there is an LTL formula (resp. finite automaton) of (doubly) exponential size recognizing the same
language.

In proving our succinctness results, we show how transformers can count from 0 up to 22", i.e., the
so-called “(doubly exponentially) large counters”. This requires a subtle encoding of large coun-
ters using attention. We then prove that the resulting languages using LTL and RNN (resp. finite
automata) require exponentially (resp. doubly exponentially) larger description.

What assumptions do we use in our results? We assume that transformers and RNN are of a fixed
(finite) precision. This assumption is faithful to real-world implementations, which use only fixed-
precision arithmetics. We also use Unique-Hard Attention Transformers (UHAT), which are known
to be expressively the weakest class of transformers (Hao et al., 2022), e.g., their languages are
known to be in a very low complexity class AC, whereas other classes of transformers (e.g. average-
hard attention or softmax) can recognize languages beyond ACY (e.g. majority). Additionally,
UHATS have also been used as transformer models in theoretical works of transformers (cf. (Yang
etal., 2024; Jerad et al., 2025; Strobl et al., 2024; Hao et al., 2022; Li & Cotterell, 2025; Hahn, 2020;
Barcelo et al., 2024; Bergstri3er et al., 2024)).

Organization. We recall some formal concepts (transformers, automata, and logic) in Section 2.
We show in Section 3 how transformers can encode an exponential tiling problem. We show in
Section 4 how this implies succinctness of UHATS relative to other representations. Applications of
our results for reasoning about transformers are discussed in Section 5. We conclude the paper in
Section 6.

2 PRELIMINARIES

We often denote vectors by boldface letters and for a vector v = (v1,...,vq) we write v][i, j| :=
(v, ...,v;) forall 1 <i < j <dandif = j, we simply write v(z). We also write 7 for a number
n to denote a vector (n, ..., n) of appropriate dimension.

An alphabet is a finite set X of symbols (a.k.a. tokens). We write >* for the set of all words (a.k.a.
sequences, strings) of the form a; . ..a,, where n > 0 and a; € X for all i € [1,n]. A language
is a subset L C X¥*. We assume familiarity with basic concepts in formal language theory and
complexity theory (see e.g. (Kozen, 1997; Sipser, 1997)). In particular, we will deal with finite
automata. We will also use the following complexity classes:

P C NP C PSPACE C EXP C NEXP C EXPSPACE.

The complexity classes P and NP correspond to problems solvable in polynomial (resp. nondeter-
minsitic polynomial) time, and are well-known. The complexity classes EXP and NEXP are similar
to P and NP, but we allow the algorithm to use exponential time. The complexity classes PSPACE
and EXPSPACE correspond to problems solvable in polynomial (resp. exponential) space. The
above inclusions are well-known (cf. (Sipser, 1997)).

Under review as a conference paper at ICLR 2026

2.1 LINEAR TEMPORAL LOGIC

A formula in Linear Temporal Logic (LTL) over the finite alphabet X has the following syntax:

pu=T|L|Qqu(foralla€X) |pApleVe|-plpSe|pUp
We define satisfaction of an LTL formula ¢ on a word w = ay ...a, € X* at position i € [1,n],
written w, @ |= ¢, inductively (omitting T (true) and L (false)):

w,i E Qq iff a;=a (forall a € X0)

w7i):g01/\<)02 iff wai':(plandwai':QOQ

wai):@l\/@Q iff wailzsalorwai)ZQOQ

w, i E ey iff w,i &1

w,i = 1Sy iff for some j with 1 < j < i we have w, j = (2 and
for all k£ with j < k < i we have w, k = ¢1

w,i @1 Upy iff for some j with i < j < n we have w, j = ¢ and
for all k with i < k < j we have w, k = ¢

Moreover, we define the shortcuts
Pp:=TSop Fp:=TUgyp Xp:=1Ugyp Gy :=p A -F-p.

An LTL formula recognizes the language L((p) of all words w € ¥* such that w, k |= ¢, where k is
either 1 or |w| depending on whether the first or last position is regarded the output position of .

Example 1. The star-free language (ab)* can be defined in LTL as
G(Qa = XQu) NG(Qy NXT — XQq).

In words, at any a-position, the next letter is b. At any b-position that has a successor, the next letter
is a.

2.2 MASKED UNIQUE HARD-ATTENTION TRANSFORMERS

Let X be a finite alphabet of tokens. A token embedding is a function emb: ¥ — Q¢ for some d > 0.
A token embedding naturally extends to a homomorphism ©* — (Q%)*, where emb(a; . ..a,) =
emb(ay)...emb(ay) foray,...,a, € X.

Remark 2. In the following we define transformers over arbitrary rational numbers since our upper
bounds even hold in this setting. We remark that all of our results also hold for the special case of
fixed-precision real numbers, i.e., with a constant number of bits for a fixed transformer regardless
of the input length. In fact, the lower bounds already hold for integers of fixed precision.

Attention layer. A masked unique hard-attention (UHA) layer of width » > 0 is defined by

» three affine transformations A, B: Q" — Q" and C: Q%" — Q° with rational valued
coefficients,

» amask predicate M : N x N — {T, 1}, which is defined by M (4, j) := T (no masking),
M(i,j) := (j < @) (strict future masking), or M (¢, 5) := (j > 4) (strict past masking),
and

* atie-breaking function 7 selecting one element of a finite non-empty subset of N, which is
either defined as min (leftmost tie-breaking) or max (rightmost tie-breaking).

We now show how a UHA layer works on a sequence v1,...,v, € Q" with n > 1. The score
function is defined as S(v;, v;) := (A(v;), B(v;)) forallé,j € [1,n]. Fori € [1,n]|letU; := {j €
[1,n] | M(4,7)} be the set of unmasked positions and B; := {j € U; | Vj’' € U;: S(u;,u;) >
S(u;, u;)} be the set of unmasked positions that maximize the score function. We define the
attention vector at position ¢ € [1,n] as a; := 7(B;) if U; # 0 and a; := 0 otherwise. The layer
outputs the sequence C(v1,a1),...,C(vn, ap).

ReLU layer. A ReLU layer of width » > 0 on input vy, ..., v, € Q" applies for some k € [1,r]
the ReLU function to the k-th coordinate of each v;, i.e., it outputs the sequence v1,. .., v], where
/

v = (v;[1,k — 1], max{0,v;(k)},v;[k + 1,n]). [Equivalently, one could instead allow a feed-
forward network at the end of an encoder layer (see (Hao et al., 2022; Barcel? et al., 2024)).]

Under review as a conference paper at ICLR 2026

Transformer. A masked unique hard-attention transformer (UHAT) is a length-preserving func-
tion 7: X* — (Q®)* defined by application of a token embedding followed by repeated application
of UHA layers and ReLU layers of matching width.

Languages accepted by UHATs. To view a UHAT 7: ¥* — (Q®)* as a language recognizer,
we assume that 7 is given together with an acceptance vector t € Q°. The recognized language
L(T) is then the set of words on which T outputs a sequence vy, ..., v, € Q° with (¢,v;) > 0,
where k € [1,n] is either 1 or n depending on whether the fist or last position is regarded the ousput
position of T .

2.3 BOOLEAN RASP

As an intermediate step to prove EXPSPACE-hardness for UHATSs, we use Boolean RASP
(B-RASP) as introduced by Yang et al. (2024), who showed that B-RASP is expressively equiv-
alent to UHATs. A B-RASP program is defined as follows. Let w = a1 ...a, € X* withn > 1 be
an input word. For every a € ¥ there is an initial Boolean vector @), € {0,1}" with Q, (i) = 1 iff
a; = aforall i € [1,n]. We number the initial vectors and call them Py, ..., Ps. We now describe
how vector P, can be defined from vectors Py, ..., P; fort > |X|.

Position-wise operation. The vector P, can be defined by P, (i) := R(i) for some Boolean
combination R(i) of { Py (7),..., P:(4)}.

Attention operation. The vector P, can be defined by either of

Py (i) == < [M(i,7), S0, 4)] V (i,) : D(i)
Pt+1(i) =»; [M(Z>])7S(Za3)] V(’Lm]) : D(Z)

where

* M(i,j) is a mask predicate as in the definition of a UHAT,

* S(i,7) and V (4, j) are Boolean combinations of { P (i), ..., P:())} U{Pi(5),..., P:(4)},
called score predicate and value predicate, respectively,

* D(i) is a Boolean combination of { Py (), ..., P:(i)}, called default value predicate.

The semantics of an attention operation is as follows. For every ¢ € [1,n], let

~ (min{j € [1,n] | M(i,5) and S(i,j) = 1}, for <
I = \max{j € [1,n] | M(i,j) and S(i,5) = 1}, for » .

We then define Pyy1(i) := V(4,7;) if j; exists and P;y1(i) := D(i) otherwise. Observe that <
(resp. ») corresponds to leftmost (resp. rightmost) tie-breaking in UHATS.

A B-RASP program can be seen as a language recognizer by designating one Boolean vector Y
as the output vector and either the first or last position as the output position. Then an input word
w = aj...a, is accepted if and only if Y (k) = 1, where k is the output position, i.e., k = 1 or
k=n.

2.4 RECURRENT NEURAL NETWORKS (RNN)

We use RNN as language acceptors, as in the work of Merrill et al. (2020); Weiss et al. (2024; 2018).
In particular, a Recurrent Neural Network (RNN) M can be viewed as a function g : (R% x %) — R4
As in the case of transformers, ¥ is also mapped into R¥ (for some k) through a token embedding
function emb (e.g. one-hot encoding) and the function ¢ actually has domain R? x R*. We have
an input vector Zop € R? and a final function f : R¢ — {Acc, Rej}, to decide whether a vector
7 € R? is accepting. The semantics of acceptance is the same as that of automata, i.e., given
w = aj---a, € X*, we compute d-vectors Z1,..., T, such that g(Z;,a;11) = T;y; for each
1 =0,...,n— 1. The string w is accepted by M if f(a,) = Acc.

As a computational model, it is realistic to assume RNNs with a fixed precision, i.e., computation is
always done over real numbers that can be represented with a constant k£ number of bits. The details

Under review as a conference paper at ICLR 2026

of the actual representation are not important for our analysis. Therefore, the state-space () of the
above RNN can be mapped to d-vectors over {0, 1}* (instead of R). The following proposition is
now immediate.

Proposition 3. An RNN g : (R? x X)) — R with fixed precision k can be represented by a finite
automaton with 28¢ many states.

2.5 SIZE MEASURES AND SUCCINCTNESS

Let R be a finite representation of a language, i.e., in our case a UHAT, LTL formula, finite au-
tomaton, RNN, or B-RASP program. We define the size of R, denoted by |R|, as the length of
its usual binary encoding. In measuring succinctness of RNN, we put the precision k in unary
also as part of the size measure; since we do not want to compare a transformer that uses a fixed
precision k and allow an RNN that uses a fixed precision 2¥. Let C1,Cs be classes of finite rep-
resentations of languages. We say that C; can be exponentially more succinct than Cs if for every
function f € 2°() there is an Ry € C; such that any R, € C, representing the same language
as Ry has size |[Ra| > f(|R1|). Similarly, we define doubly exponentially more succinct using

. o(n)
functions f € 22 instead. Intuitively, this means that any translation from C; to Cs incurs, in the
worst-case, an (doubly) exponential increase in size.

3 SIZE OF SMALLEST WITNESS VIA NON-EMPTINESS PROBLEM

In this section we consider the problem of checking whether the language recognized by a UHAT or
B-RASP program is non-empty. In particular, the technique is essentially a simulation of a Turing
machine with an 2°(")_sized tape (for a given n). As we will see later, there are Turing machines

such that the smallest (i.e. shortest) accepted string by the constructed UHAT is of length at least
22"

Example 4. To illustrate the idea, we describe a B-RASP program that accepts strings of the form
0000a1#0001ax#0010a3# . .. #1111asa#

where a; € {a,b,c} such that (aj,a;+1) € H for all 1 < j < 2% Here, H :=
{(a,b), (b,c), (b,a),(c,b)} is a set of constraints specifying which symbols can be next to each
other. For simplicity, we concentrate on the two main conditions: (i) checking that the bit counter
is incremented and (ii) checking that the successive symbols are in H. To check (i), we use the
following attention operation:

4 k—1
Cha(i) =2, [<, Qu()] \/ (\ ~Cr(i) A Cr(j)) A Cr(i) A =~Ci(§) A
k=1 r=1

4
(N\ C()eC(h) 1
r=k+1
Assume i is a ##-position. Attention selects the rightmost #-position j left of position i. Let bt .. b
and b ...b) be the bit strings directly left of position i and j, respectively. We assume that we
already defined Cy,(i) = b}, and Cy(j) = by, for all k € [1,4]. Then the above value predicate

checks that the binary number b .. . b}, is the number b} . .. b}, incremented by 1. To check (ii), we
can use the attention operation

Mo (i) == w5 [<6,Qa() V@)V Qe()] \ Quli) AQw (i) : 1.

(h,h")EH

If i is a position of a symbol a;, attention picks the rightmost position j of a symbol a; to the left of
i and checks with the value predicate that (a;,a;) € H.

This allows us to succinctly recognize a language whose smallest string has length exponential in
the number of bits of the binary counter. By stacking multiple such strings vertically and introducing
vertical constraints in addition to the horizontal constraints H, we can even succinctly recognize
languages whose smallest string has doubly exponential length.

Under review as a conference paper at ICLR 2026

We prove the following precise complexity bounds:

Theorem 5. The non-emptiness problem for UHATs and B-RASP programs is EXPSPACE-
complete.

We start with the lower bound and show it first for B-RASP programs.
Proposition 6. The non-emptiness problem for B-RASP programs is EXPSPACE-hard.

For the proof we use the techniques illustrated in Example 4 and reduce from a so-called filing
problem. A tile is a quadruple t € Ng, where we write t = (left(t), up(t), right(t), down(t)). The
2"-tiling problem is defined as follows:

Given: Aninteger n > 0 in unary, a finite set 7" of tiles, and a tile tg,, € T

Question: Do there exist m > 0 and a function 7: {1,...,2"} x {1,...,m} — T such that

T(Qn,m) = tﬁn,

down(7(i,1)) = up(r(i,m)) = 0forall 1 <4 <27,

left(r(1, 7)) = right(T(2",7)) = 0forall 1 < j <m,

right(7(i,7)) = left(r(i + 1,7)) forall 1 <4 < 2™and 1 < j < m, and
up(7(i,7)) = down(7(i,j+ 1)) forall1 <7< 2%and1 < j <m?

The following is shown in (Schwarzentruber, 2019):
Proposition 7. The 2™ -tiling problem is EXPSPACE-complete.

.U‘:PF“!\’I‘

The reduction to B-RASP uses an encoding of the function 7 as a sequence of strings which are of
a similar form as in Example 4, but is substantially more involved. The key observation is that strict
future masking with rightmost tie-breaking enables us to check conditions between successive tiles
(condition 4) but also between the current tile and the tile at the most recent past occurrence of the
same counter value (condition 5). The full proof can be found in Appendix A.

We observe that the B-RASP program constructed in the proof of Proposition 6 can easily be con-
verted to UHAT, which yields the EXPSPACE lower bound also for UHAT.

Proposition 8. The non-emptiness problem for UHAT is EXPSPACE-hard.

Proof sketch. We show that the B-RASP program constructed in the proof of Proposition 6 can be
converted to a UHAT in polynomial time. To this end, note that Boolean operations can easily be
simulated using affine transformations and ReLU. For the attention operations we use an attention
layer. The value predicates V (4, j) can be simulated by copying the required components of the j-th
vector, that was selected by attention, to the i-th vector using the affine transformation whose result
is forwarded and computing the result of the Boolean combination with additional ReLU layers. For
the score predicates S(i,j) we note that they either only depend on j or they check whether some
binary numbers at positions ¢ and j are equal. The former can be simulated using an additional
preliminary layer that already computes the result of S(j) for every position j. For the latter we use
Lemma 9. O

The proof of the following Lemma can be found in Appendix A.

Lemma 9. Given a mask predicate M and tie-breaking function T, there is an attention layer using
M and T that on every sequence v1, . .., v, € {0,1}*? with vy, = (k1,1 —=bg1,. . bea, 1 —bgq)
forall k € [1,n] and for every i € [1,n] picks attention vector a; = v; such that b; , = b; .. for all
r € [1,d] if such an unmasked position j exists.

We observe that the B-RASP program constructed in the proof of Proposition 6 only uses strict future
masking and rightmost tie-breaking. Thus, the EXPSPACE lower bound already holds for UHAT'S
that only use strict future masking and rightmost tie-breaking (similar for strict past masking and
leftmost tie-breaking).

Corollary 10. The non-emptiness problem for UHATs, where every layer uses strict future mask-
ing and rightmost tie-breaking (resp. strict past masking and leftmost tie-breaking), is already
EXPSPACE-hard.

Under review as a conference paper at ICLR 2026

We now prove the upper bounds in Theorem 5. To this end, we first note that any B-RASP program
can be converted in exponential time into an LTL formula using the construction from (Yang et al.,
2024). In Proposition 12 we prove that the same is true for UHATSs, which improves the doubly
exponential construction in (Yang et al., 2024) that translates UHATs to B-RASP programs first.
This suffices to prove the exponential-space upper bounds in Theorem 5 since non-emptiness of
languages given by LTL formulas can be checked in polynomial space (Sistla & Clarke, 1985).

For the translation from UHAT to LTL, we first have to make the crucial observation that the values
occurring during the computation of a UHAT are not “too large”.

Proposition 11. The values occurring in the computation of a UHAT ‘T can be represented with
only a polynomial number of bits in the size of T. Thus, rational numbers with fixed precision, that
is polynomial in the size of T, are sufficient.

Proof. Clearly, ReLU layers do not increase the amount of bits needed since only the maximum
with O is taken. Since our UHAT model is defined over rational numbers, we can represent each
value with a binary number for the numerator and a binary number for the denominator. By taking
the LCM, we can further assume that the denominators of the numbers in emb(X) are all equal. Note
that the LCM of linearly many numbers of linear bit size can be represented with polynomially many
bits. Similarly, for each attention layer we can assume that the denominators of all coefficients of the
affine transformation, whose result is forwarded, are equal. This ensure that in the input sequence
and after each layer the values have the same denominator. Next we argue that the numerators
and denominators of all values that occur in the computation can be represented with a polynomial
number of bits. The output of an attention layer is an affine transformation involving two input
vectors. Here, the input values are only multiplied with constants, i.e., the values in the output
only depend linearly on input values. Since the denominators of the values after multiplication
with coefficients are all equal, addition does not incur an increase in bit length of the denominators.
Therefore, a repeated application of linearly many attention layers can only lead to numerators and
denominators whose values are at most exponential in the number of layers, i.e., can be represented
with polynomially many bits. For the score function we observe that the dot product after an affine
transformation only involves two input vectors. Thus, the number of bits needed to represent the
result of the score function is still polynomial. A crucial observation is that the results after applying
the score function are not forwarded to the next layer, which would introduce an exponential increase
in size in the number of layers. O

By Proposition 11, we can already compute the results of the affine transformations and score func-
tions during the construction of the LTL formula. This means that the LTL formula only has to
simulate the position-wise behavior of attention layers, i.e., masking and selecting the position of
the attention vector, but not the actual computation of values. The proof of the following proposition
can be found in Appendix A.

Proposition 12. Given a UHAT that recognizes a language L, one can construct in exponential time
an LTL formula recognizing L.

We remark that if we start with a UHAT, where every attention layer uses strict future masking and
leftmost tie-breaking (resp. strict past masking and rightmost tie-breaking), then the LTL formula
constructed in the proof of Proposition 12 only uses the P (resp. F) operator. It was shown in (Sistla
& Clarke, 1985) that the non-emptiness problem for the fragments of LTL that only allow P or F is
NP-complete. Thus, we obtain an improved complexity upper bound for such restricted UHATs.

Corollary 13. The non-emptiness problem for UHATs, where every attention layer uses strict future
masking and leftmost tie-breaking (resp. strict past masking and rightmost tie-breaking), is in NEXP.

Note that it was already shown in (Jerad et al., 2025) that such restricted UHATS are equally expres-
sive as the LTL fragment with only P (resp. F). However, the construction by Jerad et al. (2025)
from UHAT to the LTL fragments incurs a doubly exponential blow-up, as opposed to our singly
exponential translation.

Under review as a conference paper at ICLR 2026

4 SUCCINCTNESS AGAINST OTHER REPRESENTATIONS OF LANGUAGES

We now study how succinctly transformers can represent languages compared to standard models
from formal language theory.

We first compare transformers to LTL. One indication that transformers may be more succinct
than LTL comes from Theorem 5, which shows that the non-emptiness problem for UHATS is
EXPSPACE-complete, whereas for LTL the corresponding problem is known to be PSPACE-
complete. The following result shows that this exponential gap also manifests in terms of suc-
cinctness.

Theorem 14. UHATs can be exponentially more succinct than LTL.

Proof. We give a family {L,,},>1 of languages such that L,, is recognized by a UHAT of size
polynomial in n but any LTL formula recognizing L,, has size exponential in n. Let M,, be a
(deterministic) Turing machine that implements a binary counter with 2" bits, i.e., when initialized
with 02", it increments the binary number until it has written 12" on its tape and accepts. Clearly,
M, is of size polynomial in 7, it uses an exponential number of tape cells in n, and the unique
accepting run has length at least 22", In (van Emde Boas, 1997) a reduction from Turing machines
to tiling problem instances is presented that encodes configurations of Turing machines in its rows
and a correct tiling corresponds to a valid execution of the Turing machine. We observe that the 2-
tiling problem instance Z,, constructed from M, has size polynomial in n and it has the property that
the smallest correct tiling has at least 22" many rows. In the proof of Proposition 8 we showed that
there is a UHAT 7, of size polynomial in the size of Z,, that recognizes encodings of correct tilings
of Z,,. Thus, 7,, is of size polynomial in n and the smallest accepted word has length at least 22" .
We let L,, be the language recognized by 7,,. Let ¢,, be an LTL formula that recognizes L,,. Since
the smallest accepted word by any LTL formula has length at most exponential in the formula size
(using an exponential conversion from LTL to finite automata similar to (Vardi & Wolper, 1994)), it
follows that the size of ¢, is at least exponential in n.

Conversely, we can show that there is no language than can be represented by LTL significantly
more succinct than by UHATSs. Thus, we may even say that UHAT' are exponentially more succinct
than LTL.

Proposition 15. Given an LTL formula p, one can construct in polynomial time a UHAT that
recognizes the same language as .

Proof sketch. From ¢ we construct a UHAT 7T that on input w outputs in a dedicated component at
position 1 <7 < |w|a lifw,i = ¢ and a 0 otherwise. Then the claim can be proven by induction.
If ¢ is an atomic formula or a Boolean combination, we can easily define 7. If ¢ = @1 S @9, we
can assume by induction hypothesis that we already computed the truth value of (1 and ¢4 at every
position, which we use to compute the truth value of =, V 5. We then use an attention layer with
strict future masking and rightmost tie-breaking to get for every position ¢ the maximal position
J < i where =1 V o holds and output at position ¢ the truth value of 5 from position j. The case
where ¢ = @1 U g is similar using strict past masking and leftmost tie-breaking. O

We show next that compared to finite automata, UHATSs can be even doubly exponentially more
succinct. To see this, take the UHAT 7,, from the proof of Theorem 14 that is of size polynomial
in n and the smallest accepted word has length at least 22”. Since any automaton recognizing a
non-empty language accepts a word of length at most linear in the automaton size, the smallest
automaton that recognizes the same language as 7, has size at least doubly exponential in 7.

Theorem 16. UHATs can be doubly exponentially more succinct than finite automata.

Conversely, the best known construction from counter-free automata (that are equally expressive as
LTL) to LTL incurs an exponential blow-up (Maler & Pnueli, 1990). Thus, together with Proposi-
tion 15, we obtain an exponential-time translation from counter-free automata to UHATSs. Note that
also the translation in (Yang et al., 2024) from counter-free automata to UHAT' increases the size
exponentially, when using the results by Maler & Pnueli (1990).

Finally, we combine Theorem 16 and Proposition 3 to obtain the following succinctness gap between
UHATSs and RNNs.

Under review as a conference paper at ICLR 2026

Corollary 17. UHATs can be exponentially more succinct than RNNs.

5 APPLICATIONS

As a consequence of our results, we can show that reasoning about languages of UHATS (e.g.
equivalence, emptiness, universality, etc.) is provably intractable. Contrast this to deterministic
finite automata, where all these problems can be done in polynomial time (cf. (Kozen, 1997)). In
the following, we show the precise complexity for the equivalence problem, i.e., the problem of
checking whether two given UHATS recognize the same language. That the universality problem is
EXPSPACE-complete can be proven similarly.

Theorem 18. Equivalence of UHATs is EXPSPACE-complete.

Proof. To prove the lower bound, we reduce from the non-emptiness problem for UHATSs, which
by Theorem 5 is EXPSPACE-complete. To this end, let 7 be a given UHAT and fix a UHAT 7
that recognizes the empty language. Then we have that 7 and 7y are equivalent if and only if 7
recognizes the empty language.

For the upper bound let the UHATSs 77 and 73 be given. We apply Proposition 12 to turn 77 and 73
in exponential time into LTL formulas ¢, and (5, respectively. Now, 77 and 75 are equivalent if and
only if ¢; and 9 are equivalent. The latter can be decided in polynomial space (Sistla & Clarke,
1985), which results in an exponential-space algorithm in total. O

6 CONCLUDING REMARKS

Related work. Our work was inspired by the works of Yang et al. (2024); Barcel¢ et al. (2024);
Jerad et al. (2025); Li & Cotterell (2025), which exhibit a close connection between unique-hard
attention transformers and star-free regular languages. In particular, these works also exploited the
connection to LTL. However, none of these results investigated neither the issue of succinctness nor
computational complexity of verification, which we establish in this paper.

Silzer et al. (2025) investigated the issue of verifying transformers of various precisions. In particu-
lar, it was shown that transformers of fixed precision are at least NEXP-hard (i.e. hard for the class of
problems solvable by nondeterministic algorithms that run in exponential time). The technique there
implies that transformers are (singly) exponentially more succinct than finite automata. However,
no conclusion can be derived as to their succinctness relative to representations like LTL or RNN.
Our result substantially improve this by showing that transformers are doubly exponentially more
succinct than automata, and exponentially more succinct than LTL and RNN. In addition, our work
assumes a much simpler model in comparison to the results in (Sélzer et al., 2025). In particular, we
use unique-hard attention, whereas in (Silzer et al., 2025) a combination of softmax and hardmax is
employed. Finally, our results use positional masking (as employed in (Yang et al., 2024; Jerad et al.,
2025; Li & Cotterell, 2025)) — as a simple class of Positional Embeddings (PEs) — in contrast to
(Sélzer et al., 2025), which admits arbitrary PEs of fixed precision.

Succinctness has also been studied in the context of linguistics. For example, according to Zipf’s
law of abbreviation (Zipf, 1935), frequently occuring concepts tend to have a succinct description.
In particular, Hindu-Arabic numeral system — which evolves into our modern numeral system —
allows an exponentially more succinct description than the Roman numeral system. According to
Zipf’s law, the former potentially enables mathematics and computer science as we see today.

Future work. 'We mention the challenge of developing an automatic tool for analyzing, verifying,
and explaining transformers. More broadly, this is an important problem for explainable Al, as
thoroughly described in the survey (Huang et al., 2020). In particular, lots of practical advances
have been made on verifying feed-forward neural networks (but not transformers) and some practical
tools have been developed in the last decade (see also the results of the most recent annual VNN
competition (Brix et al., 2024)). Despite the rather high complexity (EXPSPACE-complete), we
pose as a challenge to exploit techniques from automated verification (Clarke et al., 2018) (e.g.
symbolic techniques, simulation, etc.) to verify transformers in practice.

Under review as a conference paper at ICLR 2026

REFERENCES

Pablo Barcel6, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir V. Podolskii. Logical
languages accepted by transformer encoders with hard attention. In The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenRe-
view.net, 2024. URL https://openreview.net/forum?id=gbrHZg07mq.

Pascal Bergstrdaer, Chris Kocher, Anthony Widjaja Lin, and Georg Zetzsche. The power
of hard attention transformers on data sequences: A formal language theoretic per-
spective. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ul-
rich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neural In-
formation Processing Systems 38: Annual Conference on Neural Information Process-
ing Systems 2024, NeurlPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/af58a3386lac45472ealcc5860d2bl3e-Paper-Conference.pdf.

Christopher Brix, Stanley Bak, Taylor T. Johnson, and Haoze Wu. The fifth international verification
of neural networks competition (vin-comp 2024): Summary and results, 2024. URL https:
//arxiv.org/abs/2412.19985.

David Chiang and Peter Cholak. Overcoming a theoretical limitation of self-attention. In Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022,
Dublin, Ireland, May 22-27, 2022, pp. 7654-7664. Association for Computational Linguistics,
2022. doi: 10.18653/V1/2022.ACL-LONG.527. URL https://doi.org/10.18653/v1/
2022 .acl-1long.527.

E.M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith. Model Checking, second edition.
Cyber Physical Systems Series. MIT Press, 2018. ISBN 9780262038836. URL https://
books.google.de/books?id=ps-MEAAAQBAJ.

Martin Grohe and Nicole Schweikardt. The succinctness of first-order logic on linear orders. In 19th
IEEE Symposium on Logic in Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland,
Proceedings, pp. 438-447. IEEE Computer Society, 2004. doi: 10.1109/LICS.2004.1319638.
URL https://doi.org/10.1109/LICS.2004.1319638.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. CoRR,
abs/2312.00752, 2023. doi: 10.48550/ARXIV.2312.00752. URL https://doi.org/10.
48550/arXiv.2312.00752.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Trans. Assoc.
Comput. Linguistics, 8:156-171, 2020. doi: 10.1162/TACL_A_00306. URL https://doi.
org/10.1162/tacl_a_00306.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention
transformers: Perspectives from circuit complexity. Trans. Assoc. Comput. Linguistics, 10:800—
810, 2022. doi: 10.1162/TACL_A_00490. URL https://doi.org/10.1162/tacl_a_
00490.

Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese Thamo, Min
Wu, and Xinping Yi. A survey of safety and trustworthiness of deep neural networks: Verification,
testing, adversarial attack and defence, and interpretability. Computer Science Review, 37:100270,
2020. ISSN 1574-0137. doi: https://doi.org/10.1016/j.cosrev.2020.100270. URL https://
www.sciencedirect.com/science/article/pii/S1574013719302527.

Xinting Huang, Andy Yang, Satwik Bhattamishra, Yash Raj Sarrof, Andreas Krebs, Hattie Zhou,
Preetum Nakkiran, and Michael Hahn. A formal framework for understanding length gen-
eralization in transformers. In The Thirteenth International Conference on Learning Repre-
sentations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL https:
//openreview.net/forum?id=U49N5V51rU.

10

https://openreview.net/forum?id=gbrHZq07mq
https://proceedings.neurips.cc/paper_files/paper/2024/file/af58a33861ac45472ea1cc5860d2b13e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/af58a33861ac45472ea1cc5860d2b13e-Paper-Conference.pdf
https://arxiv.org/abs/2412.19985
https://arxiv.org/abs/2412.19985
https://doi.org/10.18653/v1/2022.acl-long.527
https://doi.org/10.18653/v1/2022.acl-long.527
https://books.google.de/books?id=ps-MEAAAQBAJ
https://books.google.de/books?id=ps-MEAAAQBAJ
https://doi.org/10.1109/LICS.2004.1319638
https://doi.org/10.48550/arXiv.2312.00752
https://doi.org/10.48550/arXiv.2312.00752
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00490
https://doi.org/10.1162/tacl_a_00490
https://www.sciencedirect.com/science/article/pii/S1574013719302527
https://www.sciencedirect.com/science/article/pii/S1574013719302527
https://openreview.net/forum?id=U49N5V51rU
https://openreview.net/forum?id=U49N5V51rU

Under review as a conference paper at ICLR 2026

Selim Jerad, Anej Svete, Jiaoda Li, and Ryan Cotterell. Unique hard attention: A tale of two sides.
CoRR, abs/2503.14615, 2025. doi: 10.48550/ARXIV.2503.14615. URL https://doi.org/
10.48550/arXiv.2503.14615.

Dexter Kozen. Automata and computability. Undergraduate texts in computer science. Springer,
1997. ISBN 978-0-387-94907-9. doi: 10.1007/978-1-4612-1844-9.

Jiaoda Li and Ryan Cotterell. Characterizing the expressivity of transformer language models.
CoRR, abs/2505.23623, 2025. doi: 10.48550/ARX1V.2505.23623. URL https://doi.org/
10.48550/arXiv.2505.23623.

Leonid Libkin. Elements of finite model theory, volume 41. Springer, 2004.

Oded Maler and Amir Pnueli. Tight bounds on the complexity of cascaded decomposition of
automata. In 31st Annual Symposium on Foundations of Computer Science, St. Louis, Mis-
souri, USA, October 22-24, 1990, Volume II, pp. 672-682. IEEE Computer Society, 1990. doi:
10.1109/FSCS.1990.89589. URL https://doi.org/10.1109/FSCS.1990.89589.

Robert McNaughton and Seymour Papert. Counter-free Automata. M.1.T. Press, Cambridge, Mass.,
1971. ISBN 0262130769.

William Merrill, Gail Weiss, Yoav Goldberg, Roy Schwartz, Noah A. Smith, and Eran Yahav. A
formal hierarchy of RNN architectures. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R.
Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020, pp. 443-459. Association for Computational
Linguistics, 2020. doi: 10.18653/V1/2020.ACL-MAIN.43. URL https://doi.org/10.
18653/v1/2020.acl-main.43.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space mod-
els. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
QZ2go9JZpLg.

Jorge Pérez, Pablo Barceld, and Javier Marinkovic. Attention is turing-complete. J. Mach. Learn.
Res., 22:75:1-75:35,2021. URL https://Jjmlr.org/papers/v22/20-302.html.

Amir Pnueli. The temporal logic of programs. In [8th Annual Symposium on Foundations of
Computer Science (SFCS 1977), pp. 46-57, 1977. doi: 10.1109/SFCS.1977.32. URL https:
//doi.org/10.1109/SFCS.1977.32.

Marco Silzer, Eric Alsmann, and Martin Lange. Transformer encoder satisfiability: Complex-
ity and impact on formal reasoning. In The Thirteenth International Conference on Learn-
ing Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL
https://openreview.net/forum?id=VVO3ApdMUE.

Francois Schwarzentruber. The complexity of tiling problems. CoRR, abs/1907.00102, 2019. URL
http://arxiv.org/abs/1907.00102.

Hava T. Siegelmann and Eduardo D. Sontag. On the computational power of neural nets. J. Comput.
Syst. Sci., 50(1):132-150, 1995. doi: 10.1006/JCSS.1995.1013. URL https://doi.org/
10.1006/jcss.1995.1013.

Michael Sipser. Introduction to the theory of computation. PWS Publishing Company, 1997. ISBN
978-0-534-94728-6.

A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal logics. J.
ACM, 32(3):733-749, 1985. doi: 10.1145/3828.3837. URL https://doi.org/10.1145/
3828.3837.

Larry Joseph Stockmeyer. The complexity of decision problems in automata theory and logic. PhD
thesis, Massachusetts Institute of Technology, 1974.

11

https://doi.org/10.48550/arXiv.2503.14615
https://doi.org/10.48550/arXiv.2503.14615
https://doi.org/10.48550/arXiv.2505.23623
https://doi.org/10.48550/arXiv.2505.23623
https://doi.org/10.1109/FSCS.1990.89589
https://doi.org/10.18653/v1/2020.acl-main.43
https://doi.org/10.18653/v1/2020.acl-main.43
https://openreview.net/forum?id=QZgo9JZpLq
https://openreview.net/forum?id=QZgo9JZpLq
https://jmlr.org/papers/v22/20-302.html
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://openreview.net/forum?id=VVO3ApdMUE
http://arxiv.org/abs/1907.00102
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.1145/3828.3837
https://doi.org/10.1145/3828.3837

Under review as a conference paper at ICLR 2026

Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Progress in Theoretical
Computer Science. Birkhduser Boston, MA, 1 edition, 1994. ISBN 978-0-8176-3719-4. doi: 10.
1007/978-1-4612-0289-9. URL https://doi.org/10.1007/978-1-4612-0289-09.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages
can transformers express? A survey. Trans. Assoc. Comput. Linguistics, 12:543-561, 2024. doi:
10.1162/TACL_A_00663. URL https://doi.org/10.1162/tacl_a_00663.

Peter van Emde Boas. The convenience of tilings. In Complexity, Logic, and Recursion Theory, pp.
331-363. CRC Press, 1997. doi: 10.1201/9780429187490. URL https://doi.org/10.
1201/9780429187490.

Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Inf. Comput., 115(1):
1-37, 1994. doi: 10.1006/INCO.1994.1092. URL https://doi.org/10.1006/inco.
1994.1092.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998-6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053clcd4al845aa-Abstract.html.

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of finite
precision rnns for language recognition. In Iryna Gurevych and Yusuke Miyao (eds.), Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL
2018, Melbourne, Australia, July 15-20, 2018, Volume 2: Short Papers, pp. 740-745. As-
sociation for Computational Linguistics, 2018. doi: 10.18653/V1/P18-2117. URL https:
//aclanthology.org/P18-2117/.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent neural net-
works using queries and counterexamples (extended version). Mach. Learn., 113(5):2877-
2919, 2024. doi: 10.1007/S10994-022-06163-2. URL https://doi.org/10.1007/
s10994-022-06163-2.

Andy Yang, David Chiang, and Dana Angluin. Masked hard-attention transformers recog-
nize exactly the star-free languages. In Amir Globersons, Lester Mackey, Danielle Bel-
grave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances
in Neural Information Processing Systems 38: Annual Conference on Neural Informa-
tion Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
13d7£172259011b230cc5da8768abcSf-Abstract-Conference.html.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Joshua M. Susskind, Samy
Bengio, and Preetum Nakkiran. What algorithms can transformers learn? A study in length gener-
alization. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vi-
enna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=AssIuHnmHX.

George Kingsley Zipf. The Psychobiology of Language: An Introduction to Dynamic Philology.
Houghton Mifflin, Boston, MA, 1935.

A PROOFS FROM SECTION 3

A.1 PROOF OF PROPOSITION 6

We reduce the 2"-tiling problem to the non-emptiness problem for B-RASP. To this end, we use the
following encoding of the function 7 as a word over the alphabet ¥ := T'U {0, 1, #}. We define
ency: {1,...,2"} x {1,...,m} — X* such that

ency(i,7) := (i — 1)7(4,J)#

12

https://doi.org/10.1007/978-1-4612-0289-9
https://doi.org/10.1162/tacl_a_00663
https://doi.org/10.1201/9780429187490
https://doi.org/10.1201/9780429187490
https://doi.org/10.1006/inco.1994.1092
https://doi.org/10.1006/inco.1994.1092
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://aclanthology.org/P18-2117/
https://aclanthology.org/P18-2117/
https://doi.org/10.1007/s10994-022-06163-2
https://doi.org/10.1007/s10994-022-06163-2
http://papers.nips.cc/paper_files/paper/2024/hash/13d7f172259b11b230cc5da8768abc5f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/13d7f172259b11b230cc5da8768abc5f-Abstract-Conference.html
https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX

Under review as a conference paper at ICLR 2026

foralli € [1,2"] and j € [1,m], where (i — 1) denotes the binary encoding of ¢ — 1 with n bits and
most significant bit first. Then

enc(t) = enc,(1,1)...enc. (2", 1)enc,(2,1) ... enc,(m,2").

We construct a B-RASP program that accepts enc(7) if and only if 7 satisfies the conditions above.

Letn > 0, a finite set 7" of tiles, and ¢4, € T be given. The B-RASP program first checks whether
the input is a word from ({0, 1}"7T'#)* using the following Boolean vectors:

Ar(i) = w»; [<i, 1] \/ Qu(j)

teT
Ac,l(i) = P [] < 1, 1] (\/Q1<)
Ac’k(i)Z: > [j<i1]ACk 1() 0 fork=2,...,n
Agp (i) == ;[<i,1] Qx(j) :
A#yk(’i) = P>y [j <1, 1] A#k 1() 1 fOI‘]f:2 n+1
Aenc(d) = (Q4(0) = Ar() A ((V @) /\Am) A A ()
teT

‘We use the vector
A(Z) = >j [.] < i7 _'Aenc(j)] 0: Aenc(i)

to check that A.,.(i) = 1 at every position 4, which is the case if and only if A(¢) = 1 where ¢
is the length of the input. Note that we still have to check that the symbol at position £ is #. But
before that, we ensure that for every two consecutive binary numbers separated by # the encoded
value increases by 1 or is set to 0 if 2" — 1 is reached.

C1(i) == »; [<i,Qo(j) VQ1(j)] Q1(j) : 0
Cr(i) == »; [1 <4,Qo(j) VQ1(J)] Cr=1(j) : 0 fork=2,...,n

n k—1
Cia(i) = 5 [<,Qu ()] \ (N ~Cr(d) A C(j)) A Cr(i) A =Cr(5) A
=1 r=1
(/\ Cri) < Cu(j)) : 0
r=k+1
Cis0(d) = »; [<4,Q4()] \ ~Cr(@) ACk(j) : \ ~Ci()
k=1 k=1

C(i) = w5 [j < s Qi) A ~Cioo(G) A=Ca ()] 0 Croso(i) A Ca (i)

Now, C(¢) = 1 if and only if the binary numbers are as required.

Next, we check that the input ends with 1"¢ 5, #.

By(i) == w»; [<i, \/ Qu(j)] @Qi(j):0 forallt €T
t'eT

F(i) = Qu(i) A By, (i) /\

Then F'(¢) = 1 if and only if the input ends with 1"¢g,, #.

13

Under review as a conference paper at ICLR 2026

We continue by verifying conditions 2 and 3 of 7.

EL(i) = »; [<i,Qu(j /\)< Cr(4)]1: \V By (i)
k=1 teT: down(t)=0
i <iQeA(C N BOGIVA-COI) B))A

teT: up(t)#0 k=1 teT: up(t)=0

(\V B):0
teT: up(t)=0

n

B = (A-G@) = (VB

teT': left(t)=0

ET (Z) :

k=1
Bi)=(N\NG@) = (VB
k=1

teT: right(t)=0
E(i) == w»; [j <i,Qu() AN(EL() AE-(G) AES(1))] 0 EL(i) A ET(i) A E-(i) A E4(7)
Now, conditions 2 and 3 hold if and only if E(¢) =

Finally, we ensure that conditions 4 and 5 are satisfied.

M (i) = »; [j <i,Qu(j) & Cr(5)] \/ Bi(i) A By (j) : 1

t,t’€T: down(t)=up(t')

\/ By(i) A Bp(j)) : 1

t,t’ €T : left(t)=right(t’)
M (i) := w; [<6, Qu () A (Mi() AM(5))]10: M (1) A M(7)
Then M (¢) = 1 if and only if conditions 4 and 5 hold.

M (i) := [] <1, Qu(j

|| <: || >=

Thus, if we define the output vector to be the conjunction
Y (i) := A(i) A C(i) A F(i) A B(3) A M(i)

and say that the B-RASP program accepts if and only if Y (¢) = 1, then the B-RASP program rec-
ognizes the set of all enc(7) where 7 satisfies the conditions above. Hence, the language recognized
by the B-RASP program is non-empty if and only if the 2"-tiling problem has a solution.

A.2 PROOF OF LEMMA 9

As affine transformations A and B we use the identity, i.e.,

S(vi,v5) == (v;,vj)

M&

—bip)(1 = bjr))

r:l
which is equal to [{r € [1,d] | b;, = bj,}| since

1, ifb;, =bj,

bi bj . + (1- biﬂ”>(1 o bj"") - {0 otherwise.

Thus, the score is maximized (equal to d) if b; , = b;, forall r € [1,d].

A.3 PROOF OF PROPOSITION 12

Let 7 be a UHAT that recognizes a language L. C ¥* and F’ be a set of binary representations of
rational numbers that may occur during the computation of 7 from Proposition 11. Our goal is to
define for the ¢-th layer of 7 and every vector v € F'®, where s is the output dimension of layer ¢,
an LTL formula ¢, such that if 7 is applied on input w € 3, then the /-th layer outputs at position

14

Under review as a conference paper at ICLR 2026

i € [1,|w]|] the vector v if and only if w,i = . We define this formula inductively on the layer
number /. Let emb: X — (Q%)* be the token embedding of 7. For all v € F9 let

0 {\/aGGmb—l(v) Qa, if emb™(v) # 0

Po = 1, otherwise.

We now define the formula for layer £ + 1. In case of a ReLU layer of width r, that applies ReLU to
the k-th coordinate, we can simply define

Pt = \ Plolt k1], u,00k41,1])
wEF: max{0,u}=v[k]

for all v € F". If layer ¢ + 1 is an attention layer with strict future masking and rightmost tie-
breaking defined by the affine transformation C': Q2" — Q¢ and score function S: Q*" — Q", we

let
ebtt=\/ A (C V eS@ia-P \/)
u,a€F": beF": beF":
C(u,a)=v S(u,b)<S(u,a) S(u,b)>S(u,a)

for all v € F'°. To account for the special case, where the set of unmasked positions is empty, we
take the disjunction of the previous formula and (=P T)AV ¢ pr. ¢(u.0)=0 Pu- We Omit this special

case in the following. If the layer uses leftmost tie-breaking, we adapt the formula as follows:

eotti=) e A®eLA-P N\ o)A (P gp)
u,a€F": beF": beEF":
C(u,a)=v S(u,b)>S(u,a) S(u,b)>S(u,a)

The case of strict past masking is similar, where we use U instead of S and F instead of P. If the layer
uses no masking and rightmost tie-breaking, we distinguish three situations: the attention vector is at
the current position, the attention vector is strictly to the left of the current position, or the attention
vector is strictly to the right of the current position. For the situation, where the attention vector is
at the current position, we use

Vo oeun(=P) AF e ()
uEF": beF": beF":
C(u,u)=v S(u,b)>S(u,u) S(u,b)>S(u,u)

For the situation, where the attention vector is strictly to the left of the current position, we use

\/ oo AN(-F) @)

uw,a€F": beF":
C(u,a)=vAS(u,a)>S(u,u) S(u,b)>S(u,a))
N (G VAR S R (C A A VAR)}
beEF": beF":
S(u,b)<S(u,a) S(u,b)>S(u,a)

Similarly, for the situation, where the attention vector is strictly to the right of the current position,

Wwe use
V cun (PN)
uw,a€F": beF":
C(u,a)=vAS(u,a)>S(u,u) S(u,b)>S(u,a) 3)
ANELA-F N\ o)A\ ep).
beF": beEF":
S(u,b)>S(u,a) S(u,b)>S(u,a)

Thus, in the case of no masking and rightmost tie-breaking, we define "' as the disjunction of
Egs. (1) to (3). The case where the layer uses no masking and leftmost tie-breaking is analogous.

Finally, if there are m layers, where the last layer outputs vectors of dimension s, and t € Q? is the
acceptance vector of 7, we define the formula

o=\ e

vEFS :(t,v)>0

15

Under review as a conference paper at ICLR 2026

Then w, k |= ¢ if and only if w € L, where k is the output position of 7.

It remains to argue that ¢ can be computed in exponential time. By Proposition 11, | F'| is exponential
in the size of 7 and every representation in F' is of polynomial size. Moreover, F' can be computed
in exponential time. The formulas ¢t! at every layer £ 4 1 of width 7 depends on |F|°(") many
formulas from layer £. Moreover, ¢! can be computed in time polynomial in |F|" - |T], since we

only have to compute affine transformations on vectors from F'", where each component is of size
polynomial in |77|. The formulas ! at the last layer m depend on |F|°(""™) many formulas from
layer 0, where ' is the maximum width of all layers. Thus, " has size exponential in |7 | and can

be computed in exponential time. Therefore, also ¢ can be computed in exponential time.

16

	Introduction
	Preliminaries
	Linear Temporal Logic
	Masked unique hard-attention transformers
	Boolean RASP
	Recurrent Neural Networks (RNN)
	Size measures and succinctness

	Size of smallest witness via non-emptiness problem
	Succinctness against other representations of languages
	Applications
	Concluding remarks
	Proofs from Section 3
	Proof of Proposition 6
	Proof of Lemma 9
	Proof of Proposition 12

