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ABSTRACT

A better understanding of the emergent computation and problem-solving capa-
bilities of recent large language models is of paramount importance to further
improve them and broaden their applicability. This work investigates how a lan-
guage model, trained to predict the next token, can perform arithmetic computa-
tions generalizing beyond training data. Binary addition and multiplication con-
stitute a good testbed for this purpose, since they require a very small vocabulary
and exhibit relevant input/output discontinuities making smooth input interpola-
tion ineffective for novel data. We successfully trained a light language model
to learn these tasks and ran a number of experiments to investigate the extrapo-
lation capabilities and internal information processing. Our findings support the
hypothesis that the language model works as an Encoding-Regression-Decoding
machine where the computation takes place in the value space once the input token
representation is mapped to an appropriate internal representation.

1 INTRODUCTION

Large Language Models (LLMs) based on Transformer architecture (Vaswani et al., 2017) have
recently demonstrated surprising problem-solving capabilities that require logic reasoning, advanced
information processing and common sense (Bubeck et al., 2023; Wei et al., 2022b;a). Their huge
storage capacity combined with a massive training on terabytes of heterogeneous data could suggest
that the memorization of an enormous amount of knowledge is enough to perform well on similar
test data. However, validations on carefully selected Out-of-Distribution (OoD) data proved their
reasoning capabilities on novel examples requiring non-trivial generalizations. Unfortunately, the
depth and width of such models is so high that decoding and understanding the internal information
processing is very challenging.

Focusing on arithmetic calculations, some studies (Yuan et al., 2023) demonstrate that recent LLMs
(such as GPT-4) can perform additions and multiplications with long-digit operands, for which the
number of variants is so high to exclude the exhaustive memorization of the training set. Neverthe-
less, the computational approach put in place by the LLMs, as well as the interpolation/extrapolation
capabilities remain unexplained.

In this work we design some controlled experiments, consisting of simple computation tasks such
as binary addition and multiplication, and solve them with a Language Model (LM) based on Trans-
former architecture (Vaswani et al., 2017). In spite of their simplicity, these tasks cannot be solved
by pure memorization or smooth interpolation and investigating how an LM learn them can im-
prove our understanding of the underlying mechanisms. In particular, using a tiny vocabulary of
just 5 tokens and a small training set allows to operate with a light (non-pretrained) LM and use
interpretability techniques to investigate internal information processing.

Other studies addressed the ability of LLMs to perform arithmetic computation and train small LMs
to learn these tasks from scratch (see related works in Section 2). However, our aim is different: we
are not interested in finding the best LM architecture and setup to maximize accuracy on arithmetic
operations, but we look for a simple architecture and setup that allow to effectively solve the task
in order to be able to investigate the underlying computational approach. The main novelty and
contribution of this work are the formalization of the hypothesis that our LM works as an Encoding-
Regression-Decoding machine and the design of a number of experiments to support and validate
this hypothesis.
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After presentation of related works in Section 2, in Section 3 we introduce the experimental testbed
and the architecture of the LM used. Section 4 presents the results achieved and introduces control
experiments and elaborations to shed light on the computation approach used to solve the tasks. In
Section 5 an ablation study is presented and, finally, in Section 6 we include a final discussion and
draw some conclusions.

2 RELATED WORKS

2.1 LM AND LLM CAPABILITIES ON ARITHMETIC TASKS

In Yuan et al. (2023) recent LLMs have been benchmarked in arithmetic tasks, including long-digits
sum and multiplication, showing that LLMs such as ChatGPT and GPT-4 can perform reasonably
well on these tasks even with no specific tuning. The accuracy of smaller models is markedly lower,
and in general they are not able to work with long operands and generalize to OdD data.

Nogueira et al. (2021) tuned a T5-based pre-trained LM on additions and subtractions, and argued
that tokenization and input representation are critical to achieve good accuracy. In particular, in
their experiments character-based tokenization works better than sub-word tokenization, and mak-
ing explicit the digit position in the input string (i.e., inserting after each digit a marker to denote
its position in the sequence) generally leads to better accuracy. They also trained a vanilla non-
pretrained LM on smaller numbers and found that classical sinusoidal-based positional embedding
does not perform well, so they proposed a tailored position-wise masked embedding. Their paper
contains other interesting finding such as the impact of the digit order (plain or reverse) and the size
of the training set.

Muffo et al. (2023) tuned pre-trained GPT-2 models on 5-digit additions and 2-digit multiplications.
They also found that making explicit the digit position in the input sequence helps to improve accu-
racy. While good accuracy is reported for addition, the tuned models struggle to learn multiplication
even on two-digit operands.

Lee et al. (2023) train small LMs to learn arithmetic tasks, mainly focusing on addition, but also
experimenting with subtraction, multiplication, sine and square root. The authors carefully ablate
different aspects of the training data to isolate the factors that contribute to the appearance of arith-
metic capabilities. In particular, they study the impact of the input order (plain or reverse) and the
utility of providing intermediate information about the decomposition of the task in steps to promote
Chain of Thought (CoT) (Wei et al., 2022b) reasoning. Some results and findings included in Lee
et al. (2023) will be further discussed throughout this paper.

All the above works provide useful contributions to understand the capabilities and limitations of
large and small LMs to deal with arithmetic tasks, but none of them focus on the computational
approach used to solve them, which is the main purpose of the present work.

2.2 INTERPRETABILITY TECHNIQUES

A large number of techniques can be used to investigate the internal working mode of deep neural
networks, including transformers and LMs: see Räuker et al. (2023) for a recent survey. Weights,
single neurons, subnetworks/circuits, and activations can be the target of intrinsic approaches (im-
plemented during training) or post-hoc approaches (implemented after training).

Probing is a common technique used to investigate the representations learned by pre-trained LMs:
it typically involves training a simple model (denoted as probe) on top of the LM embeddings to pre-
dict a given property (Belinkov, 2022). Moreover, structural probing can be used to check whether
internal representations encode discrete structures such as syntax trees (Hewitt & Manning, 2019),
(White et al., 2021). However, a certain criticism emerged on probing analyses which is believed
to disconnect the probing task from the original one and/or to reveal correlations instead of cau-
sations. Therefore, instead of focusing on the presence of information on internal encoding, some
researchers proposed to check whether the removal of some knowledge from embeddings negatively
influences the model ability to perform a task (Elazar et al., 2021), (Lasri et al., 2022). Mechanistic
interpretability is still more ambitious, since it is aimed at reverse engineering the algorithm that a
model uses to solve a task and map it to neural circuits (Elhage et al., 2021).
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In this work we use a mix of intrinsic and post-hoc interpretability techniques: in particular through
the experiments we manipulate the training set, change the input representation and the architecture
components, and perform correlations analyses of embeddings.

2.3 MECHANISTIC INTERPRETABILITY OF ARITHMETIC REASONING WITH LMS

Stolfo et al. (2023) introduced a causal mediation analysis to point out the LM components (e.g.,
attention heads, Multi-Layer Perceptrons - MLPs) involved in the information processing of simple
arithmetic operations, focusing on the flow of numerical information throughout the model lay-
ers/columns. The main outcome of this study is that the model: (i) processes the representation of
numbers and operators with the first layers; (ii) information is then conveyed (by attention heads)
to the last part of the sequence (i.e., output column), where (iii) it is numerically processed by late
MLPs.

Nanda et al. (2023) carefully studied the algorithmic approach put in place by a small Transformer
to implement modular addition of small numbers. They discovered that the internal algorithmic im-
plementation is based on discrete Fourier transforms and trigonometric identities to convert addition
to rotation on a circle. While the outcomes are somewhat surprising, here the term algorithm must
be taken with care: even if the experiments prove that internal processing well approximate given
equations, the approach is a numerical approximation (based on weight encoded values) that does
not generalize to different moduli (as a symbolic implementation of the equations could do).

Both these studies adopted a simplified setting where numbers are presented as single token, and the
output is expected at the last position of the sequence. So the models are not operated in autoregres-
sive manner and the multi-token encoding/decoding stages are simplified. In Section 6 we discuss
how the above findings are compatible with our findings.

3 EXPERIMENT DESIGN

3.1 THE TASKS

We focused on two simple computation tasks: binary addition and binary multiplication. Using
binary encoding allows keeping the vocabulary very compact, since we need to encode only the
symbols ‘0’, ‘1’ and few other tokens. The selected tasks have other nice properties such as com-
puting input similarities by Hamming distance and easily generating all combinations. Of course,
a classical artificial neural network can be trained to learn to sum and multiply two integers or
floating-point numbers, but adding/multiplying strings of tokens with an LM is trickier.

More formally, given two integers A, B (both in the range [0,127]) our input sequence (or prompt)
is a 14-token string taking the form:

a0a1a2a3a4a5a6 ⟨op⟩ b0b1b2b3b4b5b6

where ai, bi ∈ {‘0’, ‘1’} are the symbols corresponding to bits in the i-th position in the binary
representation of A and B respectively, and ⟨op⟩ can be either ‘+’ or ‘×’.

The expected output string (or input completion) is:

R = r0r1...rm

ri =

{
ith bit in the binary representation of A+B, i = 0...7 if ⟨op⟩ = ‘+’
ith bit in the binary representation of A×B, i = 0...13 if ⟨op⟩ = ‘×’

It is worth noting that:

• we are using a fixed-length input/output representation (with zero padding for unused most
significant bits) to make the digit positions more explicit.

• in both the input and output the Least Significant Bits (LSBs) are provided before the Most
Significant Bits (MSBs) (a.k.a., reverse or little-endian order) since this was supposed to
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simplify the model learning1. As discusses in Appendix C this assumption leads to a much
faster training.

If we consider the sequence-to-sequence mapping underlying the proposed tasks we note that even
in a simple binary addition a slight change in the input (i.e., a single bit) can produce a relevant
change in the output because of the carries propagation (as shown explicitly in Appendix A).

3.2 THE ARCHITECTURE

A non-pretrained encoder-decoder Transformer based on the original architecture introduced by
Vaswani et al. (2017) was used as LM. Table 1 reports the model setup and parametrization. The
small vocabulary used allows to keep the model small (just 701K learnable parameters) and trainable
from scratch with a limited number of examples.

Table 1: Details of the LM model used in our experiments. The total number of learnable parameters
is just 701K, that is several orders of magnitudes smaller than recent billion-parameters LLMs.

vocabulary size 5
vocabulary 0: unused, 1: <start>, 2: ‘+’ or ‘×’, 3: ‘0’, 4: ’1’

token embedding learned
positional encoding fixed (sinusoidal)

dmodel 64
dff dmodel × 4

num heads h 8
encoder layers 6
decoder layers 6

dropout 0.1
learnable parameters 701K

The LM was trained to learn separately the addition/multiplication tasks. For both problems, we
exhaustively generated all the 214 = 16384 input/output combinations, which were then randomly
split in training (3/4 → 12288) and validation (1/4 → 4096).

An additional control experiment was run where the input sequences are the same of the addition
experiment but the output completion was randomly generated (with the same length of the addi-
tion, i.e., 8 tokens). In this case, the lack of any dependencies between input and output makes it
impossible to learn an algorithmic approach (or smooth mapping) to solve the problem and the only
strategy to learn the training set is memorizing all the sequences.

When the trained LM is used in inference mode, we always pick the most probable token from the
logit outputs (i.e., greedy decoding). Two metrics can be used to denote the LM accuracy: token
accuracy refers to the probability of generating the next token correctly, while sequence accuracy
refers to the probability of generating the whole output string correctly in autoregressive mode (i.e.,
generating one token at a time and appending it at the current prompt).

All the experiments included in this paper can be easily reproduced by running the code available
at: (to be disclosed upon acceptance).

4 RESULTS AND DISCUSSION

4.1 LEARNING ADDITION AND MULTIPLICATION

Figure 1 shows that our simple LM is able to learn addition in less than 50 epochs, and multiplication
in about 250 epochs 2. As expected multiplication is more complex and requires more training: this

1in binary arithmetic the addition/multiplication algorithms start processing the LSBs in order to correctly
propagate the intermediate carries.

2We used standard CrossEntropy loss, Adam optimizer with learning rate 0.0001 and betas = 0.9 and 0.98,
and minibatch size = 128.
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is due to the high non-linearity of this operation (more on this later) and to the higher length of the
output (14 vs 8 tokens). On the workstation used (with a single Titan RTX GPU) training can be
completed in just 8 and 46 minutes respectively. The accuracy on the validation set is very close
to the training set, denoting almost perfect generalization on numbers never seen before. This is a
somewhat surprising result, especially considering the limited size of the training data. No grokking3

was observed (Nanda et al., 2023).

Unlike Nogueira et al. (2021) (see their Appendix B for a similar setup) we were able to learn addi-
tion with the native sinusoidal positional encoding. In Lee et al. (2023) additions can be effectively
learnt by a simple LM, but to reach 100% accuracy the training set had to be balanced in terms
of the operand magnitude (i.e., number of digits) and carry propagation. The effectiveness of our
training procedure is probably due to the lower complexity determined by a small vocabulary and
fixed-length representation. As to multiplication, Muffo et al. (2023) were not able to effectively
learn two (decimal) digits multiplications, and Lee et al. (2023) had to provide extra intermediate
steps in the prompt (denoted as detailed scratchpad). On the contrary our model effectively learnt
multiplication of 7 binary digits operands: again the simplified setup may have been the key.

Figure 1: Sequence Accuracy. From the left: addition, multiplication and random output. Results
are averaged over five runs.

4.2 CONTROL EXPERIMENT: RANDOM OUTPUT

If the output is randomly generated and therefore there is no relation with the input, the only possi-
bility of learning the training set is memorizing the whole data. Figure 1(right) shows the training
results: a much larger number of epochs (i.e., 1000) was necessary to reach a sequence accuracy of
87.8%, and, as expected, the validation accuracy did not increase over the epochs. The difficulty of
memorizing the training set (many more epochs) is due to the high discontinuity of the input-output
mapping. In fact, because of the random output generation, very similar input sequences can be
associated to completely different outputs.

Therefore, even if we only consider the accuracy on the training set, this result shows that an ex-
haustive memorization of the input is much more complex for the LM than solving the addition and
multiplication tasks. This leads us to assume that to efficiently solve the above computation tasks
the LM has found a computational approach (or algorithm) to simplify the output prediction. Now
the question is: what is the approach?

4.3 THE COMPUTATIONAL APPROACH

Let us consider two alternative approaches:

Symbolic Manipulation (SM): a first idea is that the LM could learn the binary integer addi-
tion/multiplication algorithms used by an ALU inside a CPU (see Appendix B for a short reminder).
Indeed, the addition algorithm is not complex and can be solved by using a 3-bit truth table (to sum
each pair of corresponding bits with the carry-in) and iterative carry-out propagations. However,
multiplication (by iterative additions) is much more complex and trickier to learn by using a sym-
bolic manipulation approach. Furthermore, as shown by Lee et al. (2023) a simple LM can also learn
complex operations such as the sine function or the square root, whose mathematical (and algorith-

3Grooking refers to the case where validation accuracy, much smaller than training accuracy at initial stages,
suddenly increases after a certain number of epochs.
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mical) decomposition is very complex since they require Taylor expansion and Newton method,
respectively.

Encoding-Regression-Decoding (ERD): if we consider the model architecture (Transformer) used
for the LM and the underlying word embedding by vector representations, it is more likely that the
LM solves the problem by decomposing it in the following three phases:

1. Encoding (token to value): mapping the input sequence (i.e., a0a1a2a3a4a5a6 ⟨op⟩
b0b1b2b3b4b5b6) to a suitable vector representation. In principle, two vectors vA and vB

representing the values (or magnitudes) of A and B are enough.

2. Regression: learn the computation as a supervised regression problem in the vector space:
vR = regress(vA,vB). Actually this regression formulation is an oversimplification of
the problem since in the next-token-prediction training the LM works incrementally. In
Appendix C this discussion will be expanded.

3. Decoding (value to token): map the value vector vR back to token representation (i.e.,
r0r1...rm).

It is worth noting that the above Encoding and Decoding phases do not need to be mapped onto
the Transformer encoder and decoder (more on this later). The experiments reported in Sections
4.4 and 4.5 support the ERD assumption. The capability of capturing number magnitudes by pre-
trained embedders was also investigated by Wallace et al. (2019) who successfully trained a simple
external regressor to compute the sum of two numbers starting from their embeddings. Other in-
teresting studies on capturing numeracy with embedding were carried out by Naik et al. (2019) and
Sundararaman et al. (2020).

4.4 INTERPOLATION VS EXTRAPOLATION

The random training/validation split performed for the experiments reported in Section 4.1 consti-
tutes a somewhat simplified testbed to learn the two tasks. In fact, random split leads to a complete
(even if sparse) coverage of the input space by both the training and validation set, where each ex-
ample in the validation set has high chance to be close to a training set example, and interpolation is
enough to fill the gaps.

Hereafter we considered two different criteria to isolate specific portion of the input space for the
validation set, in order to better investigate extrapolation capabilities:

• V St = {(A,B)|(A,B) ∈ NN4096((A
∗, B∗))}

where NN4096((A
∗, B∗)) is the set of 4096 pairs (A,B) which are the nearest neighbors to

a centroid (A∗, B∗) according to the Hamming distance between the corresponding token
representations (i.e., number of different tokens at corresponding positions). As centroid
(A∗, B∗) in the token space we used: 1010101 ⟨op⟩ 0101010.

• V Sv = {(A,B)|32 ≤ A < 96 and 32 ≤ B < 96}
here the centroid is located in the middle of the value space (64, 64), so V Sv is a squared
region (of side 64) centered in the value space.

Both V St and V Sv isolate a contiguous data region of 4096 samples to be included in the validation
set, but in the former the samples are close in the token representation space, while in latter are close
in the value space. Being such contiguous portions of space excluded from the training set, we can
expect a worse generalization. From the results (see Figure 2) we note that V St is very marginally
affecting LM training and generalization while V Sv has a major impact: in fact, in the second case,
for both addition and multiplication the final sequence accuracy is 4. . . 6% points lower. This result
strengthen the ERD hypothesis, since: (i) using V Sv leads to the exclusion of a specific contiguous
portion of value space during phase 2 and does not allow to properly train the regressor in this region;
(ii) the encoding performed during phase 1 makes irrelevant the selection performed according to
V St because after encoding the corresponding data point remains scattered in the value space and
the regressor can easily interpolate among them.
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Figure 2: Sequence accuracy on Random, V St, and V Sv validation subsets for addition (left) and
multiplication (right). Results are averaged over five runs. V St reaches 100% accuracy on additions
(the same of Random split) and 97.5% accuracy on multiplication (just 1.4% less than random split);
V Sv reaches 93.7% on addition and 94.3% on multiplication (6.3% and 4.6% less than Random
split, respectively).

4.5 LOOKING AT INTERNAL REPRESENTATIONS

Understanding internal representation (embeddings in the vector space) in a trained Transformer is
not an easy task. However, in the specific setting considered we can gain some hints looking at
the distances between the embedding of different data points (at different layers) and correlating
them with the corresponding distances at input/output levels. Unlike probing, this approach does
not require to rely on external models and well fit our aims.

Given an LM trained on addition (or multiplication) we consider the dataset S including the 128
input pairs where the two operands have identical value4: S = {(A,A)|0 ≤ A < 128}. At input
level (in) we can compute two ordered sets of 8128 (128×127/2) distances each:

din,t = {hdist(X,Y )|(X,X), (Y, Y ) ∈ S,X < Y }
din,v = {|X − Y | |(X,X), (Y, Y ) ∈ S,X < Y }

where hdist(X,Y ) is the Hamming distance between the token representation of X and Y , and the
subscript letters t and v denote token and value level, respectively.

At output level (out) we can compute the two corresponding sets of distances as:

dout,t = {hdist(P,Q)|(X,X), (Y, Y ) ∈ S,X < Y }
dout,v = {|P −Q| |(X,X), (Y, Y ) ∈ S,X < Y }

where (P = X + X and Q = Y + Y ) for addition, and (P = X × X and Q = Y × Y ) for
multiplication.

Finally, for each intermediate level of the Transformer encoder (enc) or decoder (dec) we can com-
pute the Euclidean distances among the corresponding embedding vectors.

denci = {∥enci(X,X)− enci(Y, Y )∥ |(X,X), (Y, Y ) ∈ S,X < Y }
ddeci = {∥deci(X,X)− deci(Y, Y )∥ |(X,X), (Y, Y ) ∈ S,X < Y }

where enci and deci are the output vectors obtained by concatenating all the token embeddings
(each of dimensionality 64) after the i-th encoder and decoder layer, respectively. For example enci
has dimensionality 960 = 64× 15 where 15 is in the number of tokens in the encoder.

Even if the distances in the different sets have different ranges, we can use correlation to find out
similarities. If two set of distances are correlated we can expect that the corresponding representa-
tions/embeddings are correlated as well. Since both Pearson and Spearman correlations (Schober
et al., 2018) provided similar outputs, for simplicity in Figure 3 we report only Pearson correlations.

4since the input prompt contains two operands, we select only the cases with identical values (A = B) in
order to easily determine the “magnitude” of the input, and thereafter compute meaningful distances.
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Figure 3: Pearson correlation between ordered sets of distances for addition (a) and multiplication
(b). Each cell denotes the correlation between the two ordered set of distances specified in the
corresponding row and column. Note that since for addition in this experiment the output value is
always twice the input, the correlation values (blue and green cells) are the same for din,v and dout,v
block of values. Graphs (c) and (d) show the correlations of output distances dout,t (at token level
- blue curves) and dout,v (at value level - orange curves) with the embedding distances ddeci across
the 6 decoder layers for addition and multiplication, respectively.

The yellow cells in the tables of Figure 3 confirm the low correlation between the token and value
representation at both input and output level. The blue cells show that correlation remains quite
similar across the encoder layers as if the encoder was not performing any significant computation
(this is confirmed in Section 5 where by totally removing the encoder we achieve similar results).
More interesting is the trend of correlations across the decoder layers (green cells). In particular, for
the addition the token representation have high correlation with the first and last layers and low with
central layers, while the value representation has opposite trend (see also Figure 3.c). These results
support the ERD hypothesis and in particular that the initial and final layers in the decoder transform
from token to value representation (and vice versa) while the central layers perform regression in the
value space. In particular, at layer 3, the correlation at token level is minimum while the correlation
at value level is maximum.

For multiplication the low-high-low trend at value level is less evident (Figure 3.d orange curve),
probably because the quadratic dependence of the output from the input (at value level) does not
allow to learn a simple regressor smoothly working in the whole vector space, and the mapping is
performed by piecewise linear approximation in different space regions, which introduces discon-
tinuities that makes global distances in the vector space unsuitable to quantify the representation
similarity.

5 ABLATION STUDY

This section presents the results of an ablation study where the LM architecture was simplified, to
understand what components are necessary to learn the addition/multiplication computation. Con-
sistently with other studies, our results show that a decoder only architecture (Liu et al., 2018) can
achieve similar results w.r.t. an encoder-decoder Transformer. A simplification of the architecture
in terms of (i) reduction of dimensionality; (ii) reduction of number of heads; (iii) removal of fully
connected layers is well tolerated, while positional embedding and attention layers are mandatory
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Table 2: Epochs necessary to reach 95% accuracy on the validation set. A dash is used when 95%
accuracy is not achieved in 1K epochs: in such case the accuracy reached is reported within brackets.

Configuration Addition Multiplication
Full (see Table 1) 39 137

Decoder only 60 426
num heads h=1 25 225

Reduced dimensionality (dmodel = 32) 66 309
No positional embedding — (2.4%) — (1.8%)

No attention layers — (0.9%) — (1.7%)
No fully connected layers 56 398

for the LM in order to properly perform token to value transformation (and vice versa). Table 2
summarizes the results.

6 DISCUSSION AND CONCLUSIONS

In this paper we introduced a simplified setup to allow a light LM to learn binary addition and
multiplication. The model easily learn the two tasks and generalize well on unseen data, proving
that memorization of the training data is neither necessary nor efficient. The experiments on the
interpolation/extrapolation capabilities and correlation of input-output representations with internal
embedding suggest that the model solve the computational task as a supervised regression problem in
the value space after an initial encoding from token to values, and a final decoding from output value
to tokens. Under this hypothesis: (i) any task that can be solved by a neural network regressor can be
solved by an LM as well, with the extra burden of end-to-end learning decoding/encoding steps; (ii)
when looking at interpolation/extrapolation capabilities of an LM applied to a mathematical task,
we should not concentrate on the input token representation but on the internal representation after
encoding, keeping in mind the difficulties of a numerical regressor to work on region spaces not
covered by the training set; (iii) on a more speculative side, we could guess that modern LLMs learn
the number encoding/decoding once and reuse it across different numerical tasks whereas a specific
regressor is learnt for each task.

Our ERD hypothesis could be questioned considering some recent findings from Lee et al. (2023)
where providing in the prompt intermediate information (scratchpad) about the decomposition of
arithmetic tasks improves the training efficiency and requires less examples. This could suggest that
a symbolic manipulation approach is adopted to learn imitating step by step the proposed decompo-
sition. However, in most of the cases their model was able to learn the same task (even if slowly)
without scratchpad and/or with wrong scratchpads. As argued by the authors the higher efficiency is
actually in terms of examples and not in terms of tokens since each scratchpad requires a large num-
ber of extra tokens, and we guess these could be used as extra features by the underlying regressor.
Furthermore, scratchpad contribution is negligible for more complex operations such as sine and
square root, but, unexpectedly, learning such complex operations was simpler than multiplication.
This is not strange under the ERD hypothesis where a unary smooth operator like the sine can be
learnt by a supervised regressor independently of the mathematical method used for its computation.

The algorithmic interpretation that Nanda et al. (2023) provided for modular addition, could also
suggest that their LM discovered and efficient symbolic manipulation approach; however, as dis-
cusses in Section 2.3, it is more likely that a regressor was learnt to numerically approximate an
efficient sparse Fourier decomposition, under regularization constraints favoring sparsity. Finally,
the information flow described by Stolfo et al. (2023), points out that MLPs in the last layers are
responsible of the numerical computation of the solution, which is compatible with the hypothesis
of a multi-layer regressor.

Of course we are not claiming that all the capabilities of modern LLMs can be explained by re-
gression, but regression is likely to be one of the internal tool that LLMs uses to predict next token
when numbers come into play. To gain insights of other tools/mechanisms, one of the aim of our
future research is designing simplified experiments/setups for tasks than cannot be easily mapped to
regression problems such as chain of reasoning and logic deductions.
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A ADDITION INPUT-OUTPUT DISCONTINUITIES

In the example below a single bit modification in the input produces an 8 bit modification in the
output for the addition task:

1000000 + 0111111 → 11111110

1000000 + 1111111 → 00000001

Generally, given an input/output pair, we consider the (214) variants obtained by perturbing (i.e., 0-1
swap) the input bits and counting the resulting changes in the output. These values, averaged over
all possible input/output pairs (again 214) and normalized by row are inserted in the cells of 3. So,
for example the value in cell (row=2, column=3) means that in the 27.9% of the cases a perturbation
of 2 (over 14) bits in the input leads to a change of 3 (over 8) bits in the output.

Table 3: Addition input-output discontinuities.

Input-output discontinuities, which are further amplified in case of multiplications, make it very
unlikely to solve these tasks by smooth interpolation of the input representation.

B BINARY ADDITION AND MULTIPLICATION

Binary addition can be executed by summing pairs of corresponding bits ai and bi, starting from the
LSBs (a0 and b0) and propagating carries. Let ci−1 be the pending carry used to sum current bits
5, then a two-output 3-bit truth table (Table 4) can be used to generate the output bit oi and carry ci
used when summing next pair of bits:

A simple approach to execute binary multiplication is through iterative binary sums. Each bit bi of
the second operand is multiplied by the whole first operand, but this inner multiplication is straight-
forward since it results either in a sequence of 0 (if bi = 0) or a copy of the first operand (if bi = 1).
This intermediate result is then shifted left and summed to the current output. An example is reported
in Figure 4 below.

C LEARNING A REGRESSOR UNDER PREDICT-NEXT–TOKEN TRAINING

In Section 4.3 we argued that an arithmetic computation task can be decomposed in three steps
whose central one is learning a regressor in the value space: vR = regress(vA,vB). If we consider
the autoregressive working mode of a Transformer and its predict-next-token training, the regressor

5when summing the LSBs (i = 0), there is no pending carry, so c−1 = 0
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Table 4: Two-output 3-bit truth table for binary addition.

Inputs Outputs
ai bi ci−1 oi ci
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure 4: Example of 4-digit binary multiplication. The sum can be performed incrementally with a
two operands adder.

must be able to work incrementally given the output produced so far. In particular, we can formulate
the problem as: vri = regress(vA,vB , i, cRi−1

) where:

• vA = [va0
va1

...va7
] and vB = [vb0vb1 ...vb7 ] are the value vectors of the two input

operands, obtained as the concatenation of the value vectors of single tokens. Both are
always fully available to the decoder. Note that, vai and vbi are not the bits of the inputs,
but correspond to their value vectors including also positional information.

• i is the position of the token to be predicted (we can assume it is available through positional
encoding).

• cRi−1 = [cr0cr1 ...cri−1 ] is a value vector encoding the current context determined by the
result produced so far (entering in the decoder from the bottom).

• vri is the value vector of the i-th token.

In principle, the regressor could predict each vri based on vA and vB alone, but we argue that
the exploitation of the result produced so far cRi−1

can lead to highest training efficiency. To this
purpose is interesting to evaluate the impact of the output ordering (plain or reverse). In both the
addition and multiplication the i-th token of the result only depends on the tokens of the inputs at
positions ≤ i (see Appendix B). Therefore, if reverse order is adopted, as we assumed until now,
vAi = [va0va1 ...vai ], vBi = [vb0vb1 ...vbi ] and cRi−1 are sufficient to predict vri . Viceversa,
if the output computation starts with the MSBs the regressor cannot leverage the above iterative
decomposition and need to learn the task as a global operation using whole vectors vA and vB with
almost no support from the result produced so far.

In Figure 5 we note that with plain order both addition and multiplication require a much longer
number of epochs to converge and the learning curve is less stable. Further experiments proved that,
as expected, the order of the inputs (also reverse by default in this study) is irrelevant, since the LM
can always access the whole input representations vA and vB . The advantages of using the reverse
order are pointed out in other recent studies (Nogueira et al., 2021; Lee et al., 2023). In particular,
Lee et al. (2023) reported a significant improvement w.r.t. plain order.
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Figure 5: Sequence accuracy on validation set for reverse (default in this work) and plain order of
the input and output representations. From left to right: addition and multiplication.
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